WO2022181324A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2022181324A1
WO2022181324A1 PCT/JP2022/005046 JP2022005046W WO2022181324A1 WO 2022181324 A1 WO2022181324 A1 WO 2022181324A1 JP 2022005046 W JP2022005046 W JP 2022005046W WO 2022181324 A1 WO2022181324 A1 WO 2022181324A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting layer
light emitting
layer
display device
Prior art date
Application number
PCT/JP2022/005046
Other languages
English (en)
French (fr)
Inventor
孝洋 牛窪
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Priority to JP2023502265A priority Critical patent/JPWO2022181324A1/ja
Publication of WO2022181324A1 publication Critical patent/WO2022181324A1/ja
Priority to US18/448,983 priority patent/US20230389369A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes

Definitions

  • An embodiment of the present invention relates to a display device and a manufacturing method thereof.
  • organic EL display device organic electroluminescence display
  • organic electroluminescence material organic electroluminescence material
  • organic EL element a light emitting element
  • lateral leakage current may cause adjacent pixels to emit light, degrading the display quality of the EL display device.
  • one object of one embodiment of the present invention is to provide a display device in which lateral leakage current in a light emitting element is suppressed.
  • a display device includes a first pixel electrode, a second pixel electrode spaced apart from the first pixel electrode in a first direction, and at least one electrode on the top surface of the first pixel electrode.
  • an insulating layer provided on the first pixel electrode, the second pixel electrode, and the insulating layer; a first common layer, a first light-emitting layer provided on the first common layer and overlapping with the first pixel electrode, and a first light-emitting layer provided on the first common layer and overlapping with the second pixel electrode; and a counter electrode provided on the first light emitting layer and the second light emitting layer, the first light emitting layer spreading over the first insulating layer and having an end portion of
  • the second light emitting layer includes a region that is provided on the inclined surface of the second opening provided in the insulating layer and overlaps the first light emitting layer.
  • FIG. 1 is a schematic diagram of a display device according to an embodiment of the present invention when viewed from above;
  • FIG. It is an enlarged view of a pixel layout when the display device is viewed in plan.
  • 3 is a cross-sectional view of the display device shown in FIG. 2 taken along line A1-A2;
  • FIG. 4 is an enlarged view of a part of the cross-sectional view shown in FIG. 3;
  • 1A to 1D are cross-sectional views illustrating a method for manufacturing a display device according to an embodiment of the present invention
  • 1A to 1D are cross-sectional views illustrating a method for manufacturing a display device according to an embodiment of the present invention
  • 1A to 1D are cross-sectional views illustrating a method for manufacturing a display device according to an embodiment of the present invention
  • 1 is a pixel layout diagram when a display device according to an embodiment of the present invention is viewed from above.
  • FIG. 9 is a cross-sectional view of the display device shown in FIG. 8 taken along line B1-B2;
  • FIG. It is an enlarged view of a pixel layout when the display device is viewed in plan.
  • 11 is a cross-sectional view of the display device shown in FIG.
  • FIG. 10 taken along line C1-C2;
  • FIG. It is an enlarged view of a pixel layout when the display device is viewed in plan.
  • 13 is a cross-sectional view of the display device shown in FIG. 12 taken along line D1-D2;
  • FIG. It is an enlarged view of a pixel layout when the display device is viewed in plan.
  • 15 is a cross-sectional view of the display device shown in FIG. 14 taken along line E1-E2;
  • FIG. 1 is a cross-sectional view of a display device according to an embodiment of the invention;
  • FIG. It is an enlarged view of a pixel layout when a conventional display area is viewed in plan.
  • FIG. 19 is a cross-sectional view of the display area shown in FIG. 18 taken along line F1-F2; 20 is an enlarged view of a part of the cross-sectional view shown in FIG. 19; FIG. FIG. 19 is a cross-sectional view of the display area shown in FIG. 18 taken along line F1-F2; 22 is an enlarged view of a part of the cross-sectional view shown in FIG. 21; FIG. It is a display device sectional view.
  • these films when one film is processed to form a plurality of films, these films may have different functions and roles. However, these films are derived from films formed as the same layer in the same process, and have the same layer structure and the same material. Therefore, these multiple films are defined as existing in the same layer.
  • FIG. 1 A display device according to an embodiment of the present invention will be described with reference to FIGS. 1 to 17.
  • FIG. 1 A display device according to an embodiment of the present invention will be described with reference to FIGS. 1 to 17.
  • FIG. 1 A display device according to an embodiment of the present invention will be described with reference to FIGS. 1 to 17.
  • FIG. 1 is a schematic diagram showing the configuration of a display device 100 according to an embodiment of the present invention, showing the schematic configuration when the display device 100 is viewed from above.
  • the state of viewing the display device 100 from a direction perpendicular to the screen (display area) is referred to as “planar view”.
  • the display device 100 has a display area 102 formed on an insulating surface, a scanning line driving circuit 104, a driver IC 106, and a terminal section in which a plurality of terminals 107 are arranged.
  • a light-emitting element having an organic layer made of an organic material is arranged in the display area 102 .
  • a peripheral area 103 surrounds the display area 102 .
  • the driver IC 106 functions as a control section that gives signals to the scanning line driving circuit 104 and the data line driving circuit.
  • the data line driving circuit may be provided with a sampling switch or the like on the substrate 101 separately from the driver IC 106 .
  • the driver IC 106 is provided on the flexible printed circuit (FPC) 108, but may be provided on the substrate 101.
  • the flexible printed circuit 108 is connected to a plurality of terminals 107 provided in the peripheral area 103 .
  • the insulating surface is the surface of the substrate 101.
  • the substrate 101 supports each layer provided on its surface, such as an insulating layer and a conductive layer.
  • the substrate 101 itself may be made of an insulating material and have an insulating surface, or an insulating film may be separately formed on the substrate 101 to form the insulating surface.
  • the material of the substrate 101 and the material forming the insulating film are not particularly limited.
  • a plurality of pixels 105 are arranged in a matrix in the X direction and the Y direction.
  • a pixel refers to a minimum unit capable of displaying a desired color in the display area 102 .
  • Each pixel 105 has a pixel circuit and a light-emitting element electrically connected to the pixel circuit.
  • a light-emitting element includes a pixel electrode, an organic layer (light-emitting portion) including a light-emitting layer laminated on the pixel electrode, and a counter electrode.
  • the light emitting elements included in the pixel 105 emit lights of different colors.
  • the pixel 105 emits any color of a red light-emitting element, a green light-emitting element, or a blue light-emitting element.
  • the color emitted by the light-emitting element is not limited to the above, and at least one color or more may be used.
  • R indicates a component included in a red light-emitting element
  • G indicates a component included in a green light-emitting element
  • B indicates a component included in a blue light-emitting element.
  • the emission peak wavelength of the blue light-emitting element is 460 nm or more and 500 nm or less.
  • the emission peak wavelength of the red light emitting element is 610 nm or more and 780 nm or less.
  • the emission peak wavelength of the green light emitting element is 500 nm or more and 570 nm or less.
  • a scanning line 111 and a data line 113 are electrically connected to each pixel 105 .
  • Each pixel 105 is electrically connected to a power supply line (not shown).
  • the scanning lines 111 extend along the X direction and are electrically connected to the scanning line driving circuit 104 .
  • the data line 113 extends along the Y direction and is electrically connected to the driver IC 106 .
  • the driver IC 106 also outputs scanning signals to the scanning lines 111 via the scanning line driving circuit 104 .
  • Driver IC 106 outputs a data signal corresponding to image data to data line 113 .
  • a pixel circuit is composed of a plurality of transistors.
  • a transistor a thin film transistor (TFT) can be typically used.
  • TFT thin film transistor
  • any element may be used as long as it is an element having a current control function, not limited to a thin film transistor.
  • FIG. 2 is an enlarged view of the pixel layout when the display device 100 is viewed from above
  • FIG. 3 is a cross-sectional view of the pixel layout shown in FIG. 2 cut along line A1-A2.
  • 4 is an enlarged view of a part of the cross-sectional view shown in FIG. 3.
  • FIG. In this embodiment, the configuration of a top emission display device will be described.
  • FIG. 2 shows regions where the pixels 105R, 105G, and 105B are provided.
  • the pixel 105R and the pixel 105B are arranged side by side in the X direction.
  • the pixel 105G and the pixel 105B are arranged side by side in the X direction.
  • the pixel 105R and the pixel 105G are arranged side by side in the Y direction.
  • regions indicated by solid lines are regions where the light-emitting layers 132R, 132G, and 132B are provided.
  • Areas surrounded by dotted lines are areas where openings 120R, 120G, and 120B are provided in the insulating layer.
  • the insulating layer is also called a partition wall or a bank.
  • the openings 120R, 120G and 120B provided in the insulating layer correspond to light emitting regions when the light emitting elements 130R, 130G and 130B actually emit light.
  • the light emitting elements 130R, 130G, and 130B are referred to as the light emitting elements 130 when they are not distinguished from each other. The same applies to the components of the light emitting elements 130R, 130G, and 130B.
  • FIG. 3 shows cross-sectional views of the pixels 105R, 105G, and 105B.
  • a plurality of transistors 110 are provided over the substrate 101 with an insulating film 112 interposed therebetween.
  • a pixel circuit is configured by the plurality of transistors 110 .
  • a transistor 110 includes at least a semiconductor layer 114 , a gate insulating film 115 , and a gate electrode 116 .
  • An interlayer insulating film 121 is provided over the transistor 110 .
  • Source or drain electrodes 117 and 118 are provided on the interlayer insulating film 121 . Each of source or drain electrodes 117 and 118 is connected to semiconductor layer 114 through a contact hole provided in interlayer insulating film 121 .
  • An insulating film 122 is provided on the interlayer insulating film 121 .
  • the insulating film 122 can reduce unevenness caused by the transistor 110 and the source or drain electrodes 117 and 118 .
  • the plurality of transistors 110 provided over the substrate 101 and the interlayer insulating film 121 and the insulating film 122 provided over the transistors 110 are formed using known materials and methods. 4 and subsequent figures, illustration of the configuration of the pixel circuit provided below the insulating film 122 is omitted.
  • the pixel 105R is provided with a light emitting element 130R
  • the pixel 105G is provided with a light emitting element 130G
  • the pixel 105B is provided with a light emitting element 130B.
  • the light emitting element 130R has at least a pixel electrode 124R, a light emitting layer 132R, and a counter electrode 136.
  • the light emitting element 130G has at least a pixel electrode 124G, a light emitting layer 132G, and a counter electrode 136.
  • the light-emitting element 130B has at least a pixel electrode 124B, a light-emitting layer 132B, and a counter electrode 136.
  • a common layer 128 is provided between the pixel electrodes 124R, 124G, 124B and the light emitting layers 132R, 132G, 132B.
  • a common layer 134 is provided between the light emitting layers 132R, 132G, 132B and the counter electrode 136. As shown in FIG. The common layers 128 and 134 are commonly provided over the light emitting elements 130R, 130G and 130B.
  • the pixel electrodes 124R, 124G, 124B are anodes and the counter electrode 136 is a cathode.
  • Common layer 128 includes at least one of a hole transport layer and a hole injection layer, and common layer 134 includes at least one of an electron transport layer and an electron injection layer.
  • the pixel electrodes 124R, 124G, and 124B are each electrically connected to the transistor 110 included in the pixel circuit.
  • the light-emitting layer 132R overlaps with the first end of the light-emitting layer 132B.
  • the light emitting layer 132G overlaps so as to overlap with the second end of the light emitting layer 132B.
  • the first end of the light emitting layer 132B is provided so as to be close to the opening 120R of the light emitting element 130R.
  • the second end of the light emitting layer 132B is provided so as to be close to the opening 120G of the light emitting element 130G.
  • the first end of the light emitting layer 132B is provided on the inclined surface 126-1 of the opening 120R of the insulating layer 126. As shown in FIG.
  • the second end of the light emitting layer 132B is provided on the inclined surface 126-3 of the opening 120G of the insulating layer 126.
  • the end portion of the light-emitting layer in this specification and the like means the outer edge of the light-emitting layer when the display device 100 is viewed from above.
  • a state in which the display device 100 is cut along a plane or a curved surface that intersects the insulating surface and the cut surface is viewed in a direction parallel to the screen is referred to as a “cross-sectional view”.
  • lateral leakage current may cause the light-emitting layers of adjacent pixels to emit light, degrading the display quality of the EL display device.
  • FIG. 18 to 22 illustration of the configuration of the pixel circuit provided below the insulating film 222 is omitted.
  • FIG. 18 is an enlarged view of the pixel layout when the conventional display device 200 is viewed from above
  • FIG. 19 is a cross-sectional view of the display device 200 shown in FIG. 18 taken along line F1-F2.
  • FIG. 20 is an enlarged view when a part of the cross-sectional view shown in FIG. 19 is enlarged.
  • FIG. 18 shows regions where pixels 205R, 205G, and 205B are provided.
  • the pixel 205R and the pixel 205B are arranged side by side in the X direction.
  • the pixel 205G and the pixel 205B are arranged side by side in the X direction.
  • regions indicated by solid lines are regions where the light-emitting layers 232R, 232G, and 232B are provided.
  • Areas surrounded by dotted lines are areas where openings 220R, 220G, and 220B of the insulating layer are provided.
  • the openings 220R, 220G, 220B provided in the insulating layer correspond to light emitting regions when the light emitting elements 230R, 230G, 230B actually emit light.
  • the light emitting elements 230R, 230G, and 230B are referred to as the light emitting elements 230 when they are not distinguished from each other. The same applies to the components of the light emitting elements 230R, 230G, and 230B.
  • the luminescent layer 232R and the luminescent layer 232B partly overlap in the boundary region between the adjacent pixels 205R and 205B.
  • the light-emitting layer 232B and the light-emitting layer 232G partially overlap each other in the boundary region between the adjacent pixels 205B and 205G.
  • FIG. 19 shows a cross-sectional view of pixels 205R, 205G, and 205B.
  • the pixel 205R is provided with the light emitting element 230R
  • the pixel 205G is provided with the light emitting element 230G
  • the pixel 205B is provided with the light emitting element 230B.
  • the light-emitting element 230R has at least a pixel electrode 224R, a light-emitting layer 232R, and a counter electrode 236.
  • the light emitting element 230G has at least a pixel electrode 224G, a light emitting layer 232G, and a counter electrode 236. As shown in FIG.
  • the light-emitting element 230B has at least a pixel electrode 224B, a light-emitting layer 232B, and a counter electrode 236.
  • FIG. A common layer 228 is provided between the pixel electrodes 224R, 224G, 224B and the light emitting layers 232R, 232G, 232B.
  • a common layer 234 is provided between the light emitting layers 232R, 232G, 232B and the counter electrode 136. As shown in FIG. The common layers 228 and 234 are commonly provided over the light emitting elements 230R, 230G and 230B (over the display area).
  • the pixel electrodes 224R, 224G, 224B are anodes and the counter electrode 236 is a cathode.
  • common layer 228 includes at least one of a hole transport layer and a hole injection layer
  • common layer 234 includes at least one of an electron transport layer and an electron injection layer.
  • the regions provided with the light-emitting layers are separated from each other so as not to overlap each other.
  • the openings 220R, 220G, and 220B need to be formed sufficiently apart from each other, which reduces definition.
  • the areas provided with the light-emitting layers may overlap each other. As shown in FIGS. 18 to 20, in a region where the pixel 205B and the pixel 205R are adjacent to each other, part of the light emitting layer 232B and part of the light emitting layer 232R may overlap.
  • FIG. 20 shows an enlarged region 250A where the pixels 205B and 205R are adjacent to each other.
  • a light emitting layer 232B and a light emitting layer 232R are provided on the insulating layer 226, on the common layer 228, a light emitting layer 232B and a light emitting layer 232R are provided. Part of the light emitting layer 232B overlaps part of the light emitting layer 232R.
  • the light emission start voltage of the light emitting layer 232B is higher than the light emission start voltages of the light emitting layers 228R and 232G. Therefore, when the light emitting element 230B emits light, a large voltage is applied to the light emitting layer 232B, and holes in the common layer 228 laterally move from the pixel 205B toward the pixels 205R and 205G.
  • the light-emitting layer 232B When the light-emitting layer 232B exhibits hole-transport properties, holes pass through the light-emitting layer 232B in the thickness direction. Therefore, the light emitting layer 232R emits light at the edge of the light emitting layer 232R.
  • the light-emitting layer 232B exhibits an electron-transport property, holes do not pass through the thickness direction of the light-emitting layer 232B but move in the lateral direction. Therefore, the light emitting layer 232R emits light near the edge of the light emitting layer 232B.
  • a place where unintended light emission occurs is referred to as a starting point of light emission.
  • the light emission start voltage of the light emitting layer 232R and the light emission start voltage of the light emitting layer 232G are approximately the same. Therefore, even if the light-emitting element 230G emits light, holes in the common layer 228 are prevented from moving laterally from the pixel 205G to the pixels 205R and 205B. Therefore, in the region where the end portion of the light emitting layer 232G and the end portion of the light emitting layer 232R overlap, the end portion of the light emitting layer 232G and the light emitting layer 232R do not emit light.
  • a part of the light emitting layer 232B and a part of the light emitting layer 232R may be separated.
  • FIG. 22 shows an enlarged area 250B where the pixels 205B and 205R are adjacent to each other.
  • a light-emitting layer 232B and a light-emitting layer 232R are provided on the insulating layer 226 and on the common layer 228 .
  • the end of the light emitting layer 232B is separated from the end of the light emitting layer 232R.
  • the light emission start voltage of the light emitting layer 132B is higher than the light emission start voltages of the light emitting layers 228G and 132R.
  • the light-emitting element 230B emits light
  • a large voltage is applied to the light-emitting layer 232B, and holes in the common layer 228 laterally move from the pixel 205B toward the pixels 205G and 205R.
  • the light-emitting layer 232B exhibits hole-transport properties, holes pass through the light-emitting layer 232B in the thickness direction. Therefore, the light emitting layer 232R emits light at the edge of the light emitting layer 232R.
  • the light-emitting layer 232B exhibits an electron-transport property, holes do not pass through the thickness direction of the light-emitting layer 232B but move in the lateral direction. Therefore, even if the end of the light emitting layer 232R is separated from the end of the light emitting layer 232B, the light emitting layer 232R will emit light.
  • the light emitting layer 232B and the light emitting layers 232R and 232G adjacent to the light emitting layer 232B may or may not overlap with each other.
  • it is conceivable to prevent lateral leak current by designing the light-emitting layers 232R, 232G, and 232B so as to match the light-emission start voltages.
  • the characteristics of the light emitting element and the design for suppressing carrier injection into the light emitting layer are required, resulting in a trade-off between the characteristics of the light emitting element.
  • the starting point of light emission differs depending on the stacking order of the common layer 228 and the light emitting layers 232R, 232G, and 232B.
  • the intensity of the lateral leakage current depends on the distance from the light emitting region of the light emitting element 230B. Therefore, when the distance between the light emitting region of the light emitting element 230B and the edge of the light emitting layer 232B is small, the intensity of the leak current increases. Therefore, the intensity of unintended light emission from the light emitting layer 132R and the light emitting layer 132G provided overlapping with or separated from the edge of the light emitting layer 232B also increases.
  • the light-emitting layers 132R and 132G of the light-emitting elements 130R and 130G having a lower light emission start voltage are positioned further apart from the light-emitting element 130B in the regions where the light-emitting layers 132R and 132G do not overlap the light-emitting layer 132B.
  • FIG. 4 is a cross-sectional view when part of the cross-sectional view shown in FIG. 3 is enlarged.
  • FIG. 4 shows an enlarged boundary region between the light emitting element 130B and the light emitting element 130R.
  • the end portion 132B-1 of the light emitting layer 132B is provided so as to be close to the light emitting region (opening 120R) of the light emitting element 130R.
  • the end portion 132B-1 of the light emitting layer 132B is provided on the inclined surface 126-1 of the opening 120R provided in the insulating layer 126.
  • the end portion 132R-1 of the light emitting layer 132R overlaps with the light emitting layer 132B.
  • d1 be the distance from the end of the opening 120B to the end of the opening 120R.
  • the end portion of the opening 120B refers to the portion in contact with the pixel electrode 124B.
  • the end portion of the opening 120R refers to the portion in contact with the pixel electrode 124R.
  • the end 132R-1 of the light emitting layer 132R is provided closer to the opening 120B than the intermediate portion d1/2 between the end of the opening 120R and the end of the opening 120B.
  • the edge of the light-emitting layer 132B adjacent to the light-emitting layer 132G is similar to the edge 132B-1 of the light-emitting layer 132B. That is, the end portion 132B-1 of the light emitting layer 132B is provided so as to be close to the light emitting region (opening 120G) of the light emitting element 130G. The end portion 132B-1 of the light emitting layer 132B is provided on the inclined surface 126-3 of the opening 120G provided in the insulating layer 126. As shown in FIG. An end portion of the light emitting layer 132G overlaps with the light emitting layer 132B.
  • d2 be the distance from the end of the opening 120B to the end of the opening 120G.
  • the end portion of the opening 120G refers to the portion in contact with the pixel electrode 124G.
  • the end of the light emitting layer 132G is provided closer to the opening 120B than the intermediate portion d2/2 between the end of the opening 120G and the end of the opening 120B.
  • the light-emitting region of the light-emitting element 130B is separated from the edge of the light-emitting layer 132B where unintended light emission is likely to occur, thereby reducing the distance between the light-emitting region of the light-emitting element 130B and the edge of the light-emitting layer 132B. You can make it bigger. Therefore, the intensity of lateral leak current from the light emitting element 130B can be reduced at the end of the light emitting layer 132B. Accordingly, it is possible to suppress unintended light emission from occurring in the light emitting layer 132R or the light emitting layer 132G.
  • the light-emitting layer 132B in contact with the common layer 128 including at least one of the hole-transporting layer and the hole-injecting layer preferably contains an electron-transporting light-emitting material.
  • the light emitting element 130B emits light
  • holes in the common layer 128 can be prevented from passing through the thickness direction of the light emitting layer 132B. Holes laterally pass through the edge of the light emitting layer 132B, so that the intensity of the lateral leakage current can be further reduced. Accordingly, it is possible to suppress unintended light emission from occurring in the light emitting layer 132R or the light emitting layer 132G.
  • a sealing film may be provided on the light emitting elements 130R, 130G, and 130B.
  • the sealing film is formed by combining an inorganic insulating film and an organic insulating film. As a result, it is possible to prevent moisture from entering the organic layers including the light emitting layer 132 and the common layers 128 and 134 of the light emitting elements 130R, 130G and 130B.
  • a transistor forming a pixel circuit is provided on the substrate 101.
  • FIG. Note that a known transistor manufacturing method may be applied to the manufacturing method of the pixel circuit formed on the substrate 101, so detailed description thereof will be omitted.
  • An interlayer insulating film containing at least one of silicon oxide and silicon nitride is formed over the transistor.
  • a source electrode and a drain electrode are formed on the interlayer insulating film.
  • FIG. 5 is a diagram for explaining the steps of forming the insulating film 122, the pixel electrodes 124R, 124G, 124B, and the insulating layer 126.
  • the insulating film 122 functions as a planarizing film.
  • the insulating film 122 is composed of an organic resin material.
  • the organic resin material known organic resin materials such as polyimide, polyamide, acrylic, epoxy, or siloxane can be used.
  • By providing the insulating film 122 over the transistor or the interlayer insulating film unevenness of the transistor can be reduced.
  • a contact hole is formed in the insulating film 122 .
  • pixel electrodes 124R, 124G, and 124B are formed on the insulating film 122. Each of the pixel electrodes 124R, 124G, and 124B is electrically connected to the source electrode or drain electrode connected to the transistor through a contact hole provided in the insulating film 122.
  • a laminated structure of a transparent conductive layer having a high work function such as an indium oxide-based transparent conductive layer (eg, ITO) or a zinc oxide-based transparent conductive layer (eg, IZO, ZnO), and a metal film.
  • ITO indium oxide-based transparent conductive layer
  • ZnO zinc oxide-based transparent conductive layer
  • An insulating layer 126 made of an organic resin material is formed on the pixel electrodes 124R, 124G, and 124B.
  • the organic resin material known organic resin materials such as polyimide, polyamide, acrylic, epoxy, or siloxane can be used.
  • the insulating layer 126 has openings 120R, 120G, and 120B in a portion above the pixel electrode 124R, a portion of the pixel electrode 124G, and a portion of the pixel electrode 124B, respectively.
  • the insulating layer 126 is provided between the adjacent pixel electrodes 124R, 124G, and 124B so as to cover the edges of the pixel electrodes 124R, 124G, and 124B.
  • the insulating layer 126 functions as a member separating the adjacent pixel electrodes 124R, 124G, and 124B. For this reason, the insulating layer 126 is also generally called a "partition wall" or a "bank”. Parts of the pixel electrodes 124R, 124G, and 124B exposed by the openings 120R, 120G, and 120B of the insulating layer 126 become light emitting regions of the light emitting elements 130R, 130G, and 130B.
  • the openings 120R, 120G, and 120B of the insulating layer 126 preferably have tapered inner walls. This can reduce poor coverage at the ends of the pixel electrodes 124R, 124G, and 124B when forming the common layer 128 and the light-emitting layers 132R, 132G, and 132B, which will be described later.
  • FIG. 6 is a diagram for explaining the steps of forming the common layer 128 and the light emitting layer 132B.
  • a common layer 128 is formed on the pixel electrodes 124 R, 124 G, 124 B and the insulating layer 126 .
  • Common layer 128 includes at least one of a hole transport layer and a hole injection layer. Known materials may be appropriately used for the hole transport layer and the hole injection layer.
  • the light emitting layer having the highest light emission start voltage among the light emitting layers 132R, 132G, and 132B is higher than the light emission start voltages of the light emitting layers 132R and 132G. Therefore, on the common layer 128, the light emitting layer 132B is first formed.
  • the end portion 132B-1 of the light emitting layer 132B is formed so as to be provided on the inclined surface 126-1 of the opening 120R provided in the insulating layer 126.
  • the end portion 132B-1 of the light emitting layer 132B is formed so as to be provided on the inclined surface 126-3 of the opening portion 120G provided in the insulating layer 126.
  • the light-emitting layer 132B is preferably a light-emitting material having an electron-transport property, and known materials may be used as appropriate.
  • FIG. 7A and 7B are diagrams for explaining the steps of forming the light emitting layer 132R, the light emitting layer 132G, and the common layer 134.
  • FIG. A light emitting layer 132R is formed in the opening 120R.
  • a first end of the light emitting layer 132R is formed to overlap the light emitting layer 132B.
  • the first end of the light-emitting layer 132R is located from the intermediate portion d1/2 between the end of the opening 120B on the inclined surface 126-2 side and the end of the opening 120R on the inclined surface 126-1 side. are also provided on the opening 120B side.
  • a light emitting layer 132G is formed in the opening 120G.
  • a first end of the light emitting layer 132G is formed to overlap the light emitting layer 132B. Specifically, the first end of the light-emitting layer 132G is located from the intermediate portion d2/2 between the end of the opening 120B on the inclined surface 126-2 side and the end of the opening 120G on the inclined surface 126-3 side. are also provided on the opening 120B side.
  • Common layer 134 is formed on the light emitting layers 132R, 132G, and 132B.
  • Common layer 134 includes at least one of an electron transport layer and an electron injection layer. Known materials may be appropriately used for the electron-transporting layer and the electron-injecting layer.
  • the display device 100 shown in FIG. 3 can be formed.
  • the present invention is not limited to this.
  • the light emission start voltage of the light emitting layer 132R and the light emission start voltage of the light emitting layer 132G are approximately the same, either layer may be formed first.
  • the light emitting layer having the higher light emission start voltage may be formed first.
  • the overlap between the edge of the adjacent light-emitting layer 132R and the edge of the light-emitting layer 132G is not illustrated, but the edge of the adjacent light-emitting layer 132R and the edge of the light-emitting layer 132G overlap. may be the same, or they may not overlap. If the light emission start voltage of the light emitting layer 132R and the light emission start voltage of the light emitting layer 132G are approximately the same, even if the light emitting element 130R or the light emitting element 130G emits light, the lateral direction from the light emitting layer 132R and the light emitting layer 132G This is because the influence of the leakage current of is small.
  • the display device 100 is not limited to the configurations shown in FIGS.
  • the arrangement of pixels 105R, 105G, and 105B is not limited to the arrangement of pixels 105R, 105G, and 105B shown in FIG.
  • FIG. 8 display devices 100A to 100F according to modified examples 1 to 6, in which some of the constituent elements of the display device 100 are changed, will be described with reference to FIGS. 8 to 17.
  • FIG. The display devices 100A to 100E according to Modifications 1 to 5 differ from the display device 100 in the arrangement of the light emitting layers 132R, 132G, and 132B.
  • the display device 100 ⁇ /b>F according to Modification 6 differs from the display device 100 in the arrangement of the anodes and the cathodes.
  • FIG. 8 is a pixel layout diagram when the display device 100A according to one embodiment of the present invention is viewed from above.
  • 9 is a cross-sectional view of the display device 100A shown in FIG. 8 taken along the line B1-B2.
  • Modification 1 describes a case where the light emission start voltage of the light emitting layer 132R is higher than the light emission start voltages of the light emitting layers 132G and 132B.
  • FIG. 8 shows regions where the pixels 105R, 105G, and 105B are provided in the display device 100A.
  • the stacking order of the light-emitting layers 132R, 132G, and 132B is different from that in the display device 100.
  • the overlapping region of the light emitting layers 132R and 132G and the overlapping region of the light emitting layers 132R and 132B are different from the display device 100.
  • the light emitting layer 132R is first provided on the common layer 128, the light emitting layer 132R is first provided.
  • a first end of the light emitting layer 132R is provided so as to be close to the light emitting region (opening 120G) of the light emitting element 130G.
  • a first end of the light emitting layer 132R is provided on the inclined surface 126-4 of the opening 120G provided in the insulating layer 126.
  • the second end of the light emitting layer 132R is provided so as to be close to the light emitting region (opening 120B) of the light emitting element 130B.
  • a first end of the light emitting layer 132R is provided on the inclined surface 126-2 of the opening 120B provided in the insulating layer 126.
  • the light-emitting layer 132R is preferably made of a light-emitting material having an electron-transport property, and known materials can be used as appropriate.
  • a light emitting layer 132G is provided in the opening 120G.
  • a first end of the light emitting layer 132G is provided so as to be close to the light emitting region (opening 120R) of the light emitting element 130R.
  • a first end of the light emitting layer 132G is formed to overlap the light emitting layer 132R.
  • Let d3 be the distance from the end of the opening 120R to the end of the opening 120G.
  • the first end of the light emitting layer 132G is provided closer to the opening 120R than the intermediate portion d3/2 between the end of the opening 120R and the end of the opening 120G.
  • a light emitting layer 132B is formed in the opening 120B.
  • a first end of the light emitting layer 132B is formed to overlap with the light emitting layer 132R.
  • the first end of the light emitting layer 132B is provided closer to the opening 120R than the intermediate portion d1/2 between the end of the opening 120B and the end of the opening 120R.
  • the distance between the light emitting region of the light emitting element 130R and the edge of the light emitting layer 132R can be reduced. You can make it bigger. Therefore, the intensity of the lateral leak current from the light emitting element 130R can be reduced at the edge of the light emitting layer 132R. Accordingly, unintended light emission in the light emitting layer 132G or the light emitting layer 132B can be suppressed.
  • the light-emitting layer 132R which is in contact with the common layer 128 including at least one of the hole-transporting layer and the hole-injecting layer, preferably contains an electron-transporting light-emitting material.
  • the light emitting element 130R emits light
  • holes in the common layer 128 can be prevented from passing through the thickness direction of the light emitting layer 132R. Holes laterally pass through the edge of the light emitting layer 132R, so that the intensity of the lateral leakage current can be further reduced. Accordingly, unintended light emission in the light emitting layer 132G or the light emitting layer 132B can be suppressed.
  • FIG. 10 is a pixel layout diagram when the display device 100B according to one embodiment of the present invention is viewed from above.
  • 11 is a cross-sectional view of the display device 100A shown in FIG. 10 taken along line C1-C2.
  • Modification 2 describes a case where the light emission start voltage of the light emitting layer 132G is higher than the light emission start voltages of the light emitting layers 132R and 132B.
  • FIG. 10 shows regions where pixels 105R, 105G, and 105B are provided in the display device 100B.
  • the stacking order of the light-emitting layers 132R, 132G, and 132B is different from that in the display device 100.
  • the overlapping region of the light emitting layers 132G and 132B and the overlapping region of the light emitting layers 132G and 132R are different from the display device 100.
  • the second end of the light emitting layer 132G is provided on the inclined surface 126-5 of the opening 120R provided in the insulating layer 126.
  • the light-emitting layer 132G is preferably a light-emitting material having an electron-transport property, and known materials can be used as appropriate.
  • a light-emitting layer 132B is provided in the opening 120B.
  • a first end of the light emitting layer 132B is provided so as to be close to the light emitting region (opening 120G) of the light emitting element 130G.
  • a first end of the light emitting layer 132B is formed to overlap with the light emitting layer 132G.
  • the first end of the light emitting layer 132B is provided closer to the opening 120G than the intermediate portion d2/2 between the end of the opening 120B and the end of the opening 120G.
  • a light emitting layer 132R is formed in the opening 120R.
  • a first end of the light emitting layer 132R is formed to overlap the light emitting layer 132G.
  • the first end of the light emitting layer 132R is provided closer to the opening 120R than the intermediate portion d3/2 between the end of the opening 120G and the end of the opening 120R.
  • the distance between the light emitting region of the light emitting element 130G and the edge of the light emitting layer 132G is reduced. You can make it bigger. Therefore, the intensity of lateral leak current from the light emitting element 130G can be reduced at the edge of the light emitting layer 132G. Accordingly, it is possible to suppress unintended light emission from occurring in the light emitting layer 132R or the light emitting layer 132B.
  • the light-emitting layer 132G which is in contact with the common layer 128 including at least one of the hole-transporting layer and the hole-injecting layer, preferably contains an electron-transporting light-emitting material.
  • the light emitting element 130G emits light
  • holes in the common layer 128 can be prevented from passing through the thickness direction of the light emitting layer 132G. Holes laterally pass through the edge of the light emitting layer 132G, so that the intensity of the lateral leakage current can be further reduced. Accordingly, it is possible to suppress unintended light emission from occurring in the light emitting layer 132R or the light emitting layer 132B.
  • FIG. 12 is a pixel layout diagram when the display device 100C according to one embodiment of the present invention is viewed from above.
  • 13 is a cross-sectional view of the display device 100A shown in FIG. 12 taken along line D1-D2.
  • the light emission start voltage of the light emitting layer 132B is higher than the light emission start voltages of the light emitting layers 132R and 132G
  • the light emission start voltage of the light emitting layer 132G is higher than the light emission start voltage of the light emitting layer 132R. do.
  • FIG. 12 shows regions where the pixels 105R, 105G, and 105B are provided in the display device 100C.
  • the stacking order of the light-emitting layers 132R, 132G, and 132B is different from that in the display device 100.
  • the overlapping region of the light-emitting layers 132B and 132G and the overlapping region of the light-emitting layers 132G and 132R are different from the display device 100.
  • the light emitting layer having the highest light emission start voltage among the light emitting layers 132R, 132G, and 132B is provided on the common layer 128. Therefore, on the common layer 128, the light emitting layer 132B is provided first. In FIG. 11, the region where the light-emitting layer 132B is provided is the same as the region where the light-emitting layer 132B shown in FIG. 3 is provided. Further, the light-emitting layer 132B is preferably a light-emitting material having an electron-transport property, and known materials can be used as appropriate.
  • a light-emitting layer 132G whose light emission start voltage is second highest to that of the light-emitting layer 132B is provided in the opening 120G.
  • the region where the light emitting layer 132G is provided is provided such that the first end of the light emitting layer 132G is close to the light emitting region (opening 120B) of the light emitting element 130B.
  • a first end of the light emitting layer 132G is formed so as to be provided on the inclined surface 126-2 of the opening 120B provided in the insulating layer 126.
  • the light-emitting layer 132G is preferably a light-emitting material having an electron-transport property, and known materials can be used as appropriate.
  • a light emitting layer 132R is provided in the opening 120R.
  • the first end of the light emitting layer 132R is provided closer to the opening 120B than the intermediate portion d1/2 between the end of the opening 120R and the end of the opening 120B.
  • the second end of the light emitting layer 132G is provided on the inclined surface 126-5 of the opening 120R provided in the insulating layer 126. formed to be
  • the light-emitting region of the light-emitting element 130B is separated from the edge of the light-emitting layer 132B where unintended light emission is likely to occur. You can make it bigger. Therefore, the intensity of lateral leak current from the light emitting element 130B can be reduced at the end of the light emitting layer 132B. Furthermore, by providing a distance between the light emitting region of the light emitting element 130G and the edge of the light emitting layer 132G where unintended light emission is likely to occur, the distance between the light emitting region of the light emitting element 130G and the edge of the light emitting layer 132G can be increased. can be done. Therefore, the intensity of lateral leak current from the light emitting element 130G can be reduced at the edge of the light emitting layer 132G. This can further suppress unintended light emission in the light emitting layer 132G or the light emitting layer 132R.
  • the case where the light emitting layers 132B, 132G, and 132R are formed in the order of higher light emission start voltage has been described, but one embodiment of the present invention is not limited to this.
  • the light emission start voltage is higher in the order of the light emitting layers 132B, 132R and 132G, the light emitting layers 132B, 132R and 132G may be formed in this order.
  • FIG. 14 is a pixel layout diagram when the display device 100D according to one embodiment of the present invention is viewed from above.
  • Modification 4 describes the case where the light-emitting layers 132R, 132G, and 132B are arranged in stripes.
  • Modification 4 describes a case where the light emission start voltage of the light emitting layer 132B is higher than the light emission start voltages of the light emitting layers 132R and 132G.
  • FIG. 14 shows regions where pixels 105R, 105G, and 105B are provided. Pixels 105R, 105G, and 105B are arranged side by side in the X direction. The plurality of pixels 105R, the plurality of pixels 105G, and the plurality of pixels 105B are arranged side by side in the Y direction. In the display device 100D, the stacking order of the light-emitting layers 132R, 132G, and 132B is the same as in the display device 100. FIG.
  • the end of the light-emitting layer 132B is provided so as to approach the opening 120G of the light-emitting layer 132G. Since the end of the light-emitting layer 132B is separated from the light-emitting region of the light-emitting layer 132B, unintended light emission in the light-emitting layer 132R can be suppressed.
  • the edge of the light-emitting layer 132B is provided so as to approach the opening 120G of the light-emitting layer 132G. Since the end of the light-emitting layer 132B is separated from the light-emitting region of the light-emitting layer 132B, unintended light emission in the light-emitting layer 132G can be suppressed.
  • the light-emitting region of the light-emitting element 130B is separated from the edge of the light-emitting layer 132B where unintended light emission is likely to occur. You can make it bigger. Therefore, the intensity of lateral leak current from the light emitting element 130B can be reduced at the end of the light emitting layer 132B. This can further suppress unintended light emission in the light emitting layer 132G or the light emitting layer 132R.
  • FIG. 15 is a pixel layout diagram when the display device 100E according to one embodiment of the present invention is viewed from above. Modification 5 describes a case where light emitting elements 130R, 130G, and 130B are arranged in a pentile shape.
  • FIG. 15 shows regions where pixels 105R, 105G, and 105B are provided.
  • a plurality of pixels 105G are arranged side by side in the X direction.
  • the pixel 105G and the pixel 105B are arranged side by side in the X direction.
  • the pixel 105G and the pixel 105B are arranged side by side in the ⁇ direction with respect to the X direction.
  • the pixel 105G and the pixel 105R are arranged side by side in the ⁇ direction with respect to the X direction.
  • the stacking order of the light-emitting layers 132R, 132G, and 132B is the same as in the display device 100.
  • the edge of the light-emitting layer 132B is provided so as to approach the opening 120G of the light-emitting layer 132G. Therefore, since the end of the light-emitting layer 132B is separated from the light-emitting region of the light-emitting layer 132B, unintended light emission in the light-emitting layer 132G can be suppressed.
  • the edge of the light-emitting layer 132B is not provided close to the opening 120R of the light-emitting layer 132R.
  • the end of the light emitting layer 132B is sufficiently separated from the light emitting region of the light emitting element 130B, unintended light emission in the light emitting layer 132R can be suppressed.
  • the end of the light emitting layer 132B may be provided so as to be close to the opening 120R of the light emitting layer 132R.
  • the light-emitting region of the light-emitting element 130B is separated from the edge of the light-emitting layer 132B where unintended light emission is likely to occur. You can make it bigger. Therefore, the intensity of lateral leak current from the light emitting element 130B can be reduced at the end of the light emitting layer 132B. This can further suppress unintended light emission in the light emitting layer 132G or the light emitting layer 132R.
  • the light emitting elements 130R and 130B are positioned so that their light emitting layers overlap each other only at the corners. In such a positional relationship, the influence of lateral leak current generation is small compared to the light-emitting elements 130G and 130B, which are positioned so that the sides of the light-emitting regions are parallel and adjacent to each other.
  • the stacking order of the light-emitting layers 132R, 132G, and 132B is not limited.
  • the light emitting layer having the highest light emission start voltage may be provided at the bottom.
  • the light-emitting layer having the highest light emission start voltage is preferably made of a light-emitting material having an electron-transport property.
  • FIG. 16 is a pixel layout diagram when the display device 100F according to one embodiment of the present invention is viewed from above.
  • 17 is a cross-sectional view of the display device 100A shown in FIG. 16 taken along line E1-E2.
  • Modification 2 describes a case where the light emission start voltage of the light emitting layer 132B is higher than the light emission start voltages of the light emitting layers 132R and 132G.
  • FIG. 16 shows areas where the pixels 105R, 105G, and 105B are provided.
  • the arrangement of pixels 105R, 105G, and 105B is the same as the arrangement of pixels shown in FIG.
  • FIG. 17 shows a cross-sectional view of pixels 105R, 105G, and 105B.
  • the pixel 105R is provided with the light emitting element 160R
  • the pixel 105G is provided with the light emitting element 160G
  • the pixel 105B is provided with the light emitting element 160B.
  • the light emitting element 160R has at least a pixel electrode 142R, a light emitting layer 132R, and a counter electrode 144.
  • the light emitting element 160G has at least a pixel electrode 142G, a light emitting layer 132G, and a counter electrode 144.
  • the light-emitting element 160B has at least a pixel electrode 142B, a light-emitting layer 132B, and a counter electrode 144.
  • the display device 100F differs from the display device 100 in that the pixel electrodes 142R, 142G, and 142B function as cathodes, and the counter electrode 144 functions as an anode. Therefore, the common layer 146 provided between the pixel electrodes 142R, 142G, 142B and the light emitting layers 132R, 132G, 132B includes at least one of an electron transport layer and an electron injection layer. A common layer 148 provided between the counter electrode 144 and the light emitting layers 132R, 132G, and 132B includes at least one of a hole transport layer and a hole injection layer.
  • the pixel electrodes 124R, 124G, and 124B are each electrically connected to the transistor 110 included in the pixel circuit.
  • the end of the light emitting layer 132B adjacent to the light emitting layer 132R is provided so as to be close to the opening 120R of the light emitting element 130R.
  • the end of the light emitting layer 132B is provided on the inclined surface 126-1 of the opening 120R provided in the insulating layer 126. As shown in FIG.
  • an end portion of the light emitting layer 132R overlaps with the light emitting layer 132B.
  • the end of the light emitting layer 132R is provided closer to the opening 120B than the intermediate portion d1/2 between the end of the opening 120R and the end of the opening 120B.
  • An end portion of the light emitting layer 132B adjacent to the light emitting layer 132G is provided so as to be close to the opening 120G of the light emitting element 130G.
  • the end of the light emitting layer 132B is provided on the inclined surface 126-3 of the opening 120G provided in the insulating layer 126. As shown in FIG. An end portion of the light emitting layer 132G overlaps with the light emitting layer 132B.
  • the end of the light emitting layer 132G is provided closer to the opening 120B than the intermediate portion d2/2 between the end of the opening 120G and the end of the opening 120B.
  • the pixel electrode 124 is used as a cathode, and the counter electrode 136 is used as an anode.
  • the light-emitting region of the light-emitting element 130B and the end of the light-emitting layer 132B where unintended light emission is likely to occur are separated from each other.
  • the distance to the edge of layer 132B can be increased. Therefore, the intensity of lateral leak current from the light emitting element 130B can be reduced at the end of the light emitting layer 132B. Accordingly, it is possible to suppress unintended light emission from occurring in the light emitting layer 132R or the light emitting layer 132G.
  • the light-emitting layer 132B in contact with the common layer 146 including at least one of the electron-transporting layer and the electron-injecting layer preferably contains a hole-transporting light-emitting material.
  • the light emitting element 130B emits light
  • electrons in the common layer 128 can be suppressed from passing through the thickness direction of the light emitting layer 132B. Electrons laterally pass through the edge of the light-emitting layer 132B, so that the intensity of lateral leakage current can be reduced. Accordingly, it is possible to suppress unintended light emission from occurring in the light emitting layer 132R or the light emitting layer 132G.
  • the configuration of the display device 100F according to Modification 6 can be applied to the configurations of the display devices 100A to 100E according to Modifications 1 to 5. That is, in the display devices 100A to 100E according to Modifications 1 to 5, the pixel electrode 124 may be the cathode and the counter electrode 136 may be the anode.
  • the common layer provided between the pixel electrode 124 and the light emitting layer 132 includes at least one of an electron transport layer and an electron injection layer.
  • the common layer provided between the counter electrode 136 and the light emitting layer includes at least a hole transport layer and a hole injection layer.
  • the light emitting layer having the highest light emission start voltage among the light emitting layers 132R, 132G, and 132B is provided on the common layer 128 including the electron transport layer and the electron injection layer.
  • the light-emitting layer is preferably a light-emitting material having a hole-transport property.
  • the display device according to one embodiment of the present invention can be applied to various forms. Therefore, based on the display devices 100 and 100A to 100F described as the embodiments and modifications of the invention, those skilled in the art may appropriately add, delete, or change the design of components, or add, omit, or modify steps. Modified conditions are also included in the scope of the present invention as long as they are provided with the gist of the present invention. Moreover, each embodiment described above can be combined with each other as long as there is no technical contradiction.
  • the structure for suppressing the leak current in the organic layer in the display device having the organic EL element as a display element has been mainly described. It can also be applied to a photosensor device or the like in which organic photodiodes sandwiched between electrodes are arranged in a matrix. Specifically, it can be applied to the overlapping relationship of the ends of the organic layers forming the organic photodiode which are separately formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

表示装置は、第1画素電極と、第1の方向に、第1画素電極と離間して設けられた第2画素電極と、第1画素電極の上面の少なくとも一部を露出する第1開口部及び第2画素電極の上面の少なくとも一部を露出する第2開口部を有する絶縁層と、第1画素電極、第2画素電極、及び絶縁層上に設けられた第1共通層と、第1共通層上に設けられ第1画素電極と重畳する設けられた第1発光層と、第1共通層上に設けられ第2画素電極と重畳し、第1発光層の発光開始電圧よりも低い第2発光層と、第1発光層及び第2発光層上に設けられた対向電極と、を有し、第1発光層は第1絶縁層上に広がり端部が絶縁層に設けられた第2開口部の傾斜面に設けられ、第2発光層は第1発光層と重なる領域を含む。

Description

表示装置
 本発明の一実施形態は、表示装置及びその製造方法に関する。
 従来から、表示装置として、有機エレクトロルミネッセンス材料(有機EL材料)を表示部の発光素子(有機EL素子)に用いた有機EL表示装置(Organic Electroluminescence Display)が知られている。近年、有機EL表示装置において、高精細化への要求が高まっている。
 EL表示装置の高精細化が進むと、画素と画素との距離が近くなるため、隣接する画素間に流れるリーク電流(以下、「横方向のリーク電流」ともいう)の影響が顕在化される。EL表示装置において、横方向のリーク電流は、隣接する画素を発光させ、EL表示装置の表示品位を低下させてしまう可能性がある。
特開2011-9169号公報
 そこで、本発明の一実施形態では、発光素子における横方向のリーク電流が抑制された表示装置を提供することを目的の一つとする。
 本発明の一実施形態に係る表示装置は、第1画素電極と、第1の方向に、第1画素電極と離間して設けられた第2画素電極と、第1画素電極の上面の少なくとも一部を露出する第1開口部及び第2画素電極の上面の少なくとも一部を露出する第2開口部を有する絶縁層と、第1画素電極、第2画素電極、及び絶縁層上に設けられた第1共通層と、第1共通層上に設けられ第1画素電極と重畳する設けられた第1発光層と、第1共通層上に設けられ第2画素電極と重畳し、第1発光層の発光開始電圧よりも低い第2発光層と、第1発光層及び第2発光層上に設けられた対向電極と、を有し、第1発光層は第1絶縁層上に広がり端部が絶縁層に設けられた第2開口部の傾斜面に設けられ、第2発光層は第1発光層と重なる領域を含む。
本発明の一実施形態に係る表示装置を平面視したときの概要図である。 表示装置を平面視したときの画素レイアウトの拡大図である。 図2に示す表示装置をA1-A2線で切断したときの断面図である。 図3に示す断面図の一部を拡大したときの拡大図である。 本発明の一実施形態に係る表示装置の製造方法を説明する断面図である。 本発明の一実施形態に係る表示装置の製造方法を説明する断面図である。 本発明の一実施形態に係る表示装置の製造方法を説明する断面図である。 本発明の一実施形態に係る表示装置を平面視したときの画素レイアウト図である。 図8に示す表示装置をB1-B2線で切断したときの断面図である。 表示装置を平面視したときの画素レイアウトの拡大図である。 図10に示す表示装置をC1-C2線で切断したときの断面図である。 表示装置を平面視したときの画素レイアウトの拡大図である。 図12に示す表示装置をD1-D2線で切断したときの断面図である。 表示装置を平面視したときの画素レイアウトの拡大図である。 表示装置を平面視したときの画素レイアウトの拡大図である。 図14に示す表示装置をE1-E2線で切断したときの断面図である。 本発明の一実施形態に係る表示装置の断面図である。 従来の表示領域を平面視したときの画素レイアウトの拡大図である。 図18に示す表示領域をF1-F2線で切断したときの断面図である。 図19に示す断面図の一部を拡大したときの拡大図である。 図18に示す表示領域をF1-F2線で切断したときの断面図である。 図21に示す断面図の一部を拡大したときの拡大図である。表示装置断面図である。
 以下、本発明の各実施の形態について、図面等を参照しつつ説明する。但し、本発明は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施の形態の記載内容に限定して解釈されるものではない。また、図面に関して、説明をより明確にするため、実際の態様に比べて各部の幅、厚さ、形状等を模式的に表す場合があるが、それら模式的な図は一例であって、本発明の解釈を限定するものではない。さらに、本明細書と各図において、既出の図に関して説明したものと同一又は類似の要素には、同一の符号を付して、重複する説明を省略することがある。
 本発明において、ある一つの膜を加工して複数の膜を形成した場合、これら複数の膜は異なる機能、役割を有することがある。しかしながら、これら複数の膜は同一の工程で同一層として形成された膜に由来し、同一の層構造、同一の材料を有する。したがって、これら複数の膜は同一層に存在しているものと定義する。
 なお、本明細書中において、図面を説明する際の「上」、「下」などの表現は、着目する構造体と他の構造体との相対的な位置関係を表現している。本明細書中では、側面視において、後述する絶縁表面から発光素子に向かう方向を「上」と定義し、その逆の方向を「下」と定義する。本明細書および特許請求の範囲において、ある構造体の上に他の構造体を配置する態様を表現するにあたり、単に「上に」と表記する場合、特に断りの無い限りは、ある構造体に接するように、直上に他の構造体を配置する場合と、ある構造体の上方に、さらに別の構造体を介して他の構造体を配置する場合との両方を含むものとする。
(第1実施形態)
 本発明の一実施形態に係る表示装置について、図1~図17を参照して説明する。
 図1は、本発明の一実施形態に係る表示装置100の構成を示した概略図であり、表示装置100を平面視した場合における概略構成を示している。本明細書では、表示装置100を画面(表示領域)に垂直な方向から見た様子を「平面視」と呼ぶ。
 図1に示すように、表示装置100は、絶縁表面に形成された表示領域102と、走査線駆動回路104と、ドライバIC106と、複数の端子107が配列された端子部を有する。表示領域102には、有機材料で構成された有機層を有する発光素子が配置されている。また、表示領域102の周囲を周辺領域103が取り囲んでいる。ドライバIC106は、走査線駆動回路104及びデータ線駆動回路に信号を与える制御部として機能する。データ線駆動回路は、ドライバIC106とは別に、基板101上にサンプリングスイッチ等が設けられてもよい。また、ドライバIC106は、フレキシブルプリント回路(Flexible Print Circuit:FPC)108上に設けられているが、基板101上に設けられていてもよい。フレキシブルプリント回路108は、周辺領域103に設けられた複数の端子107と接続される。
 ここで、絶縁表面は、基板101の表面である。基板101は、その表面上に設けられる絶縁層及び導電層などの各層を支持する。なお、基板101は、それ自体が絶縁性材料からなり、絶縁表面を有していても良いし、基板101上に別途絶縁膜を形成して絶縁表面を形成しても良い。絶縁表面が得られる限りにおいて、基板101の材質や、絶縁膜を形成する材料は特に限定されない。
 図1に示す表示領域102には、複数の画素105は、X方向及びY方向にマトリクス状に配置されている。本明細書等において、画素とは、表示領域102において所望の色の表示を可能とする最小単位をいう。各画素105は、画素回路と、画素回路と電気的に接続された発光素子を有する。発光素子は、画素電極と、当該画素電極上に積層された発光層を含む有機層(発光部)と、対向電極と、を含む。画素105に含まれる発光素子は互いに異なる色を発光する。例えば、画素105は、赤色の発光素子、緑色の発光素子、又は青色の発光素子のいずれかの色を発光する。なお、発光素子が発光する色は、上記に限定されず、少なくとも一色以上であればよい。本明細書等において、赤色の発光素子に含まれる構成要素をR、緑色の発光素子に含まれる構成要素をG、青色の発光素子に含まれる構成要素をBで示す。また、青色の発光素子の発光ピーク波長は、460nm以上500nm以下である。赤色の発光素子の発光ピーク波長は、610nm以上780nm以下である。緑色の発光素子の発光ピーク波長は、500nm以上570nm以下である。
 各画素105は、走査線111及びデータ線113が電気的に接続されている。各画素105は、図示しないが電源供給線が電気的に接続されている。走査線111は、X方向に沿って伸びており、走査線駆動回路104と電気的に接続されている。データ線113は、Y方向に沿って伸びており、ドライバIC106と電気的に接続されている。また、ドライバIC106は、走査線駆動回路104を介して、走査信号を走査線111に出力する。ドライバIC106は、画像データに応じたデータ信号をデータ線113に出力する。各画素105が有する画素回路に走査信号及びデータ信号が入力されることにより、画像データに応じた画面表示を行うことができる。画素回路は、複数のトランジスタによって構成される。トランジスタとしては、典型的には、薄膜トランジスタ(Thin Film Transistor:TFT)を用いることができる。但し、薄膜トランジスタに限らず、電流制御機能を備える素子であれば、如何なる素子を用いても良い。
 図2は、表示装置100を平面視したときの画素レイアウトの拡大図であり、図3は、図2に示す画素レイアウトをA1-A2線で切断したときの断面図である。図4は、図3に示す断面図の一部を拡大したときの拡大図である。本実施形態では、トップエミッション型の表示装置の構成について説明する。
 図2は、画素105R、105G、105Bが設けられる領域を示している。画素105Rと画素105Bとは、X方向に並んで配置されている。画素105Gと画素105Bとは、X方向に並んで配置されている。画素105Rと画素105Gとは、Y方向に並んで配置されている。図2において、実線で示している領域は、発光層132R、132G、132Bが設けられている領域である。また、点線で囲まれた領域は、絶縁層に開口部120R、120G、120Bが設けられている領域である。絶縁層は、隔壁又はバンクとも呼ばれる。絶縁層に設けられている開口部120R、120G、120Bは、発光素子130R、130G、130Bが実際に発光するときの発光領域に相当する。なお、発光素子130R、130G、130Bのそれぞれを区別しない場合には、発光素子130と記載する。また、発光素子130R、130G、130Bのそれぞれの構成要素についても同様である。
 図3に、画素105R、105G、105Bの断面図を示す。基板101上には、絶縁膜112を介してトランジスタ110が複数設けられている。複数のトランジスタ110によって、画素回路が構成される。トランジスタ110は、少なくとも半導体層114、ゲート絶縁膜115、及びゲート電極116によって構成される。トランジスタ110上には、層間絶縁膜121が設けられる。層間絶縁膜121上には、ソース電極又はドレイン電極117、118が設けられる。ソース電極又はドレイン電極117、118のそれぞれは、層間絶縁膜121に設けられたコンタクトホールを介して、半導体層114と接続される。層間絶縁膜121上には、絶縁膜122が設けられる。絶縁膜122によって、トランジスタ110、及びソース電極又はドレイン電極117、118に起因する凹凸を緩和することができる。基板101上に設けられる複数のトランジスタ110、及びトランジスタ110上に設けられる層間絶縁膜121及び絶縁膜122については、既知の材料や方法によって形成される。なお、図4以降においては、絶縁膜122より下層に設けられる画素回路の構成の図示が省略されている。
 絶縁膜122上において、画素105Rには発光素子130Rが設けられ、画素105Gには発光素子130Gが設けられ、画素105Bには発光素子130Bが設けられる。発光素子130Rは、画素電極124R、発光層132R、対向電極136を少なくとも有する。発光素子130Gは、画素電極124G、発光層132G、対向電極136を少なくとも有する。発光素子130Bは、画素電極124B、発光層132B、対向電極136を少なくとも有する。画素電極124R、124G、124Bと、発光層132R、132G、132Bとの間には、共通層128が設けられている。発光層132R、132G、132Bと、対向電極136との間には、共通層134が設けられている。共通層128、134は、発光素子130R、130G、130Bに亘って共通して設けられている。図3において、画素電極124R、124G、124Bは陽極であり、対向電極136は陰極である。共通層128は、ホール輸送層及びホール注入層の少なくとも一つを含み、共通層134は、電子輸送層及び電子注入層の少なくとも一つを含む。なお、図3に図示しないが、画素電極124R、124G、124Bはそれぞれ、画素回路に含まれるトランジスタ110と電気的に接続される。
 本実施形態において、表示装置100を断面視したときに、発光層132Bの第1端部と重畳するように、発光層132Rが重畳している。また、発光層132Bの第2端部と重畳するように、発光層132Gが重畳している。このとき、発光層132Bの第1端部は、発光素子130Rの開口部120Rに近づけるように設けられている。また、発光層132Bの第2端部は、発光素子130Gの開口部120Gに近づけるように設けられている。具体的には、発光層132Bの第1端部は、絶縁層126の開口部120Rの傾斜面126-1に設けられている。また、発光層132Bの第2端部は、絶縁層126の開口部120Gの傾斜面126-3に設けられている。なお、本明細書等における発光層の端部とは、表示装置100を平面視したときの発光層の外縁を意味する。本明細書等では、表示装置100を絶縁表面に交わる平面又は曲面に沿って切断し、当該切断面を画面に平行な方向から見た様子を「断面視」と呼ぶ。
 EL表示装置の高精細化が進むと、画素と画素との距離が近くなるため、隣接する画素間に流れる横方向のリーク電流の影響が大きくなる。EL表示装置において、横方向のリーク電流は、隣接する画素の発光層を発光させ、EL表示装置の表示品位を低下させてしまう可能性がある。
 以下、EL表示装置における横方向のリーク電流によって、隣接する画素において、意図しない領域で発光層が発光してしまうメカニズムについて、図18~図22を参照して説明する。なお、図18~図22においては、絶縁膜222より下層に設けられる画素回路の構成の図示が省略されている。
 図18は、従来の表示装置200を平面視したときの画素レイアウトの拡大図であり、図19は、図18に示す表示装置200をF1-F2線で切断したときの断面図である。また、図20は、図19に示す断面図の一部を拡大したときの拡大図である。
 図18は、画素205R、205G、205Bが設けられる領域を示している。画素205Rと画素205Bとは、X方向に並んで配置されている。画素205Gと画素205Bとは、X方向に並んで配置されている。図18において、実線で示している領域は、発光層232R、232G、232Bが設けられている領域である。また、点線で囲まれた領域は、絶縁層の開口部220R、220G、220Bが設けられている領域である。絶縁層に設けられている開口部220R、220G、220Bは、発光素子230R、230G、230Bが実際に発光するときの発光領域に相当する。なお、発光素子230R、230G、230Bのそれぞれを区別しない場合には、発光素子230と記載する。また、発光素子230R、230G、230Bのそれぞれの構成要素についても同様である。
 図18に示すように、隣接する画素205Rと画素205Bとの境界領域において、発光層232Rと発光層232Bとが一部重畳している。また、隣接する画素205Bと画素205Gとの境界領域において、発光層232Bと発光層232Gとが一部重畳している。
 図19に、画素205R、205G、205Bの断面図を示す。絶縁膜222上において、画素205Rには発光素子230Rが設けられ、画素205Gには発光素子230Gが設けられ、画素205Bには発光素子230Bが設けられる。発光素子230Rは、画素電極224R、発光層232R、対向電極236を少なくとも有する。発光素子230Gは、画素電極224G、発光層232G、対向電極236を少なくとも有する。発光素子230Bは、画素電極224B、発光層232B、対向電極236を少なくとも有する。画素電極224R、224G、224Bと、発光層232R、232G、232Bとの間には、共通層228が設けられている。発光層232R、232G、232Bと、対向電極136との間には、共通層234が設けられている。共通層228、234は、発光素子230R、230G、230Bに亘って(表示領域に亘って)共通して設けられている。図18~図20において、画素電極224R、224G、224Bは陽極であり、対向電極236は陰極である。そのため、共通層228は、ホール輸送層及びホール注入層の少なくとも一つを含み、共通層234は、電子輸送層及び電子注入層の少なくとも一つを含む。
 隣接する画素において意図しない発光を抑制するためには、発光層が設けられている領域が、互いに重ならないように離れていることが好ましい。しかしながら、発光層が設けられている領域が、互いに重ならないように離れて形成されるためには、開口部220R、220G、220Bが互いに十分に離れて形成される必要があり、精細度が低下してしまうという問題が生じる。
 したがって、表示領域を高精細にするに従って、発光層が設けられている領域が、互いに重畳する場合がある。図18~図20に示すように、画素205Bと画素205Rとが隣接する領域において、発光層232Bの一部と発光層232Rの一部とが重畳する場合がある。
 図20に、画素205Bと画素205Rとが隣接する領域250Aを拡大して示す。絶縁層226上において、共通層228上に、発光層232Bが設けられ、発光層232Rが設けられている。発光層232Bの一部は、発光層232Rの一部と重畳している。一般的に、発光層232Bの発光開始電圧は、発光層228R及び発光層232Gの発光開始電圧よりも大きい。そのため、発光素子230Bを発光させると、発光層232Bに大きな電圧が加わることで、共通層228におけるホールが画素205Bから画素205R及び画素205Gに向かって横方向に移動する。発光層232Bがホール輸送性を示す場合には、ホールは発光層232Bの厚み方向に通過する。そのため、発光層232Rの端部において、発光層232Rが発光してしまう。または、発光層232Bが電子輸送性を示す場合には、ホールは発光層232Bの厚み方向を通過せず、横方向に移動する。そのため、発光層232Bの端部の近傍で発光層232Rが発光してしまう。本明細書等において、発光層232Bに隣接する発光層232R又は発光層232Gにおいて、意図しない発光が生じる箇所を発光の始点という。なお、発光層232Rの発光開始電圧と発光層232Gの発光開始電圧は、同程度である。そのため、発光素子230Gを発光させても、共通層228におけるホールが、画素205Gから画素205R及び画素205Bへ横方向に移動することが抑制される。したがって、発光層232Gの端部と発光層232Rの端部とが重畳している領域において、発光層232Gの端部及び発光層232Rは発光しない。
 図21に示すように、画素205Bと画素205Rとが隣接する領域において、発光層232Bの一部と発光層232Rの一部とが離間する場合もある。
 図22に、画素205Bと画素205Rとが隣接する領域250Bを拡大して示す。絶縁層226上において、共通層228上に、発光層232B及び発光層232Rが設けられている。発光層232Bの端部は、発光層232Rの端部と離間している。発光層132Bの発光開始電圧は、発光層228G及び発光層132Rの発光開始電圧よりも大きい。そのため、発光素子230Bを発光させると、発光層232Bに大きな電圧が加わることで、共通層228におけるホールが画素205Bから画素205G及び画素205Rに向かって横方向に移動する。発光層232Bがホール輸送性を示す場合には、ホールは発光層232Bの厚み方向に通過する。そのため、発光層232Rの端部において、発光層232Rが発光してしまう。または、発光層232Bが電子輸送性を示す場合には、ホールは発光層232Bの厚み方向を通過せず、横方向に移動する。そのため、発光層232Rの端部が発光層232Bの端部から離間したとしても、発光層232Rが発光してしまう。
 このように、発光層232R、232G、232Bの発光開始電圧がそれぞれ異なることで、発光層232Bと隣接する発光層232R及び発光層232Gとが重畳しても、重畳しなくても、横方向のリーク電流が発生し、意図しない領域で発光層が発光してしまうという問題が生じる。各発光層において意図しない発光を抑制するために、発光層232R、232G、232Bの発光開始電圧を一致させるように設計することで、横方向のリーク電流を防止することが考えられる。しかしながら、発光素子の特性と、発光層へのキャリア注入を抑制するなどの設計が必要となり、発光素子の特性とのトレードオフとなる。このように、従来では、発光素子の特性を向上させつつ、横方向のリーク電流による意図しない発光を防止することは困難であった。
 図18~図22において説明したように、共通層228、発光層232R、232G、232Bの積層順によって、発光の始点が異なる。また、横方向のリーク電流の強度は、発光素子230Bの発光領域からの距離に依存する。よって、発光素子230Bの発光領域と発光層232Bの端部の距離が小さいと、リーク電流の強度が大きくなる。そのため、発光層232Bの端部と重畳又は離間して設けられる発光層132R及び発光層132Gにおける意図しない発光の強度も大きくなってしまう。
 そこで、本発明の一実施形態の表示装置100では、発光素子130R、130Gの発光開始電圧よりも発光開始電圧が大きい発光素子130Bの発光領域と、意図しない発光が起きやすい発光層132Bの端部とを離して設ける。つまり、より発光開始電圧が低い発光素子130R、130Gの発光層132R、132Gが、発光層132Bと重ならない領域が、発光素子130Bからより離れて位置するようにする。
 図4は、図3に示す断面図の一部を拡大したときの断面図である。図4に、発光素子130Bと発光素子130Rとの境界の領域を拡大して示す。図4に示すように、発光層132Bの端部132B-1は、発光素子130Rの発光領域(開口部120R)に近づけるように設けられる。発光層132Bの端部132B-1は、絶縁層126に設けられた開口部120Rの傾斜面126-1に設けられる。また、発光層132Rの端部132R-1は、発光層132Bと重畳する。開口部120Bの端部から開口部120Rの端部までの距離をd1とする。ここで、開口部120Bの端部とは、画素電極124Bと接する部分をいう。また、開口部120Rの端部とは、画素電極124Rと接する部分をいう。発光層132Rの端部132R-1は、開口部120Rの端部と開口部120Bの端部との中間部d1/2よりも開口部120B側に設けられる。
 図4には、発光層132Gと隣接する発光層132Bの端部については、詳細に図示しないが、発光層132Bの端部132B-1と同様である。つまり、発光層132Bの端部132B-1は、発光素子130Gの発光領域(開口部120G)に近づけるように設けられる。発光層132Bの端部132B-1は、絶縁層126に設けられた開口部120Gの傾斜面126-3に設けられる。また、発光層132Gの端部は、発光層132Bと重畳する。開口部120Bの端部から開口部120Gの端部までの距離をd2とする。ここで、開口部120Gの端部とは、画素電極124Gと接する部分をいう。発光層132Gの端部は、開口部120Gの端部と開口部120Bの端部との中間部d2/2よりも開口部120B側に設けられる。
 このようにして、発光素子130Bの発光領域と、意図しない発光が起きやすい発光層132Bの端部とを離して設けることにより、発光素子130Bの発光領域と発光層132Bの端部との距離を大きくすることができる。そのため、発光層132Bの端部において、発光素子130Bからの横方向のリーク電流の強度を小さくすることができる。これにより、発光層132R又は発光層132Gにおいて意図しない発光が生じることを抑制することができる。
 ホール輸送層及びホール注入層の少なくとも一つを含む共通層128と接する発光層132Bは、電子輸送性の発光材料を含むことが好ましい。発光素子130Bが発光する際に、共通層128におけるホールが発光層132Bの厚み方向を通過することを抑制することができる。ホールが発光層132Bの端部を横方向に通過することで、横方向のリーク電流の強度をより小さくすることができる。これにより、発光層132R又は発光層132Gにおいて意図しない発光が生じることを抑制することができる。
 なお、図3及び図4には図示しないが、発光素子130R、130G、130B上に、封止膜を設けてもよい。封止膜は、無機絶縁膜及び有機絶縁膜を組み合わせて構成される。これにより、発光素子130R、130G、130Bに、発光層132及び共通層128、134を含む有機層に水分が侵入することを抑制することができる。
<表示装置の製造方法>
 次に、表示装置100の製造方法について、図5~図7を参照して説明する。
 図5~図7において、図示しないが、基板101上に、画素回路を構成するトランジスタが設けられている。なお、基板101上に形成される画素回路の製造方法については、既知のトランジスタの製造方法を適用すればよいため、詳細な説明を省略する。トランジスタ上には、酸化シリコン及び窒化シリコンの少なくとも一つを含む層間絶縁膜が形成される。層間絶縁膜上には、ソース電極及びドレイン電極が形成される。
 図5は、絶縁膜122、画素電極124R、124G、124B、及び絶縁層126を形成する工程を説明する図である。絶縁膜122は、平坦化膜として機能する。絶縁膜122は、有機樹脂材料で構成される。有機樹脂材料として、ポリイミド系、ポリアミド系、アクリル系、エポキシ系もしくはシロキサン系といった公知の有機樹脂材料を用いることができる。トランジスタ又は層間絶縁膜上に絶縁膜122を設けることにより、トランジスタの凹凸を緩和することができる。絶縁膜122に、コンタクトホールを形成する。
 絶縁膜122上に、画素電極124R、124G、124Bを形成する。画素電極124R、124G、124Bのそれぞれを、絶縁膜122に設けられたコンタクトホールを介して、トランジスタと接続されたソース電極又はドレイン電極と電気的に接続する。本実施形態では、画素電極124R、124G、124Bは、陽極(アノード)として機能する。画素電極124R、124G、124Bとして、反射率が高い金属膜を用いる。または、画素電極124R、124G、124Bとして、酸化インジウム系透明導電層(例えばITO)や酸化亜鉛系透明導電層(例えばIZO、ZnO)といった仕事関数の高い透明導電層と金属膜との積層構造を用いる。
 画素電極124R、124G、124B上に、有機樹脂材料で構成される絶縁層126を形成する。有機樹脂材料として、ポリイミド系、ポリアミド系、アクリル系、エポキシ系もしくはシロキサン系といった公知の有機樹脂材料を用いることができる。絶縁層126は、画素電極124R上の一部と、画素電極124Gの一部と、画素電極124Bの一部のそれぞれに開口部120R、120G、120Bを有する。絶縁層126は、互いに隣接する画素電極124R、124G、124Bの間に、画素電極124R、124G、124Bの端部(エッジ部)を覆うように設けられる。絶縁層126は、隣接する画素電極124R、124G、124Bを離隔する部材として機能する。このため、絶縁層126は、一般的に「隔壁」、「バンク」とも呼ばれる。この絶縁層126の開口部120R、120G、120Bによって露出された画素電極124R、124G、124Bの一部が、発光素子130R、130G、130Bの発光領域となる。絶縁層126の開口部120R、120G、120Bは、内壁がテーパー形状となるようにしておくことが好ましい。これにより後述する共通層128及び発光層132R、132G、132Bの形成ときに、画素電極124R、124G、124Bの端部におけるカバレッジ不良を低減することができる。
 図6は、共通層128及び発光層132Bを形成する工程を説明する図である。画素電極124R、124G、124B及び絶縁層126上に、共通層128を形成する。共通層128は、ホール輸送層及びホール注入層の少なくとも一方を含む。ホール輸送層及びホール注入層は、既知の材料を適宜用いればよい。
 発光層132R、132G、132Bのうち、発光開始電圧が一番高い発光層から形成することが好ましい。本実施形態では、発光層132Bの発光開始電圧が発光層132R及び発光層132Gの発光開始電圧よりも高い。そのため、共通層128上に、まず発光層132Bを形成する。発光層132Bの端部132B-1が絶縁層126に設けられた開口部120Rの傾斜面126-1に設けられように形成される。また、発光層132Bの端部132B-1が絶縁層126に設けられた開口部120Gの傾斜面126-3に設けられるように形成される。また、発光層132Bは、電子輸送性を有する発光材料であることが好ましく、既知の材料を適宜用いればよい。
 図7は、発光層132R、発光層132G、及び共通層134を形成する工程を説明する図である。開口部120Rに、発光層132Rを形成する。発光層132Rの第1端部が発光層132Bと重畳するように形成される。具体的には、発光層132Rの第1端部が、開口部120Bにおける傾斜面126-2側の端部と開口部120Rにおける傾斜面126-1側の端部との中間部d1/2よりも、開口部120B側に設けられる。次に、開口部120Gに、発光層132Gを形成する。発光層132Gの第1端部が発光層132Bと重畳するように形成される。具体的には、発光層132Gの第1端部が、開口部120Bにおける傾斜面126-2側の端部と開口部120Gにおける傾斜面126-3側の端部との中間部d2/2よりも、開口部120B側に設けられる。
 次に、発光層132R、132G、132B上に、共通層134を形成する。共通層134は、電子輸送層及び電子注入層の少なくとも一方を含む。電子輸送層及び電子注入層は、既知の材料を適宜用いればよい。
 最後に、共通層134上に対向電極136を形成することにより、図3に示す表示装置100を形成することができる。
 本実施形態では、発光層132Rを形成した後、発光層132Gを形成する場合について説明したが、これに限定されない。発光層132Rの発光開始電圧と、発光層132Gの発光開始電圧が同程度であれば、どちらが先に形成されてもよい。または、発光層132Rの発光開始電圧と、発光層132Gの発光開始電圧に差があるならば、発光開始電圧が大きい発光層を先に形成すればよい。
 本実施形態では、隣接する発光層132Rの端部と発光層132Gの端部との重なりについて図示していないが、隣接する発光層132Rの端部と発光層132Gの端部とは、重なっていても良いし、重なっていなくてもよい。発光層132Rの発光開始電圧と、発光層132Gの発光開始電圧とは、ほぼ同程度であれば、発光素子130R又は発光素子130Gが発光したとしても、発光層132R及び発光層132Gからの横方向のリーク電流の影響は小さいからである。
 本発明の一実施形態に係る表示装置100は、図2~図4に示す構成に限定されない。例えば、画素105R、105G、105Bの配置は、図2に示す画素105R、105G、105Bの配置に限定されない。
 次に、表示装置100の構成要素の一部を変更した変形例1~6に係る表示装置100A~100Fについて、図8~図17を参照して説明する。変形例1~5に係る表示装置100A~100Eは、発光層132R、132G、132Bの配置が、表示装置100の配置と異なっている。また、変形例6に係る表示装置100Fは、陽極と陰極の配置が、表示装置100における陽極と陰極の配置とは異なっている。以降の説明において、表示装置100と同じ構成要素については、図2~図4に関する説明を参照すればよい。
<変形例1>
 図8は、本発明の一実施形態に係る表示装置100Aを平面視したときの画素レイアウト図である。また、図9は、図8に示す表示装置100AをB1-B2線で切断したときの断面図である。変形例1では、発光層132Rの発光開始電圧が、発光層132G及び発光層132Bの発光開始電圧よりも高い場合について説明する。
 図8は、表示装置100Aにおける画素105R、105G、105Bが設けられる領域を示している。表示装置100Aにおいて、発光層132R、132G、132Bの積層順序が表示装置100と異なっている。また、表示装置100Aにおいて、発光層132Rと発光層132Gの重畳領域と、発光層132Rと発光層132Bの重畳領域が表示装置100と異なっている。
 図6において説明した通り、共通層128上には、発光層132R、132G、132Bのうち、発光開始電圧が一番高い発光層が設けられることが好ましい。したがって、共通層128上には、まず発光層132Rが設けられる。発光層132Rの第1端部は、発光素子130Gの発光領域(開口部120G)に近づけるように設けられる。発光層132Rの第1端部が絶縁層126に設けられた開口部120Gの傾斜面126-4に設けられる。発光層132Rの第2端部は、発光素子130Bの発光領域(開口部120B)に近づけるように設けられる。発光層132Rの第1端部が絶縁層126に設けられた開口部120Bの傾斜面126-2に設けられる。また、発光層132Rは、電子輸送性を有する発光材料であることが好ましく、既知の材料を適宜用いることができる。
 開口部120Gには、発光層132Gが設けられる。発光層132Gの第1端部は、発光素子130Rの発光領域(開口部120R)に近づけるように設けられる。発光層132Gの第1端部は、発光層132Rと重畳するように形成される。開口部120Rの端部から開口部120Gの端部までの距離をd3とする。発光層132Gの第1端部は、開口部120Rの端部と開口部120Gの端部との中間部d3/2よりも、開口部120R側に設けられる。次に、開口部120Bに、発光層132Bを形成する。発光層132Bの第1端部は、発光層132Rと重畳するように形成される。発光層132Bの第1端部は、開口部120Bの端部と開口部120Rの端部との中間部d1/2よりも、開口部120R側に設けられる。
 上述したように、発光素子130Rの発光領域と、意図しない発光が起きやすい発光層132Rの端部とを離して設けることにより、発光素子130Rの発光領域と発光層132Rの端部との距離を大きくすることができる。そのため、発光層132Rの端部において、発光素子130Rからの横方向のリーク電流の強度を小さくすることができる。これにより、発光層132G又は発光層132Bにおいて意図しない発光が生じることを抑制することができる。
 ホール輸送層及びホール注入層の少なくとも一つを含む共通層128と接する発光層132Rは、電子輸送性の発光材料を含むことが好ましい。発光素子130Rが発光する際に、共通層128におけるホールが発光層132Rの厚み方向を通過することを抑制することができる。ホールが発光層132Rの端部を横方向に通過することで、横方向のリーク電流の強度をより小さくすることができる。これにより、発光層132G又は発光層132Bにおいて意図しない発光が生じることを抑制することができる。
<変形例2>
 図10は、本発明の一実施形態に係る表示装置100Bを平面視したときの画素レイアウト図である。また、図11は、図10に示す表示装置100AをC1-C2線で切断したときの断面図である。変形例2では、発光層132Gの発光開始電圧が、発光層132R及び発光層132Bの発光開始電圧よりも高い場合について説明する。
 図10は、表示装置100Bにおける画素105R、105G、105Bが設けられる領域を示している。表示装置100Bにおいて、発光層132R、132G、132Bの積層順序が表示装置100と異なっている。また、表示装置100Bにおいて、発光層132Gと発光層132Bの重畳領域と、発光層132Gと発光層132Rの重畳領域が表示装置100と異なっている。
 図6において説明した通り、共通層128上には、発光層132R、132G、132Bのうち、発光開始電圧が一番高い発光層が設けられることが好ましい。したがって、共通層128上には、まず発光層132Gが設けられる。発光層132Gの第1端部は、発光素子130Bの発光領域(開口部120B)に近づけるように設けられる。発光層132Gの第1端部が絶縁層126に設けられた開口部120Bの傾斜面126-2に設けられるように形成される。また、発光層132Gの第2端部が絶縁層126に設けられた開口部120Rの傾斜面126-5に設けられる。また、発光層132Gは、電子輸送性を有する発光材料であることが好ましく、既知の材料を適宜用いることができる。
 開口部120Bには、発光層132Bが設けられる。発光層132Bの第1端部は、発光素子130Gの発光領域(開口部120G)に近づけるように設けられる。発光層132Bの第1端部は、発光層132Gと重畳するように形成される。発光層132Bの第1端部は、開口部120Bの端部と開口部120Gの端部との中間部d2/2よりも、開口部120G側に設けられる。次に、開口部120Rに、発光層132Rを形成する。発光層132Rの第1端部は、発光層132Gと重畳するように形成される。発光層132Rの第1端部は、開口部120Gの端部と開口部120Rの端部との中間部d3/2よりも、開口部120R側に設けられる。
 上述したように、発光素子130Gの発光領域と、意図しない発光が起きやすい発光層132Gの端部とを離して設けることにより、発光素子130Gの発光領域と発光層132Gの端部との距離を大きくすることができる。そのため、発光層132Gの端部において、発光素子130Gからの横方向のリーク電流の強度を小さくすることができる。これにより、発光層132R又は発光層132Bにおいて意図しない発光が生じることを抑制することができる。
 ホール輸送層及びホール注入層の少なくとも一つを含む共通層128と接する発光層132Gは、電子輸送性の発光材料を含むことが好ましい。発光素子130Gが発光する際に、共通層128におけるホールが発光層132Gの厚み方向を通過することを抑制することができる。ホールが発光層132Gの端部を横方向に通過することで、横方向のリーク電流の強度をより小さくすることができる。これにより、発光層132R又は発光層132Bにおいて意図しない発光が生じることを抑制することができる。
<変形例3>
 図12は、本発明の一実施形態に係る表示装置100Cを平面視したときの画素レイアウト図である。また、図13は、図12に示す表示装置100AをD1-D2線で切断したときの断面図である。変形例3では、発光層132Bの発光開始電圧が、発光層132R及び発光層132Gの発光開始電圧よりも高く、発光層132Gの発光開始電圧が発光層132Rの発光開始電圧よりも高い場合について説明する。
 図12は、表示装置100Cにおける画素105R、105G、105Bが設けられる領域を示している。表示装置100Cにおいて、発光層132R、132G、132Bの積層順序が表示装置100と異なっている。また、表示装置100Cにおいて、発光層132Bと発光層132Gの重畳領域と、発光層132Gと発光層132Rの重畳領域が表示装置100と異なっている。
 図6において説明した通り、共通層128上には、発光層132R、132G、132Bのうち、発光開始電圧が一番高い発光層が設けられることが好ましい。したがって、共通層128上には、まず発光層132Bが設けられる。図11において、発光層132Bが設けられる領域は、図3に示す発光層132Bが設けられる領域と同様である。また、発光層132Bは、電子輸送性を有する発光材料であることが好ましく、既知の材料を適宜用いることができる。
 次に、発光開始電圧が発光層132Bの次に高い発光層132Gが開口部120Gに設けられる。発光層132Gが設けられる領域は、発光層132Gの第1端部は、発光素子130Bの発光領域(開口部120B)に近づけるように設けられる。発光層132Gの第1端部が絶縁層126に設けられた開口部120Bの傾斜面126-2に設けられるように形成される。また、発光層132Gは、電子輸送性を有する発光材料であることが好ましく、既知の材料を適宜用いることができる。最後に発光層132Rが開口部120Rに設けられる。発光層132Rの第1端部は、開口部120Rの端部と開口部120Bの端部との中間部d1/2よりも開口部120B側に設けられる。なお、図13には図示しないが、発光層132Gと発光層132Rとの境界部において、発光層132Gの第2端部が絶縁層126に設けられた開口部120Rの傾斜面126-5に設けられるように形成される。
 上述したように、発光素子130Bの発光領域と、意図しない発光が起きやすい発光層132Bの端部とを離して設けることにより、発光素子130Bの発光領域と発光層132Bの端部との距離を大きくすることができる。そのため、発光層132Bの端部において、発光素子130Bからの横方向のリーク電流の強度を小さくすることができる。さらに、発光素子130Gの発光領域と、意図しない発光が起きやすい発光層132Gの端部とを離して設けることにより、発光素子130Gの発光領域と発光層132Gの端部との距離を大きくすることができる。そのため、発光層132Gの端部において、発光素子130Gからの横方向のリーク電流の強度を小さくすることができる。これにより、発光層132G又は発光層132Rにおいて意図しない発光が生じることをさらに抑制することができる。
 なお、変形例3に係る表示装置100Cにおいて、発光開始電圧が高い順に、発光層132B、132G、132Rの順で形成する場合について説明したが、本発明の一実施形態はこれに限定されない。発光開始電圧が、発光層132B、132R、132Gの順で高い場合には、発光層132B、132R、132Gの順で形成すればよい。
<変形例4>
 図14は、本発明の一実施形態に係る表示装置100Dを平面視したときの画素レイアウト図である。変形例4では、発光層132R、132G、132Bがストライプ状に配列される場合について説明する。変形例4では、発光層132Bの発光開始電圧が、発光層132R及び発光層132Gの発光開始電圧よりも高い場合について説明する。
 図14は、画素105R、105G、105Bが設けられる領域を示している。画素105R、105G、105Bは、X方向に並んで配置されている。複数の画素105R、複数の画素105G、複数の画素105Bはそれぞれ、Y方向に並んで配置されている。表示装置100Dにおいて、発光層132R、132G、132Bの積層順序は、表示装置100と同じである。
 発光層132Bと発光層132Rとが隣接する領域において、発光層132Bの端部は、発光層132Gの開口部120Gに近づくように設けられている。発光層132Bの端部は、発光層132Bの発光領域と離れているため、発光層132Rにおいて意図しない発光を抑制することができる。また、発光層132Bと発光層132Gとが隣接する領域において、発光層132Bの端部は、発光層132Gの開口部120Gに近づくように設けられている。発光層132Bの端部は、発光層132Bの発光領域と離れているため、発光層132Gにおいて意図しない発光を抑制することができる。
 上述したように、発光素子130Bの発光領域と、意図しない発光が起きやすい発光層132Bの端部とを離して設けることにより、発光素子130Bの発光領域と発光層132Bの端部との距離を大きくすることができる。そのため、発光層132Bの端部において、発光素子130Bからの横方向のリーク電流の強度を小さくすることができる。これにより、発光層132G又は発光層132Rにおいて意図しない発光が生じることをさらに抑制することができる。
<変形例5>
 図15は、本発明の一実施形態に係る表示装置100Eを平面視したときの画素レイアウト図である。変形例5では、発光素子130R、130G、130Bがペンタイル状に配列される場合について説明する。
 図15は、画素105R、105G、105Bが設けられる領域を示している。複数の画素105Gは、X方向に並んで配置されている。画素105Gと画素105Bとは、X方向に並んで配置されている。画素105Gと、画素105Bとは、X方向に対してθ方向に並んで配置されている。また、画素105Gと画素105Rとは、X方向に対してθ方向に並んで配置されている。表示装置100Dにおいて、発光層132R、132G、132Bの積層順序は、表示装置100と同じである。
 発光層132Bと発光層132Gとが隣接する領域において、発光層132Bの端部は、発光層132Gの開口部120Gに近づくように設けられている。そのため、発光層132Bの端部を、発光層132Bの発光領域と離れているため、発光層132Gにおいて意図しない発光を抑制することができる。これに対し、発光層132Bと発光層132Rとが隣接する領域において、発光層132Bの端部は、発光層132Rの開口部120Rに近づくように設けられていない。しかしながら、発光層132Bの端部は、発光素子130Bの発光領域と十分に離れているため、発光層132Rにおいて意図しない発光を抑制することができる。なお、発光層132Bの端部が、発光層132Rの開口部120Rに近づくように設けられていてもよい。
 上述したように、発光素子130Bの発光領域と、意図しない発光が起きやすい発光層132Bの端部とを離して設けることにより、発光素子130Bの発光領域と発光層132Bの端部との距離を大きくすることができる。そのため、発光層132Bの端部において、発光素子130Bからの横方向のリーク電流の強度を小さくすることができる。これにより、発光層132G又は発光層132Rにおいて意図しない発光が生じることをさらに抑制することができる。
 なお、図15において、発光素子130Rと発光素子130Bとは、その発光層が、互いに角部のみが重なり合うように位置している。このような位置関係においては、発光領域の辺が互いに平行に隣り合うように位置する発光素子130Gと発光素子130Bに比べ、横方向のリーク電流の発生の影響は小さい。
 変形例3、4に示す表示装置100D、100Eにおいて、発光層132R、132G、132Bの積層順序は、限定されない。発光層132R、132G、132Bのうち、発光開始電圧が一番高い発光層が一番下に設けられればよい。このとき、発光開始電圧が一番高い発光層は、電子輸送性を有する発光材料であることが好ましい。
<変形例6>
 図16は、本発明の一実施形態に係る表示装置100Fを平面視したときの画素レイアウト図である。また、図17は、図16に示す表示装置100AをE1-E2線で切断したときの断面図である。変形例2では、発光層132Bの発光開始電圧が、発光層132R及び発光層132Gの発光開始電圧よりも高い場合について説明する。
 図16は、画素105R、105G、105Bが設けられる領域を示している。画素105R、105G、105Bの配置については、図3に示す画素の配置と同様である。
 図17に、画素105R、105G、105Bの断面図を示す。絶縁膜122上において、画素105Rには発光素子160Rが設けられ、画素105Gには発光素子160Gが設けられ、画素105Bには発光素子160Bが設けられる。発光素子160Rは、画素電極142R、発光層132R、対向電極144を少なくとも有する。発光素子160Gは、画素電極142G、発光層132G、対向電極144を少なくとも有する。発光素子160Bは、画素電極142B、発光層132B、対向電極144を少なくとも有する。
 表示装置100Fは、画素電極142R、142G、142Bが陰極(カソード)として機能し、対向電極144が陽極(アノード)として機能する点で、表示装置100と異なる。そのため、画素電極142R、142G、142Bと発光層132R、132G、132Bとの間に設けられる共通層146は、電子輸送層及び電子注入層の少なくとも一つを含む。また、対向電極144と発光層132R、132G、132Bとの間に設けられる共通層148は、ホール輸送層及びホール注入層の少なくとも一つを含む。なお、図17に図示しないが、画素電極124R、124G、124Bはそれぞれ、画素回路に含まれるトランジスタ110と電気的に接続される。
 発光層132Rと隣接する発光層132Bの端部は、発光素子130Rの開口部120Rに近づけるように設けられる。発光層132Bの端部は、絶縁層126に設けられた開口部120Rの傾斜面126-1に設けられる。また、発光層132Rの端部は、発光層132Bと重畳する。発光層132Rの端部は、開口部120Rの端部と開口部120Bの端部との中間部d1/2よりも開口部120B側に設けられる。発光層132Gと隣接する発光層132Bの端部は、発光素子130Gの開口部120Gに近づけるように設けられる。発光層132Bの端部は、絶縁層126に設けられた開口部120Gの傾斜面126-3に設けられる。また、発光層132Gの端部は、発光層132Bと重畳する。発光層132Gの端部は、開口部120Gの端部と開口部120Bの端部との中間部d2/2よりも開口部120B側に設けられる。
 表示装置100Fにおいて、発光素子130において、画素電極124を陰極とし、対向電極136を陽極としている。この場合であっても、表示装置100と同様に、発光素子130Bの発光領域と、意図しない発光が起きやすい発光層132Bの端部とを離して設けることにより、発光素子130Bの発光領域と発光層132Bの端部との距離を大きくすることができる。そのため、発光層132Bの端部において、発光素子130Bからの横方向のリーク電流の強度を小さくすることができる。これにより、発光層132R又は発光層132Gにおいて意図しない発光が生じることを抑制することができる。
 電子輸送層及び電子注入層の少なくとも一つを含む共通層146と接する発光層132Bは、ホール輸送性の発光材料を含むことが好ましい。発光素子130Bが発光する際に、共通層128における電子が発光層132Bの厚み方向を通過することを抑制することができる。電子が発光層132Bの端部を横方向に通過することで、横方向のリーク電流の強度をより小さくすることができる。これにより、発光層132R又は発光層132Gにおいて意図しない発光が生じることを抑制することができる。
 なお、変形例6に係る表示装置100Fの構成は、変形例1~5に係る表示装置100A~100Eに係る構成に適用することができる。つまり、変形例1~5に係る表示装置100A~100Eにおいて、画素電極124を陰極とし、対向電極136を陽極としてもよい。この場合、画素電極124と発光層132との間に設けられる共通層が電子輸送層及び電子注入層の少なくとも一つを含んでいる。また、対向電極136と発光層との間に設けられる共通層は、ホール輸送層及びホール注入層の少なくとも含んでいる。電子輸送層及び電子注入層を含む共通層128上には、発光層132R、132G、132Bのうち、発光開始電圧が一番高い発光層が設けられることが好ましい。当該発光層は、ホール輸送性を有する発光材料であることが好ましい。
 以上説明した通り、本発明の一実施形態に係る表示装置は、様々な形態に適用できる。したがって、発明の実施形態及び変形例として説明した表示装置100、100A~100Fを基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったもの、又は、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。また、上述した各実施形態は、技術的矛盾の生じない範囲において、相互に組み合わせることが可能である。
 また、前述の実施形態は主に有機EL素子を表示素子として有する表示装置における、有機層内でのリーク電流を抑制せしめる構造について説明してきたが、本発明は表示装置のみならず、有機層を電極で挟持した有機フォトダイオードをマトリクス状に配列して構成される光センサ装置等への適用も可能である。具体的には、有機フォトダイオードを構成する有機層のうち、塗分け形成されるものの端部の重なりの関係に応用することが可能である。
 また、上述した実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。
 本発明の範疇において、当業者であれば、各種の変更例及び修正例に相当し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。例えば、前述の各実施形態に対して、当業者が適宜、構成要素の追加、削除若しくは設計変更を行ったもの、又は、工程の追加、省略若しくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
100、100A~100F:表示装置、101:基板、102:表示領域、103:周辺領域、104:走査線駆動回路、105:画素、105B:画素、105G:画素、105R:画素、106:ドライバIC、107:端子、108:フレキシブルプリント回路、111:走査線、113:データ線、120B:開口部、120G:開口部、120R:開口部、122:絶縁膜、124B:画素電極、124G:画素電極、124R:画素電極、126:絶縁層、126-1~126-5:傾斜面、128:共通層、130:発光素子、130B:発光素子、130G:発光素子、130R:発光素子、132B:発光層、132B-1:端部、132G:発光層、132R:発光層、134:共通層、136:対向電極、142B:画素電極、142G:画素電極、142R:画素電極、144:対向電極、146:共通層、148:共通層、160B:発光素子、160G:発光素子、160R:発光素子、205B:画素、205G:画素、205R:画素、224B:画素電極、224G:画素電極、224R:画素電極、226:絶縁層、228:共通層、228G:発光層、230G:発光素子、230R:発光素子、232B:発光層、232G:発光層、232R:発光層、234:共通層、236:対向電極、250A:領域、250B:領域

Claims (12)

  1.  第1画素電極と、
     第1の方向に、前記第1画素電極と離間して設けられた第2画素電極と、
     前記第1画素電極の上面の少なくとも一部を露出する第1開口部及び前記第2画素電極の上面の少なくとも一部を露出する第2開口部を有する絶縁層と、
     前記第1画素電極、前記第2画素電極、及び前記絶縁層上に設けられた第1共通層と、
     前記第1共通層上に設けられ前記第1画素電極と重畳する設けられた第1発光層と、
     前記第1共通層上に設けられ前記第2画素電極と重畳し、前記第1発光層の発光開始電圧よりも低い第2発光層と、
     前記第1発光層及び前記第2発光層上に設けられた対向電極と、を有し、
     前記第1発光層は前記絶縁層上に広がり端部が前記絶縁層に設けられた前記第2開口部の傾斜面に設けられ、前記第2発光層は前記第1発光層と重なる領域を含む、表示装置。
  2.  前記第1発光層と前記第2発光層とが重なる領域において、前記第1発光層が前記第1共通層側に設けられている、請求項1に記載の表示装置。
  3.  前記第1画素電極及び前記第2画素電極が陽極である場合、前記第1発光層は、電子輸送性を有し、前記第1共通層は、ホール輸送性を有する、請求項1に記載の表示装置。
  4.  前記第1画素電極及び前記第2画素電極が陰極である場合、前記第1発光層は、ホール輸送性を有し、前記第1共通層は、電子輸送性を有する、請求項1に記載の表示装置。
  5.  前記第2発光層の端部は、前記第1発光層と重畳し、前記第1開口部と前記第2開口部との中間部よりも前記第1開口部側に設けられる、請求項1に記載の表示装置。
  6.  前記第2発光層の端部は、前記第1発光層と重畳し、前記絶縁層の前記第1開口部の傾斜面に設けられる、請求項1に記載の表示装置。
  7.  前記第1発光層及び前記第2発光層と、前記対向電極との間に、第2共通層がさらに設けられる、請求項1に記載の表示装置。
  8.  前記第1画素電極と離間して設けられた第3画素電極をさらに有し、
     前記絶縁層は、前記第3画素電極を露出する第3開口部をさらに有し、
     前記第1発光層の端部は、前記絶縁層の前記第3開口部の傾斜面に設けられる、請求項1に記載の表示装置。
  9.  前記第1共通層と前記対向電極との間に、前記第1発光層の発光開始電圧よりも低く、前記第1共通層上に前記第1発光層の一部及び前記第3画素電極に重畳して設けられた第3発光層をさらに有する、前記第3発光層の請求項8に記載の表示装置。
  10.  前記第1発光層の発光ピーク波長は、460nm以上500nm以下である、請求項1に記載の表示装置。
  11.  前記第1発光層の発光ピーク波長は、610nm以上780nm以下である、請求項1に記載の表示装置。
  12.  前記第1発光層の発光ピーク波長は、460nm以上500nm以下である、請求項1に記載の表示装置。
PCT/JP2022/005046 2021-02-25 2022-02-09 表示装置 WO2022181324A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023502265A JPWO2022181324A1 (ja) 2021-02-25 2022-02-09
US18/448,983 US20230389369A1 (en) 2021-02-25 2023-08-14 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-029126 2021-02-25
JP2021029126 2021-02-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/448,983 Continuation US20230389369A1 (en) 2021-02-25 2023-08-14 Display device

Publications (1)

Publication Number Publication Date
WO2022181324A1 true WO2022181324A1 (ja) 2022-09-01

Family

ID=83048234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005046 WO2022181324A1 (ja) 2021-02-25 2022-02-09 表示装置

Country Status (3)

Country Link
US (1) US20230389369A1 (ja)
JP (1) JPWO2022181324A1 (ja)
WO (1) WO2022181324A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218128A (ja) * 2008-03-12 2009-09-24 Toppan Printing Co Ltd 有機エレクトロルミネッセンスパネル及びその製造方法
JP2011009169A (ja) * 2009-06-29 2011-01-13 Kyocera Corp 画像表示装置およびその製造方法
JP2011124236A (ja) * 2004-09-13 2011-06-23 Semiconductor Energy Lab Co Ltd 照明装置
JP2011233521A (ja) * 2010-04-28 2011-11-17 Samsung Mobile Display Co Ltd 薄膜蒸着装置、これを利用した有機発光表示装置の製造方法及びこれを利用して製造された有機発光表示装置
JP2019067747A (ja) * 2017-10-03 2019-04-25 Tianma Japan株式会社 Oled表示装置及びその製造方法
JP2019192448A (ja) * 2018-04-24 2019-10-31 株式会社ジャパンディスプレイ 表示装置
WO2021192242A1 (ja) * 2020-03-27 2021-09-30 シャープ株式会社 表示装置の製造方法、および表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124236A (ja) * 2004-09-13 2011-06-23 Semiconductor Energy Lab Co Ltd 照明装置
JP2009218128A (ja) * 2008-03-12 2009-09-24 Toppan Printing Co Ltd 有機エレクトロルミネッセンスパネル及びその製造方法
JP2011009169A (ja) * 2009-06-29 2011-01-13 Kyocera Corp 画像表示装置およびその製造方法
JP2011233521A (ja) * 2010-04-28 2011-11-17 Samsung Mobile Display Co Ltd 薄膜蒸着装置、これを利用した有機発光表示装置の製造方法及びこれを利用して製造された有機発光表示装置
JP2019067747A (ja) * 2017-10-03 2019-04-25 Tianma Japan株式会社 Oled表示装置及びその製造方法
JP2019192448A (ja) * 2018-04-24 2019-10-31 株式会社ジャパンディスプレイ 表示装置
WO2021192242A1 (ja) * 2020-03-27 2021-09-30 シャープ株式会社 表示装置の製造方法、および表示装置

Also Published As

Publication number Publication date
US20230389369A1 (en) 2023-11-30
JPWO2022181324A1 (ja) 2022-09-01

Similar Documents

Publication Publication Date Title
US9231043B2 (en) Organic electroluminescence display device
KR101625292B1 (ko) 유기 일렉트로루미네센스 표시 장치
JP2016134236A (ja) 表示装置
US10490603B2 (en) Display device
JP6521610B2 (ja) 画像表示装置
JP2007165214A (ja) エレクトロルミネッセンス装置及び電子機器
JP2019106331A (ja) 有機el表示装置
CN114551519A (zh) 显示装置
JP2023078010A (ja) 表示装置
JP2006146135A (ja) 平板表示装置および有機電界発光表示装置
WO2022181324A1 (ja) 表示装置
US10388708B2 (en) Display device
US20220157905A1 (en) Display device
US11211436B2 (en) Display device
US10749134B2 (en) Organic EL display panel
JP2023078012A (ja) 表示装置
WO2023119995A1 (ja) 表示装置
US10566567B2 (en) Display device
JP2023106793A (ja) 表示装置
WO2019171778A1 (ja) 表示装置
JP2018181897A (ja) 有機エレクトロルミネッセンス表示装置
US20230389393A1 (en) Display device
US20230371335A1 (en) Display device
US20230232699A1 (en) Method of manufacturing display device
US20240298503A1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759363

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023502265

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759363

Country of ref document: EP

Kind code of ref document: A1