WO2022181350A1 - 感光性樹脂組成物、硬化物、積層体、表示装置、および表示装置の製造方法 - Google Patents

感光性樹脂組成物、硬化物、積層体、表示装置、および表示装置の製造方法 Download PDF

Info

Publication number
WO2022181350A1
WO2022181350A1 PCT/JP2022/005305 JP2022005305W WO2022181350A1 WO 2022181350 A1 WO2022181350 A1 WO 2022181350A1 JP 2022005305 W JP2022005305 W JP 2022005305W WO 2022181350 A1 WO2022181350 A1 WO 2022181350A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photosensitive resin
formula
cured product
repeating unit
Prior art date
Application number
PCT/JP2022/005305
Other languages
English (en)
French (fr)
Inventor
有本真治
立松結花
亀本聡
三好一登
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202280008370.2A priority Critical patent/CN116802221A/zh
Priority to JP2022510943A priority patent/JPWO2022181350A1/ja
Publication of WO2022181350A1 publication Critical patent/WO2022181350A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/22Exposing sequentially with the same light pattern different positions of the same surface
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to a photosensitive resin composition, a cured product, a laminate, a display device, and a method for manufacturing a display device.
  • organic electroluminescence (hereinafter referred to as “organic EL”) display device After forming a partition pattern on a substrate, the openings between the partitions are coated with a light emitting material, a hole transport material, an electron A method of forming an organic EL display device having a functional layer by dropping a functional material solution such as a transport material is known.
  • organic EL organic electroluminescence
  • an organic EL display device has a drive circuit, a planarizing layer, a first electrode, an insulating layer, a light-emitting layer and a second electrode on a substrate, and between the facing first and second electrodes, Light can be emitted by applying a voltage.
  • a photosensitive resin composition that can be patterned by ultraviolet irradiation is generally used as the flattening layer material and the insulating layer material.
  • a photosensitive resin composition using a polyimide resin or a polybenzoxazole resin has high heat resistance of the resin and little gas component generated from the cured product, so that a highly durable organic EL display device can be provided. (Patent Document 1).
  • the functional layer is formed by the inkjet method
  • the openings between the partition walls need to have good wettability with ink.
  • Patent Document 2 a method has been studied in which the upper layer surface of the partition pattern on the substrate is subjected to a fluorination treatment by plasma irradiation to develop liquid repellency.
  • a method of forming partition walls from a photosensitive resin composition containing an alkali-soluble resin and a liquid-repellent compound is being studied.
  • a resist composition containing a fluorine-based acrylic polymer (Patent Document 3) and a photosensitive resin composition containing polysiloxane having a fluorinated alkyl group (Patent Document 4) are being studied.
  • the liquid-repellent component also adheres to the openings between the partition walls due to the fluorination treatment, resulting in insufficient ink wettability at the openings.
  • Patent Documents 3 and 4 have sufficient liquid repellency, and pattern formation is possible as a photosensitive resin composition.
  • the fluorine-based acrylic polymer of Patent Document 3 is inferior in UV ozone resistance, and the liquid repellency of the upper surface of the partition wall is insufficient after UV ozone treatment.
  • it is inferior in heat resistance, and there is a problem in ink wettability due to contamination of openings during curing.
  • the fluorine atom-containing polysiloxane of Patent Document 4 is excellent in heat resistance, but has insufficient alkali solubility, so there is a problem with ink wettability due to residue in openings after development. In addition, there is a problem that the fluorinated alkyl group aggregates to cause defects in the cured product.
  • an object of the present invention is to obtain a photosensitive resin composition that can obtain partition walls with few defects, excellent ink wettability at the openings, and excellent liquid repellency on the upper surface of the partition walls after UV ozone treatment.
  • the present invention has the following configuration.
  • the photosensitive resin composition of the present invention is A photosensitive resin composition containing polysiloxane (A), an alkali-soluble resin (B), and a photosensitive agent (C), A photosensitive resin composition in which the polysiloxane (A) has a repeating unit structure of (i), (ii) and (iii). (i) a repeating unit structure represented by formula (1) and/or a repeating unit structure represented by formula (2) (ii) a repeating unit structure represented by formula (3) and/or a repeat represented by formula (4) Unit structure (iii) a repeating unit structure represented by formula (5) and/or a repeating unit structure represented by formula (6)
  • R f is a fluorinated alkyl group having 7 to 21 fluorine atoms and 5 to 12 carbon atoms
  • R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, or 6 carbon atoms. ⁇ 15 aryl groups.
  • R 2 is an aryl group having 6 to 15 carbon atoms
  • R 3 is a single bond or an alkylene group having 1 to 4 carbon atoms
  • Y is 1 or 2.
  • R 4 is an organic group having 2 to 20 carbon atoms containing an acidic group. * indicates a covalent bond.
  • the photosensitive resin composition of the present invention it is possible to obtain partition walls with few defects, excellent ink wettability at the openings, and excellent liquid repellency on the upper surface of the partition walls after UV ozone treatment.
  • FIG. 1 is a schematic diagram of a substrate used for evaluation in Examples.
  • FIG. It is a schematic diagram of a cross section of an example of a laminate.
  • FIG. 4 is a schematic cross-sectional view of another example of a laminate;
  • the photosensitive resin composition of the present invention is a photosensitive resin composition containing polysiloxane (A), an alkali-soluble resin (B), and a photosensitive agent (C), wherein the polysiloxane (A) is ( It has a repeating unit structure of i), (ii) and (iii). (i) a repeating unit structure represented by formula (1) and/or a repeating unit structure represented by formula (2) (ii) a repeating unit structure represented by formula (3) and/or a repeat represented by formula (4) Unit structure (iii) a repeating unit structure represented by formula (5) and/or a repeating unit structure represented by formula (6)
  • R f is a fluorinated alkyl group having 7 to 21 fluorine atoms and 5 to 12 carbon atoms
  • R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, or 6 carbon atoms. ⁇ 15 aryl groups.
  • R 2 is an aryl group having 6 to 15 carbon atoms
  • R 3 is a single bond or an alkylene group having 1 to 4 carbon atoms
  • Y is 1 or 2.
  • R 4 is an organic group having 2 to 20 carbon atoms containing an acidic group. * indicates a covalent bond.
  • the total content of polysiloxane (A), alkali-soluble resin (B), and photosensitive agent (C) is 50% by mass or more in 100% by mass of the photosensitive resin composition. and more preferably 70% by mass or more. Although the upper limit is not particularly limited, it is 100% by mass.
  • the photosensitive resin composition contains an organic solvent (D) described later, the above total content is the total content in 100% by mass of the photosensitive resin composition excluding the organic solvent (D).
  • Polysiloxane (A) has a repeating unit structure of (i), (ii) and (iii). (i) a repeating unit structure represented by formula (1) and/or a repeating unit structure represented by formula (2) (ii) a repeating unit structure represented by formula (3) and/or a repeat represented by formula (4) Unit structure (iii) The repeating unit structure represented by formula (5) and/or the repeating unit structure represented by formula (6). Liquid repellency can be imparted. Furthermore, since polysiloxane in the main chain is excellent in UV ozone resistance, it is possible to impart high liquid repellency to the upper surface of the cured product after UV ozone treatment.
  • the main chain polysiloxane since the main chain polysiloxane has excellent heat resistance, it does not decompose in the curing process, prevents the scattering of the liquid-repellent component to the opening, and improves the wettability of the functional ink applied to the opening. can.
  • R f is a fluorinated alkyl group having 7 to 21 fluorine atoms and 5 to 12 carbon atoms
  • R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, or 6 carbon atoms. ⁇ 15 aryl groups.
  • R 2 is an aryl group having 6 to 15 carbon atoms
  • R 3 is a single bond or an alkylene group having 1 to 4 carbon atoms
  • Y is 1 or 2.
  • R 4 is an organic group having 2 to 20 carbon atoms containing an acidic group. * indicates a covalent bond.
  • Polysiloxane (A) has (i) a repeating unit structure represented by formula (1) and/or a repeating unit structure represented by formula (2).
  • R f in the repeating unit structure represented by formula (1) and/or the repeating unit structure represented by formula (2) is a fluorinated alkyl group having 7 to 21 fluorine atoms and 5 to 12 carbon atoms. More preferably, it is a fluorinated alkyl group having 9 to 13 fluorine atoms and 6 to 8 carbon atoms.
  • a fluorinated alkyl group having 7 or more fluorine atoms and 5 or more carbon atoms can exhibit good liquid repellency on the upper surface of the cured product.
  • fluorinated alkyl group represented by R f include a heptafluoropentyl group, a nonafluorohexyl group, a tridecafluorooctyl group, a heptadecafluorodecyl group, 5,5,6,6,7,7,7 -heptafluoro-4,4-bis(trifluoromethyl)heptyl group and the like.
  • Nonafluorohexyl groups and tridecafluorooctyl groups having 9 to 13 fluorine atoms and 6 to 8 carbon atoms are preferred from the viewpoint of liquid repellency and environmental load.
  • the total of the repeating unit structure represented by formula (1) and the repeating unit structure represented by formula (2) is contained in 5 to 30 mol% in 100 mol% of the total repeating unit structure of polysiloxane (A). More preferably, it is 10 to 25 mol %.
  • Good liquid repellency can be exhibited by containing 5 mol % or more of the repeating unit structure represented by formula (1) and/or the repeating unit structure represented by formula (2).
  • aggregation of the fluorinated alkyl group can be reduced by including 30 mol % or less.
  • Polysiloxane (A) has (ii) a repeating unit structure represented by formula (3) and/or a repeating unit structure represented by formula (4). Since the repeating unit structure represented by formula (3) and/or the repeating unit structure represented by formula (4) has an aryl group, the steric hindrance of the aryl group suppresses aggregation of the fluorinated alkyl group represented by R f . and a cured product with few defects can be obtained.
  • R 2 is an aryl group having 6 to 15 carbon atoms.
  • at least one of R 2 preferably has a structure represented by formula (26) or (27).
  • R 16 is a hydroxy group, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a halogenated alkyl group having 1 to 5 carbon atoms, a hydroxyalkyl group having 1 to 5 carbon atoms, or 1 carbon atom ⁇ 5 halogenated hydroxyalkyl groups.
  • b represents an integer of 0 to 3; * indicates a covalent bond.
  • alkyl groups having 1 to 5 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group and t-butyl group.
  • alkoxy groups having 1 to 5 carbon atoms include methoxy and ethoxy groups.
  • halogenated alkyl groups having 1 to 5 carbon atoms include trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, trichloromethyl group, pentachloroethyl group and heptachloropropyl group.
  • hydroxyalkyl groups having 1 to 5 carbon atoms include hydroxymethyl group, 2-hydroxyethyl group, 2-hydroxypropyl group and 3-hydroxypropyl group.
  • halogenated hydroxyalkyl groups having 1 to 5 carbon atoms include the following structures.
  • the bonding position of R 16 may be in either of the two rings of the naphthalene ring.
  • b is an integer from 0 to 3. From the viewpoint of polymerizability, b is preferably 0 to 2, more preferably 0 to 1.
  • formula (26) include a phenyl group, 3-methylphenyl group, 4-methylphenyl group, 3-ethylphenyl group, 4-ethylphenyl group, 3-t-butylphenyl group, 4-t-butyl phenyl group, 3-hydroxyphenyl group, 4-hydroxyphenyl group, 3-methoxyphenyl group, 4-methoxyphenyl group, 3-trifluoromethylphenyl group, 4-trifluoromethylphenyl group, 3-hydroxymethylphenyl group, A 4-hydroxymethylphenyl group, a structure represented by formula (7), and the like.
  • * indicates a covalent bond directly connected to R3.
  • R3 is a single bond , it represents a covalent bond directly connected to a silicon atom.
  • a represents an integer of 1 to 3; From the viewpoint of polymerizability, a is preferably 1 to 2, more preferably 1.
  • Specific examples of the structure represented by formula (7) include the following structures.
  • formula (27) include 1-naphthyl group, 2-naphthyl group, 4-methyl-1-naphthyl group, 4-hydroxy-1-naphthyl group, 4-hydroxymethyl-1-naphthyl group and the like. be done.
  • At least one of R 2 is a 1- naphthyl group, a 2-naphthyl group, or a The structures shown are more preferred.
  • Y in the repeating unit structure represented by formula (4) is more preferably 1.
  • R 3 is a single bond or an alkylene group having 1 to 4 carbon atoms.
  • alkylene group having 1 to 4 carbon atoms include methylene group, ethylene group, n-propylene group, isopropylene group, n-butylene group and t-butylene group.
  • the total repeating unit structure represented by formula (3) and the repeating unit structure represented by formula (4) is included in 20 to 70 mol% in 100 mol% of the total repeating unit structure of polysiloxane (A). More preferably, it is 30 to 60 mol %.
  • the total amount of the repeating unit structure represented by the formula (3) and the repeating unit structure represented by the formula (4) is 20 mol% or more, a good effect of suppressing aggregation of the fluorinated alkyl groups can be obtained. From the viewpoint of polymerizability control, it is preferably 70 mol % or less.
  • the polysiloxane (A) has (iii) a repeating unit structure represented by formula (5) and/or a repeating unit structure represented by formula (6). Since the repeating unit structure represented by formula (5) and/or the repeating unit structure represented by formula (6) has an organic group having 2 to 20 carbon atoms including an acidic group, the solubility in an alkaline developer is improved. , good ink wettability of the openings can be obtained. In addition, it is possible to suppress the agglomeration of the aforementioned fluorinated alkyl groups and obtain a cured product with few defects.
  • the organic group having 2 to 20 carbon atoms containing an acidic group is a carboxyl group, a carboxylic anhydride group, a hydroxyl group and a sulfonic acid group. is preferred, and more preferred is a structure represented by formula (8) or formula (9).
  • R 15 is a single bond or an alkylene group having 1 to 10 carbon atoms. * indicates a covalent bond.
  • R4 more preferably has a carboxyl group. That is, in the photosensitive resin composition of the present invention, R 4 is preferably an organic group having 2 to 20 carbon atoms and containing a carboxyl group. Furthermore, it is more preferably a dicarboxy group obtained by hydrolyzing a carboxylic anhydride group. Specific examples of organic groups having 2 to 20 carbon atoms containing an acidic group include 2-hydroxyethyl group, 3-hydroxypropyl group, bis(2-hydroxyethyl)-3-aminopropyl group, carboxymethyl group, 2- Examples include a carboxyethyl group, a 3-carboxypropyl group, and structures ( ⁇ ) and structures ( ⁇ ) shown below. As the structure having a carboxyl group, carboxymethyl group, 2-carboxyethyl group, 3-carboxypropyl group, structure ( ⁇ ), and structure ( ⁇ ) are preferable, and structure ( ⁇ ) and structure ( ⁇ ) are more preferable.
  • * indicates a covalent bond directly connected to the silicon atom.
  • a total of 1 to 40 mol% of the repeating unit structure represented by formula (5) and the repeating unit structure represented by formula (6) is contained in 100 mol% of the total repeating unit structure of polysiloxane (A). More preferably, it is 5 to 30 mol %.
  • the total content of the repeating unit structure represented by formula (5) and the repeating unit structure represented by formula (6) is 1 mol % or more, good ink wettability and compatibility can be exhibited at the opening. In addition, good liquid repellency can be obtained by including 40 mol % or less.
  • Polysiloxane (A) preferably further has a repeating unit structure (vii). (vii) repeating unit structure represented by formula (25)
  • the degree of polymerization of polysiloxane (A) increases, making it difficult for polysiloxane (A) to decompose in the curing process, preventing the liquid-repellent component from scattering into the opening, and preventing the opening. It is possible to further improve the wettability of the functional ink applied to the part.
  • Polysiloxane (A) preferably contains 30 to 300 mol parts of the repeating unit structure of (vii) with respect to 100 mol parts of the repeating unit structure of (iii), and more preferably contains 101 to 200 mol parts. . Since the acidic group contained in the repeating unit structure (iii) acts as an acid catalyst, the degree of polymerization of the repeating unit structure (vii) can be increased.
  • Polysiloxane (A) contains 30 mol parts or more of the repeating unit structure of (vii) with respect to 100 mol parts of the repeating unit structure of (iii), so that the heat resistance of the polysiloxane (A) is improved, and the curing step
  • the polysiloxane (A) becomes difficult to decompose at , preventing scattering of the liquid-repellent component to the opening and further improving the wettability of the functional ink applied to the opening.
  • the polysiloxane (A) contains 300 mol parts or less of the repeating unit structure of (vii) with respect to 100 mol parts of the repeating unit structure of (iii), so that the compatibility with the alkali-soluble resin (B) described later is easier to improve.
  • the polysiloxane (A) may have (iv) a repeating unit structure represented by formula (10) and/or a repeating unit structure represented by formula (11).
  • R 1 is a hydrogen atom , an alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms or an aryl group having 6 to 15 carbon atoms; An organic group having 1 to 10 carbon atoms that does not correspond to any of the above.
  • R 5 is not particularly limited as long as it is an organic group having 1 to 10 carbon atoms that does not correspond to any of R f , R 2 -R 3 - and R 4 .
  • R 5 include hydrocarbon groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, cyclohexyl group; Amino group-containing groups such as propyl group, N-(2-aminoethyl)-3-aminopropyl group, N- ⁇ -(aminoethyl)- ⁇ -aminopropyl group; Cyano group-containing groups such as ⁇ -cyanoethyl group ; glycidoxymethyl group, ⁇ -glycidoxyethyl group, ⁇ -glycidoxypropyl group, ⁇ -glycidoxypropyl group, ⁇
  • R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms or an aryl group having 6 to 15 carbon atoms. is the base. From the viewpoint of polymerizability control, R 1 is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Specific examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group and the like. Among these, a hydrogen atom, a methyl group, and an ethyl group are more preferable from the viewpoint of polymerizability control.
  • the content of polysiloxane (A) is preferably 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of an alkali-soluble resin (B) described later. More preferably, it is 0.2 parts by mass or more and 5 parts by mass or less.
  • Favorable liquid repellency can be obtained because content of polysiloxane (A) is 0.1 mass part or more.
  • the content is 10 parts by mass or less, aggregation of the alkyl fluoride groups described above can be suppressed.
  • Polysiloxane is, for example, the following formulas (12), (13), and (14), and optionally the following formulas (15) and (28). It can be obtained by hydrolysis and polycondensation.
  • Polysiloxane is preferably the polysiloxane thus obtained.
  • R f is a fluorinated alkyl group having 7 to 21 fluorine atoms and 5 to 12 carbon atoms
  • R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, or 6 carbon atoms. ⁇ 15 aryl groups.
  • R 2 is an aryl group having 6 to 15 carbon atoms
  • R 3 is a single bond or an alkylene group having 1 to 4 carbon atoms
  • Z is 1 or 2.
  • R 4 is an organic group having 2 to 20 carbon atoms containing an acidic group.
  • R 5 is an organic group having 1 to 10 carbon atoms.
  • the hydrolysis reaction was carried out by adding an acid catalyst and water to alkoxysilanes represented by formulas (12), (13) and (14), and optionally formulas (15) and (28) in a solvent. After that, it is preferable to react at room temperature to 110° C. for 1 to 180 minutes. By carrying out the hydrolysis reaction under such conditions, a rapid reaction can be suppressed.
  • the reaction temperature is more preferably 40-105°C.
  • the reaction solution After obtaining the silanol compound by the hydrolysis reaction, it is preferable to heat the reaction solution at 50° C. or more and the boiling point of the solvent or less for 1 to 100 hours to carry out the condensation reaction. Moreover, in order to increase the degree of polymerization of the siloxane compound obtained by the condensation reaction, it is possible to add an acid or base catalyst or to reheat.
  • Various conditions in the hydrolysis reaction can be appropriately set in consideration of the reaction scale, the size and shape of the reaction vessel, etc. For example, by setting the acid concentration, reaction temperature, reaction time, etc., a polysiloxane having a desired degree of polymerization can be obtained.
  • Ion-exchanged water is preferable as the water used for the hydrolysis reaction.
  • the amount of water can be selected arbitrarily, it is preferably used in the range of 1.0 to 4.0 mol per 1 mol of the alkoxysilane compound.
  • Solvents used for the hydrolysis reaction include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, 3-hydroxy-3-methyl-2-butanone, 5-hydroxy-2-pentanone, 4-hydroxy-4-methyl-2-pentanone (diacetone alcohol), ethyl lactate, butyl lactate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether, propylene glycol mono-n-butyl ether, propylene glycol mono-t-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, dipropylene glycol monomethyl ether, 3-methoxy-1-butanol, 3-methyl-3-methoxy-1-butanol, ethylene glycol, propylene glycol, benzyl alcohol, 2-methylbenzyl
  • Acid catalysts used for the hydrolysis reaction include acid catalysts such as hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acids or their anhydrides, and ion exchange resins. Acidic aqueous solutions using formic acid, acetic acid or phosphoric acid are particularly preferred.
  • the content of the acid catalyst is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, relative to 100 parts by mass of all the alkoxysilane compounds used during the hydrolysis reaction. Also, the content of the acid catalyst is preferably 10 parts by mass or less, more preferably 5 parts by mass or less.
  • the total amount of alkoxysilane compound means the amount including all of the alkoxysilane compound, its hydrolyzate and its condensate, and the same shall apply hereinafter.
  • the amount of the acid catalyst is 0.05 parts by mass or more, hydrolysis proceeds smoothly, and when the amount is 10 parts by mass or less, the hydrolysis reaction can be easily controlled.
  • the polysiloxane solution after hydrolysis and partial condensation does not contain the above catalyst, and the catalyst can be removed as necessary.
  • washing with water and/or treatment with an ion exchange resin are preferred from the standpoint of ease of operation and removability. Washing with water is a method of diluting a polysiloxane solution with a suitable hydrophobic solvent, washing with water several times, and concentrating the obtained organic layer with an evaporator or the like.
  • Ion exchange resin treatment is a method of contacting a polysiloxane solution with a suitable ion exchange resin.
  • the weight average molecular weight (Mw) of (A) polysiloxane is not particularly limited, but is preferably 500 or more, more preferably 1,500 or more in terms of polystyrene measured by gel per emission chromatography (GPC). Also, it is preferably 20,000 or less, more preferably 10,000 or less.
  • the photosensitive resin composition of the present invention contains an alkali-soluble resin (B).
  • the alkali-soluble resin in the present invention refers to a resin having a dissolution rate of 50 nm/min or higher as defined below. More specifically, a silicon wafer is coated with a solution of a resin dissolved in ⁇ -butyrolactone and prebaked at 120° C. for 4 minutes to form a prebaked film with a thickness of 10 ⁇ m ⁇ 0.5 ⁇ m. A resin having a dissolution rate of 50 nm/min or more, which is obtained from the reduction in thickness when immersed in a 2.38% by mass tetramethylammonium hydroxide (TMAH) aqueous solution at 1°C for 1 minute and then rinsed with pure water. .
  • TMAH tetramethylammonium hydroxide
  • the alkali-soluble resin (B) preferably has an alkali-soluble group in the structural unit of the resin and/or at the end of its main chain in order to impart alkali solubility.
  • An alkali-soluble group refers to a functional group that interacts or reacts with an alkali to increase the solubility in an alkali solution.
  • Preferred alkali-soluble groups include carboxyl groups, phenolic hydroxyl groups, sulfonic acid groups, and thiol groups.
  • the alkali-soluble resin (B) has a structure having the aforementioned alkali-soluble group
  • the main chain skeleton of the polymer constituting the resin and the types of side chains are not limited. Examples include, but are not limited to, polyimide resins, polybenzoxazole resins, polyamideimide resins, acrylic resins, novolac resins, polyhydroxystyrene resins, phenolic resins, and polysiloxane resins.
  • the alkali-soluble resin (B) preferably has a trifluoromethyl group.
  • a trifluoromethyl group can reduce the water absorbency of the cured product of the photosensitive resin composition and improve the durability of the display device.
  • the trifluoromethyl group does not impart liquid repellency, it is possible to form a cured product having a lyophilic surface by subsequent "half exposure".
  • the alkali-soluble resin (B) is one or more selected from the group consisting of polyimide, polybenzoxazole, polyamideimide, precursors of any of these, and copolymers thereof. preferably included. These alkali-soluble resins may be contained alone, or may be contained in combination of a plurality of alkali-soluble resins. Since these alkali-soluble resins have high heat resistance, when used in a display device, the amount of outgas at a high temperature of 200° C. or higher after heat treatment is reduced, and the durability of the display device can be improved.
  • a polyimide can be obtained, for example, by reacting a tetracarboxylic acid, a tetracarboxylic dianhydride, a tetracarboxylic acid diester dichloride, or the like with a diamine or a diisocyanate compound, a trimethylsilylated diamine, or the like.
  • Polyimide has a tetracarboxylic acid residue and a diamine residue.
  • Polyimide can be obtained, for example, by subjecting polyamic acid, which is one of the polyimide precursors obtained by reacting tetracarboxylic dianhydride and diamine, to dehydration ring closure by heat treatment.
  • a water-azeotropic solvent such as m-xylene may be added.
  • a dehydration condensing agent such as carboxylic anhydride or dicyclohexylcarbodiimide or a base such as triethylamine may be added as a ring-closing catalyst, and dehydration and ring-closure may be effected by chemical heat treatment.
  • it can be obtained by adding a weakly acidic carboxylic acid compound and subjecting it to heat treatment at a low temperature of 100° C. or lower for dehydration and ring closure.
  • Polybenzoxazole can be obtained, for example, by reacting a bisaminophenol compound with a dicarboxylic acid, a dicarboxylic acid chloride, a dicarboxylic acid active ester, or the like. Polybenzoxazole has dicarboxylic acid residues and bisaminophenol residues. Further, polybenzoxazole can be obtained, for example, by dehydrating and ring-closing polyhydroxyamide, which is one of the polybenzoxazole precursors obtained by reacting a bisaminophenol compound and a dicarboxylic acid, by heat treatment. Alternatively, it can be obtained by adding phosphoric anhydride, a base, a carbodiimide compound, etc., followed by dehydration and ring closure by chemical treatment.
  • polyimide precursors examples include polyamic acid, polyamic acid ester, polyamic acid amide, and polyisoimide.
  • polyamic acid can be obtained by reacting tetracarboxylic acid, tetracarboxylic dianhydride, tetracarboxylic acid diester dichloride, or the like with diamine, diisocyanate compound, or trimethylsilylated diamine.
  • Polyimide can be obtained, for example, by subjecting the polyamic acid obtained by the above method to dehydration and ring closure by heating or chemical treatment with an acid or base.
  • polybenzoxazole precursors include polyhydroxyamides.
  • polyhydroxyamide can be obtained by reacting bisaminophenol with dicarboxylic acid, dicarboxylic acid chloride, dicarboxylic acid active ester, or the like.
  • Polybenzoxazole can be obtained, for example, by subjecting the polyhydroxyamide obtained by the above method to dehydration and ring closure by heating or chemical treatment with phosphoric anhydride, a base, a carbodiimide compound, or the like.
  • a polyamideimide precursor can be obtained, for example, by reacting a tricarboxylic acid, a corresponding tricarboxylic acid anhydride, or a tricarboxylic acid anhydride halide with a diamine or diisocyanate.
  • Polyamideimide can be obtained, for example, by subjecting the precursor obtained by the above method to dehydration and ring closure by heating or chemical treatment with an acid or base.
  • Polyimide, polybenzoxazole, polyamideimide, or a copolymer of any of these precursors may be block copolymerization, random copolymerization, alternating copolymerization, or graft copolymerization, or a combination thereof.
  • a block copolymer can be obtained by reacting polyhydroxyamide with a tetracarboxylic acid, a corresponding tetracarboxylic dianhydride, a tetracarboxylic acid diester dichloride, or the like. Further, dehydration and ring closure can be performed by heating or chemical treatment with an acid or base.
  • polyimide, polybenzoxazole, polyamideimide, any of these precursors, and copolymers thereof are added to the residue of the carboxylic acid component and/or the residue of the diamine component by the formula ( It is preferable to have the structure shown in 16). Since the structure represented by the formula (16) has excellent compatibility with the polysiloxane (A) described above, it is possible to suppress aggregation of the polysiloxane (A) and obtain a cured product with few defects. Furthermore, the trifluoromethyl group of the structure represented by (16) reduces the water absorption of the cured product of the photosensitive resin composition, and can improve the durability of the display device. In addition, since the trifluoromethyl group does not impart liquid repellency, it is possible to form a cured product having a lyophilic surface by subsequent "half exposure".
  • the copolymer has a structure represented by formula (16) in the residue of the carboxylic acid component and the residue of the diamine component.
  • the alkali-soluble resin (B) preferably has a structural unit represented by any one of formulas (17) to (20), and more preferably has a structural unit represented by formula (20). Two or more kinds of resins having these structural units may be contained, or two or more kinds of structural units may be copolymerized.
  • the resin of the alkali-soluble resin (B) preferably contains 3 to 1000, more preferably 20 to 200, structural units represented by any one of formulas (17) to (20) in the molecule.
  • R 6 and R 9 are tetravalent organic groups
  • R 7 , R 8 and R 11 are divalent organic groups
  • R 10 is trivalent organic groups
  • R 12 is 2 to a hexavalent organic group
  • R 13 represents a divalent to 12-valent organic group.
  • R 14 represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • p is an integer of 0-2;
  • q is an integer of 0-10;
  • n represents an integer of 0 to 2;
  • All of R 6 to R 13 preferably have an aromatic ring and/or an aliphatic ring.
  • Partial structures containing R 6 , R 8 , R 10 and R 12 (COOR 14 ) n (OH) p in formulas (17) to (20) are obtained, for example, by using corresponding carboxylic acid components. be able to. That is, for example, it can be obtained by using a tetracarboxylic acid for R6 , a dicarboxylic acid for R8 , a tricarboxylic acid for R10, and a di-, tri- or tetra - carboxylic acid for R12 .
  • Examples of carboxylic acid components used to obtain R 6 , R 8 , R 10 , R 12 (COOR 14 ) n (OH) p include dicarboxylic acids such as terephthalic acid, isophthalic acid, diphenyl ether dicarboxylic acid, Bis(carboxyphenyl)hexafluoropropane, biphenyldicarboxylic acid, benzophenonedicarboxylic acid, triphenyldicarboxylic acid, etc.
  • Examples of tricarboxylic acids include trimellitic acid, trimesic acid, diphenylether tricarboxylic acid, biphenyltricarboxylic acid, etc.
  • tetracarboxylic acids as pyromellitic acid, 3,3′,4,4′-biphenyltetracarboxylic acid, 2,3,3′,4′-biphenyltetracarboxylic acid, 2,2′,3,3′-biphenyltetracarboxylic acid , 3,3′,4,4′-benzophenonetetracarboxylic acid, 2,2′,3,3′-benzophenonetetracarboxylic acid, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane, 2 , 2-bis(2,3-dicarboxyphenyl)hexafluoropropane, 1,1-bis(3,4-dicarboxyphenyl)ethane, 1,1-bis(2,3-dicarboxyphenyl)ethane, bis (3,4-dicarboxyphenyphenyl)methane, bis(2,3-dicarboxyphenyl)methane
  • Examples include aromatic tetracarboxylic acids and aliphatic tetracarboxylic acids such as butanetetracarboxylic acid and 1,2,3,4-cyclopentanetetracarboxylic acid.
  • aromatic tetracarboxylic acids and aliphatic tetracarboxylic acids such as butanetetracarboxylic acid and 1,2,3,4-cyclopentanetetracarboxylic acid.
  • one or two carboxyl groups of each of tricarboxylic acid and tetracarboxylic acid correspond to COOR 14 groups.
  • These acid components can be used as they are or as acid anhydrides, active esters, and the like. Also, two or more of these acid components may be used in combination.
  • the alkali-soluble resin (B) preferably has a structure represented by formula (16) in the residue of the carboxylic acid component, as described above.
  • (Carboxyphenyl)hexafluoropropane, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane, and 2,2-bis(2,3-dicarboxyphenyl)hexafluoropropane are preferred.
  • the partial structures containing R 7 , R 9 , R 11 and R 13 (OH) q in formulas (17) to (20) can be obtained, for example, by using corresponding diamine components.
  • diamine components used to provide R 7 , R 9 , R 11 , R 13 (OH) q include bis(3-amino-4-hydroxyphenyl)hexafluoropropane, bis(3-amino-4 -hydroxyphenyl)sulfone, bis(3-amino-4-hydroxyphenyl)propane, bis(3-amino-4-hydroxyphenyl)methylene, bis(3-amino-4-hydroxyphenyl)ether, bis(3-amino -4-hydroxy)biphenyl, hydroxyl group-containing diamines such as bis(3-amino-4-hydroxyphenyl)fluorene, sulfonic acid-containing diamines such as 3-sulfonic acid-4,4'-diaminodiphenyl ether, dim
  • diamines can be used as they are or as corresponding diisocyanate compounds, trimethylsilylated diamines. Moreover, you may use combining these 2 or more types of diamine components. In applications where heat resistance is required, it is preferable to use the aromatic diamine in an amount of 50 mol % or more of the total diamine.
  • the alkali-soluble resin (B) preferably has a structure represented by formula (16) in the residue of the carboxylic acid component. 3-amino-4-hydroxyphenyl)hexafluoropropane is preferred.
  • the alkali-soluble resin (B) contains a siloxane such as 1,3-bis(3-aminopropyl)tetramethyldisiloxane as a diamine component from the viewpoint of adhesion to the substrate. It is preferred to have a system diamine.
  • R 6 to R 13 of formulas (17) to (20) can contain phenolic hydroxyl groups, sulfonic acid groups, thiol groups, etc. in their skeletons.
  • a resin having an appropriate amount of phenolic hydroxyl groups, sulfonic acid groups, or thiol groups a positive photosensitive resin composition having appropriate alkali solubility can be obtained.
  • the main chain end of the alkali-soluble resin (B) is a monoamine, an acid anhydride, a monocarboxylic acid, a monoacid chloride compound, a monoactive ester compound, or the like. Closing with a terminal blocking agent is preferred.
  • the introduction ratio of the monoamine used as the terminal blocking agent is preferably 0.1 mol % or more, particularly preferably 5 mol % or more, relative to the total amine component.
  • the proportion of monoamine introduced is preferably 60 mol % or less, particularly preferably 50 mol % or less, relative to all amine components.
  • the proportion of acid anhydride, monocarboxylic acid, monoacid chloride compound or monoactive ester compound used as a terminal blocker is preferably 0.1 mol% or more, particularly preferably 5 mol%, relative to the diamine component. That's it. Also, the introduction ratio is preferably 100 mol % or less, particularly preferably 90 mol % or less, relative to the diamine component.
  • a plurality of different terminal groups may be introduced by reacting a plurality of terminal blocking agents.
  • the repeating number of the structural unit is preferably 3 or more and 200 or less. Further, in the resin having the structural unit represented by formula (20), the repeating number of the structural unit is preferably 10 or more and 1000 or less. Within this range, a thick film can be easily formed.
  • Alkali-soluble resin (B) may be composed only of structural units represented by any one of formulas (17) to (20), or may be a copolymer or mixture with other structural units. may At that time, the structural unit represented by any one of formulas (17) to (20) is preferably contained in the total resin in an amount of 10% by mass or more, more preferably 30% by mass or more. The type and amount of structural units used for copolymerization or mixing can be selected within a range that does not impair the mechanical properties of the thin film obtained by the final heat treatment.
  • the photosensitive resin composition of the present invention contains a photosensitive agent (C).
  • the photosensitive agent (C) may be a negative type that is cured by light or a positive type that is solubilized by light.
  • a photosensitive agent (C) a polymerizable unsaturated compound and a photopolymerization initiator (C-1), or a quinonediazide compound (C-2) can be preferably contained.
  • a positive photosensitive resin composition can be obtained, and a step-shaped cured product can be formed by a single photolithography by subsequent “half exposure”. preferable.
  • the photosensitive agent (C) preferably contains the quinonediazide compound (C-2).
  • C-1 polymerizable unsaturated compound and photopolymerization initiator
  • Examples of the polymerizable unsaturated compound in (C-1) include unsaturated double bond functional groups such as vinyl group, allyl group, acryloyl group and methacryloyl group and/or unsaturated triple bond functional groups such as propargyl group. and compounds having Among these, conjugated vinyl groups, acryloyl groups, and methacryloyl groups are preferred from the standpoint of polymerizability.
  • the number of such functional groups contained is preferably 1 to 4 in one molecule from the viewpoint of stability, and the functional groups do not have to be the same group.
  • the polymerizable unsaturated compound preferably has a molecular weight of 30-800.
  • polymerizable unsaturated compounds include 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, dimethylol-tricyclodecane diacrylate, isobornyl acrylate, isobornyl methacrylate, and pentaerythritol triacrylate.
  • pentaerythritol tetraacrylate pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, methylenebisacrylamide, N,N-dimethylacrylamide, N-methylolacrylamide, 2,2,6, 6-tetramethylpiperidinyl methacrylate, 2,2,6,6-tetramethylpiperidinyl acrylate, N-methyl-2,2,6,6-tetramethylpiperidinyl methacrylate, N-methyl-2,2 ,6,6-tetramethylpiperidinyl acrylate, ethylene oxide-modified bisphenol A diacrylate, ethylene oxide-modified bisphenol A dimethacrylate, N-vinylpyrrolidone, N-vinylcaprolactam and the like. These are used alone or in combination of two or
  • the content of the polymerizable unsaturated compound in (C-1) is not particularly limited, but it is preferably 5 parts by mass or more from the viewpoint of improving alkali solubility with respect to 100 parts by mass of the alkali-soluble resin (B). , 50 parts by mass or less is preferable from the viewpoint of good pattern formation.
  • the photopolymerization initiator in (C-1) means one that initiates polymerization by mainly generating radicals when irradiated with light in the ultraviolet to visible light range.
  • a photopolymerization initiator selected from acetophenone derivatives, benzophenone derivatives, benzoin ether derivatives, and xanthone derivatives is preferred from the viewpoint of the ability to use a general-purpose light source and rapid curing.
  • photoinitiators examples include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxy-cyclohexylphenylketone, isobutyl benzoin ether, benzoin methyl ether, thioxanthone, isopropylthioxanthone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-( 4-morpholinophenyl)-butanone-1, and the like, but are not limited to these.
  • the content of the photopolymerization initiator in (C-1) is not particularly limited, but is preferably 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the alkali-soluble resin (B). Within this range, it becomes easier to secure the interaction with the resin necessary for good pattern formation and the transmittance for obtaining appropriate sensitivity.
  • the quinonediazide compound (C-2) includes a polyhydroxy compound in which a quinonediazide sulfonic acid is ester-bonded, a polyamino compound in which a quinonediazide sulfonic acid is sulfonamide-bonded, and a polyhydroxypolyamino compound in which a quinonediazide sulfonic acid is ester-bonded. and/or sulfonamide-bonded.
  • a polyhydroxy compound in which a quinonediazide sulfonic acid is ester-bonded. and/or sulfonamide-bonded.
  • the mole % of functional groups substituted with quinonediazide is referred to as the quinonediazide substitution rate.
  • a quinone diazide compound By using such a quinone diazide compound, a positive photosensitive resin composition that is sensitive to i-line (wavelength 365 nm), h-line (wavelength 405 nm), and g-line (wavelength 436 nm) of a mercury lamp, which are general ultraviolet rays, can be produced. Obtainable.
  • the polyhydroxy compound used here has two or more, preferably three or more phenolic hydroxyl groups in the molecule.
  • Polyhydroxy compounds are, for example, Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, TrisP-SA, TrisOCR-PA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP-IPZ , BisOCP-IPZ, BisP-CP, BisRS-2P, BisRS-3P, BisP-OCHP, methylene tris-FR-CR, BisRS-26X, DML-MBPC, DML-MBOC, DML-OCHP, DML-PCHP, DML- PC, DML-PTBP, DML-34X, DML-EP, DML-POP, Dimethylol-BisOC-P, DML-PFP, DML-PSBP, DML-MTrisPC, TriML-P, TriML-35XL, TML-BP, TML- HQ
  • Polyamino compounds include, for example, 1,4-phenylenediamine, 1,3-phenylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl sulfone, 4,4′- Examples include, but are not limited to, diaminodiphenyl sulfide and the like.
  • polyhydroxypolyamino compounds include, but are not limited to, 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane, 3,3'-dihydroxybenzidine, and the like.
  • quinonediazide sulfonic acids include, but are not limited to, 1,2-naphthoquinonediazide-4-sulfonic acid and 1,2-naphthoquinonediazide-5-sulfonic acid.
  • a compound in which quinonediazide sulfonic acid is bound to a polyhydroxy compound is preferably used as the quinonediazide compound (C-2).
  • a quinone diazide compound it is exposed to i-line (wavelength 365 nm), h-line (wavelength 405 nm), and g-line (wavelength 436 nm) of mercury lamps, which are general ultraviolet rays, and high sensitivity and higher resolution can be achieved.
  • i-line wavelength 365 nm
  • h-line wavelength 405 nm
  • g-line wavelength 436 nm
  • More preferred quinonediazide compounds (C-2) include compounds represented by formula (21) or formula (22).
  • each Q independently represents a hydrogen atom, a group represented by structural formula (23), or a group represented by structural formula (24).
  • Q in formulas (21) and (22) is each independently represented by a hydrogen atom or a group represented by structural formula (23).
  • the quinonediazide substitution rate is "(number of moles of quinonediazide sulfonic acid ester groups)/(number of moles of hydroxy groups before esterification of polyhydroxy compound) x 100" for polyhydroxy compounds, and "(quinonediazide sulfonic acid amide number of moles of groups)/(number of moles of amino groups before amidation of polyamino compound) ⁇ 100", in the case of polyhydroxypolyamino compounds, " ⁇ (number of moles of quinonediazidesulfonic acid ester groups) + (number of moles of quinonediazidesulfonic acid amide groups) ⁇ / ⁇ (number of moles of hydroxy groups before esterification of polyhydroxypolyamino compound)+(number of moles of amino groups of polyhydroxypolyamino compound before amidation) ⁇ 100".
  • the quinonediazide substitution rate is obtained by multiplying the quinonediazide substitution rate of each quinonediazide compound by the ratio to all the quinonediazide compounds, as shown in the following formula, and totaling the values.
  • the quinonediazide substitution rate of the quinonediazide compound in the photosensitive resin composition can be determined by removing the resin component of the photosensitive resin composition by a reprecipitation method or the like, separating the contained components by a column fractionation method or the like, and performing chemical analysis using NMR or IR. It can be obtained by identifying the structure.
  • the method for producing the quinonediazide compound is not particularly limited, but a quinonediazide sulfonyl chloride (preferably quinonediazide sulfonyl chloride) is prepared by a conventional method in a solvent such as acetone, dioxane, tetrahydrofuran, or the like with sodium carbonate, sodium hydrogen carbonate, sodium hydroxide or water.
  • a solvent such as acetone, dioxane, tetrahydrofuran, or the like with sodium carbonate, sodium hydrogen carbonate, sodium hydroxide or water.
  • an inorganic base such as potassium oxide
  • an organic base such as trimethylamine, triethylamine, tripropylamine, diisopropylamine, tributylamine, pyrrolidine, piperidine, piperazine, morpholine, pyridine, dicyclohexylamine
  • the content of the quinonediazide compound (C-2) is not particularly limited. Preferably, 20 parts by mass or more is more preferable. Moreover, 50 mass parts or less are preferable and 40 mass parts or less are more preferable. By setting the content of the quinonediazide compound within this range, photosensitivity can be obtained without impairing liquid repellency.
  • the alkali-soluble resin (B) preferably contains a phenol resin and/or a polyhydroxystyrene resin. Also, two or more of these phenolic resins and/or polyhydroxystyrene resins may be used in combination.
  • the quinonediazide compound (C-2) and the phenol resin and/or polyhydroxystyrene resin it is possible to reduce the amount of film loss in the development process, so polysiloxane (A) can be easily retained on the film surface after development. It has the effect of improving the liquid repellency.
  • Phenol resins include novolak phenol resins and resol phenol resins, and are obtained by polycondensing various phenol compounds alone or a mixture of a plurality of them using an aldehyde compound such as formalin by a known method.
  • Phenolic compounds constituting novolac phenol resins and resole phenol resins include, for example, phenol, p-cresol, m-cresol, o-cresol, 2,3-dimethylphenol, 2,4-dimethylphenol, 2,5-dimethyl phenol, 2,6-dimethylphenol, 3,4-dimethylphenol, 3,5-dimethylphenol, 2,3,4-trimethylphenol, 2,3,5-trimethylphenol, 3,4,5-trimethylphenol, 2,4,5-trimethylphenol, methylenebisphenol, methylenebis p-cresol, resorcin, catechol, 2-methylresorcin, 4-methylresorcin, o-chlorophenol, m-chlorophenol, p-chlorophenol, 2,3- Dichlorophenol, m-methoxyphenol, p-methoxyphenol, p-butoxyphenol, o-ethylphenol, m-ethylphenol, p-ethylphenol, 2,3-die
  • Aldehyde compounds include formalin, paraformaldehyde, acetaldehyde, benzaldehyde, hydroxybenzaldehyde, chloroacetaldehyde, and the like, and these can be used alone or in combination.
  • polyhydroxystyrene resin it is also possible to use a vinylphenol homopolymer or a copolymer with styrene.
  • Preferable weight average molecular weights of phenolic resins and polyhydroxystyrene resins are 2,000 to 20,000, preferably 3,000 to 10,000 in terms of polystyrene by GPC (gel permeation chromatography). Within this range, a high-concentration, low-viscosity resin composition can be obtained.
  • the photosensitive resin composition of the present invention contains the quinonediazide compound (C-2) in the photosensitive agent (C), the phenol resin and/or
  • the content of polyhydroxystyrene resin is preferably 20% by mass or more, more preferably 30% by mass or more. From the viewpoint of outgassing, it is preferably 50% by mass or less, more preferably 40% by mass or less.
  • the photosensitive resin composition of the present invention preferably contains an organic solvent (D).
  • organic solvent (D) include ethers, acetates, esters, ketones, aromatic hydrocarbons, amides, and alcohols.
  • ethylene glycol monomethyl ether ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n- Propyl ether, diethylene glycol mono-n-butyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether, propylene glycol mono-n-butyl ether , dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, dipropylene glycol mono-n-butyl ether, dipropylene glycol dimethyl ether, dipropylene glycol monoethyl ether,
  • ketones lactic acid alkyl esters such as methyl 2-hydroxypropionate or ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, 3 -methyl ethoxypropionate, ethyl 3-ethoxypropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-3-methylbutanoate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, 3-methyl -3-methoxybutyl propionate, ethyl acetate, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, n-pentyl formate, i-pentyl acetate, n-butyl propionate, ethyl buty
  • the amount of the organic solvent (D) used is not particularly limited because it changes depending on the required thickness and the coating method to be adopted, but the solid content of the photosensitive resin composition (other components excluding the organic solvent (D) ) is preferably 100 to 2000 parts by mass, particularly preferably 150 to 900 parts by mass, based on 100 parts by mass.
  • the photosensitive resin composition of the present invention can further contain a thermal cross-linking agent.
  • a thermal cross-linking agent refers to a compound having at least two thermally reactive functional groups such as a methylol group, an alkoxymethyl group, an epoxy group, and an oxetanyl group in the molecule.
  • the thermal cross-linking agent can cross-link the alkali-soluble resin (B) or other components to enhance the durability of the cured product.
  • Various known compounds can be contained as compounds having at least two alkoxymethyl groups or methylol groups.
  • Preferable examples of such compounds include HMOM-TPPHBA, HMOM-TPHAP (both trade names, manufactured by Honshu Chemical Industry Co., Ltd.), NIKALAC (registered trademark) MX-290, NIKALAC MX-280, and NIKALAC MX-270. , NIKALAC MX-279, NIKALAC MW-100LM, and NIKALAC MX-750LM (all trade names, manufactured by Sanwa Chemical Co., Ltd.), which are available from the above companies.
  • the compound having at least two epoxy groups or oxetanyl groups can contain various known compounds.
  • Preferred examples of such compounds include those having an epoxy group, such as VG3101L (trade name, manufactured by Printec Co., Ltd.), “Tepic” (registered trademark) S, “Tepic” G, and “Tepic” P (the above (trade name, manufactured by Nissan Chemical Industries, Ltd.), “Epiclone” N660, “Epiclone” N695, HP7200 (trade name, manufactured by Dainippon Ink and Chemicals Co., Ltd.), “Denacol” EX-321L (trade name, Nagase Chemtex Co., Ltd.), NC6000, EPPN502H, NC3000 (trade names, Nippon Kayaku Co., Ltd.), “Epotato” (registered trademark) YH-434L (trade name, Tohto Kasei Co., Ltd.), EHPE OXT-121, OXT-221, OX-SQ-H
  • the thermal cross-linking agent preferably has a phenolic hydroxyl group in one molecule and has a methylol group and/or an alkoxymethyl group at both ortho-positions of the phenolic hydroxyl group.
  • the durability of the cured product can be further enhanced by having the methylol group and/or the alkoxymethyl group adjacent to the phenolic hydroxyl group.
  • alkoxymethyl groups include, but are not limited to, methoxymethyl, ethoxymethyl, propoxymethyl, and butoxymethyl groups.
  • the content of the thermal cross-linking agent is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and even more preferably 15 parts by mass or more with respect to 100 parts by mass of the total amount of the alkali-soluble resin (B). Moreover, it is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and even more preferably 30 parts by mass or less.
  • the content of the thermal cross-linking agent is 5 parts by mass or more, the heat resistance of the cured product is improved, and when the content is 50 parts by mass or less, the elongation of the cured product can be prevented from decreasing.
  • a method for producing the photosensitive resin composition of the present invention will be described. For example, it can be obtained by dissolving the above polysiloxane (A) to photosensitizer (C) and other components in an organic solvent (D). Dissolution methods include stirring and heating. When heating, the heating temperature is preferably set within a range that does not impair the performance of the resin composition, and is usually 20°C to 80°C. In addition, the order of dissolving each component is not particularly limited, and for example, there is a method of dissolving compounds in order of low solubility.
  • the obtained photosensitive resin composition is preferably filtered using a filtration filter to remove dust and particles.
  • filter pore sizes include, but are not limited to, 1 ⁇ m, 0.5 ⁇ m, 0.2 ⁇ m, 0.1 ⁇ m, and 0.05 ⁇ m.
  • Materials for the filtration filter include polypropylene (PP), polyethylene (PE), nylon (NY), polytetrafluoroethylene (PTFE), etc., and it is preferable to use polyethylene or nylon for filtration.
  • the cured product of the present invention is obtained by curing the photosensitive resin composition of the present invention.
  • the curing method include a method of heat-treating the photosensitive resin composition applied on the substrate.
  • the method of applying the photosensitive resin composition onto the substrate include spin coating, slit coating, dip coating, spray coating, and printing. Residual solvents and components with low heat resistance can be removed by heat treatment after application, so that the heat resistance and chemical resistance of the cured product can be improved.
  • the thermal cross-linking reaction can be advanced by heat treatment, and the heat resistance and chemical resistance of the cured product can be improved.
  • This heat treatment may be carried out, for example, by selecting a temperature and increasing the temperature stepwise, or by selecting a certain temperature range and continuously increasing the temperature for 5 minutes to 5 hours.
  • One example is a method of heat-treating at 150° C. and 250° C. for 30 minutes each. Alternatively, a method of linearly raising the temperature from room temperature to 300° C. over 2 hours can be used.
  • the heat treatment conditions in the present invention are preferably 180° C. or higher, more preferably 200° C. or higher, and even more preferably 230° C. or higher.
  • the heat treatment conditions are preferably 400° C. or lower, more preferably 350° C. or lower, and even more preferably 300° C. or lower.
  • the cured product of the present invention can be used for electronic parts such as organic EL display devices, liquid crystal display devices, semiconductor devices and multilayer wiring boards. Specifically, partition walls of organic EL elements, flattening layers of substrates with drive circuits of display devices using organic EL elements, color filters of liquid crystal devices, black matrices of liquid crystal devices, and between rewiring of semiconductor devices or semiconductor parts. inter-layer insulation film for semiconductors, semiconductor passivation film, surface protection film for semiconductor elements, interlayer insulation film for multi-layer wiring for high-density mounting, wiring protection insulation layer for circuit boards, on-chip microlenses for solid-state imaging devices, various displays and solid-state imaging It is suitably used for applications such as a flattening layer for devices.
  • an electronic device having a surface protective film, an interlayer insulating film, etc. on which the cured product of the present invention is arranged for example, an MRAM with low heat resistance can be cited. That is, the cured product of the present invention is suitable for use as a surface protective film for MRAM. Moreover, for example, it can be preferably used for partition walls and insulating layers of display devices such as LCDs and organic ELs. More preferably, it can be suitably used as a partition of a display device in which a functional layer is formed by applying a functional ink to regions (pixels) surrounded by partitions formed on a substrate by inkjet.
  • the cured product of the present invention Since the cured product of the present invention has good liquid repellency, it is possible to obtain a display device with less display defects by preventing the ink used in the ink jet method from penetrating into adjacent pixels. On the other hand, the side surfaces of the cured product and the portions (openings) where there is no cured product do not have liquid repellency, and therefore have good ink applicability. Furthermore, since the cured product of the present invention has a small amount of outgassing at high temperatures, the functional layer contains at least one organic EL material selected from the group consisting of an organic EL light-emitting material, a hole injection material, and a hole transport material. It can be suitably used for an EL display device.
  • a patterned first electrode and the cured product of the present invention are laminated in this order on a substrate, and at least a part of the cured product on the first electrode is open. Since the surface of the cured product has good liquid repellency, the functional ink is applied by inkjet to the area where at least a part of the cured product on the first electrode is open to form a functional layer. It can be used preferably. Also.
  • the functional layer contains at least one or more selected from the group consisting of an organic EL light-emitting material, a hole injection material, and a hole transport material. It can be suitably used for an organic EL display device.
  • the laminate of the present invention preferably satisfies the properties (v) and (vi) in the analysis of the cured product by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • FIG. 2 shows a schematic cross-sectional view of an example of the laminate of the present invention.
  • a flattening layer 9, a patterned first electrode 10, and a cured product 11 of the present invention are laminated in this order on a substrate 8, and at least a part of the cured product 11 on the patterned first electrode 10 is open.
  • the property (v) of the cured product by X-ray photoelectron spectroscopy (XPS) analysis is measured from the surface 12 opposite to the surface where the first electrode and the cured product are in contact. It is preferable to measure within a range of 100 ⁇ m from the edge of the opening of the cured product 11 .
  • XPS X-ray photoelectron spectroscopy
  • the characteristic (vi) is perpendicular to the interface 13 where the first electrode and the cured product are in contact, and is the direction of the cured product from the substrate, and the starting point is the interface where the first electrode and the cured product are in contact.
  • the characteristic (vi) is perpendicular to the interface 13 where the first electrode and the cured product are in contact, and is the direction of the cured product from the substrate, and the starting point is the interface where the first electrode and the cured product are in contact.
  • 100 nm15 to 100 nm that is, the interface where the first electrode and the cured product are in contact
  • perpendicular to the interface 13 where the first electrode and the cured product are in contact and in the direction of the cured product from the substrate. from 100 nm to 200 nm.
  • the opening of the patterned first electrode it is perpendicular to the interface between the first electrode and the cured product shown in FIG. 2 and in the direction from the substrate to the cured product.
  • the measurement is performed in any range of 100 to 200 nm from the height of the first electrode.
  • the thickness of the first electrode varies, it is assumed that the first electrode having the average thickness of the edge of the opening exists in the opening of the patterned first electrode.
  • a compound (a-1) having a fluorinated alkyl group having 7 to 21 fluorine atoms and 5 to 12 carbon atoms for example, a compound (a-1) having a fluorinated alkyl group having 7 to 21 fluorine atoms and 5 to 12 carbon atoms, and a compound having a siloxane structure
  • a method of forming a cured product from a photosensitive resin composition containing (a-2) can be mentioned.
  • a siloxane structure refers to a structure in which silicon (Si) and oxygen (O) are alternately bonded.
  • It may contain two types of compounds (a-1) having a fluorinated alkyl group having 7 to 21 fluorine atoms and 5 to 12 carbon atoms and a compound (a-2) having a siloxane structure, and the polysiloxane ( As in A), one compound may have a fluorinated alkyl group having 7 to 21 fluorine atoms and 5 to 12 carbon atoms and a siloxane structure.
  • a compound for example, a compound (a There is a method of adjusting the content of -1). Increasing the content can increase the concentration of F atoms of property (v), and decreasing the content can decrease the concentration of F atoms of property (v). There is also a method of adjusting the concentration of the fluorinated alkyl group possessed by the compound (a-1). Increasing the concentration of fluorinated alkyl groups can increase the concentration of F atoms in property (v), and decreasing the concentration of fluorinated alkyl groups can decrease the concentration of F atoms in property (v).
  • a method for adjusting the Si atom concentration of the characteristic (v) within the above range for example, there is a method of adjusting the content of the compound (a-2) having a siloxane structure in the photosensitive resin composition. Increasing the content can increase the concentration of Si atoms of characteristic (v), and decreasing the content can decrease the concentration of Si atoms of characteristic (v). There is also a method of adjusting the concentration of the siloxane structure possessed by compound (a-2). Increasing the concentration of siloxane structures can increase the concentration of Si atoms in property (v), and decreasing the concentration of siloxane structures can decrease the concentration of Si atoms in property (v).
  • the structure of the compound (a-1) having a fluorinated alkyl group with 7 to 21 fluorine atoms and 5 to 12 carbon atoms is not particularly limited.
  • the aforementioned polysiloxane (A) is preferred.
  • the structure of compound (a-2) having a siloxane structure is not particularly limited. Examples thereof include alkyl-modified silicone, polyether-modified silicone, and the aforementioned polysiloxane (A). Polyether-modified silicone and the aforementioned polysiloxane (A) are preferred from the viewpoint of uneven distribution on the surface of the cured product. Furthermore, from the viewpoint of liquid repellency, the aforementioned polysiloxane (A) is more preferable.
  • Products commercially available as polyether-modified silicones include, for example, KF-351A, KF-352A, KF-353, KF-354L, KF-355A, KF-642 (manufactured by Shin-Etsu Chemical Co., Ltd.), SH8400, SH8700, SF8410 (manufactured by Dow Corning Toray Co., Ltd.), BYK-300, BYK-306, BYK-307, BYK-320, BYK-325, BYK-330 (manufactured by BYK-Chemie) and the like.
  • Examples of the method in which the laminate of the present invention satisfies the property (vi) include a method of forming a cured product with a photosensitive resin composition containing an alkali-soluble resin (b-1) having a trifluoromethyl group. .
  • the trifluoromethyl group is less likely to be unevenly distributed on the surface of the cured product, and can retain F atoms inside the cured product.
  • the trifluoromethyl group does not impart liquid repellency, it is possible to form a cured product having a lyophilic surface by subsequent "half exposure".
  • a method for adjusting the concentration of the F atom of the characteristic (vi) to the above range for example, a method of adjusting the content of the alkali-soluble resin (b-1) having a trifluoromethyl group in the photosensitive resin composition.
  • a method of adjusting the content of the alkali-soluble resin (b-1) having a trifluoromethyl group in the photosensitive resin composition There is Increasing the content can increase the concentration of F atoms of property (vi), and decreasing the content can decrease the concentration of F atoms of property (vi).
  • the alkali-soluble resin (b-1) having a trifluoromethyl group is not limited in the type of main chain skeleton and side chains of the polymer constituting the resin. Examples include, but are not limited to, polyimide resins, polybenzoxazole resins, polyamideimide resins, acrylic resins, novolac resins, polyhydroxystyrene resins, phenolic resins, and polysiloxane resins. From the viewpoint of heat resistance, the alkali-soluble resin (b-1) having a trifluoromethyl group is selected from the group consisting of polyimide, polybenzoxazole, polyamideimide, precursors of any of these, and copolymers thereof. It is preferable to include one or more types. Since these alkali-soluble resins have high heat resistance, when used in a display device, the amount of outgassing at a high temperature of 200° C. or higher after heat treatment is reduced, and the durability of the display device can be improved.
  • the characteristic (v) is measured from the surface of the cured product opposite to the surface where the first electrode and the cured product are in contact. Moreover, it is preferable to measure within a range of 100 ⁇ m from the edge of the opening of the cured product. By measuring this range, the liquid repellency of the surface of the cured product to the functional ink can be analyzed.
  • the concentration of F atoms is preferably 8.1 atom % or more and 30.0 atom % or less in the characteristic (v). More preferably, it is 15.0 atom % or more and 26 atom % or less.
  • the concentration of F atoms is 8.1 atom % or more, liquid repellency can be imparted to the surface of the cured product.
  • the concentration of F atoms is 30 atom % or less, aggregation of F atoms can be suppressed, and a cured product with few defects can be obtained.
  • the laminate of the present invention preferably has a Si atom concentration of 1.0 atom % or more and 6.0 atom % or less in the characteristic (v). More preferably, it is 1.5 atom % or more and 4.5 atom % or less.
  • Si atom concentration is 1.0 atom % or more
  • the UV ozone resistance of the cured product is improved, and good liquid repellency can be obtained even after the UV ozone treatment.
  • the polysiloxane skeleton exhibits good heat resistance, it does not decompose during the curing process, prevents the liquid-repellent component from scattering to the opening, and improves the wettability of the functional ink applied to the opening. can be done.
  • concentration of Si atoms is 6.0 atom % or less, aggregation of Si atoms can be suppressed, and a cured product with few defects can be obtained.
  • Characteristic (v) is preferably analyzed with an XPS device with a detector tilt of 45° with respect to the sample surface.
  • the inclination of the detector of 45° enables analysis of a region near the surface where the concentration of polysiloxane (A) is high.
  • Characteristic (vi) is perpendicular to the interface where the first electrode and the cured product are in contact, and in the direction from the substrate to the cured product. measured by either When the thickness of the cured product is 200 nm or less, the median thickness of the cured product is measured. When the cured product contains the F component, the water absorption of the cured product is lowered, so that corrosion of the electrode can be suppressed and the durability of the display device can be improved.
  • the concentration of F atoms is preferably 0.1 atom % or more and 8.0 atom % or less in the property (vi). More preferably, it is 4.0 atom % or more and 7.5 atom % or less.
  • the concentration of F atoms is 0.1 atom % or more, the water absorption of the cured product is lowered, so that the durability of the display device can be improved.
  • the F atom concentration is 8.0 atom % or less, both durability of the display device and good mechanical properties of the cured product can be achieved.
  • Characteristic (vi) excavates the cured product with Ar gas cluster ions (Ar-GCIB), perpendicular to the interface between the first electrode and the cured product, and in the direction of the cured product from the substrate in the range of 100 to 200 nm. It is preferably measured by X-ray photoelectron spectroscopy (XPS) after either exposure.
  • XPS X-ray photoelectron spectroscopy
  • the photosensitive resin composition of the present invention is applied onto a substrate having a first electrode and dried to obtain a cured product. Furthermore, by performing the following steps (1) to (4) in this order, it is possible to form a cured product in which at least a portion of the first electrode is open.
  • a step of applying a photosensitive resin composition on a substrate having a first electrode to form a dried photosensitive resin product (2) A step of exposing the dried photosensitive resin product (3) Drying the exposed photosensitive resin Step of developing the product (4) Step of forming a cured product by heat-treating the developed photosensitive resin dried product
  • Examples of methods for applying the photosensitive resin composition onto the substrate having the first electrode include spin coating, slit coating, dip coating, spray coating, and printing.
  • the substrate to be coated with the photosensitive resin composition may be pretreated with the above-described adhesion improver.
  • a solution obtained by dissolving 0.5 to 20% by mass of an adhesion improver in a solvent such as isopropanol, ethanol, methanol, water, tetrahydrofuran, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lactate, and diethyl adipate is used.
  • Methods for treating the substrate surface include spin coating, slit die coating, bar coating, dip coating, spray coating, vapor treatment, and the like.
  • the coated photosensitive resin dried product is subjected to a reduced pressure drying treatment as necessary, and then using a hot plate, oven, infrared rays, etc., at a temperature in the range of 50 ° C. to 180 ° C. for 1 minute to several hours.
  • a dried photosensitive resin product can be obtained by heat treatment.
  • the dry photosensitive resin is irradiated with actinic rays through a photomask having a desired pattern.
  • Actinic rays used for exposure include ultraviolet rays, visible rays, electron beams, X-rays, etc.
  • post-exposure baking may be performed. By performing post-exposure baking, effects such as an improvement in resolution after development and an increase in the allowable range of development conditions can be expected.
  • the post-exposure bake temperature is preferably 50 to 180°C, more preferably 60 to 150°C.
  • the post-exposure bake time is preferably 10 seconds to several hours. When the post-exposure baking time is within the above range, the reaction proceeds favorably, and the development time may be shortened. At this time, a grid-shaped cured product can be obtained by using a grid-shaped photomask.
  • “half exposure” may be used.
  • “Half-exposure” refers to a process in which a certain amount of undercoat of the dried photosensitive resin material is left in the exposed portion after completion of development. In other words, it refers to a process in which exposure is performed so that the lower layer of the dried photosensitive resin is not exposed. For example, when forming the cured product of FIG. 3 from a positive-type photosensitive resin dried product, the portion to be the first step 16 of the thick cured product is left unexposed, and the portion to be the second step 17 of the thin cured product is left unexposed.
  • the spots can be formed by carrying out "half exposure” in which the lower layer of the dried photosensitive resin is exposed to a chemical dose that does not sensitize, followed by development and heat treatment.
  • the chemical dose with which the dried photosensitive resin is irradiated the thickness of the dried photosensitive resin that remains after completion of development can be adjusted.
  • the dried photosensitive resin material is positive type
  • increasing the dose of chemical radiation reduces the thickness of the dried photosensitive resin material remaining after completion of development.
  • the dried photosensitive resin material is of the negative type
  • increasing the dose of chemical radiation increases the thickness of the dried photosensitive resin material remaining after completion of development.
  • Actinic radiation may be irradiated through a photomask having two or more areas with different transmittances to adjust the dose of actinic radiation.
  • the surface of the cured product formed by half exposure has no liquid repellency and can have good ink applicability. That is, a cured product with a lyophobic surface and a cured product with a lyophilic surface can be formed by a single photolithography.
  • the exposed dried photosensitive resin material is developed using a developer to remove areas other than the exposed areas.
  • Developers include tetramethylammonium hydroxide (TMAH), diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethylaminoethyl acetate, dimethylamino Aqueous solutions of alkaline compounds such as ethanol, dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine and hexamethylenediamine are preferred.
  • these alkaline aqueous solutions are added with a polar solvent such as N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, ⁇ -butyrolactone, dimethylacrylamide, methanol, ethanol, Alcohols such as isopropanol, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, and ketones such as cyclopentanone, cyclohexanone, isobutyl ketone and methyl isobutyl ketone may be added alone or in combination. good.
  • a developing method methods such as spray, puddle, immersion, and ultrasonic waves are possible.
  • alcohols such as ethanol and isopropyl alcohol
  • esters such as ethyl lactate and propylene glycol monomethyl ether acetate may be added to the distilled water for rinsing.
  • a cured product is obtained by a process of heat-treating the developed photosensitive resin dried product.
  • Heat treatment can remove residual solvents and components with low heat resistance, so that heat resistance and chemical resistance can be improved.
  • a thermal cross-linking reaction can be advanced by heat treatment, and heat resistance and chemical resistance can be improved.
  • a temperature is selected and the temperature is raised stepwise, or a certain temperature range is selected and the temperature is raised continuously for 5 minutes to 5 hours.
  • One example is a method of heat-treating at 150° C. and 250° C. for 30 minutes each.
  • a method of linearly raising the temperature from room temperature to 300° C. over 2 hours can be used.
  • the heat treatment conditions in the present invention are preferably 180° C. or higher, more preferably 200° C. or higher, and even more preferably 230° C. or higher.
  • the heat treatment conditions are preferably 400° C. or lower, more preferably 350° C. or lower, and even more preferably 300° C. or lower.
  • the thickness of the cured product is preferably 0.5 to 10 ⁇ m starting from the interface where the first electrode and the cured product are in contact. If it is 0.5 ⁇ m or more, the functional ink can be easily retained in the pixel. From the viewpoint of facilitating processing of the photosensitive resin composition by photolithography, the thickness of the partition wall is preferably 10 ⁇ m or less.
  • the substrate used for the laminate of the present invention can be appropriately selected from materials such as metal, glass, and resin film that are preferable for supporting the display device and transporting the post-process. If it is a glass substrate, soda-lime glass, alkali-free glass, or the like can be used, and the thickness should be sufficient to maintain mechanical strength. As for the material of the glass, alkali-free glass is preferable because less ions are eluted from the glass, but soda-lime glass with a barrier coating such as SiO2 is also available on the market and can be used. .
  • polyimide preferably contains a resin material selected from polyimide, polyamide, polybenzoxazole, polyamideimide, and poly(p-xylylene), and it may contain these resin materials alone, A plurality of species may be combined.
  • polyimide resin polyamic acid (partially imidized polyamic acid is included) which is a precursor of polyimide or a solution containing soluble polyimide is applied to the supporting substrate and baked. can also be formed with
  • the first electrode used in the laminate of the present invention preferably contains ITO (indium tin oxide), IZO (indium zinc oxide), ZnO (zinc oxide), Ag, Al, or the like.
  • the patterning of the first electrode of the laminate of the present invention can be performed by a known method. For example, there is a method of forming the first electrode on the entire surface of the substrate by a sputtering method, then masking an arbitrary region with a photoresist, and then etching the opening.
  • a planarizing layer may be further laminated between the substrate and the patterned first electrode.
  • a TFT thin film transistor
  • a wiring connected to the TFT are provided on a substrate such as a glass substrate. If the first electrode follows the unevenness of the wiring, appearance defects such as uneven light emission will occur.
  • the planarizing layer preferably contains a resin material selected from polyimide, polyamide, polybenzoxazole, polyamideimide, acrylic, cardo, and poly(p-xylylene), and contains these resin materials alone. may be used, or a combination of multiple types may be used.
  • the display device of the present invention comprises the cured product of the present invention or the laminate of the present invention. Specific examples of display devices include LCDs and organic ELs.
  • the display device of the present invention preferably has a structure in which a functional layer is formed in a region surrounded by partition walls, and at least part of the partition walls is the cured product of the present invention. Since the cured product of the present invention has a highly liquid-repellent upper surface, it is preferable to form the functional layer by an inkjet method.
  • the partition made of the cured product of the present invention prevents the ink used in the inkjet method from penetrating into adjacent pixels, so that a display device with less display defects can be obtained. Furthermore, since the openings between the partition walls have good wettability with ink, the yield of the display device can be increased.
  • a colored layer for coloring transmitted light by forming a colored layer for coloring transmitted light and arranging a plurality of colored layers having different colors for each pixel, it can be suitably used as a color filter.
  • QDs quantum dots
  • the display device of the present invention preferably comprises the laminate of the present invention.
  • the first electrode patterned on a substrate and the cured product of the present invention are laminated in this order, and a laminate is provided in which at least a part of the cured product on the first electrode is open. , preferably a structure in which the functional layer is formed in the openings of the cured product. Since the cured product of the present invention has a highly liquid-repellent upper surface, it is preferable to form the functional layer by an inkjet method.
  • the cured product of the present invention prevents the ink used in the inkjet method from penetrating into adjacent pixels, so that a display device with less display defects can be obtained.
  • an organic EL light-emitting layer containing at least one selected from an organic EL light-emitting material, a hole injection material, and a hole transport material is formed, and then a second electrode is formed on the functional layer. Therefore, it can be suitably used as an organic EL display device.
  • the cured product provided in the display device of the present invention has a small amount of outgassing at high temperatures, at least one or more selected from the group consisting of organic EL light-emitting materials, hole-injecting materials, and hole-transporting materials is used in the functional layer. It is preferable to use for an organic EL display device containing. An organic EL display device with small pixel shrinkage and excellent durability can be obtained.
  • the organic EL display device has a drive circuit, a planarization layer, a first electrode, a partition wall, an organic EL light-emitting layer and a second electrode on a substrate. It is preferable that the partition walls consist of the cured product of the present invention.
  • a substrate such as a glass or resin film is provided with TFTs and wirings located on the sides of the TFTs and connected to the TFTs, and unevenness is covered thereon.
  • a planarization layer is thus provided, and a display element is provided on the planarization layer. The display element and the wiring are connected through a contact hole formed in the planarization layer.
  • the manufacturing method of the display device of the present invention has steps (5) and (6) in this order.
  • steps (5) and (6) A laminate in which a first electrode and the cured product of the present invention are laminated on a substrate in this order, and at least a part of the cured product on the first electrode is open, or the laminate of the present invention, (6) forming a functional layer by applying a functional ink on the first electrode by inkjet; forming a second electrode on the functional layer;
  • a functional layer is formed by applying a functional ink onto the first electrode of the laminate described above by inkjet.
  • a composition containing at least one selected from the group consisting of an organic EL light-emitting material, a hole injection material, and a hole transport material is dropped into pixels as functional ink, and dried. It is possible to form an organic EL light-emitting layer. For drying, it is preferable to use a hot plate or an oven and heat at 150° C. to 250° C. for 0.5 to 120 minutes.
  • a second electrode is formed on the functional layer. It is preferable that the second electrode is formed so as to entirely cover the partition wall and the functional layer. Examples of the method for forming the second electrode include a sputtering method and a vapor deposition method. In addition, it is preferable to form the second electrode with a uniform layer thickness without disconnection.
  • the molecular weights of the alkali-soluble resins (b1) to (b4) synthesized in Synthesis Examples 33 to 36 were measured using the above-described GPC apparatus with N-methyl-2-pyrrolidone (hereinafter referred to as NMP) as a developing solvent. , the number average molecular weight (Mn) was calculated in terms of polystyrene.
  • the photosensitive resin composition was applied so that the thickness after prebaking was 2 ⁇ m, and then prebaked at 90° C. for 2 minutes using a hot plate. , a substrate with a dried photosensitive resin was obtained.
  • the obtained substrate with the dried photosensitive resin material was inspected for defects using a wafer surface inspection apparatus "WM-10" manufactured by Topcon Corporation.
  • the WM-10 is calibrated for pulse height and particle size of the signal associated with particle detection using particle size standard polystyrene latex spheres.
  • the number of defects having a diameter of 0.5 ⁇ m or more converted from standard polystyrene latex spheres having a diameter of 0.5 ⁇ m was evaluated as follows, with A being excellent, B being good, C being acceptable, and D being unsatisfactory.
  • a contact angle measuring device (DMs-401; manufactured by Kyowa Interface Science Co., Ltd.) was used, and the contact angle was measured according to JIS-R3257:1999 at 23° C. by the sessile drop method.
  • the measurement results of the PGMEA contact angle on the cured product were judged as follows, A being excellent, B being good, C being acceptable, and D being unsatisfactory.
  • A is excellent, the ink spreads over the entire opening with 5-6 drops of ink (B) is good, and the ink spreads over the entire opening with 7-8 drops of ink.
  • C was evaluated as acceptable, and (D), where 9 or more droplets of ink were dropped, the ink spread over the entire surface of the opening, or (E), where ink seeped out of the pixel, was evaluated as unacceptable.
  • XPS X-ray photoelectron spectroscopy
  • a compound (HT-2) in which 4-methoxytoluene is used as a solvent is dropped onto a region surrounded by partition walls using an inkjet device, and then baked at 190° C. to form holes.
  • a transport layer was formed.
  • a mixture of the compound (GH-1) and the compound (GD-1) in which 4-methoxytoluene was used as a solvent was added dropwise to the region surrounded by the partition wall using an inkjet device. to form a light-emitting layer.
  • the compound (ET-1) and the compound (LiQ) as electron transport materials were successively laminated at a volume ratio of 1:1 by a vacuum vapor deposition method to form an organic EL layer 6 .
  • Mg and Ag were vapor-deposited to a thickness of 10 nm at a volume ratio of 10:1 to form the second electrode 7 .
  • a cap-shaped glass plate was adhered using an epoxy resin-based adhesive in a low-humidity nitrogen atmosphere for sealing, and a 5 mm square organic EL display device was fabricated on one substrate.
  • the organic EL display device produced by the method described above was driven to emit light at 10 mA/cm 2 by direct current driving, and the initial light emitting area was observed. Furthermore, it was held at 80° C. for 500 hours, and was again caused to emit light by direct current driving at 10 mA/cm 2 , and it was confirmed whether there was any change in the light emitting area. , C was rated as acceptable, D was rated as unsatisfactory, and A, B, and C were rated as acceptable.
  • MTMS methyltrimethoxysilane HfTES: 4-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-1-triethoxysilylbenzene
  • PhTMS phenyltrimethoxysilane
  • DPhDMS dimethoxydiphenylsilane
  • NapTMS 1-naphthyltrimethoxysilane
  • TMSSucA 3-trimethoxysilylpropylsuccinic anhydride
  • TfTMS tridecafluorooctyltrimethoxysilane
  • NfTMS nonafluorohexyltrimethoxysilane
  • CfTMS trifluoromethylpropyltrimethoxysilane
  • TEOS tetraethoxysilane ⁇ Crosslinking agent>
  • HMOM-TPHAP (compound represented by the following chemical formula, manufactured by Honshu Chemical Industry Co., Ltd
  • VG3101L "Techmore” (registered trademark) VG3101L (compound represented by the following chemical formula, manufactured by Printec Co., Ltd.).
  • Synthesis Example 1 Synthesis of Polysiloxane (P-1) 8.20 g (0.05 mol) of TfTMS, 43.46 g (0.50 mol) of NapTMS, 9.18 g (0.10 mol) of TMSSucA in a 500 mL three-neck flask, 16.68 g (0.35 mol) of MTMS, 72.90 g of MAK, and 8.10 g of IPA were charged, and while stirring at 40°C, 19.53 g of water and 0.76 g of phosphoric acid (1.0 mass per charged monomer) %), and a phosphoric acid solution mixed with 2.70 g of IPA was added. After that, the flask was immersed in an oil bath at 70° C.
  • HfTES (Hf-1) The 1 H-NMR measurement results of the obtained HfTES (Hf-1) were as follows.
  • Synthesis Example 31 Synthesis of acrylic liquid-repellent material (Ac-1) 100 g of cyclohexanone was added to a glass reaction vessel equipped with a stirrer, a reflux condenser, a dropping funnel, a thermometer and a nitrogen gas inlet, and nitrogen gas was added. The temperature was raised to 110° C. under the atmosphere. Maintaining the temperature of cyclohexanone at 110° C., 44 g (0.65 mol) of N,N-dimethylacrylamide, 30 g (0.10 mol) of 2-(perfluorohexyl)ethyl methacrylate, 21 g (0.22 mol) of glycidyl methacrylate.
  • Synthesis Example 32 Synthesis of hydroxyl group-containing diamine compound 18.3 g (0.05 mol) of 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane was mixed with 100 mL of acetone, 17.4 g (0.3 mol) and cooled to -15°C. A solution prepared by dissolving 20.4 g (0.11 mol) of 3-nitrobenzoyl chloride in 100 mL of acetone was added dropwise thereto. After completion of the dropwise addition, the mixture was allowed to react at -15°C for 4 hours, and then returned to room temperature. The precipitated white solid was collected by filtration and vacuum dried at 50°C.
  • Synthesis Example 33 Synthesis of alkali-soluble resin (b1) Under a dry nitrogen stream, 88.8 g (0.20 mol) of 2,2-(3,4-dicarboxyphenyl)hexafluoropropane dianhydride was dissolved in 500 g of NMP. . 96.7 g (0.16 mol) of the hydroxyl group-containing diamine compound obtained in Synthesis Example 31 and 1.24 g (0.005 mol) of 1,3-bis(3-aminopropyl)tetramethyldisiloxane were added to 100 g of NMP. and reacted at 20° C. for 1 hour and then at 50° C. for 2 hours.
  • Synthesis Example 34 Synthesis of alkali-soluble resin (b2) 62.0 g (0.20 mol) of 3,3′,4,4′-diphenylethertetracarboxylic dianhydride was dissolved in 500 g of NMP under a dry nitrogen stream. 96.7 g (0.16 mol) of the hydroxyl group-containing diamine compound obtained in Synthesis Example 31 and 1.24 g (0.005 mol) of 1,3-bis(3-aminopropyl)tetramethyldisiloxane were added to 100 g of NMP. and reacted at 20° C. for 1 hour and then at 50° C. for 2 hours.
  • Synthesis Example 35 Synthesis of alkali-soluble resin (b3) Under a dry nitrogen stream, 62.0 g (0.20 mol) of 3,3′,4,4′-diphenylethertetracarboxylic dianhydride was dissolved in 500 g of NMP. 44.85 g (0.16 mol) of bis(3-amino-4-hydroxyphenyl)sulfone and 1.24 g (0.005 mol) of 1,3-bis(3-aminopropyl)tetramethyldisiloxane were added to 100 g of NMP. and reacted at 20° C. for 1 hour and then at 50° C. for 2 hours.
  • This precipitate was collected by filtration, washed with water three times, and dried in a vacuum dryer at 80° C. for 24 hours to obtain an alkali-soluble resin (b4), which is the target polybenzoxazole (PBO) precursor.
  • the number average molecular weight of the alkali-soluble resin (b4), which is a PBO precursor was 8,500.
  • Synthesis Example 37 Synthesis of quinonediazide compound (c2) Under a dry nitrogen stream, 21.23 g (0.05 mol) of TrisP-PA (trade name, manufactured by Honshu Chemical Industry Co., Ltd.) and 33.58 g of 4-naphthoquinonediazide sulfonyl chloride. (0.125 mol) was dissolved in 450 g of 1,4-dioxane and brought to room temperature. 12.65 g (0.125 mol) of triethylamine mixed with 50 g of 1,4-dioxane was added dropwise thereto so that the inside of the reaction system did not reach 35° C. or higher. After dropping, the mixture was stirred at 30°C for 2 hours.
  • TrisP-PA trade name, manufactured by Honshu Chemical Industry Co., Ltd.
  • a quinonediazide compound (c2) which is a naphthoquinonediazide compound.
  • the quinonediazide substitution rate of this naphthoquinonediazide compound was 83%.
  • Synthesis Example 38 Synthesis of phenolic resin (d1) Under dry nitrogen stream, 108.0 g (1.00 mol) of m-cresol, 75.5 g (0.93 mol of formaldehyde) of 37% by mass formaldehyde aqueous solution, oxalic acid dihydrate After charging 0.63 g (0.005 mol) of methyl isobutyl ketone and 264 g of methyl isobutyl ketone, the mixture was immersed in an oil bath, and a polycondensation reaction was carried out for 4 hours while refluxing the reaction solution.
  • a phenolic resin (d1) which is a novolac-type phenolic resin, was obtained.
  • GPC gave a weight average molecular weight of 3,500.
  • FIG. 1 shows a schematic diagram of a substrate used for evaluation.
  • An ITO transparent conductive film of 10 nm was formed on the non-alkali glass plate 1 over the entire surface of the non-alkali glass plate by sputtering, and etched as the first electrode 2 .
  • an auxiliary electrode 3 was also formed to lead out the second electrode.
  • the resulting substrate was ultrasonically cleaned with "Semico Clean” (registered trademark) 56 (manufactured by Furuuchi Chemical Co., Ltd.) for 10 minutes, then washed with ultrapure water and dried to obtain a substrate.
  • each component was mixed at the compounding ratios shown in Tables 3, 4 and 5, and thoroughly stirred at room temperature to dissolve. After that, the resulting solution was filtered through a filter with a pore size of 0.45 ⁇ m to obtain photosensitive resin compositions W1 to W42.
  • the obtained photosensitive resin compositions W1 to W42 were applied onto the substrate by spin coating, and prebaked on a hot plate at 120° C. for 2 minutes to form a dry coating film having a thickness of about 2 ⁇ m.
  • the film was developed with a 2.38% by mass TMAH aqueous solution for 60 seconds, and rinsed with water.
  • a partition pattern 4 having a central opening of 70 ⁇ m width and 260 ⁇ m length was formed on the substrate. were arranged at a pitch of 155 ⁇ m and a pitch of 465 ⁇ m in the longitudinal direction, and the partition patterns 5 were formed in such a shape that the openings exposed the first electrodes.
  • the substrate on which the partition pattern 4 and the partition pattern 5 were formed was cured by heating at 250°C for 1 hour in a nitrogen atmosphere using a clean oven (manufactured by Koyo Thermo Systems Co., Ltd.).
  • a clean oven manufactured by Koyo Thermo Systems Co., Ltd.
  • (3) evaluation of liquid repellency was performed, and using the substrate on which the partition pattern 5 was formed, (4) evaluation of ink wettability at the opening was performed.
  • (5) UV ozone resistance was evaluated. The results are shown in Tables 6, 7 and 8.
  • Example 37 The XPS analysis of the cured product of the photosensitive resin composition W3 was performed by the method described in ⁇ Method for measuring property (v) by X-ray photoelectron spectroscopy (XPS) analysis> above, and the obtained F atoms and Si Table 9 shows the atomic element concentration (atom %).
  • the cured product of the photosensitive resin composition W3 was analyzed by the method described in ⁇ Method for measuring property (vi) by X-ray photoelectron spectroscopy (XPS) analysis> above, and the obtained F atoms. and the element concentration (atom %) of Si atoms are shown in Table 9.
  • Examples 38-41 Comparative Examples 7 and 8 The same evaluation as in Example 36 was performed except that the photosensitive resin composition W3 was changed to any one of W23, W25, W27, W28, W33 and W34. Table 9 shows the evaluation results.
  • Photosensitive resin compositions W3 and W32 were applied by spin coating onto a non-alkali glass plate having an ITO transparent conductive film of 10 nm formed on the entire surface of the non-alkali glass plate by sputtering, and placed on a hot plate at 120° C. for 2 minutes. A dry coating film having a thickness of about 2 ⁇ m was formed by pre-baking. Subsequently, "half-exposure" was performed by irradiating ultraviolet rays of all wavelengths of a mercury lamp so that half the area of the dried photosensitive resin material had a thickness of 0.5 ⁇ m after development.
  • the remaining half of the area was left unexposed to prevent the thickness from being reduced during the development process with the W3 photosensitive resin dried material having positive type photosensitive characteristics.
  • W32 which has negative type photosensitive characteristics, was irradiated with ultraviolet light at an exposure amount of 120 mJ/cm 2 (converted to h-line) so as not to reduce the thickness during the development process.
  • the substrate was developed with a 2.38% by mass TMAH aqueous solution for 60 seconds and then rinsed with water to prepare a substrate with a dried photosensitive resin.
  • the obtained substrate with the dried photosensitive resin is cured by heating at 250° C. for 1 hour in a nitrogen atmosphere using a clean oven (manufactured by Koyo Thermo Systems Co., Ltd.). Created a board.
  • the contact angle with PGMEA measured on the surface of the cured product of the photosensitive resin composition W3 was 46° in the unexposed area and 5° or less in the half-exposed area. Thus, it was confirmed that the surface of the cured product obtained by half-exposure of the positive type photosensitive resin composition exhibited lyophilicity. That is, a cured product with a lyophobic surface and a cured product with a lyophilic surface can be formed by a single photolithography.
  • the contact angle with PGMEA measured on the surface of the cured product of the negative type photosensitive resin composition W32 was 46° in the exposed area and 40° in the half-exposed area, and liquid repellency was confirmed in both areas. rice field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Silicon Polymers (AREA)

Abstract

本発明は、欠陥が少なく、開口部のインク濡れ性、およびUVオゾン処理後の隔壁上面の撥液性に優れる隔壁を得ることができる感光性樹脂組成物を得ることを目的とする。 上記目的を達するため、本発明の感光性樹脂組成物は、ポリシロキサン(A)、アルカリ可溶性樹脂(B)、および、感光剤(C)を含む感光性樹脂組成物であって、 該ポリシロキサン(A)が、特定の繰り返し単位構造を有する。

Description

感光性樹脂組成物、硬化物、積層体、表示装置、および表示装置の製造方法
 本発明は、感光性樹脂組成物、硬化物、積層体、表示装置、および表示装置の製造方法に関する。
 スマートフォン、タブレットPC、テレビなど、薄型ディスプレイを有する表示装置において、インクジェット法に代表される印刷法により機能層の形成をする製品が多く開発されている。例えば、有機エレクトロルミネッセンス(以下、「有機EL」)表示装置の場合、基板上に隔壁パターンを形成した後に、隔壁間の開口部に、インクジェット法を用いて、発光材料、正孔輸送材料、電子輸送材料等の機能材料溶液を滴下し、機能層を有する有機EL表示装置を形成する方法が知られている。
 一般に、有機EL表示装置は、基板上に、駆動回路、平坦化層、第1電極、絶縁層、発光層および第2電極を有し、対向する第1電極と第2電極との間に、電圧を印加することで発光することができる。これらのうち、平坦化層用材料および絶縁層用材料としては、紫外線照射によるパターニング可能な感光性樹脂組成物が一般に用いられている。中でもポリイミド樹脂やポリベンゾオキサゾール樹脂を用いた感光性樹脂組成物は、樹脂の耐熱性が高く、硬化物から発生するガス成分が少ないため、高耐久性の有機EL表示装置を与えることができる点で好適に用いられている(特許文献1)。
 インクジェット法によって機能層を形成する場合、隣接する開口部に注入されるインクの混色を防ぐ目的等で、隔壁上面に撥液性を付与する必要がある。また、表示装置の白抜けを防ぐために、隔壁間の開口部は、インクに対する良好な濡れ性を有する必要がある。
 これを実現するために、基板上の隔壁パターンの上層面に、プラズマ照射によるフッ素化処理を施して撥液性を発現させる方法が検討されている(特許文献2)。
 また、他にはアルカリ可溶性樹脂と撥液性を有する化合物を含む感光性樹脂組成物により隔壁を形成する方法が検討されている。例えば、フッ素系アクリルポリマーを含むレジスト組成物(特許文献3)、フッ化アルキル基を有するポリシロキサンを含む感光性樹脂組成物(特許文献4)が検討されている。
特開2002-91343号公報 特開2002-207114号公報 特開2012-220855号公報 国際公開第2019/159000号
 特許文献1の技術は形成した隔壁上面に撥液性を有さないため、インクジェット法により滴下された機能材料溶液が隔壁を越えて近傍の画素内に混入し、発光不良を生じるという問題がある。
 特許文献2の技術はフッ素化処理により隔壁間の開口部にも撥液成分が付着し、開口部のインク濡れ性が不十分になるという問題が生じる。
 特許文献3および特許文献4の技術は、十分な撥液性を備え、感光性樹脂組成物としてパターン形成が可能である。しかし、特許文献3のフッ素系アクリルポリマーは、UVオゾン耐性に劣り、UVオゾン処理後に隔壁上面の撥液性が不十分である。また、耐熱性に劣り、キュア時の開口部汚染によるインク濡れ性に課題がある。
 特許文献4のフッ素原子を有するポリシロキサンは、耐熱性に優れるが、アルカリ溶解性が不十分のため、現像後の開口部残渣によるインク濡れ性に課題がある。また、フッ化アルキル基が凝集して硬化物の欠陥になる課題がある。
 そこで、本発明は、欠陥が少なく、開口部のインク濡れ性、およびUVオゾン処理後の隔壁上面の撥液性に優れる隔壁を得ることができる感光性樹脂組成物を得ることを目的とする。
 上記課題を解決するため、本発明は以下の構成を有する。
 すなわち、本発明の感光性樹脂組成物は、
ポリシロキサン(A)、アルカリ可溶性樹脂(B)、および、感光剤(C)を含む感光性樹脂組成物であって、
該ポリシロキサン(A)が、(i)、(ii)および(iii)の繰り返し単位構造を有する感光性樹脂組成物。
(i)式(1)で示される繰り返し単位構造および/または式(2)で示される繰り返し単位構造
(ii)式(3)で示される繰り返し単位構造および/または式(4)で示される繰り返し単位構造
(iii)式(5)で示される繰り返し単位構造および/または式(6)で示される繰り返し単位構造
Figure JPOXMLDOC01-appb-C000007
 Rは、フッ素数7~21及び炭素数5~12のフッ化アルキル基であり、Rは水素原子、炭素数1~6のアルキル基、炭素数1~6のアシル基又は炭素数6~15のアリール基である。Rは炭素数6~15のアリール基であり、Rは単結合または炭素数1~4のアルキレン基であり、Yは1または2である。Rは酸性基を含む炭素数2~20の有機基である。*は共有結合を示す。
 本発明の感光性樹脂組成物により、欠陥が少なく、開口部のインク濡れ性、およびUVオゾン処理後の隔壁上面の撥液性に優れる隔壁を得ることができる。
実施例における評価に使用する基板の概略図である。 積層体の一例の断面の概略図である。 積層体の別の一例の断面の概略図である。
 本発明の実施の形態について詳細に説明する。
 本発明の感光性樹脂組成物は、ポリシロキサン(A)、アルカリ可溶性樹脂(B)、および、感光剤(C)を含む感光性樹脂組成物であって、該ポリシロキサン(A)が、(i)、(ii)および(iii)の繰り返し単位構造を有する。
(i)式(1)で示される繰り返し単位構造および/または式(2)で示される繰り返し単位構造
(ii)式(3)で示される繰り返し単位構造および/または式(4)で示される繰り返し単位構造
(iii)式(5)で示される繰り返し単位構造および/または式(6)で示される繰り返し単位構造
Figure JPOXMLDOC01-appb-C000008
 Rは、フッ素数7~21及び炭素数5~12のフッ化アルキル基であり、Rは水素原子、炭素数1~6のアルキル基、炭素数1~6のアシル基又は炭素数6~15のアリール基である。Rは炭素数6~15のアリール基であり、Rは単結合または炭素数1~4のアルキレン基であり、Yは1または2である。Rは酸性基を含む炭素数2~20の有機基である。*は共有結合を示す。
 本発明の感光性樹脂組成物において、ポリシロキサン(A)、アルカリ可溶性樹脂(B)、および、感光剤(C)の合計含有量は、感光性樹脂組成物100質量%中に50質量%以上であることが好ましく、70質量%以上であることがより好ましい。上限は特に限定されないが、100質量%である。なお、感光性樹脂組成物が後述の有機溶媒(D)を含有する場合、上記合計含有量は、有機溶媒(D)を除く感光性樹脂組成物100質量%中の合計含有量である。
 <ポリシロキサン(A)>
 ポリシロキサン(A)は、(i)、(ii)および(iii)の繰り返し単位構造を有する。
(i)式(1)で示される繰り返し単位構造および/または式(2)で示される繰り返し単位構造
(ii)式(3)で示される繰り返し単位構造および/または式(4)で示される繰り返し単位構造
(iii)式(5)で示される繰り返し単位構造および/または式(6)で示される繰り返し単位構造
 感光性樹脂組成物がポリシロキサン(A)を含有することで、硬化物上面に高い撥液性を付与することができる。さらに、主鎖のポリシロキサンはUVオゾン耐性に優れるため、UVオゾン処理後の硬化物上面に高い撥液性を付与することができる。また、主鎖のポリシロキサンは耐熱性に優れるため、キュア工程で分解することなく、開口部への撥液成分の飛散を防ぎ、開口部に塗布する機能性インクの濡れ性を向上させることができる。
Figure JPOXMLDOC01-appb-C000009
 Rは、フッ素数7~21及び炭素数5~12のフッ化アルキル基であり、Rは水素原子、炭素数1~6のアルキル基、炭素数1~6のアシル基又は炭素数6~15のアリール基である。Rは炭素数6~15のアリール基であり、Rは単結合または炭素数1~4のアルキレン基であり、Yは1または2である。Rは酸性基を含む炭素数2~20の有機基である。*は共有結合を示す。
 ポリシロキサン(A)は、(i)式(1)で示される繰り返し単位構造および/または式(2)で示される繰り返し単位構造を有する。式(1)で示される繰り返し単位構造および/または式(2)で示される繰り返し単位構造中のRは、フッ素数7~21及び炭素数5~12のフッ化アルキル基である。より好ましくは、フッ素数9~13及び炭素数6~8のフッ化アルキル基である。フッ素数7以上及び炭素数5以上のフッ化アルキル基であることで、硬化物上面に良好な撥液性を示すことができる。また、フッ素数21以下及び炭素数12以上のフッ化アルキル基であることで、後術するアルカリ可溶性樹脂と良好な相溶性を得ることができる。さらに、環境への負荷を低減するため、フッ素数13以下及び炭素数8以下のフッ化アルキル基がより好ましい。
 Rで示されるフッ化アルキル基の具体例としては、ヘプタフルオロペンチル基、ノナフルオロヘキシル基、トリデカフルオロオクチル基、ヘプタデカフルオロデシル基、5,5,6,6,7,7,7-ヘプタフルオロ-4,4-ビス(トリフルオロメチル)ヘプチル基などが挙げられる。撥液性及び、環境への負荷の観点から、フッ素数9~13及び炭素数6~8であるノナフルオロヘキシル基、トリデカフルオロオクチル基が好ましい。
 ポリシロキサン(A)の全繰り返し単位構造100モル%中に、式(1)で示される繰り返し単位構造および式(2)で示される繰り返し単位構造の合計を5~30モル%含むことが好ましい。より好ましくは、10~25モル%である。式(1)で示される繰り返し単位構造および/または式(2)で示される繰り返し単位構造を5モル%以上含むことで良好な撥液性を示すことができる。また、30モル%以下含むことでフッ化アルキル基の凝集を低減することができる。
 ポリシロキサン(A)は、(ii)式(3)で示される繰り返し単位構造および/または式(4)で示される繰り返し単位構造を有する。式(3)で示される繰り返し単位構造および/または式(4)で示される繰り返し単位構造は、アリール基を有するため、アリール基の立体障害によりRで示されるフッ化アルキル基の凝集を抑制し、欠陥が少ない硬化物を得ることができる。
 式(3)で示される繰り返し単位構造および/または式(4)で示される繰り返し単位構造中、Rは炭素数6~15のアリール基である。本発明では、Rで示されるフッ化アルキル基の凝集抑制の効果の観点から、Rの少なくとも1つが、式(26)または式(27)で示される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 R16は、ヒドロキシ基、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のハロゲン化アルキル基、炭素数1~5のヒドロキシアルキル基または、炭素数1~5のハロゲン化ヒドロキシアルキル基である。bは0~3の整数を示す。*は共有結合を示す。
 炭素数1~5のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基などが挙げられる。炭素数1~5のアルコキシ基の具体例としては、メトキシ基、エトキシ基などが挙げられる。炭素数1~5のハロゲン化アルキル基の具体例としては、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、トリクロロメチル基、ペンタクロロエチル基、ヘプタクロロプロピル基などが挙げられる。炭素数1~5のヒドロキシアルキル基の具体例として、ヒドロキシメチル基、2-ヒドロキシエチル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基などが挙げられる。炭素数1~5のハロゲン化ヒドロキシアルキル基として、以下の構造などが挙げられる。
Figure JPOXMLDOC01-appb-C000011
 式(27)中、R16の結合位置は、ナフタレン環の2つの環のどちらにあっても良い。
 bは0~3の整数である。重合性の観点から、bは0~2であることが好ましく、0~1であることがより好ましい。
 式(26)の具体例としては、フェニル基、3-メチルフェニル基、4-メチルフェニル基、3-エチルフェニル基、4-エチルフェニル基、3-t-ブチルフェニル基、4-t-ブチルフェニル基、3-ヒドロキシフェニル基、4-ヒドロキシフェニル基、3-メトキシフェニル基、4-メトキシフェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基、3-ヒドロキシメチルフェニル基、4-ヒドロキシメチルフェニル基、及び、式(7)で示される構造などが挙げられる。
Figure JPOXMLDOC01-appb-C000012
 ここで*は、Rに直結する共有結合を示す。Rが単結合の場合には、ケイ素原子に直結する共有結合を示す。aは1~3の整数を示す。重合性の観点からaは1~2であることが好ましく、aが1であることがより好ましい。式(7)で示される構造の具体例として、以下の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 式(27)の具体例としては、1-ナフチル基、2-ナフチル基、4-メチル-1-ナフチル基、4-ヒドロキシ-1-ナフチル基、4-ヒドロキシメチル-1-ナフチル基などが挙げられる。
 本発明では、Rで示されるフッ化アルキル基の凝集抑制の効果と重合性の制御の観点から、Rの少なくとも1つが、1-ナフチル基、2-ナフチル基、または式(7)で示される構造であることがより好ましい。
 重合性の制御の観点から式(4)で示される繰り返し単位構造中のYは1であることがより好ましい。
 式(3)で示される繰り返し単位構造および/または式(4)で示される繰り返し単位構造中、Rは単結合または炭素数1~4のアルキレン基である。炭素数1~4のアルキレン基の具体例としては、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、t-ブチレン基などが挙げられる。
 ポリシロキサン(A)の全繰り返し単位構造100モル%中に、式(3)で示される繰り返し単位構造および式(4)で示される繰り返し単位構造の合計を20~70モル%含むことが好ましい。より好ましくは、30~60モル%である。式(3)で示される繰り返し単位構造および式(4)で示される繰り返し単位構造の合計を20モル%以上含むことで良好なフッ化アルキル基の凝集抑制の効果を得ることができる。また、重合性の制御の観点から70モル%以下が好ましい。
 ポリシロキサン(A)は、(iii)式(5)で示される繰り返し単位構造および/または式(6)で示される繰り返し単位構造を有する。式(5)で示される繰り返し単位構造および/または式(6)で示される繰り返し単位構造は、酸性基を含む炭素数2~20の有機基を有するため、アルカリ現像液に対する溶解性が向上し、良好な開口部のインク濡れ性を得ることができる。また、前述のフッ化アルキル基の凝集を抑制し、欠陥が少ない硬化物を得ることができる。
 本発明において、酸性基を含む炭素数2~20の有機基は、カルボキシル基、カルボン酸無水物基、ヒドロキシル基およびスルホン酸基の群から選ばれる少なくとも1つの酸性基を含む炭素数2~20の有機基が好ましく、より好ましくは式(8)または式(9)で示される構造である。
Figure JPOXMLDOC01-appb-C000014
 R15は単結合または炭素数1~10のアルキレン基である。*は共有結合を示す。
 開口部のインク濡れ性の観点から、Rは、カルボキシル基を有することがより好ましい。すなわち、本発明の感光性樹脂組成物において、Rが、カルボキシル基を含む炭素数2~20の有機基であることが好ましい。さらに、カルボン酸無水物基を加水分解して得られるジカルボキシ基であることがより好ましい。酸性基を含む炭素数2~20の有機基の具体例としては、2-ヒドロキシエチル基、3-ヒドロキシプロピル基、ビス(2-ヒドロキシエチル)-3-アミノプロピル基、カルボキシメチル基、2-カルボキシエチル基、3-カルボキシプロピル基、及び、下記に示す構造(α)、構造(β)が挙げられる。カルボキシル基を有する構造としてはカルボキシメチル基、2-カルボキシエチル基、3-カルボキシプロピル基、構造(α)、及び構造(β)が好ましく、構造(α)、及び構造(β)がより好ましい。
Figure JPOXMLDOC01-appb-C000015
 ここで*は、ケイ素原子に直結する共有結合を示す。
 ポリシロキサン(A)の全繰り返し単位構造100モル%中に、式(5)で示される繰り返し単位構造および式(6)で示される繰り返し単位構造の合計を1~40モル%含むことが好ましい。より好ましくは、5~30モル%である。式(5)で示される繰り返し単位構造および式(6)で示される繰り返し単位構造の合計を1モル%以上含むことで良好な開口部のインク濡れ性と相溶性を示すことができる。また、40モル%以下含むことで良好な撥液性を得ることができる。
 ポリシロキサン(A)は、さらに(vii)の繰り返し単位構造を有することが好ましい。
(vii)式(25)で示される繰り返し単位構造
Figure JPOXMLDOC01-appb-C000016
 *は共有結合を示す。
 (vii)の繰り返し単位構造を有することで、ポリシロキサン(A)の重合度が上がり、キュア工程でポリシロキサン(A)が分解しにくくなり、開口部への撥液成分の飛散を防ぎ、開口部に塗布する機能性インクの濡れ性をより向上させることができる。
 ポリシロキサン(A)は、前記(iii)の繰り返し単位構造100モル部に対し、前記(vii)の繰り返し単位構造を30~300モル部含むことが好ましく、101~200モル部含むことがより好ましい。(iii)の繰り返し単位構造に含む酸性基は、酸触媒として作用するため、(vii)の繰り返し単位構造の重合度を上げることができる。ポリシロキサン(A)が、(iii)の繰り返し単位構造100モル部に対し、(vii)の繰り返し単位構造を30モル部以上含むことで、ポリシロキサン(A)の耐熱性が向上し、キュア工程でポリシロキサン(A)が分解しにくくなり、開口部への撥液成分の飛散を防ぎ、開口部に塗布する機能性インクの濡れ性をより向上させることができる。また、ポリシロキサン(A)が、(iii)の繰り返し単位構造100モル部に対し、(vii)の繰り返し単位構造を300モル部以下含むことで、後述するアルカリ可溶性樹脂(B)との相溶性が向上しやすくなる。
 ポリシロキサン(A)は、(iv)式(10)で示される繰り返し単位構造および/または式(11)で示される繰り返し単位構造を有してもよい。
Figure JPOXMLDOC01-appb-C000017
 Rの水素原子、炭素数1~6のアルキル基、炭素数1~6のアシル基又は炭素数6~15のアリール基、Rは、R、R-R-、Rのいずれにも該当しない炭素数1~10の有機基を示す。
 Rは、R、R-R-、Rのいずれにも該当しない炭素数1~10の有機基であれば特に限定されない。Rの具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、シクロヘキシル基、などの炭化水素基;3-アミノプロピル基、N-(2-アミノエチル)-3-アミノプロピル基、N-β-(アミノエチル)-γ-アミノプロピル基、などのアミノ基含有基;β-シアノエチル基などのシアノ基含有基;グリシドキシメチル基、α-グリシドキシエチル基、α-グリシドキシプロピル基、β-グリシドキシプロピル基、γ-グリシドキシプロピル基、α-グリシドキシブチル基、β-グリシドキシブチル基、γ-グリシドキシブチル基、σ-グリシドキシブチル基、(3,4-エポキシシクロヘキシル)メチル基、3-(3,4-エポキシシクロヘキシル)プロピル基、4-(3,4-エポキシシクロヘキシル)ブチル基、などのエポキシ基含有基;3-クロロプロピルメチル基などのクロロ基含有基;2,2,2-トリフルオロエチル基、3,3,3-トリフルオロプロピル基などのフルオロ基含有基;γ-アクリロイルプロピル基、γ-メタクリロイルプロピル基、などのα,β-不飽和エステル基含有基;ビニル基、スチリル基、などのビニル基含有基;などが挙げられる。
 式(1)、(3)、(5)及び、(10)中、Rは水素原子、炭素数1~6のアルキル基、炭素数1~6のアシル基又は炭素数6~15のアリール基である。重合性の制御の観点から、Rは水素原子、炭素数1~6のアルキル基が好ましい、炭素数1~6のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基などが挙げられる。これらのうち、重合性の制御の観点から、水素原子、メチル基、エチル基がより好ましい。
 本発明の感光性樹脂組成物において、後述するアルカリ可溶性樹脂(B)100質量部に対し、ポリシロキサン(A)の含有量が0.1質量部以上、10質量部以下であることが好ましい。より好ましくは、0.2質量部以上、5質量部以下である。ポリシロキサン(A)の含有量が0.1質量部以上であることで、良好な撥液性を得ることができる。また、10質量部以下であることで、前述のフッ化アルキル基の凝集を抑制することができる。
 (A)ポリシロキサンは、例えば、下記式(12)、(13)、及び(14)、並びに必要に応じて下記式(15)、及び(28)で示されるアルコキシシランを、溶媒中で、加水分解及び重縮合させることで得ることできる。(A)ポリシロキサンは、このようにして得たポリシロキサンであることが好ましい。
Figure JPOXMLDOC01-appb-C000018
 Rは、フッ素数7~21及び炭素数5~12のフッ化アルキル基であり、Rは水素原子、炭素数1~6のアルキル基、炭素数1~6のアシル基又は炭素数6~15のアリール基である。Rは炭素数6~15のアリール基であり、Rは単結合または炭素数1~4のアルキレン基であり、Zは1または2である。Rは酸性基を含む炭素数2~20の有機基である。Rは炭素数1~10の有機基である。
 加水分解反応は、溶媒中、式(12)、(13)、及び(14)、並びに必要に応じて式(15)、及び(28)で示されるアルコキシシランに、酸触媒および水を添加した後、室温~110℃で1~180分反応させることが好ましい。このような条件で加水分解反応を行うことにより、急激な反応を抑制することができる。反応温度は、より好ましくは40~105℃である。
 また、加水分解反応によりシラノール化合物を得た後、反応液を50℃以上、溶媒の沸点以下で1~100時間加熱し、縮合反応を行うことが好ましい。また、縮合反応により得られるシロキサン化合物の重合度を上げるために、酸または塩基触媒の添加、または再加熱を行うことも可能である。
 加水分解反応における各種条件は、反応スケール、反応容器の大きさ、形状などを考慮して、適宜設定することができる。たとえば酸濃度、反応温度、反応時間などを設定することによって、目的の重合度のポリシロキサンを得ることができる。
 加水分解反応に用いる水としては、イオン交換水が好ましい。水の量は任意に選択可能であるが、アルコキシシラン化合物1モルに対して、1.0~4.0モルの範囲で用いることが好ましい。
 加水分解反応に用いる溶媒としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、3-ヒドロキシ-3-メチル-2-ブタノン、5-ヒドロキシ-2-ペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン(ジアセトンアルコール)、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノn-プロピルエーテル、プロピレングリコールモノn-ブチルエーテル、プロピレングリコールモノt-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、3-メトキシ-1-ブタノール、3-メチル-3-メトキシ-1-ブタノール、エチレングリコール、プロピレングリコール、ベンジルアルコール、2-メチルベンジルアルコール、3-メチルベンジルアルコール、4-メチルベンジルアルコール、4-イソプロピルベンジルアルコール、1-フェニルエチルアルコール、2-フェニル-2-プロパノール、2-エチルベンジルアルコール、3-エチルベンジルアルコール、4-エチルベンジルアルコールなどのアルコール系溶媒;ジエチルエーテル、ジイソプロピルエーテル、ジ-n-ブチルエーテル、ジフェニルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジメチルエーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジプロピレングリコールジメチルエーテルなどのエーテル系溶媒;γ-ブチロラクトン、δ-バレロラクトン、炭酸プロピレン、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシ-1-ブチルアセテート、3-メチル-3-メトキシ-1-ブチルアセテート、アセト酢酸エチル、シクロヘキサノールアセテートなどのエステル系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイソ酪酸アミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N,N-ジメチルプロピレン尿素などのアミド系溶媒;トルエン、キシレンなどの芳香族炭化水素類等が挙げられる。
 加水分解反応に用いる酸触媒としては、塩酸、酢酸、蟻酸、硝酸、蓚酸、硫酸、リン酸、ポリリン酸、多価カルボン酸あるいはその無水物、イオン交換樹脂などの酸触媒が挙げられる。特に蟻酸、酢酸またはリン酸を用いた酸性水溶液が好ましい。
 酸触媒の含有量としては、加水分解反応時に使用される全アルコキシシラン化合物100質量部に対して、好ましくは、0.05質量部以上、より好ましくは0.1質量部以上である。また、酸触媒の含有量は、好ましくは10質量部以下、より好ましくは5質量部以下である。ここで、全アルコキシシラン化合物量とは、アルコキシシラン化合物、その加水分解物およびその縮合物の全てを含んだ量のことを言い、以下同じとする。酸触媒の量を0.05質量部以上とすることでスムーズに加水分解が進行し、また10質量部以下とすることで加水分解反応の制御が容易となる。
 また、組成物の貯蔵安定性の観点から、加水分解、部分縮合後のポリシロキサン溶液には上記触媒が含まれないことが好ましく、必要に応じて触媒の除去を行うことができる。除去方法に特に制限は無いが、操作の簡便さと除去性の点で、水洗浄、および/またはイオン交換樹脂の処理が好ましい。水洗浄とは、ポリシロキサン溶液を適当な疎水性溶媒で希釈した後、水で数回洗浄して得られた有機層をエバポレーター等で濃縮する方法である。イオン交換樹脂での処理とは、ポリシロキサン溶液を適当なイオン交換樹脂に接触させる方法である。
 (A)ポリシロキサンの重量平均分子量(Mw)は、特に制限されないが、ゲルパーエミッションクロマトグラフィー(GPC)で測定されるポリスチレン換算で、好ましくは500以上、より好ましくは1,500以上である。また、好ましくは20,000以下、さらに好ましくは10,000以下である。
 <アルカリ可溶性樹脂(B)>
 本発明の感光性樹脂組成物は、アルカリ可溶性樹脂(B)を含有する。
 本発明におけるアルカリ可溶性樹脂とは、以下に定義する溶解速度が50nm/分以上である樹脂をいう。詳細には、γ-ブチロラクトンに樹脂を溶解した溶液をシリコンウエハ上に塗布し、120℃で4分間プリベークを行って厚さ10μm±0.5μmのプリベーク膜を形成し、前記プリベーク膜を23±1℃の2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液に1分間浸漬した後、純水でリンス処理したときの厚さ減少から求められる溶解速度が50nm/分以上である樹脂をいう。
 アルカリ可溶性樹脂(B)は、アルカリ可溶性を付与するため、樹脂の構造単位中および/またはその主鎖末端にアルカリ可溶性基を有することが好ましい。アルカリ可溶性基とはアルカリと相互作用、または反応することによりアルカリ溶液に対する溶解性を増加させる官能基を指す。好ましいアルカリ可溶性基としてはカルボキシル基、フェノール性水酸基、スルホン酸基、チオール基などが挙げられる。
 アルカリ可溶性樹脂(B)は、前述のアルカリ可溶性基を有する構造であれば、樹脂を構成する高分子の主鎖骨格、及び、側鎖の種類は限定されない。例えは、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、ポリアミドイミド樹脂、アクリル樹脂、ノボラック樹脂、ポリヒドロキシスチレン樹脂、フェノール樹脂、ポリシロキサン樹脂などが挙げられるが、これらに限定されない。
 アルカリ可溶性樹脂(B)は、トリフルオロメチル基を有することが好ましい。トリフルオロメチル基は、感光性樹脂組成物の硬化物の吸水性が低下させ、表示装置の耐久性を向上することができる。また、トリフルオロメチル基は撥液性を付与しないため、後術する「ハーフ露光」により、表面が親液性の硬化物を形成することができる。
 本発明の感光性樹脂組成物において、アルカリ可溶性樹脂(B)は、ポリイミド、ポリベンゾオキサゾール、ポリアミドイミド、これらいずれかの前駆体およびそれらの共重合体からなる群より選択される1種類以上を含むことが好ましい。これらのアルカリ可溶性樹脂は単独で含有されていてもよく、また複数のアルカリ可溶性樹脂を組み合わせて含有されていてもよい。これらのアルカリ可溶性樹脂は、耐熱性が高いため、表示装置に用いると、熱処理後の200℃以上の高温下におけるアウトガス量が少なくなり、表示装置の耐久性を高めることができる。
 ポリイミドは、例えば、テトラカルボン酸あるいはテトラカルボン酸二無水物、テトラカルボン酸ジエステルジクロリド等と、ジアミンあるいはジイソシアネート化合物、トリメチルシリル化ジアミン等とを反応させて得ることができる。ポリイミドは、テトラカルボン酸残基とジアミン残基を有する。また、ポリイミドは、例えば、テトラカルボン酸二無水物とジアミンを反応させて得られるポリイミド前駆体の1つであるポリアミド酸を、加熱処理により脱水閉環することにより得ることができる。この加熱処理時、m-キシレンなどの水と共沸する溶媒を加えることもできる。あるいは、カルボン酸無水物やジシクロヘキシルカルボジイミド等の脱水縮合剤やトリエチルアミン等の塩基などを閉環触媒として加えて、化学熱処理により脱水閉環することにより得ることもできる。または、弱酸性のカルボン酸化合物を加えて100℃以下の低温で加熱処理により脱水閉環することにより得ることもできる。
 ポリベンゾオキサゾールは、例えば、ビスアミノフェノール化合物と、ジカルボン酸あるいはジカルボン酸クロリド、ジカルボン酸活性エステル等とを反応させて得ることができる。ポリベンゾオキサゾールは、ジカルボン酸残基とビスアミノフェノール残基を有する。また、ポリベンゾオキサゾールは、例えば、ビスアミノフェノール化合物とジカルボン酸を反応させて得られるポリベンゾオキサゾール前駆体の1つであるポリヒドロキシアミドを、加熱処理により脱水閉環することにより得ることができる。あるいは、無水リン酸、塩基、カルボジイミド化合物などを加えて、化学処理により脱水閉環することにより得ることができる。
 ポリイミド前駆体としては、ポリアミド酸、ポリアミド酸エステル、ポリアミド酸アミド、ポリイソイミドなどを挙げることができる。例えば、ポリアミド酸は、テトラカルボン酸あるいはテトラカルボン酸二無水物、テトラカルボン酸ジエステルジクロリドなどとジアミンあるいはジイソシアネート化合物、トリメチルシリル化ジアミンを反応させて得ることができる。ポリイミドは、例えば、上記の方法で得たポリアミド酸を、加熱あるいは酸や塩基などの化学処理で脱水閉環することで得ることができる。
 ポリベンゾオキサゾール前駆体としては、ポリヒドロキシアミドなどを挙げることができる。例えば、ポリヒドロキシアミドは、ビスアミノフェノールと、ジカルボン酸あるいはジカルボン酸クロリド、ジカルボン酸活性エステルなどを反応させて得ることができる。ポリベンゾオキサゾールは、例えば、上記の方法で得たポリヒドロキシアミドを、加熱あるいは無水リン酸、塩基、カルボジイミド化合物などの化学処理で脱水閉環することで得ることができる。
 ポリアミドイミド前駆体は、例えば、トリカルボン酸、対応するトリカルボン酸無水物、トリカルボン酸無水物ハライドなどとジアミンやジイソシアネートを反応させて得ることができる。ポリアミドイミドは、例えば、上記の方法で得た前駆体を、加熱あるいは酸や塩基などの化学処理で脱水閉環することにより得ることができる。
 ポリイミド、ポリベンゾオキサゾール、ポリアミドイミド、これらいずれかの前駆体の共重合体としては、ブロック共重合、ランダム共重合、交互共重合、グラフト共重合のいずれかまたはそれらの組み合わせであってもよい。例えば、ポリヒドロキシアミドにテトラカルボン酸、対応するテトラカルボン酸二無水物、テトラカルボン酸ジエステルジクロリドなどを反応させてブロック共重合体を得ることができる。さらに、加熱あるいは酸や塩基などの化学処理で脱水閉環することもできる。
 本発明の感光性樹脂組成物において、ポリイミド、ポリベンゾオキサゾール、ポリアミドイミド、これらいずれかの前駆体およびそれらの共重合体が、カルボン酸成分の残基および/またはジアミン成分の残基に式(16)で示される構造を有することが好ましい。式(16)で示される構造は前述のポリシロキサン(A)との相溶性に優れるため、ポリシロキサン(A)の凝集を抑制して欠陥が少ない硬化物を得ることができる。さらに、(16)で示される構造が有するトリフルオロメチル基は、感光性樹脂組成物の硬化物の吸水性が低下させ、表示装置の耐久性を向上することができる。また、トリフルオロメチル基は撥液性を付与しないため、後術する「ハーフ露光」により、表面が親液性の硬化物を形成することができる。
Figure JPOXMLDOC01-appb-C000019
 *は共有結合を示す。
 本発明の感光性樹脂組成物において、前述のポリシロキサン(A)との相溶性および、硬化物の吸水性の観点から、ポリイミド、ポリベンゾオキサゾール、ポリアミドイミド、これらいずれかの前駆体およびそれらの共重合体が、カルボン酸成分の残基およびジアミン成分の残基に式(16)で示される構造を有することがより好ましい。
 アルカリ可溶性樹脂(B)は、式(17)~(20)のいずれかで表される構造単位を有することが好ましく、式(20)で表される構造単位を有することがより好ましい。これらの構造単位を有する2種以上の樹脂を含有してもよいし、2種以上の構造単位を共重合してもよい。アルカリ可溶性樹脂(B)の樹脂は、式(17)~(20)のいずれかで表される構造単位を分子中に3~1000含むものが好ましく、20~200含むものがより好ましい。
Figure JPOXMLDOC01-appb-C000020
 式(17)~(20)中、RおよびRは4価の有機基、R、RおよびR11は2価の有機基、R10は3価の有機基、R12は2~6価の有機基、R13は2~12価の有機基を表す。R14は水素原子または炭素数1~20の1価の炭化水素基を表す。pは0~2の整数、qは0~10の整数を表す。nは0~2の整数を表す。
 R~R13はいずれも芳香族環および/または脂肪族環を有するものが好ましい。
 式(17)~(20)中のR、R、R10、R12(COOR14(OH)を含む部分構造は、例えば、それぞれに対応するカルボン酸成分を用いることにより得ることができる。すなわち、例えば、Rはテトラカルボン酸、Rはジカルボン酸、R10はトリカルボン酸、R12はジ-、トリ-またはテトラ-カルボン酸を用いることにより得ることができる。R、R、R10、R12(COOR14(OH)を得るために用いられるカルボン酸成分の例としては、ジカルボン酸の例として、テレフタル酸、イソフタル酸、ジフェニルエーテルジカルボン酸、ビス(カルボキシフェニル)ヘキサフルオロプロパン、ビフェニルジカルボン酸、ベンゾフェノンジカルボン酸、トリフェニルジカルボン酸など、トリカルボン酸の例として、トリメリット酸、トリメシン酸、ジフェニルエーテルトリカルボン酸、ビフェニルトリカルボン酸など、テトラカルボン酸の例として、ピロメリット酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、2,2’,3,3’-ビフェニルテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,2’,3,3’-ベンゾフェノンテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン、2,2-ビス(2,3-ジカルボキシフェニル)ヘキサフルオロプロパン、1,1-ビス(3,4-ジカルボキシフェニル)エタン、1,1-ビス(2,3-ジカルボキシフェニル)エタン、ビス(3,4-ジカルボキシフェニル)メタン、ビス(2,3-ジカルボキシフェニル)メタン、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)エーテル、1,2,5,6-ナフタレンテトラカルボン酸、2,3,6,7-ナフタレンテトラカルボン酸、2,3,5,6-ピリジンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸などの芳香族テトラカルボン酸や、ブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸などの脂肪族テトラカルボン酸などを挙げることができる。これらのうち、式(18)においては、トリカルボン酸、テトラカルボン酸のそれぞれ1つまたは2つのカルボキシル基がCOOR14基に相当する。これらの酸成分は、そのまま、あるいは酸無水物、活性エステルなどとして使用できる。また、これら2種以上の酸成分を組み合わせて用いてもよい。
 本発明の感光性樹脂組成物において、アルカリ可溶性樹脂(B)は、前述の通り、カルボン酸成分の残基に式(16)で示される構造を有することが好ましいため、カルボン酸成分として、ビス(カルボキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン、2,2-ビス(2,3-ジカルボキシフェニル)ヘキサフルオロプロパンが好ましい。
 式(17)~(20)中のR、R、R11、R13(OH)を含む部分構造は、例えば、それぞれに対応するジアミン成分を用いることにより得ることができる。R、R、R11、R13(OH)を得るために用いられるジアミン成分の例としては、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)メチレン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシ)ビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)フルオレンなどのヒドロキシル基含有ジアミン、3-スルホン酸-4,4’-ジアミノジフェニルエーテルなどのスルホン酸含有ジアミン、ジメルカプトフェニレンジアミンなどのチオール基含有ジアミン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス{4-(4-アミノフェノキシ)フェニル}エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジエチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジエチル-4,4’-ジアミノビフェニル、2,2’,3,3’-テトラメチル-4,4’-ジアミノビフェニル、3,3’,4,4’-テトラメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニルなどの芳香族ジアミンや、これらの芳香族環の水素原子の一部を、炭素数1~10のアルキル基、トリフルオロメチル基、ハロゲン原子などで置換した化合物、シクロヘキシルジアミン、メチレンビスシクロヘキシルアミンなどの脂環式ジアミン、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサンなどのシロキサン系ジアミンを挙げることができる。これらのジアミンは、そのまま、あるいは対応するジイソシアネート化合物、トリメチルシリル化ジアミンとして使用できる。また、これら2種以上のジアミン成分を組み合わせて用いてもよい。耐熱性が要求される用途では、芳香族ジアミンをジアミン全体の50モル%以上使用することが好ましい。
 本発明の感光性樹脂組成物において、アルカリ可溶性樹脂(B)は、前述の通り、カルボン酸成分の残基に式(16)で示される構造を有することが好ましいため、ジアミン成分として、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンが好ましい。
 また、本発明の感光性樹脂組成物において、アルカリ可溶性樹脂(B)は、基板との接着性の観点から、ジアミン成分に1,3-ビス(3-アミノプロピル)テトラメチルジシロキサンなどのシロキサン系ジアミンを有することが好ましい。
 式(17)~(20)のR~R13は、その骨格中にフェノール性水酸基、スルホン酸基、チオール基などを含むことができる。フェノール性水酸基、スルホン酸基またはチオール基を適度に有する樹脂を用いることで、適度なアルカリ可溶性を有するポジ型感光性樹脂組成物となる。
 また、感光性樹脂組成物の保存安定性を向上させるため、アルカリ可溶性樹脂(B)の樹脂は主鎖末端をモノアミン、酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物などの末端封止剤で封止することが好ましい。末端封止剤として用いられるモノアミンの導入割合は、全アミン成分に対して、好ましくは0.1モル%以上、特に好ましくは5モル%以上である。また、モノアミンの導入割合は、全アミン成分に対して、好ましくは60モル%以下、特に好ましくは50モル%以下である。末端封止剤として用いられる酸無水物、モノカルボン酸、モノ酸クロリド化合物またはモノ活性エステル化合物の導入割合は、ジアミン成分に対して、好ましくは0.1モル%以上、特に好ましくは5モル%以上である。また、前記導入割合は、ジアミン成分に対して、好ましくは100モル%以下、特に好ましくは90モル%以下である。複数の末端封止剤を反応させることにより、複数の異なる末端基を導入してもよい。
 式(17)~(19)のいずれかで表される構造単位を有する樹脂において、構造単位の繰り返し数は3以上200以下が好ましい。また、式(20)で表される構造単位を有する樹脂において、構造単位の繰り返し数は10以上1000以下が好ましい。この範囲であれば、厚膜を容易に形成することができる。
 アルカリ可溶性樹脂(B)は、式(17)~(20)のいずれかで表される構造単位のみからなるものであってもよいし、他の構造単位との共重合体あるいは混合体であってもよい。その際、式(17)~(20)のいずれかで表される構造単位を樹脂全体の10質量%以上含有することが好ましく、30質量%以上がより好ましい。共重合あるいは混合に用いられる構造単位の種類および量は、最終加熱処理によって得られる薄膜の機械特性を損なわない範囲で選択することができる。
 <感光剤(C)>
 本発明の感光性樹脂組成物は、感光剤(C)を含有する。感光剤(C)は光によって硬化するネガタイプでも、光によって可溶化するポジタイプでもよい。感光剤(C)として、重合性不飽和化合物および光重合開始剤(C-1)、または、キノンジアジド化合物(C-2)などを好ましく含有することができる。キノンジアジド化合物(C-2)を含有することで、ポジタイプの感光性樹脂組成物を得ることができ、段差形状の硬化物を後術する「ハーフ露光」により1回のフォトリソグラフィで形成できるため、好ましい。したがって、本発明の感光性樹脂組成物において、感光剤(C)がキノンジアジド化合物(C-2)を含むことが好ましい。以下、「重合性不飽和化合物および光重合開始剤(C-1)」を単に「(C-1)」という場合がある。
 (C-1)中の重合性不飽和化合物としては、例えば、ビニル基、アリル基、アクリロイル基、メタクリロイル基等の不飽和二重結合官能基および/またはプロパルギル基などの不飽和三重結合官能基を有する化合物などが挙げられる。これらの中でも共役型のビニル基やアクリロイル基、メタクリロイル基が重合性の面で好ましい。またその官能基が含有される数としては、安定性の点から1分子中に1~4個であることが好ましく、それぞれは同一の基でなくとも構わない。また、重合性不飽和化合物は、分子量30~800のものが好ましい。分子量が30~800の範囲であれば、ポリマーおよび反応性希釈剤との相溶性がよい。重合性不飽和の具体例としては、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、イソボルニルアクリレート、イソボルニルメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、メチレンビスアクリルアミド、N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド、2,2,6,6-テトラメチルピペリジニルメタクリレート、2,2,6,6-テトラメチルピペリジニルアクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルメタクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルアクリレート、エチレンオキシド変性ビスフェノールAジアクリレート、エチレンオキシド変性ビスフェノールAジメタクリレート、N-ビニルピロリドン、N-ビニルカプロラクタムなどが挙げられる。これらは単独でまたは2種類以上を組み合わせて使用される。
 本発明において、(C-1)中の重合性不飽和化合物の含有量は特に限定されないが、アルカリ可溶性樹脂(B)100質量部に対して、アルカリ可溶性向上の観点から5質量部以上が好ましく、良好なパターン形成の観点から50質量部以下が好ましい。
 (C-1)中の光重合開始剤とは、紫外~可視光域の光が照射されることによって、主としてラジカルを発生することにより重合を開始するものを意味する。汎用の光源が使用できる点および速硬化性の観点から、アセトフェノン誘導体、ベンゾフェノン誘導体、ベンゾインエーテル誘導体、キサントン誘導体より選択される光重合開始剤が好ましい。好ましい光重合開始剤の例としては、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシ-シクロヘキシルフェニルケトン、イソブチルベンゾインエーテル、ベンゾインメチルエーテル、チオキサントン、イソプロピルチオキサントン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1などが挙げられるがこれらに限定されない。
 本発明において、(C-1)中の光重合開始剤の含有量は特に限定されないが、アルカリ可溶性樹脂(B)100質量部に対して1質量部以上、10質量部以下が好ましい。この範囲であれば、良好なパターン形成に必要な樹脂との相互作用と、適正な感度を得るための透過率を確保しやすくなる。
 キノンジアジド化合物(C-2)としては、ポリヒドロキシ化合物にキノンジアジドのスルホン酸がエステル結合したもの、ポリアミノ化合物にキノンジアジドのスルホン酸がスルホンアミド結合したもの、ポリヒドロキシポリアミノ化合物にキノンジアジドのスルホン酸がエステル結合および/またはスルホンアミド結合したものなどが挙げられる。これらポリヒドロキシ化合物、ポリアミノ化合物、ポリヒドロキシポリアミノ化合物の全ての官能基がキノンジアジドで置換されていなくてもよいが、平均して官能基全体の40モル%以上がキノンジアジドで置換されていることが好ましい。本発明においては、キノンジアジドで置換されている官能基のモル%をキノンジアジド置換率と称する。このようなキノンジアジド化合物を用いることで、一般的な紫外線である水銀灯のi線(波長365nm)、h線(波長405nm)、g線(波長436nm)に感光するポジ型の感光性樹脂組成物を得ることができる。
 ここで用いるポリヒドロキシ化合物は、フェノール性水酸基を分子内に2つ以上、好しくは3つ以上有するものである。ポリヒドロキシ化合物は、例えば、Bis-Z、BisP-EZ、TekP-4HBPA、TrisP-HAP、TrisP-PA、TrisP-SA、TrisOCR-PA、BisOCHP-Z、BisP-MZ、BisP-PZ、BisP-IPZ、BisOCP-IPZ、BisP-CP、BisRS-2P、BisRS-3P、BisP-OCHP、メチレントリス-FR-CR、BisRS-26X、DML-MBPC、DML-MBOC、DML-OCHP、DML-PCHP、DML-PC、DML-PTBP、DML-34X、DML-EP、DML-POP、ジメチロール-BisOC-P、DML-PFP、DML-PSBP、DML-MTrisPC、TriML-P、TriML-35XL、TML-BP、TML-HQ、TML-pp-BPF、TML-BPA、TMOM-BP、HML-TPPHBA、HML-TPHAP(以上商品名、本州化学工業(株)製)、BIR-OC、BIP-PC、BIR-PC、BIR-PTBP、BIR-PCHP、BIP-BIOC-F、4PC、BIR-BIPC-F、TEP-BIP-A、46DMOC、46DMOEP、TM-BIP-A(以上商品名、旭有機材工業(株)製)、2,6-ジメトキシメチル-4-t-ブチルフェノール、2,6-ジメトキシメチル-p-クレゾール、2,6-ジアセトキシメチル-p-クレゾール、ナフトール、テトラヒドロキシベンゾフェノン、没食子酸メチルエステル、ビスフェノールA、ビスフェノールE、メチレンビスフェノール、BisP-AP(商品名、本州化学工業(株)製)、ノボラック樹脂などが挙げられるが、これらに限定されない。
 ポリアミノ化合物は、例えば、1,4-フェニレンジアミン、1,3-フェニレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィドなどが挙げられるが、これらに限定されない。
 また、ポリヒドロキシポリアミノ化合物は、例えば、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、3,3’-ジヒドロキシベンジジンなどが挙げられるが、これらに限定されない。
 また、キノンジアジドのスルホン酸としては、1,2-ナフトキノンジアジド-4-スルホン酸、1,2-ナフトキノンジアジド-5-スルホン酸などが挙げられるが、これらに限定されない。
 本発明では、キノンジアジド化合物(C-2)として、ポリヒドロキシ化合物にキノンジアジドスルホン酸が結合したものが好ましく用いられる。このようなキノンジアジド化合物を用いることで、一般的な紫外線である水銀灯のi線(波長365nm)、h線(波長405nm)、g線(波長436nm)に感光し、高い感度と、より高い解像度を得ることができる。
 より好ましいキノンジアジド化合物(C-2)としては、式(21)または式(22)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000021
 式(21)および式(22)中、Qは、それぞれ独立に、水素原子、構造式(23)で表される基または構造式(24)で表される基を表す。
Figure JPOXMLDOC01-appb-C000022
 前記式(21)および式(22)中のQが、それぞれ独立に、水素原子または構造式(23)で表される基で表されることが、感度の観点でさらに好ましい。
 キノンジアジド置換率は、ポリヒドロキシ化合物の場合「(キノンジアジドスルホン酸エステル基モル数)/(ポリヒドロキシ化合物のエステル化前のヒドロキシ基モル数)×100」として、ポリアミノ化合物の場合「(キノンジアジドスルホン酸アミド基モル数)/(ポリアミノ化合物のアミド化前のアミノ基モル数)×100」として、ポリヒドロキシポリアミノ化合物の場合「{(キノンジアジドスルホン酸エステル基モル数)+(キノンジアジドスルホン酸アミド基モル数)}/{(ポリヒドロキシポリアミノ化合物のエステル化前のヒドロキシ基モル数)+(ポリヒドロキシポリアミノ化合物のアミド化前のアミノ基モル数)}×100」として求めることができる。
 本発明では2種以上のキノンジアジド化合物を用いることができる。この場合、キノンジアジド置換率として、下式のように、各キノンジアジド化合物のキノンジアジド置換率に全キノンジアジド化合物に対する割合を乗じた値を合計することで求められる。
Σ((あるキノンジアジド化合物のキノンジアジド置換率)×(全キノンジアジド化合物に対するあるキノンジアジド化合物の割合))
 また、感光性樹脂組成物中のキノンジアジド化合物のキノンジアジド置換率は、感光性樹脂組成物の樹脂成分を再沈殿法などで除去後、カラム分取法などで含有成分を分離し、NMRやIRで化学構造を同定することにより求めることができる。
 キノンジアジド化合物の製造方法は特に制限されないが、常法に従ってキノンジアジドスルホン酸ハライド(好ましくはキノンジアジドスルホン酸クロリド)を、アセトン、ジオキサン、テトラヒドロフラン等の溶媒中で炭酸ナトリウム、炭酸水素ナトリウム、水酸化ナトリウムや水酸化カリウム等の無機塩基、または、トリメチルアミン、トリエチルアミン、トリプロピルアミン、ジイソプロピルアミン、トリブチルアミン、ピロリジン、ピペリジン、ピペラジン、モルホリン、ピリジン、ジシクロヘキシルアミン等の有機塩基の存在下、ポリヒドロキシ化合物と反応させることにより得ることができる。
 本発明において、キノンジアジド化合物(C-2)の含有量は特に限定されないが、アルカリ可溶性樹脂(B)100質量部に対して、キノンジアジド化合物(C-2)の含有量は、10質量部以上が好ましく、20質量部以上がより好ましい。また、50質量部以下が好ましく、40質量部以下がより好ましい。キノンジアジド化合物の含有量をこの範囲とすることにより、撥液性を阻害することなく感光性を得ることができる。
 本発明の感光性樹脂組成物は、感光剤(C)にキノンジアジド化合物(C-2)を含む場合、アルカリ可溶性樹脂(B)がフェノール樹脂および/またはポリヒドロキシスチレン樹脂を含むことが好ましい。また、これら2種以上のフェノール樹脂および/またはポリヒドロキシスチレン樹脂を組み合わせて用いてもよい。キノンジアジド化合物(C-2)とフェノール樹脂および/またはポリヒドロキシスチレン樹脂を含むことで、現像工程の膜減り量を低下させる事ができるため、ポリシロキサン(A)を現像後の膜表面に留めやすくする効果があり、より良好な撥液性を得ることができる。
 フェノール樹脂は、ノボラックフェノール樹脂やレゾールフェノール樹脂があり、種々のフェノール化合物の単独あるいはそれらの複数種の混合物をホルマリンなどのアルデヒド化合物を用いて公知の方法で重縮合することにより得られる。
 ノボラックフェノール樹脂およびレゾールフェノール樹脂を構成するフェノール化合物としては、例えば、フェノール、p-クレゾール、m-クレゾール、o-クレゾール、2,3-ジメチルフェノール、2,4-ジメチルフェノール、2,5-ジメチルフェノール、2,6-ジメチルフェノール、3,4-ジメチルフェノール、3,5-ジメチルフェノール、2,3,4-トリメチルフェノール、2,3,5-トリメチルフェノール、3,4,5-トリメチルフェノール、2,4,5-トリメチルフェノール、メチレンビスフェノール、メチレンビスp-クレゾール、レゾルシン、カテコール、2-メチルレゾルシン、4-メチルレゾルシン、o-クロロフェノール、m-クロロフェノール、p-クロロフェノール、2,3-ジクロロフェノール、m-メトキシフェノール、p-メトキシフェノール、p-ブトキシフェノール、o-エチルフェノール、m-エチルフェノール、p-エチルフェノール、2,3-ジエチルフェノール、2,5-ジエチルフェノール、p-イソプロピルフェノール、α-ナフトール、β-ナフトールなどが挙げられ、これらは単独で、または、複数の混合物として用いることができる。また、アルデヒド化合物としては、ホルマリンの他、パラホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、ヒドロキシベンズアルデヒド、クロロアセトアルデヒドなどが挙げられ、これらは単独でまたは複数の混合物として用いることができる。
 ポリヒドロキシスチレン樹脂としては、ビニルフェノールのホモポリマーまたはスチレンとの共重合体を使用することも可能である。
 フェノール樹脂、ポリヒドロキシスチレン樹脂の好ましい重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)によるポリスチレン換算で2,000~20,000、好ましくは3,000~10,000である。この範囲であれば、高濃度かつ低粘度な樹脂組成物を得ることができる。
 本発明の感光性樹脂組成物は、感光剤(C)にキノンジアジド化合物(C-2)を含む場合、撥液性の観点からアルカリ可溶性樹脂(B)100質量%中に、フェノール樹脂および/またはポリヒドロキシスチレン樹脂を20質量%以上含むことが好ましく、30質量%以上がより好ましい。また、アウトガスの観点から、50質量%以下が好ましく、40質量%以下がより好ましい。
 <有機溶媒(D)>
 本発明の感光性樹脂組成物は、有機溶媒(D)を含有することが好ましい。有機溶媒(D)としては、例えば、エーテル類、アセテート類、エステル類、ケトン類、芳香族炭化水素類、アミド類、アルコール類などが挙げられる。
 より具体的には、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-プロピルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノ-n-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノ-n-ブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールメチル-n-ブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテルもしくはテトラヒドロフラン等のエーテル類、ブチルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(以下、「PGMEA」と称する場合がある。)、3-メトキシブチルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、シクロヘキサノールアセテート、プロピレングリコールジアセテート、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、3-メトキシ-3-メチル-1-ブチルアセテート、1,4-ブタンジオールジアセテート、1,3-ブチレングリコールジアセテートもしくは1,6-ヘキサンジオールジアセテート等のアセテート類、メチルエチルケトン、シクロヘキサノン、2-ヘプタノンもしくは3-ヘプタノン等のケトン類、2-ヒドロキシプロピオン酸メチルもしくは2-ヒドロキシプロピオン酸エチル等の乳酸アルキルエステル類、2-ヒドロキシ-2-メチルプロピオン酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、酢酸エチル、酢酸n-プロピル、酢酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、蟻酸n-ペンチル、酢酸i-ペンチル、プロピオン酸n-ブチル、酪酸エチル、酪酸n-プロピル、酪酸i-プロピル、酪酸n-ブチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸n-プロピル、アセト酢酸メチル、アセト酢酸エチルもしくは2-オキソブタン酸エチル等の他のエステル類、トルエンもしくはキシレン等の芳香族炭化水素類、N-メチルピロリドン、N,N-ジメチルホルムアミドもしくはN,N-ジメチルアセトアミド等のアミド類、または、ブチルアルコール、イソブチルアルコール、ペンタノ-ル、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシブタノールもしくはジアセトンアルコール等のアルコール類などが挙げられる。
 前記有機溶媒(D)の使用量は、必要とする厚さや採用する塗布方法に応じて変更するため特に限定されないが、感光性樹脂組成物の固形分(有機溶媒(D)を除くその他の成分)100質量部に対して、100~2000質量部が好ましく、特に150~900質量部が好ましい。
 <その他の成分>
 本発明の感光性樹脂組成物は、さらに熱架橋剤を含有することができる。熱架橋剤とは、メチロール基、アルコキシメチル基、エポキシ基、オキセタニル基をはじめとする熱反応性の官能基を分子内に少なくとも2つ有する化合物を指す。熱架橋剤はアルカリ可溶性樹脂(B)またはその他の成分を架橋し、硬化物の耐久性を高めることができる。
 アルコキシメチル基またはメチロール基を少なくとも2つ有する化合物としては、各種公知の化合物を含有することができる。かかる化合物の好ましい例としては、例えば、HMOM-TPPHBA、HMOM-TPHAP(以上、商品名、本州化学工業(株)製)、NIKALAC(登録商標)MX-290、NIKALAC MX-280、NIKALAC MX-270、NIKALAC MX-279、NIKALAC MW-100LM、NIKALAC MX-750LM(以上、商品名、(株)三和ケミカル製)が挙げられ、それぞれ前記各社から入手できる。
 エポキシ基またはオキセタニル基を少なくとも2つ有する化合物としては、各種公知の化合物を含有することができる。かかる化合物の好ましい例としては、例えば、エポキシ基を有するものとして、VG3101L(商品名、(株)プリンテック製)、“テピック”(登録商標)S、“テピック”G、“テピック”P(以上商品名、日産化学工業(株)製)、“エピクロン”N660、“エピクロン”N695、HP7200(以上商品名、大日本インキ化学工業(株)製)、“デナコール”EX-321L(商品名、ナガセケムテックス(株)製)、NC6000、EPPN502H、NC3000(以上商品名、日本化薬(株)製)、“エポトート”(登録商標)YH-434L(商品名、東都化成(株)製)、EHPE-3150(商品名、(株)ダイセル製)、オキセタニル基を有する化合物としては、OXT-121、OXT-221、OX-SQ-H、OXT-191、PNOX-1009、RSOX(以上商品名、東亜合成(株)製)、“エタナコール”(登録商標)OXBP、“エタナコール”OXTP(以上商品名、宇部興産(株)製)などが挙げられ、それぞれ各社から入手可能である。
 熱架橋剤としては、一分子中にフェノール性水酸基を有し、かつ前記フェノール性水酸基の両オルト位にメチロール基および/またはアルコキシメチル基を有するものが好ましい。メチロール基および/またはアルコキシメチル基がフェノール性水酸基に隣接することで、硬化物の耐久性をさらに高めることできる。アルコキシメチル基としては、例えばメトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基を挙げることができるが、これらに限定されない。
 熱架橋剤の含有量は、アルカリ可溶性樹脂(B)総量100質量部に対して、5質量部以上が好ましく、10質量部以上がより好ましく、15質量部以上がさらに好ましい。また、50質量部以下が好ましく、40質量部以下がより好ましく、30質量部以下がさらに好ましい。熱架橋剤の含有量を5質量部以上とすることで硬化物の耐熱性が向上し、50質量部以下とすることで硬化物の伸度低下を防ぐことができる。
 <感光性樹脂組成物を製造する方法>
 本発明の感光性樹脂組成物を製造する方法について説明する。例えば、前記ポリシロキサン(A)~感光剤(C)およびその他の成分を有機溶媒(D)に溶解させることにより得ることができる。溶解方法としては、撹拌や加熱などが挙げられる。加熱する場合、加熱温度は樹脂組成物の性能を損なわない範囲で設定することが好ましく、通常、20℃~80℃である。また、各成分の溶解順序は特に限定されず、例えば、溶解性の低い化合物から順次溶解させる方法がある。
 得られた感光性樹脂組成物は、濾過フィルターを用いて濾過し、ゴミや粒子を除去することが好ましい。フィルター孔径は、例えば1μm、0.5μm、0.2μm、0.1μm、0.05μmなどがあるが、これらに限定されない。濾過フィルターの材質には、ポリプロピレン(PP)、ポリエチレン(PE)、ナイロン(NY)、ポリテトラフルオロエチエレン(PTFE)などがあるが、ポリエチレンやナイロンを用いて濾過することが好ましい。
 <硬化物>
 本発明の硬化物は、本発明の感光性樹脂組成物を硬化してなる。硬化方法としては、例えば、基板上に塗布した感光性樹脂組成物を加熱処理する方法などが挙げられる。基板上に感光性樹脂組成物を塗布する方法としては、例えば、スピンコート法、スリットコート法、ディップコート法、スプレーコート法、印刷法などが挙げられる。塗布後の加熱処理により残留溶媒や耐熱性の低い成分を除去できるため、硬化物の耐熱性および耐薬品性を向上させることができる。また、架橋剤を含有することにより、加熱処理により熱架橋反応を進行させることができ、硬化物の耐熱性および耐薬品性を向上させることができる。この加熱処理は、例えば、温度を選び、段階的に昇温してもよいし、ある温度範囲を選び連続的に昇温しながら5分間~5時間実施してもよい。一例としては、150℃、250℃で各30分ずつ熱処理する方法が挙げられる。あるいは、室温より300℃まで2時間かけて直線的に昇温する方法などが挙げられる。本発明においての加熱処理条件としては180℃以上が好ましく、200℃以上がより好ましく、230℃以上がさらに好ましい。また、加熱処理条件は、400℃以下が好ましく、350℃以下がより好ましく、300℃以下がさらに好ましい。
 本発明の硬化物は、有機EL表示装置や液晶表示装置、半導体装置、多層配線板等の電子部品に使用することができる。具体的には、有機EL素子の隔壁、有機EL素子を用いた表示装置の駆動回路付き基板の平坦化層、液晶装置のカラーフィルター、液晶装置のブラックマトリックス、半導体装置または半導体部品の再配線間の層間絶縁膜、半導体のパッシベーション膜、半導体素子の表面保護膜、高密度実装用多層配線の層間絶縁膜、回路基板の配線保護絶縁層、固体撮像素子のオンチップマイクロレンズや各種ディスプレイ・固体撮像素子用平坦化層などの用途に好適に用いられる。本発明の硬化物を配置した表面保護膜や層間絶縁膜等を有する電子デバイスとしては、例えば、耐熱性の低いMRAMなどが挙げられる。すなわち、本発明の硬化物は、MRAMの表面保護膜用として好適である。また、例えば、LCD、有機ELなどの表示装置の隔壁や絶縁層に好ましく用いることができる。さらに好ましくは、基板上に形成された隔壁で囲まれた領域(画素)内に機能性インクをインクジェットで塗布して機能層を形成する表示装置の隔壁として好適に使用することができる。
 本発明の硬化物は、良好な撥液性を有するため、インクジェット法に用いられるインクの隣接する画素内への浸入を防ぐことで、表示不良の発生が少ない表示装置を得ることができる。一方、硬化物の側面および硬化物のない部分(開口部)は撥液性を有していないため、良好なインク塗布性を有する。さらに、本発明の硬化物は、高温下におけるアウトガス量が少ないため、機能層に有機EL発光材料、正孔注入材料、および正孔輸送材料からなる群より選択される少なくとも1種類以上を含む有機EL表示装置に好適に用いることができる。
 <積層体>
 本発明の積層体は、基板上に、パターンニングされた第1電極、本発明の硬化物の順に積層され、前記第1電極上にある前記硬化物の少なくとも一部が開口している。硬化物の表面に良好な撥液性を有するため、第1電極上にある硬化物の少なくとも一部が開口している領域に機能性インクをインクジェットで塗布して機能層を形成する表示装置に好適に用いることができる。また。本発明の積層体は、硬化物の高温下におけるアウトガス量が少ないため、機能層に有機EL発光材料、正孔注入材料、および正孔輸送材料からなる群より選択される少なくとも1種類以上を含む有機EL表示装置に好適に用いることができる。
 本発明の積層体は、X線光電子分光法(XPS)による前記硬化物の分析が特性(v)および特性(vi)を満たすことが好ましい。
(v)前記硬化物の、前記第1電極と前記硬化物が接する面と反対側の表面から測定されるF原子の濃度が8.1atom%以上30.0atom%以下、及び、Si原子の濃度が1.0atom%以上6.0atom%以下である。
(vi)前記第1電極と前記硬化物が接する界面に対して垂直、且つ前記基板から前記硬化物の方向であり、前記第1電極と前記硬化物が接する界面を起点に100~200nmの範囲のいずれかで測定される前記硬化物のF原子の濃度が0.1atom%以上8.0atom%以下である。
 図2に、本発明の積層体の一例の断面の概略図を示す。基板8上に平坦化層9、パターニングされた第1電極10、本発明の硬化物11の順に積層され、パターニングされた第1電極10上にある硬化物11の少なくとも一部が開口している。X線光電子分光法(XPS)の分析による硬化物の特性(v)は、前記第1電極と前記硬化物が接する面と反対側の表面12から測定される。硬化物11の開口部の端から100μmの範囲のいずれかで測定することが好ましい。また、特性(vi)は、前記第1電極と前記硬化物が接する界面13に対して垂直、且つ前記基板から前記硬化物の方向であり、前記第1電極と前記硬化物が接する界面を起点に100nm15からさらに100nmの範囲、すなわち、前記第1電極と前記硬化物が接する界面13に対して垂直、且つ前記基板から前記硬化物の方向であり、前記第1電極と前記硬化物が接する界面を起点に100nm~200nmの範囲14のいずれかで測定される。パターニングされた第1電極の開口部においては、図2に示す前記第1電極と前記硬化物が接する界面に対して垂直、且つ前記基板から前記硬化物の方向であり、前記第1電極と前記硬化物の界面を起点に100~200nmの範囲14の通り、第1電極が存在するものとして、その第1電極の高さから100~200nmの範囲のいずれかで測定する。なお、第1電極の厚みにばらつきがある場合、パターニングされた第1電極の開口部において、開口部端部の平均厚さの第1電極が存在するものとする。
 本発明の積層体が、特性(v)を満たす方法としては、例えば、フッ素数7~21及び炭素数5~12のフッ化アルキル基を有する化合物(a-1)、およびシロキサン構造を有する化合物(a-2)を含む感光性樹脂組成物で硬化物を形成する方法が挙げられる。シロキサン構造とは、ケイ素(Si)と酸素(O)が交互に結合している構造をいう。フッ素数7~21及び炭素数5~12のフッ化アルキル基を有する化合物(a-1)とシロキサン構造を有する化合物(a-2)の2種類を含有してもよく、前述のポリシロキサン(A)のように、一つの化合物にフッ素数7~21及び炭素数5~12のフッ化アルキル基とシロキサン構造を有してもよい。
 特性(v)のF原子の濃度を上記範囲とするための方法としては、例えば、感光性樹脂組成物中のフッ素数7~21及び炭素数5~12のフッ化アルキル基を有する化合物(a-1)の含有量を調整する方法がある。含有量を増やすと、特性(v)のF原子の濃度を増やすことができ、含有量を減らすと、特性(v)のF原子の濃度を減らすことができる。また、化合物(a-1)が有するフッ化アルキル基の濃度を調整する方法もある。フッ化アルキル基の濃度を上げると特性(v)のF原子の濃度を増やすことができ、フッ化アルキル基の濃度を減らすと、特性(v)のF原子の濃度を減らすことができる。
 特性(v)のSi原子の濃度を上記範囲とするための方法としては、例えば、感光性樹脂組成物中のシロキサン構造を有する化合物(a-2)の含有量を調整する方法がある。含有量を増やすと、特性(v)のSi原子の濃度を増やすことができ、含有量を減らすと、特性(v)のSi原子の濃度を減らすことができる。また、化合物(a-2)が有するシロキサン構造の濃度を調整する方法もある。シロキサン構造の濃度を上げると特性(v)のSi原子の濃度を増やすことができ、シロキサン構造の濃度を減らすと、特性(v)のSi原子の濃度を減らすことができる。
 フッ素数7~21及び炭素数5~12のフッ化アルキル基を有する化合物(a-1)の構造は特に限定されない。例えば、2-(パーフルオロブチル)エチル(メタ)アクリレート、2-(パーフルオロヘキシル)エチル(メタ)アクリレート、2-(パーフルオロオクチル)エチル(メタ)アクリレートからなる群より選択される1種類以上を共重合したアクリル樹脂、および前述のポリシロキサン(A)などが挙げられる。UVオゾン耐性の観点から、前述のポリシロキサン(A)が好ましい。
 シロキサン構造を有する化合物(a-2)の構造は特に限定されない。例えば、アルキル変性シリコーン、ポリエーテル変性シリコーン、および前述のポリシロキサン(A)などが挙げられる。硬化物表面に偏在させる観点からポリエーテル変性シリコーン、および前述のポリシロキサン(A)が好ましい。さらに、撥液性の観点から前述のポリシロキサン(A)がより好ましい。
 ポリエーテル変性シリコーンとして市販されている製品には、例えば、KF-351A、KF-352A、KF-353、KF-354L、KF-355A、KF-642(信越化学工業(株)製)、SH8400、SH8700、SF8410(東レダウコーニング(株)製)、BYK-300、BYK-306、BYK-307、BYK-320、BYK-325、BYK-330(ビックケミー社製)などが挙げられる。
 本発明の積層体が、特性(vi)を満たす方法としては、例えば、トリフルオロメチル基を有するアルカリ可溶性樹脂(b-1)を含む感光性樹脂組成物で硬化物を形成する方法が挙げられる。トリフルオロメチル基は、硬化物表面に偏在する性質が小さく、硬化物内部にF原子を留めることができる。また、トリフルオロメチル基は撥液性を付与しないため、後術する「ハーフ露光」により、表面が親液性の硬化物を形成することができる。
 特性(vi)のF原子の濃度を上記範囲とするための方法としては、例えば、感光性樹脂組成物中のトリフルオロメチル基を有するアルカリ可溶性樹脂(b-1)の含有量を調整する方法がある。含有量を増やすと、特性(vi)のF原子の濃度を増やすことができ、含有量を減らすと、特性(vi)のF原子の濃度を減らすことができる。また、アルカリ可溶性樹脂(b-1)が有するトリフルオロメチル基の濃度を調整する方法もある。トリフルオロメチル基の濃度を上げると特性(vi)のF原子の濃度を増やすことができ、トリフルオロメチル基の濃度を減らすと、特性(vi)のF原子の濃度を減らすことができる。トリフルオロメチル基を有するアルカリ可溶性樹脂(b-1)は、樹脂を構成する高分子の主鎖骨格、及び、側鎖の種類は限定されない。例えは、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、ポリアミドイミド樹脂、アクリル樹脂、ノボラック樹脂、ポリヒドロキシスチレン樹脂、フェノール樹脂、ポリシロキサン樹脂などが挙げられるが、これらに限定されない。耐熱性の観点から、トリフルオロメチル基を有するアルカリ可溶性樹脂(b-1)は、ポリイミド、ポリベンゾオキサゾール、ポリアミドイミド、これらいずれかの前駆体およびそれらの共重合体からなる群より選択される1種類以上を含むことが好ましい。これらのアルカリ可溶性樹脂は、耐熱性が高いため、表示装置に用いると、熱処理後の200℃以上の高温下におけるアウトガス量が少なくなり、表示装置の耐久性を高めることができる。
 X線光電子分光法(XPS)による硬化物の分析について説明する。
 特性(v)は、硬化物の、前記第1電極と前記硬化物が接する面と反対側の表面から測定される。また、硬化物の開口部の端から100μmの範囲のいずれかで測定することが好ましい。この範囲を測定することで、機能性インクに対する硬化物表面の撥液性を分析することができる。
 本発明の積層体は、特性(v)において、F原子の濃度が8.1atom%以上30.0atom%以下であることが好ましい。より好ましくは15.0atom%以上26atom%以下である。F原子の濃度が8.1atom%以上であることで、硬化物表面に撥液性を付与することができる。一方、F原子の濃度が30atom%以下であることで、F原子の凝集を抑制し、欠陥の少ない硬化物を得ることができる。
 また、本発明の積層体は、特性(v)において、Si原子の濃度が1.0atom%以上6.0atom%以下であることが好ましい。より好ましくは1.5atom%以上4.5atom%以下である。Si原子の濃度が1.0atom%以上であることで、硬化物のUVオゾン耐性が向上し、UVオゾン処理後でも良好な撥液性を得ることができる。また、ポリシロキサン骨格は、良好な耐熱性を示すため、キュア工程で分解することなく、開口部への撥液成分の飛散を防ぎ、開口部に塗布する機能性インクの濡れ性を向上させることができる。一方、Si原子の濃度が6.0atom%以下であることで、Si原子の凝集を抑制し、欠陥の少ない硬化物を得ることができる。
 特性(v)は、試料表面に対する検出器の傾きが45°のXPS装置で分析することが好ましい。検出器の傾きが45°であることで、表面近傍のポリシロキサン(A)濃度が高い領域を分析することができる。
 特性(vi)は、第1電極と硬化物が接する界面に対して垂直、且つ基板から硬化物の方向であり、前記第1電極と前記硬化物が接する界面を起点に100~200nmの範囲のいずれかで測定される。硬化物の厚さが200nm以下の場合は、硬化物の厚さの中央値で測定する。硬化物内部にF成分を有すると硬化物の吸水性が低下するため、電極の腐食を抑制し、表示装置の耐久性を向上することができる。
 本発明の積層体は、特性(vi)において、F原子の濃度が0.1atom%以上8.0atom%以下であることが好ましい。より好ましくは、4.0atom%以上7.5atom%以下である。F原子の濃度が0.1atom%以上であることで硬化物の吸水性が低下するため、表示装置の耐久性を向上することができる。一方、F原子の濃度が8.0atom%以下であることで、表示装置の耐久性と硬化物の良好な機械特性を両立することができる。
 特性(vi)は、Arガスクラスターイオン(Ar-GCIB)により硬化物を掘削し、第1電極と硬化物が接する界面に対して垂直、且つ基板から硬化物の方向に100~200nmの範囲のいずれかを暴露した後に、X線光電子分光法(XPS)で測定することが好ましい。
 次に本発明の積層体において、第1電極上の少なくとも一部が開口している硬化物を形成する方法について説明する。
 第1電極を有する基板上に本発明の感光性樹脂組成物を塗布し、乾燥させることにより硬化物を得る。さらには、下記(1)~(4)の工程をこの順に行うことで、第1電極上の少なくとも一部が開口している硬化物を形成することができる。
(1)第1電極を有する基板上に感光性樹脂組成物を塗布し感光性樹脂乾燥物を形成する工程
(2)前記感光性樹脂乾燥物を露光する工程
(3)露光した感光性樹脂乾燥物を現像する工程
(4)現像した感光性樹脂乾燥物を加熱処理することで硬化物を形成する工程
 まず、(1)第1電極を有する基板に感光性樹脂組成物を塗布し、感光性樹脂乾燥物を形成する工程を説明する。
 第1電極を有する基板上に感光性樹脂組成物を塗布する方法として、スピンコート法、スリットコート法、ディップコート法、スプレーコート法、印刷法などが挙げられる。塗布に先立ち、感光性樹脂組成物を塗布する基板を予め前述した密着改良剤で前処理してもよい。例えば、密着改良剤をイソプロパノール、エタノール、メタノール、水、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、乳酸エチル、アジピン酸ジエチルなどの溶媒に0.5~20質量%溶解させた溶液を用いて、基材表面を処理する方法が挙げられる。基材表面の処理方法としては、スピンコート、スリットダイコート、バーコート、ディップコート、スプレーコート、蒸気処理などの方法が挙げられる。
 次に、例えば、塗布した感光性樹脂乾燥物を必要に応じて減圧乾燥処理を施し、その後、ホットプレート、オーブン、赤外線などを用いて、50℃~180℃の範囲で1分間~数時間の熱処理を施すことで乾燥した感光性樹脂乾燥物を得ることができる。
 次に、(2)前記感光性樹脂乾燥物を露光する工程について説明する。
 感光性樹脂乾燥物上に所望のパターンを有するフォトマスクを通して化学線を照射する。露光に用いられる化学線としては紫外線、可視光線、電子線、X線などがあるが、本発明では水銀灯のi線(365nm)、h線(405nm)、g線(436nm)を用いることが好ましい。化学線を照射した後、露光後ベークをしても構わない。露光後ベークを行うことによって、現像後の解像度向上または現像条件の許容幅増大などの効果が期待できる。露光後ベークは、オーブン、ホットプレート、赤外線、フラッシュアニール装置またはレーザーアニール装置などを使用することができる。露光後ベーク温度としては、50~180℃が好ましく、60~150℃がより好ましい。露光後ベーク時間は、10秒~数時間が好ましい。露光後ベーク時間が上記範囲内であると、反応が良好に進行し、現像時間を短くできる場合がある。この時、格子状のフォトマスクを用いることで、格子状の硬化物を得ることができる。
 本発明では、「ハーフ露光」を用いてもよい。「ハーフ露光」とは現像完了時に露光された部分の感光性樹脂乾燥物の下地がある程度残るようにするプロセスのことをいう。言い換えれば、感光性樹脂乾燥物の下層が感光しないように露光を行うプロセスのことをいう。例えば、ポジタイプの感光性樹脂乾燥物により図3の硬化物を形成する場合、厚みが厚い硬化物の第1段16になる箇所は未露光とし、厚みの薄い硬化物の第2段17になる箇所は感光性樹脂乾燥物の下層が感光しない化学線量で露光する「ハーフ露光」を行い、その後に現像、加熱処理することで形成することができる。また、感光性樹脂乾燥物に照射する化学線量を調整することで、現像完了後に残る感光性樹脂乾燥物の厚みを調整することができる。具体的には、感光性樹脂乾燥物がポジタイプの場合、化学線量を増やすと、現像完了後に残る感光性樹脂乾燥物の厚みが薄くなる。一方、感光性樹脂乾燥物がネガタイプの場合、化学線量を増やすと、現像完了後に残る感光性樹脂乾燥物の厚みが厚くなる。透過率の異なる2種類以上のエリアを有するフォトマスクを通して化学線を照射し、化学線量を調整してもよい。
 本発明の感光性樹脂組成物から形成される感光性樹脂乾燥物がポジタイプの場合、ハーフ露光して形成した硬化物の表面に撥液性は無く、良好なインク塗布性を有することができる。すなわち、一回のフォトリソグラフィで、表面が撥液性の硬化物と、表面が親液性の硬化物を形成することができる。
 次に、(3)露光した感光性樹脂乾燥物を現像する工程について説明する。
 露光した感光性樹脂乾燥物を現像する現像工程では、露光した感光性樹脂乾燥物を、現像液を用いて現像し、露光部以外を除去する。現像液としては、テトラメチルアンモニウムヒドロキシド(TMAH)、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどのアルカリ性を示す化合物の水溶液が好ましい。また場合によっては、これらのアルカリ水溶液にN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン、ジメチルアクリルアミドなどの極性溶媒、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを単独あるいは数種を組み合わせたものを添加してもよい。現像方式としては、スプレー、パドル、浸漬、超音波等の方式が可能である。
 次に、現像によって形成したパターンを蒸留水にてリンス処理をすることが好ましい。ここでもエタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを蒸留水に加えてリンス処理をしてもよい。
 次に、(4)現像した感光性樹脂乾燥物を加熱処理することで硬化物を形成する工程について説明する。
 現像した感光性樹脂乾燥物を加熱処理する工程により硬化物を得る。加熱処理により残留溶媒や耐熱性の低い成分を除去できるため、耐熱性および耐薬品性を向上させることができる。また、架橋剤を含有することにより、加熱処理により熱架橋反応を進行させることができ、耐熱性および耐薬品性を向上させることができる。この加熱処理は温度を選び、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分間~5時間実施する。一例としては、150℃、250℃で各30分ずつ熱処理する方法が挙げられる。あるいは、室温より300℃まで2時間かけて直線的に昇温する方法などが挙げられる。本発明においての加熱処理条件としては180℃以上が好ましく、200℃以上がより好ましく、230℃以上がさらに好ましい。また加熱処理条件は、400℃以下が好ましく、350℃以下がより好ましく、300℃以下がさらに好ましい。
 本発明の積層体では、硬化物の厚さが前記第1電極と前記硬化物が接する界面を起点に0.5~10μmであることが好ましい。0.5μm以上であれば、機能性インクを画素内に留めやすくできる。感光性樹脂組成物をフォトリソグラフィで加工しやすくする観点から、隔壁の厚さが10μm以下であることが好ましい。
 本発明の積層体に用いる基板は、金属やガラス、樹脂フィルムなど、表示装置の支持や後工程の搬送に好ましいものを適宜選択することができる。ガラス基板であれば、ソーダライムガラスや無アルカリガラスなどを用いることができ、また、厚みも機械的強度を保つのに十分な厚みがあればよい。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiO2などのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することができる。樹脂フィルムであれば、ポリイミド、ポリアミド、ポリベンゾオキサゾール、ポリアミドイミド、およびポリ(p-キシリレン)から選択される樹脂材料を含むものが好ましく、これらの樹脂材料を単独で含んでいてもよいし、複数種が組み合わされていてもよい。例えば、ポリイミド樹脂で形成する場合には、ポリイミドの前駆体であるポリアミック酸(一部がイミド化されたポリアミック酸を含む。)または、可溶性ポリイミドを含む溶液を支持基板に塗布し、焼成することで形成することもできる。
 本発明の積層体に用いる第1電極は、ITO(酸化インジウム・スズ)やIZO(酸化インジウム・亜鉛)、ZnO(酸化亜鉛)、Ag、Alなどを含むことが好ましい。
 本発明の積層体の第1電極のパターンニングは公知の方法で実施することができる。例えば、スパッタ法により、第1電極を基板全面に形成し、その後フォトレジストで任意の領域をマスクした後に、開口部をエッチングする方法が挙げられる。
 本発明の積層体を表示装置に用いる場合、基板とパターンニングされた第1電極の間に、さらに平坦化層を積層してもよい。ガラスなどの基板上にTFT(薄膜トランジスタ)とTFTの側方部に位置しTFTと接続された配線が設けられることが多い。第1電極が配線の凹凸を追従すると、発光ムラなどの外観不良が発生する、そのため、その駆動回路上に凹凸を覆うようにして平坦化層を形成し、さらに平坦化層上に第1電極が設けられる。平坦化層には、ポリイミド、ポリアミド、ポリベンゾオキサゾール、ポリアミドイミド、アクリル、カルド、およびポリ(p-キシリレン)から選択される樹脂材料を含むものが好ましく、これらの樹脂材料を単独で含んでいてもよいし、複数種が組み合わされていてもよい。
<表示装置>
 本発明の表示装置は、本発明の硬化物、または本発明の積層体を具備する。表示装置の具体例としては、LCD、有機ELなどが挙げられる。
 本発明の表示装置は、隔壁で囲まれた領域内に、機能層を形成する構造を有することが好ましく、該隔壁の少なくとも一部が本発明の硬化物である。本発明の硬化物は、上面に高い撥液性を有するため、前記機能層をインクジェット方式で形成することが好ましい。本発明の硬化物からなる隔壁が、インクジェット法に用いられるインクの隣接する画素内への浸入を防ぐことで、表示不良の発生が少ない表示装置を得ることができる。さらに、隔壁間の開口部がインクに対する良好な濡れ性を有することで、表示装置の歩留まりを上げることができる。例えば、透過光を着色する着色層を形成し、画素ごとに異なる色彩を有する複数色の着色層を配置することで、カラーフィルターとして好適に用いることができる。さらに、前記着色層に量子ドット(QD)を含むことで、QDカラーフィルターとして好適に用いることができる。
 本発明の表示装置は、本発明の積層体を具備することが好ましい。具体的には、基板上にパターンニングされた第1電極、本発明の硬化物の順に積層され、前記第1電極上にある前記硬化物の少なくとも一部が開口している積層体を具備し、硬化物の開口部に機能層を形成する構造であることが好ましい。本発明の硬化物は、上面に高い撥液性を有するため、前記機能層をインクジェット方式で形成することが好ましい。本発明の硬化物が、インクジェット法に用いられるインクの隣接する画素内への浸入を防ぐことで、表示不良の発生が少ない表示装置を得ることができる。さらに、隔壁間の開口部がインクに対する良好な濡れ性を有することで、表示装置の歩留まりを上げることができる。例えば、機能層として、有機EL発光材料、正孔注入材料、正孔輸送材料より選択される少なくとも1種類以上を含む有機EL発光層を形成し、その後機能層上に第2電極を形成することで、有機EL表示装置として好適に用いることができる。
 本発明の表示装置に具備する硬化物は、高温下におけるアウトガス量が少ないため、機能層に有機EL発光材料、正孔注入材料、および正孔輸送材料からなる群より選択される少なくとも1種類以上を含む有機EL表示装置に用いることが好ましい。画素シュリンクが小さく、耐久性に優れた有機EL表示装置を得ることができる。
 本発明の表示装置が有機EL表示装置である場合、有機EL表示装置は、基板上に、駆動回路、平坦化層、第1電極、隔壁、有機EL発光層および第2電極を有し、該隔壁が本発明の硬化物からなることが好ましい。アクティブマトリックス型の表示装置を例に挙げると、ガラスや樹脂フィルムなどの基板上に、TFTと、TFTの側方部に位置しTFTと接続された配線とを有し、その上に凹凸を覆うようにして平坦化層を有し、さらに平坦化層上に表示素子が設けられている。表示素子と配線とは、平坦化層に形成されたコンタクトホールを介して接続される。
 <表示装置の製造方法>
 次に本発明の表示装置の製造方法を説明する。
本発明の表示装置の製造方法は、工程(5)および(6)をこの順に有する。
(5)基板上に第1電極、本発明の硬化物の順に積層され、前記第1電極上にある前記硬化物の少なくとも一部が開口している積層体、または本発明の積層体において、
 第1電極上に機能性インクをインクジェットで塗布して機能層を形成する工程
(6)該機能層上に第2電極を形成する工程。
 (5)工程では、前述した積層体の第1電極上に機能性インクをインクジェットで塗布して機能層を形成する。例えば、有機EL表示装置の場合、有機EL発光材料、正孔注入材料、および正孔輸送材料からなる群より選択される少なくとも1種類を含む組成物を機能性インクとして画素内に滴下し、乾燥させることにより有機EL発光層を形成することができる。乾燥にはホットプレートやオーブンを用いて、150℃~250℃で0.5分から120分加熱することが好ましい。
 (6)工程では、前記機能層上に第2電極を形成する。前記第2電極は、隔壁および機能層の全体を覆うように形成することが好ましい。前記第2電極の形成方法としては、スパッタ法や蒸着法等が挙げられる。尚、断線がなく、均一な層厚で第2電極を形成することが好ましい。
 以下、実施例を挙げて本発明を説明するが、本発明はこれらの例によって限定されるものではない。まず、測定方法および評価方法について説明する。
 (1)平均分子量測定
 合成例1~28で合成したポリシロキサンP-1~P-29、合成例31で合成したアクリル系撥液材(Ac-1)、及び合成例38で合成したフェノール樹脂(d1)の分子量は、GPC(ゲルパーミエーションクロマトグラフィー)装置(Waters2690-996;日本ウォーターズ(株)製)を用い、展開溶媒をテトラヒドロフランとして測定し、ポリスチレン換算で重量平均分子量(Mw)を算出した。
 また、合成例33~36で合成したアルカリ可溶性樹脂(b1)~(b4)の分子量は、上述のGPC装置を用い、展開溶媒をN-メチル-2-ピロリドン(以降NMPと称する)として測定し、ポリスチレン換算で数平均分子量(Mn)を算出した。
 (2)相溶性の評価
 4インチシリコンウエハー上に、感光性樹脂組成物をプリベーク後の厚さが2μmとなるように塗布し、ついでホットプレートを用いて、90℃で2分プリベークすることにより、感光性樹脂乾燥物付き基板を得た。
 得られた感光性樹脂乾燥物付き基板を(株)トプコン製ウエハ表面検査装置“WM-10”にて欠陥検査を実施した。WM-10は、粒径標準ポリスチレンラテックス球を用いて、粒子検出に伴う信号の波高と粒径の校正が行われる。粒径が0.5μmの粒径標準ポリスチレンラテックス球で換算された0.5μm以上の欠陥個数を下記のように判定し、Aを優、Bを良、Cを可、Dを不可とした。
A:10個以下
B:11個以上20個以下
C:21個以上30個以下
D:31個以上
 (3)撥液性の評価
 接触角の測定には、後述の方法で基板上に形成された図1における隔壁パターン4上に、3μLのPGMEAを滴下し接触角を測定した。測定には、接触角測定装置(DMs-401;協和界面科学(株)製)を用いて、JIS-R3257:1999に準拠し、23℃で静滴法にて測定した。
 硬化物上のPGMEA接触角の測定結果を下記のように判定し、Aを優、Bを良、Cを可とし、Dを不可とした。
A:接触角が45°以上
B:接触角が35°以上45°未満
C:接触角が25°以上35°未満
D:接触角が25°未満。
 (4)開口部インク濡れ性の評価
 後述する図1における隔壁パターン5を形成した基板の隔壁に囲まれた領域(開口部)に、インクジェット装置(Litlex142;(株)ULVAC製)を用いて、安息香酸メチルを溶媒とした化合物(HT-1)のインク(7質量%)を滴下し、開口部のインキの濡れ広がり性を観察した。開口部全面にインクが濡れ広がるために必要な滴下インクの液滴数をカウントした。この評価で用いたインクの1滴当たりの体積は8plであった。開口部のインク濡れ性は、以下の基準で判定し、2滴以下のインク滴下量でインクが開口部全面に濡れ広がる(A+)、もしくは3~4滴のインク滴下量でインクが開口部全面に濡れ広がる(A)を優、5~6滴のインク滴下量でインクが開口部全面に濡れ広がる(B)を良とし、7~8滴のインク滴下量でインクが開口部全面に濡れ広がる(C)を可とし、9滴以上のインク滴下量でインクが開口部全面に濡れ広がる(D)、もしくは画素外へのインク染み出しが認められる(E)を不可とした。
Figure JPOXMLDOC01-appb-C000023
 (5)UVオゾン耐性の評価
 前述の(3)撥液性の評価を行った基板に下記条件でUVオゾン処理を行った。その後、図1における隔壁パターン4上に、3μLのPGMEAを滴下し接触角を測定した。測定には、接触角測定装置(DMs-401;協和界面科学(株)製)を用いて、JIS-R3257に準拠し、23℃で静滴法にて測定した。
 前述の(3)撥液性の評価結果と比較し、接触角の変化が10%以下であればA(合格)、接触角の変化が10%以上であればB(不合格)とした。
  ・UVオゾン条件
    装置:PL16 (SEN LIGHTS Corp.製)
    照度:15mW/cm2
    照射距離:75mm
    照射時間:120sec
 (6)X線光電子分光法(XPS)による硬化物の分析
 X線光電子分光法(XPS)による硬化物の分析方法を示す。
 <X線光電子分光法(XPS)分析用硬化物の作成>
 後述の方法で図1における隔壁パターン4を形成した積層体を作成し、隔壁パターン4における硬化物の開口部の端から100μmの範囲のいずれかの箇所でXPS分析を行った。
 <X線光電子分光法(XPS)の分析による特性(v)の測定方法>
 X線光電子分光法(XPS)による硬化物の表面分析を行った。測定条件、データ処理条件を下記に記載する。
 ・測定条件
   装置 Quantera SXM (PHI社製)
   励起X線 monochromatic Al K 1,2 線(1486.6 eV)
   X線径 200μm
   光電子検出角度 45°(試料表面に対する検出器の傾き)
 ・データ処理条件
   スムージング 9-point smoothing
   横軸補正 C1s メインピーク(CHx, C-C,C=C)を284.6 eVとした。
 <X線光電子分光法(XPS)の分析による特性(vi)の測定方法>
 図1における隔壁パターン4に対して、第1電極2と隔壁パターン4が接する界面に対して垂直、且つ無アルカリガラス基板1から隔壁パターン4の方向に、前記界面を起点に100~200nmの範囲のいずれかが暴露されるようにArガスクラスターイオン(Ar-GCIB)を行った。その後、Ar-GCIBを行った箇所でX線光電子分光法(XPS)の分析を行った。測定条件、データ処理を下記に記載する。
 ・測定条件
   装置 K-Alpha(Thermo Fisher Scientific社製)
   励起X線 monochromatic Al K 1,2 線(1486.6 eV)
   X線径 400 μm
   光電子脱出角度 90°(試料表面に対する検出器の傾き)
   イオンエッチング条件 Arガスクラスターイオン(Ar-GCIB)
   エッチングレート 3.5nm/min
 ・データ処理
   スムージング 11-point smoothing
   横軸補正 C1sメインピーク(CHx, C-C)を284.6 eVとした。
(7)耐久性の評価
 感光性樹脂組成物の硬化物を用いた後述の隔壁パターン5を形成した基板に、前述の(5)UVオゾン耐性の評価の条件でUVオゾン処理を行った。その後、正孔注入層として、安息香酸メチルを溶媒とした化合物(HT-1)のインキを、インクジェット装置(ULVAC社製Litlex142)を用いて、隔壁に囲まれた領域に滴下したのち、200℃で焼成し、正孔注入層を形成した。次に、正孔輸送層として、4-メトキシトルエンを溶媒とした化合物(HT-2)を、インクジェット装置を用いて、隔壁に囲まれた領域に滴下したのち、190℃で焼成し、正孔輸送層を形成した。さらに、発光層として、4-メトキシトルエンを溶媒とした化合物(GH-1)と化合物(GD-1)の混合物を、インクジェット装置を用いて、隔壁に囲まれた領域に滴下したのち、130℃で焼成し、発光層を形成した。その後、電子輸送材料として、化合物(ET-1)と化合物(LiQ)を、体積比1:1で真空蒸着法によって順次積層し、有機EL層6を形成した。次に、化合物(LiQ)を2nm蒸着した後、MgとAgを体積比10:1で10nm蒸着して第2電極7とした。最後に、低湿窒素雰囲気下でエポキシ樹脂系接着剤を用いてキャップ状ガラス板を接着することで封止し、1枚の基板上に5mm四方の有機EL表示装置を作製した。
Figure JPOXMLDOC01-appb-C000024
 上述の方法で作製した有機EL表示装置を10mA/cmで直流駆動にて発光させ、初期の発光面積を観察した。さらに、80℃で500時間保持し、再び10mA/cmで直流駆動にて発光させ、発光面積に変化がないか確認し、下記のように耐久性を判定し、Aを優、Bを良、Cを可とし、Dを不可とし、A、B、Cを合格とした。
A:発光面積に変化無し
B:発光面積が90%~99%に変化
C:発光面積が80%~89%に変化
D:発光面積が79%以下に変化
 以下に、実施例で用いた成分の略称を示す。
 <アルコキシシリル>
MTMS:メチルトリメトキシシラン
HfTES:4-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-1-トリエトキシシリルベンゼン
PhTMS:フェニルトリメトキシシラン
DPhDMS:ジメトキシジフェニルシラン
NapTMS:1-ナフチルトリメトキシシラン
TMSSucA:3-トリメトキシシリルプロピルコハク酸無水物
TfTMS:トリデカフルオロオクチルトリメトキシシラン
NfTMS:ノナフルオロヘキシルトリメトキシシラン
CfTMS:トリフルオロメチルプロピルトリメトキシシラン
TEOS:テトラエトキシシラン
 <架橋剤>
HMOM-TPHAP:(下記化学式に示す化合物、本州化学工業(株)製)
Figure JPOXMLDOC01-appb-C000025
VG3101L:“テクモア”(登録商標)VG3101L(下記化学式に示す化合物、(株)プリンテック製)。
Figure JPOXMLDOC01-appb-C000026
 <有機溶媒>
PGMEA:プロピレングリコールモノメチルエーテルアセテート
PGME:プロピレングリコールモノメチルエーテル
MAK:2-ヘプタノン
IPA:イソプロピルアルコール
 実施例および比較例で用いた化合物について以下に示す。
 合成例1 ポリシロキサン(P-1)の合成
 500mLの三口フラスコにTfTMSを8.20g(0.05mol)、NapTMSを43.46g(0.50mol)、TMSSucAを9.18g(0.10mol)、MTMSを16.68g(0.35mol)、MAKを72.90g、IPAを8.10g仕込み、40℃で攪拌しながら水19.53g、リン酸0.76g(仕込みモノマーに対して1.0質量%)、IPA2.70gを混和したリン酸溶液を添加した。その後、フラスコを70℃のオイルバスに浸けて60分間攪拌した後、オイルバスを15分間かけて130℃まで昇温した。昇温開始10分後に溶液の内温が100℃に到達し、そこから1時間加熱攪拌し(内温は100~125℃)、ポリシロキサン(P-1)を得た。なお、昇温および加熱攪拌中、窒素を0.07l(リットル)/分、流した。GPCを用いて重量平均分子量を求めた結果、重量平均分子量3000であった。
 合成例2~29
 表1および表2に記載のアルコキシシランの成分、仕込み量に変更した以外は、合成例1と同様の手順でポリシロキサン(P-2~P-29)を得た。ポリシロキサン(P-2~P-29)の重量平均分子量を表1および表2に記載した。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
 合成例30 HfTESの合成
 HfTES(Hf-1)を合成するために以下の反応を行った。
Figure JPOXMLDOC01-appb-C000029
 還流管を取り付けた300mL三口フラスコ内に、予め乾燥させておいた2-(3-ブロモフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパノール(H-1)6.46g(20.0mmol)、テトラブチルアンモニウムヨージド7.38g(40.0mmol)、およびビス(アセトニトリル)(1,5-シクロオクタジエン)ロジウム(I)テトラフルオロボラート0.2280g(0.60mmol)を室温で採取した。次いで、アルゴン雰囲気下で、脱水処理したN,N-ジメチルホルムアミド120mL、脱水処理したトリエチルアミン11.1mL(80.0mmol)、およびトリエトキシシラン7.40mL(40.0mmol)を加えて、80℃に昇温し、4時間攪拌した。反応系を室温までに自然冷却した後、溶媒であるN,N-ジメチルホルムアミドを留去し、次いでジイソプロピルエーテルを200mL加えた。生じた沈殿に、セライトを接触させて濾過した後、濾液を100mLの水で3回洗浄し、NaSOを加えて脱水乾燥させ、さらに濾過した後、溶媒を留去した。反応物である残渣を、クーゲルロール装置を用いて140℃~190℃、200Paの条件にて蒸留生成し、無色液体としてHfTES(Hf-1)を得た。得られたHfTES(Hf-1)の、H-NMR測定結果は以下のようになった。
 H-NMR(溶媒CDCl(重水素化クロロホルム)、TMS(テトラメチルシラン)):δ8.03(1H,s),7.79(2H,d,J=7.6Hz),7.47(1H,t,J=7.6Hz),4.16(1H,s),3.88(6H,q,J=5.0Hz),1.24(9H,t,J=7.4Hz)。
 合成例31 アクリル系撥液材(Ac-1)の合成
 撹拌装置、還流冷却管、滴下ロート、温度計および窒素ガス吹き込み口を備えたガラス製の反応容器に、シクロヘキサノンを100g加えて、窒素ガス雰囲気下で110℃に昇温した。シクロヘキサノンの温度を110℃に維持し、N,N-ジメチルアクリルアミド44g(0.65モル)、2-(パーフルオロヘキシル)エチルメタクリレート30g(0.10モル)、グリシジルメタクリレート21g(0.22モル)、3-フェノキシベンジルアクリレート5g(0.03モル)からなるモノマー混合溶液を滴下ロートにより2時間で等速滴下して、モノマー溶液を調製した。滴下終了後、モノマー溶液を、115℃まで昇温させ、2時間反応させてアクリル系撥液材(Ac-1)を得た。GPCを用いて重量平均分子量を求めた結果、重量平均分子量5500であった。
 合成例32 ヒドロキシル基含有ジアミン化合物の合成
 2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン18.3g(0.05モル)をアセトン100mL、プロピレンオキシド17.4g(0.3モル)に溶解させ、-15℃に冷却した。ここに3-ニトロベンゾイルクロリド20.4g(0.11モル)をアセトン100mLに溶解させた溶液を滴下した。滴下終了後、-15℃で4時間反応させ、その後室温に戻した。析出した白色固体をろ別し、50℃で真空乾燥した。
 固体30gを300mLのステンレスオートクレーブに入れ、メチルセロソルブ250mLに分散させ、5%パラジウム-炭素を2g加えた。ここに水素を風船で導入して、還元反応を室温で行なった。約2時間後、風船がこれ以上しぼまないことを確認して反応を終了させた。反応終了後、濾過して触媒であるパラジウム化合物を除き、ロータリーエバポレーターで濃縮し、下記式で表されるヒドロキシル基含有ジアミン化合物を得た。
Figure JPOXMLDOC01-appb-C000030
 合成例33 アルカリ可溶性樹脂(b1)の合成
 乾燥窒素気流下、2,2-(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物88.8g(0.20モル)をNMP500gに溶解させた。ここに合成例31で得られたヒドロキシル基含有ジアミン化合物96.7g(0.16モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン1.24g(0.005モル)をNMP100gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に末端封止剤として3-アミノフェノール8.7g(0.08モル)をNMP50gとともに加え、50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール47.7g(0.40モル)をNMP100gで希釈した溶液を投入した。投入後、50℃で3時間撹拌した。撹拌終了後、溶液を室温まで冷却した後、溶液を水5Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、目的のポリイミド前駆体であるアルカリ可溶性樹脂(b1)を得た。ポリイミド前駆体であるアルカリ可溶性樹脂(b1)の数平均分子量は12000であった。
 合成例34 アルカリ可溶性樹脂(b2)の合成
 乾燥窒素気流下、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物62.0g(0.20モル)をNMP500gに溶解させた。ここに合成例31で得られたヒドロキシル基含有ジアミン化合物96.7g(0.16モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン1.24g(0.005モル)をNMP100gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に末端封止剤として3-アミノフェノール8.7g(0.08モル)をNMP50gとともに加え、50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール47.7g(0.40モル)をNMP100gで希釈した溶液を投入した。投入後、50℃で3時間撹拌した。撹拌終了後、溶液を室温まで冷却した後、溶液を水5Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、目的のポリイミド前駆体であるアルカリ可溶性樹脂(b2)を得た。ポリイミド前駆体であるアルカリ可溶性樹脂(b2)の数平均分子量は11000であった。
 合成例35 アルカリ可溶性樹脂(b3)の合成
 乾燥窒素気流下、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物62.0g(0.20モル)をNMP500gに溶解させた。ここにビス(3-アミノ-4-ヒドロキシフェニル)スルホン44.85g(0.16モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン1.24g(0.005モル)をNMP100gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に末端封止剤として3-アミノフェノール8.7g(0.08モル)をNMP50gとともに加え、50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール47.7g(0.40モル)をNMP100gで希釈した溶液を投入した。投入後、50℃で3時間撹拌した。撹拌終了後、溶液を室温まで冷却した後、溶液を水5Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、目的のポリイミド前駆体であるアルカリ可溶性樹脂(b3)を得た。ポリイミド前駆体であるアルカリ可溶性樹脂(b3)の数平均分子量は11000であった。
 合成例36 アルカリ可溶性樹脂(b4)の合成
 乾燥窒素気流下、ジフェニルエーテル-4,4’-ジカルボン酸41.3g(0.16モル)、と1-ヒドロキシ-1,2,3-ベンゾトリアゾール43.2g(0.32モル)とを反応させて得られたジカルボン酸誘導体の混合物0.16モルと2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン73.3g(0.20モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン1.24g(0.005モル)をNMP570gに溶解させ、その後75℃で12時間反応させた。次にNMP70gに溶解させた5-ノルボルネン-2,3-ジカルボン酸無水物13.1g(0.08モル)を加え、更に12時間攪拌して反応を終了した。反応混合物を濾過した後、反応混合物を水/メタノール=3/1(容積比)の溶液に投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、目的のポリベンゾオキサゾール(PBO)前駆体であるアルカリ可溶性樹脂(b4)を得た。PBO前駆体であるアルカリ可溶性樹脂(b4)の数平均分子量は8500であった。
 合成例37 キノンジアジド化合物(c2)の合成
 乾燥窒素気流下、TrisP-PA(商品名、本州化学工業(株)製)21.23g(0.05モル)と4-ナフトキノンジアジドスルホニル酸クロリド33.58g(0.125モル)を1,4-ジオキサン450gに溶解させ、室温にした。ここに、1,4-ジオキサン50gと混合させたトリエチルアミン12.65g(0.125モル)を反応系内が35℃以上にならないように滴下した。滴下後30℃で2時間攪拌した。トリエチルアミン塩を濾過し、ろ液を水に投入させた。その後、析出した沈殿をろ過で集めた。この沈殿を真空乾燥機で乾燥させ、ナフトキノンジアジド化合物であるキノンジアジド化合物(c2)を得た。このナフトキノンジアジド化合物のキノンジアジド置換率は83%であった。
Figure JPOXMLDOC01-appb-C000031
 合成例38 フェノール樹脂(d1)の合成
 乾燥窒素気流下、m-クレゾール108.0g(1.00モル)、37質量%ホルムアルデヒド水溶液75.5g(ホルムアルデヒド0.93モル)、シュウ酸二水和物0.63g(0.005モル)、メチルイソブチルケトン264gを仕込んだ後、油浴中に浸し、反応液を還流させながら、4時間重縮合反応を行った。その後、油浴の温度を3時間かけて昇温し、その後に、フラスコ内の圧力を4.0kPa~6.7kPaまで減圧し、揮発分を除去し、溶解している樹脂を室温まで冷却して、ノボラック型フェノール樹脂であるフェノール樹脂(d1)を得た。GPCから重量平均分子量は3,500であった。
 実施例1~36、比較例1~6
 図1に、評価に使用する基板の概略図を示す。
 無アルカリガラス板1に、スパッタ法により、ITO透明導電膜10nmを無アルカリガラス板全面に形成し、第1電極2としてエッチングした。また、第2電極を取り出すため補助電極3も同時に形成した。得られた基板を“セミコクリーン”(登録商標)56(フルウチ化学(株)製)で10分間超音波洗浄してから超純水で洗浄し、乾燥して基板とした。
 次に、黄色灯下、表3、表4および表5に示す配合比で各成分を混合し、室温にて十分攪拌を行い溶解させた。その後、得られた溶液を孔径0.45μmのフィルターでろ過し、感光性樹脂組成物W1~W42を得た。
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
 続いて、得られた感光性樹脂組成物W1~W42を用いて(2)相溶性の評価を行った。その結果を表6、表7および表8に示す。
 さらに、前記基板上に、得られた感光性樹脂組成物W1~W42をスピンコート法により塗布し、120℃のホットプレート上で2分間プリベークして厚さ約2μmの乾燥塗膜を形成した後、所定のパターンを有するフォトマスクを介して水銀灯の全波長で露光量120mJ/cm(h線換算)の紫外線を照射した後、2.38質量%TMAH水溶液で60秒間現像し、水でリンスし、基板上に幅70μmおよび長さ260μmの開口部が中央に一カ所配置された隔壁パターン4を作成したものと、同様にして基板上に幅70μmおよび長さ260μmの開口部が、幅方向にピッチ155μmおよび長さ方向にピッチ465μmで配置され、それぞれの開口部が第1電極を露出せしめる形状の隔壁パターン5を形成したものをそれぞれ作成した。
 次に、隔壁パターン4、および隔壁パターン5を形成した基板を、250℃でクリーンオーブン(光洋サーモシステム(株)社製)を用いて、窒素雰囲気下で1時間加熱して硬化させた。隔壁パターン4を形成した基板を用いて、(3)撥液性の評価を行い、隔壁パターン5を形成した基板を用いて、(4)開口部のインク濡れ性評価を行った。その後、(5)UVオゾン耐性の評価を行った。その結果を表6、表7および表8に示す。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
 実施例37
 前述の<X線光電子分光法(XPS)の分析による特性(v)の測定方法>に記載の方法で、感光性樹脂組成物W3の硬化物のXPS分析を行い、得られたF原子とSi原子の元素濃度(atom%)を表9に示す。
 続いて、前述の<X線光電子分光法(XPS)の分析による特性(vi)の測定方法>に記載の方法で、感光性樹脂組成物W3の硬化物の分析を行い、得られたF原子とSi原子の元素濃度(atom%)を表9に示す。
 次に、感光性樹脂組成物W3の硬化物を用いて前述の(7)耐久性の評価を行い、評価結果を表9に示す。
 実施例38~41 比較例7、8
 感光性樹脂組成物W3をW23、W25、W27、W28、W33、およびW34のいずれかに変更した以外は実施例36と同等の評価を行った。評価結果を表9に示す。
Figure JPOXMLDOC01-appb-T000038
 実施例42、43
 スパッタ法により、ITO透明導電膜10nmを無アルカリガラス板全面に形成した無アルカリガラス板上に、感光性樹脂組成物W3およびW32をスピンコート法により塗布し、120℃のホットプレート上で2分間プリベークして厚さ約2μmの乾燥塗膜を形成した。続いて、感光性樹脂乾燥物の半分の面積を現像後の厚さが0.5μmになるように水銀灯の全波長で紫外線を照射する「ハーフ露光」を行った。残りの半分の面積について、ポジタイプの感光特性を有するW3の感光性樹脂乾燥物は、現像工程で厚みが減少しないように未露光とした。一方、ネガタイプの感光特性を有するW32は、現像工程で厚みが減少しないように露光量120mJ/cm(h線換算)の紫外線を照射した。次に、2.38質量%TMAH水溶液で60秒間現像し、続いて水でリンスして感光性樹脂乾燥物付き基板を作成した。
 次に、得られた感光性樹脂乾燥物付き基板を、250℃でクリーンオーブン(光洋サーモシステム(株)社製)を用いて、窒素雰囲気下で1時間加熱して硬化させて、硬化物付き基板を作成した。
 感光性樹脂組成物W3の硬化物の表面で測定したPGMEAでの接触角について、未露光部が46°であり、ハーフ露光部は5°以下であった。このように、ポジタイプの感光性樹脂組成物をハーフ露光で作成した硬化物の表面は親液性を示すことが確認できた。すなわち、一回のフォトリソグラフィで、表面が撥液性の硬化物と、表面が親液性の硬化物を形成することができる。一方、ネガタイプの感光性樹脂組成物W32の硬化物の表面で測定したPGMEAでの接触角について、露光部が46°、ハーフ露光部は40°であり、両方のエリアで撥液性が確認された。
1 無アルカリガラス基板
2 第1電極
3 補助電極
4 開口部が中央に一カ所配置された隔壁パターン
5 隔壁パターン
6 有機EL層
7 第2電極
8 基板
9 平坦化層
10 パターンニングされた第1電極
11 硬化物
12 第1電極と硬化物が接する界面と反対側の表面
13 第1電極と硬化物が接する界面
14 第一電極と硬化物が接する界面に対して垂直、且つ前記基板から硬化物の方向であり、第一電極と硬化物が接する界面を起点に100~200nmの範囲
15 第一電極と硬化物が接する界面に対して垂直、且つ前記基板から硬化物の方向であり、第一電極と硬化物が接する界面を起点に100nm
16 硬化物の第1段
17 硬化物の第2段

Claims (20)

  1. ポリシロキサン(A)、アルカリ可溶性樹脂(B)、および、感光剤(C)を含む感光性樹脂組成物であって、
    該ポリシロキサン(A)が、(i)、(ii)および(iii)の繰り返し単位構造を有する感光性樹脂組成物。
    (i)式(1)で示される繰り返し単位構造および/または式(2)で示される繰り返し単位構造
    (ii)式(3)で示される繰り返し単位構造および/または式(4)で示される繰り返し単位構造
    (iii)式(5)で示される繰り返し単位構造および/または式(6)で示される繰り返し単位構造
    Figure JPOXMLDOC01-appb-C000001
    (Rは、フッ素数7~21及び炭素数5~12のフッ化アルキル基であり、Rは水素原子、炭素数1~6のアルキル基、炭素数1~6のアシル基又は炭素数6~15のアリール基である。Rは炭素数6~15のアリール基であり、Rは単結合または炭素数1~4のアルキレン基であり、Yは1または2である。Rは酸性基を含む炭素数2~20の有機基である。*は共有結合を示す。)
  2. 前記Rの少なくとも1つが、式(26)または式(27)で示される構造である請求項1に記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (R16は、ヒドロキシ基、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のハロゲン化アルキル基、炭素数1~5のヒドロキシアルキル基又は炭素数1~5のハロゲン化ヒドロキシアルキル基である。bは0~3の整数を示す。*は共有結合を示す。)
  3. 前記Rの少なくとも1つが、1-ナフチル基、2-ナフチル基または、式(7)で示される構造である請求項1または2に記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (aは1~3の整数を示す。*は共有結合を示す。)
  4. 前記Rの少なくとも1つが、カルボキシル基を含む炭素数2~20の有機基である請求項1~3のいずれかに記載の感光性樹脂組成物。
  5. 前記Rの少なくとも1つが、式(8)または、式(9)で示される構造である請求項1~4のいずれかに記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (R15は単結合または炭素数1~10のアルキレン基である。*は共有結合を示す。)
  6. 前記ポリシロキサン(A)の全繰り返し単位構造100モル%中に、式(1)で示される繰り返し単位構造および式(2)で示される繰り返し単位構造の合計を5~30モル%含む請求項1~5のいずれかに記載の感光性樹脂組成物。
  7. 前記ポリシロキサン(A)の全繰り返し単位構造100モル%中に、式(3)で示される繰り返し単位構造および式(4)で示される繰り返し単位構造の合計を20~70モル%含む請求項1~6のいずれかに記載の感光性樹脂組成物。
  8. 前記ポリシロキサン(A)の全繰り返し単位構造100モル%中に、式(5)で示される繰り返し単位構造および式(6)で示される繰り返し単位構造の合計を1~40モル%含む請求項1~7のいずれかに記載の感光性樹脂組成物。
  9. 前記ポリシロキサン(A)が、さらに(vii)の繰り返し単位構造を有する請求項1~8のいずれかに記載の感光性樹脂組成物。
    (vii)式(25)で示される繰り返し単位構造
    Figure JPOXMLDOC01-appb-C000005
    (*は共有結合を示す。)
  10. 前記ポリシロキサン(A)が、前記(iii)の繰り返し単位構造100モル部に対し、前記(vii)の繰り返し単位構造を30~300モル部含む請求項9に記載の感光性樹脂組成物。
  11. 前記アルカリ可溶性樹脂(B)が、ポリイミド、ポリベンゾオキサゾール、ポリアミドイミド、これらいずれかの前駆体およびそれらの共重合体からなる群より選択される1種類以上を含む、請求項1~10のいずれかに記載の感光性樹脂組成物。
  12. 前記ポリイミド、ポリベンゾオキサゾール、ポリアミドイミド、これらいずれかの前駆体およびそれらの共重合体が、カルボン酸成分の残基および/またはジアミン成分の残基に式(16)で示される構造を有する請求項11に記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000006
    (*は共有結合を示す。)
  13. 前記感光剤(C)がキノンジアジド化合物を含む、請求項1~12のいずれかに記載の感光性樹脂組成物。
  14. 前記アルカリ可溶性樹脂(B)が、フェノール樹脂および/またはポリヒドロキシスチレン樹脂を含む、請求項13に記載の感光性樹脂組成物。
  15. 前記アルカリ可溶性樹脂(B)100質量部に対し、前記ポリシロキサン(A)の含有量が0.1質量部以上、10質量部以下である請求項1~14のいずれかに記載の感光性樹脂組成物。
  16. 請求項1~15のいずれかに記載の感光性樹脂組成物を硬化してなる硬化物。
  17. 基板上に、パターンニングされた第1電極、請求項16に記載の硬化物の順に積層され、前記第1電極上にある前記硬化物の少なくとも一部が開口している積層体。
  18. X線光電子分光法(XPS)による硬化物の分析が特性(v)および特性(vi)を満たす請求項17に記載の積層体。
    (v)前記硬化物の、前記第1電極と前記硬化物が接する面と反対側の表面の少なくとも一部から測定されるF原子の濃度が8.1atom%以上30.0atom%以下、及び、Si原子の濃度が1.0atom%以上6.0atom%以下である。
    (vi)前記第1電極と前記硬化物が接する界面に対して垂直、且つ前記基板から前記硬化物の方向であり、前記第1電極と前記硬化物が接する界面を起点に100~200nmの範囲のいずれかで測定される前記硬化物のF原子の濃度が0.1atom%以上8.0atom%以下である。
  19. 請求項16に記載の硬化物、または請求項17または18に記載の積層体を具備する表示装置。
  20. 工程(5)および(6)をこの順に有する表示装置の製造方法。
    (5)請求項17または18に記載の積層体において、
     第1電極上に機能性インクをインクジェットで塗布して機能層を形成する工程
    (6)該機能層上に第2電極を形成する工程
PCT/JP2022/005305 2021-02-24 2022-02-10 感光性樹脂組成物、硬化物、積層体、表示装置、および表示装置の製造方法 WO2022181350A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280008370.2A CN116802221A (zh) 2021-02-24 2022-02-10 感光性树脂组合物、固化物、层叠体、显示装置及显示装置的制造方法
JP2022510943A JPWO2022181350A1 (ja) 2021-02-24 2022-02-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-027157 2021-02-24
JP2021027157 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022181350A1 true WO2022181350A1 (ja) 2022-09-01

Family

ID=83049160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005305 WO2022181350A1 (ja) 2021-02-24 2022-02-10 感光性樹脂組成物、硬化物、積層体、表示装置、および表示装置の製造方法

Country Status (4)

Country Link
JP (1) JPWO2022181350A1 (ja)
CN (1) CN116802221A (ja)
TW (1) TW202248299A (ja)
WO (1) WO2022181350A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171487A1 (ja) * 2022-03-07 2023-09-14 東レ株式会社 感光性樹脂組成物、硬化物、表示装置および表示装置の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007041361A (ja) * 2005-08-04 2007-02-15 Toray Ind Inc 感光性樹脂組成物、それから形成された硬化膜、および硬化膜を有する素子
WO2010071155A1 (ja) * 2008-12-19 2010-06-24 日産化学工業株式会社 アニオン基を有するシリコン含有レジスト下層膜形成組成物
WO2015190294A1 (ja) * 2014-06-09 2015-12-17 旭硝子株式会社 撥インク剤、ネガ型感光性樹脂組成物、隔壁および光学素子
WO2020008969A1 (ja) * 2018-07-05 2020-01-09 東レ株式会社 樹脂組成物、遮光膜、遮光膜の製造方法および隔壁付き基板
WO2020090746A1 (ja) * 2018-10-30 2020-05-07 セントラル硝子株式会社 樹脂組成物、感光性樹脂組成物、硬化膜、硬化膜の製造方法、パターン硬化膜およびパターン硬化膜の作製方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007041361A (ja) * 2005-08-04 2007-02-15 Toray Ind Inc 感光性樹脂組成物、それから形成された硬化膜、および硬化膜を有する素子
WO2010071155A1 (ja) * 2008-12-19 2010-06-24 日産化学工業株式会社 アニオン基を有するシリコン含有レジスト下層膜形成組成物
WO2015190294A1 (ja) * 2014-06-09 2015-12-17 旭硝子株式会社 撥インク剤、ネガ型感光性樹脂組成物、隔壁および光学素子
WO2020008969A1 (ja) * 2018-07-05 2020-01-09 東レ株式会社 樹脂組成物、遮光膜、遮光膜の製造方法および隔壁付き基板
WO2020090746A1 (ja) * 2018-10-30 2020-05-07 セントラル硝子株式会社 樹脂組成物、感光性樹脂組成物、硬化膜、硬化膜の製造方法、パターン硬化膜およびパターン硬化膜の作製方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171487A1 (ja) * 2022-03-07 2023-09-14 東レ株式会社 感光性樹脂組成物、硬化物、表示装置および表示装置の製造方法

Also Published As

Publication number Publication date
TW202248299A (zh) 2022-12-16
CN116802221A (zh) 2023-09-22
JPWO2022181350A1 (ja) 2022-09-01

Similar Documents

Publication Publication Date Title
JP6521030B2 (ja) 感光性着色樹脂組成物
TWI685099B (zh) 有機el顯示裝置
TWI725250B (zh) 樹脂組成物、樹脂薄片、硬化膜、有機el顯示裝置、半導體電子零件、半導體裝置及有機el顯示裝置之製造方法
CN108604061B (zh) 固化膜及正型感光性树脂组合物
JP7352176B2 (ja) 感光性樹脂組成物、硬化膜、および該硬化膜を用いた表示装置
WO2022181350A1 (ja) 感光性樹脂組成物、硬化物、積層体、表示装置、および表示装置の製造方法
JP2021135499A (ja) 感光性樹脂組成物、硬化膜、撥液バンク、表示装置、隔壁付基板の製造方法および表示装置の製造方法
WO2022181351A1 (ja) 積層体、表示装置、および表示装置の製造方法
WO2023171487A1 (ja) 感光性樹脂組成物、硬化物、表示装置および表示装置の製造方法
CN115066980A (zh) 有机el显示装置、固化物的制造方法及有机el显示装置的制造方法
WO2023095785A1 (ja) 感光性樹脂組成物、硬化物、有機el表示装置、半導体装置および硬化物の製造方法
JP2024027778A (ja) 感光性樹脂組成物、硬化物、積層体、表示装置、および表示装置の製造方法
WO2023032803A1 (ja) 樹脂組成物、硬化物、有機el表示装置および硬化物の製造方法
WO2023171284A1 (ja) 感光性樹脂組成物、硬化物、硬化物の製造方法、有機el表示装置および表示装置
WO2022039028A1 (ja) 感光性樹脂組成物、硬化物、表示装置、半導体装置及び硬化物の製造方法
JP2022047006A (ja) 感光性樹脂組成物、硬化物、表示装置、および表示装置の製造方法
CN118020025A (zh) 感光性树脂组合物、硬化物、有机el显示装置、半导体装置及硬化物的制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022510943

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759389

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280008370.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759389

Country of ref document: EP

Kind code of ref document: A1