WO2022181172A1 - 熱伝導シート及び熱伝導シートの製造方法 - Google Patents

熱伝導シート及び熱伝導シートの製造方法 Download PDF

Info

Publication number
WO2022181172A1
WO2022181172A1 PCT/JP2022/003009 JP2022003009W WO2022181172A1 WO 2022181172 A1 WO2022181172 A1 WO 2022181172A1 JP 2022003009 W JP2022003009 W JP 2022003009W WO 2022181172 A1 WO2022181172 A1 WO 2022181172A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive sheet
thermally conductive
heat
thermal resistance
precursor
Prior art date
Application number
PCT/JP2022/003009
Other languages
English (en)
French (fr)
Inventor
真理奈 戸端
慶輔 荒巻
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2022181172A1 publication Critical patent/WO2022181172A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • This technology relates to a thermally conductive sheet and a method for manufacturing the thermally conductive sheet.
  • This application claims priority based on Japanese Patent Application No. 2021-028001 filed on February 24, 2021 in Japan, and this application is hereby incorporated by reference. Incorporated.
  • Cooling methods for devices with semiconductor elements include attaching a fan to the device to cool the air inside the device housing, attaching heat sinks such as heat sinks and heat sinks to the semiconductor device, and immersing the device in a fluorine-based inert liquid.
  • heat sinks such as heat sinks and heat sinks
  • immersing the device in a fluorine-based inert liquid There are known methods for When a heatsink is attached to a semiconductor element for cooling, a heat-conducting sheet is provided between the semiconductor element and the heatsink in order to efficiently dissipate the heat of the semiconductor element.
  • a binder resin in which a filler for example, a thermally conductive filler such as carbon fiber
  • a filler for example, a thermally conductive filler such as carbon fiber
  • thermally conductive sheet In order to improve the heat dissipation properties of the thermally conductive sheet, it is required, for example, to lower the thermal resistance, which is an indicator of how difficult it is to conduct heat. In order to reduce the thermal resistance of the thermally conductive sheet, it is effective, for example, to improve the adhesion of the thermally conductive sheet to a heating element (eg, electronic component) or radiator (eg, heat sink).
  • a heating element eg, electronic component
  • radiator eg, heat sink
  • thermal conductive sheet when a large thermal conductive sheet is picked up by an automatic machine and mounted on an IC chip, if the surface of the thermal conductive sheet is smooth, the thermal conductive sheet may The conductive sheet is likely to be mounted parallel to the IC chip, and air tends to be trapped in the central portion between the thermally conductive sheet and the IC chip.
  • JP 2012-23335 A Japanese Patent No. 6178389 Japanese Patent No. 5752299
  • This technology was proposed in view of such conventional circumstances, and provides a thermally conductive sheet that is less likely to contain air during mounting and that can reduce the difference in thermal resistance due to load.
  • the heat conductive sheet according to the present technology has a surface arithmetic mean roughness (Sa) of 5.0 ⁇ m or more, a thermal resistance of 1 kgf/cm 2 at a thickness of 0.3 mm, and a thermal resistance of 5 kgf/cm at a thickness of 0.3 mm. 2 is less than 0.10° C.cm 2 /W.
  • a method for manufacturing a thermally conductive sheet according to the present technology includes a step A of preparing a thermally conductive composition containing a binder resin and a fibrous filler, a step B of forming a molded block from the thermally conductive composition, and a molded block is sliced into sheets to obtain a thermally conductive sheet precursor, and the thermally conductive sheet precursor is pressed to obtain a thermally conductive sheet.
  • the thickness (Sa) is 5.0 ⁇ m or more, and the thermal conductive sheet has a thermal resistance difference between a thermal resistance of 1 kgf/cm 2 at a thickness of 0.3 mm and a thermal resistance of 5 kgf/cm 2 at a thickness of 0.3 mm. is less than 0.10° C.cm 2 /W.
  • thermoly conductive sheet that is less likely to contain air during mounting and that can reduce the difference in thermal resistance due to load.
  • FIG. 1 is a cross-sectional view showing an example of a heat conductive sheet.
  • FIG. 2 is a cross-sectional view for explaining an example of step D of pressing a thermally conductive sheet precursor to obtain a thermally conductive sheet.
  • FIG. 3 is a cross-sectional view showing an example of a semiconductor device to which a heat conductive sheet is applied.
  • FIG. 4 is a cross-sectional view for explaining a method of pressing a press heat conductive sheet precursor without adhering a film or cushion having a regular shape on the surface in Comparative Example 2.
  • FIG. FIG. 5 is a perspective view for explaining an example of a method for measuring the height of the heat conductive sheet from the copper plate.
  • the heat conductive sheet according to the present technology has a surface arithmetic mean roughness (Sa) of 5.0 ⁇ m or more, a thermal resistance of 1 kgf/cm 2 at a thickness of 0.3 mm, and a thermal resistance of 5 kgf/cm at a thickness of 0.3 mm. 2 is less than 0.10° C.cm 2 /W. According to such a heat-conducting sheet, it is difficult to contain air during mounting, and it is easy for air to escape, and the difference in thermal resistance due to load can be reduced.
  • Sa surface arithmetic mean roughness
  • the heat conductive sheet may have a surface arithmetic mean roughness (Sa) of 5.000 ⁇ m or more, 5.100 ⁇ m or more, 5.200 ⁇ m or more, or 5.300 ⁇ m or more. 5.400 ⁇ m or more, 5.500 ⁇ m or more, 5.600 ⁇ m or more, 5.700 ⁇ m or more, or 5.800 ⁇ m or more It may be 5.900 ⁇ m or more.
  • Sa surface arithmetic mean roughness
  • the upper limit of the arithmetic mean roughness (Sa) of the surface of the heat conductive sheet is not particularly limited, but from the viewpoint of more effectively reducing the thermal resistance difference due to load, it can be, for example, 6.500 ⁇ m or less, It may be 6.400 ⁇ m or less, 6.300 ⁇ m or less, 6.200 ⁇ m or less, 6.100 ⁇ m or less, or 6.000 ⁇ m or less.
  • the arithmetic average roughness (Sa) of the surface of the heat conductive sheet can also be in the range of 5.400 to 5.950 ⁇ m.
  • the arithmetic mean roughness (Sa) of the surface of the heat conductive sheet can be measured by the method of Examples described later.
  • the thermal conductive sheet 1 has a smaller thermal resistance difference between a thermal resistance of 1 kgf/cm 2 at a thickness of 0.3 mm and a thermal resistance of 5 kgf/cm 2 at a thickness of 0.3 mm. cm 2 /W or less, 0.08° C.cm 2 /W or less, 0.07° C.cm 2 /W or less, or 0.06° C.cm 2 /W or less, or 0.05° C.cm 2 /W or less.
  • the thermal resistance of the heat conductive sheet 1 can be measured by the method described in Examples below.
  • the thermal resistance difference between when a low load (1 kgf/cm 2 ) is applied to the thermal conductive sheet 1 and when a high load (5 kgf/cm 2 ) is applied is defined. This is for facilitating comparison of the contact thermal resistance of the sheet 1 .
  • the thermal conductive sheet 1 can support each load as long as the difference in thermal resistance between the thermal resistance of 1 kgf/cm 2 at a thickness of 0.3 mm and the thermal resistance of 5 kgf/cm 2 at a thickness of 0.3 mm satisfies the above range.
  • the magnitude of the thermal resistance value when applied is not particularly limited.
  • the heat conductive sheet 1 may have a thermal resistance of 0.25° C.cm 2 /W or less at 1 kgf/cm 2 at 0.3 mm, or 0.23° C.cm 2 /W or less. It may be 0.21° C. ⁇ cm 2 /W or less.
  • the heat conductive sheet 1 may have a thermal resistance of 0.20° C.cm 2 /W or less at 5 kgf/cm 2 at a thickness of 0.3 mm, and may be 0.18° C.cm 2 /W or less. may be 0.15° C. ⁇ cm 2 /W or less.
  • the heat conductive sheet 1 preferably has a regular shape on the surface. Since the heat conductive sheet 1 has a regular shape on the surface, the arithmetic mean roughness (Sa) of the surface of the heat conductive sheet 1 is set to 5.000 ⁇ m or more, and the thermal resistance difference due to the load of the heat conductive sheet 1 is reduced. can be reduced more effectively.
  • the regular shape of the heat conductive sheet 1 is, for example, regular unevenness, and the pattern (shape) of the recesses or protrusions in a plan view is a geometric pattern such as a polygonal shape having sides that are not perpendicular to each other.
  • the regular shape may be a linear or wavy pattern of recesses or protrusions in a plan view.
  • FIG. 1 is a cross-sectional view showing an example of a heat conductive sheet.
  • the heat conductive sheet 1 contains a binder resin 2 and fibrous fillers 3, and the fibrous fillers 3 are oriented in the thickness direction B in a cross-sectional view.
  • the long axis of the fibrous filler 3 is oriented in the thickness direction of the heat conductive sheet 1 .
  • the thermally conductive sheet 1 may further contain a thermally conductive material 4 other than the fibrous filler 3 .
  • the heat conductive sheet 1 for example, preferably has a Shore type OO hardness of more than 30, may be in the range of 35 to 80, may be in the range of 40 to 75, and may be in the range of 45 to 70. It may be in the range of 50-70. Since the hardness of the heat conductive sheet 1 is within such a range, for example, when transferring a regular shape to the surface of the heat conductive sheet 1 as described later, the formed regular shape (unevenness) is It can be made difficult to disappear. The hardness of the heat conductive sheet 1 can be measured by the method of Examples described later.
  • the thickness of the heat conductive sheet 1 is not particularly limited, and can be appropriately selected according to the purpose.
  • the thickness of the heat conductive sheet 1 can be 0.05 mm or more, and can also be 0.1 mm or more.
  • the upper limit of the thickness of the heat conductive sheet 1 may be 5 mm or less, may be 4 mm or less, or may be 3 mm or less.
  • the heat conductive sheet 1 preferably has a thickness of 0.1 to 4 mm.
  • the thickness of the thermally conductive sheet 1 can be determined, for example, by measuring the thickness of the thermally conductive sheet 1 at five arbitrary points and calculating the arithmetic average value thereof.
  • the binder resin 2 is for holding the fibrous filler 3 and other thermally conductive material 4 within the thermally conductive sheet 1 .
  • the binder resin 2 is selected according to properties such as mechanical strength, heat resistance, and electrical properties required for the heat conductive sheet 1 .
  • the binder resin 2 can be selected from thermoplastic resins, thermoplastic elastomers, and thermosetting resins.
  • thermoplastic resins include polyethylene, polypropylene, ethylene- ⁇ -olefin copolymers such as ethylene-propylene copolymers, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, ethylene-vinyl acetate copolymers, Fluorinated polymers such as polyvinyl alcohol, polyvinyl acetal, polyvinylidene fluoride and polytetrafluoroethylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polyacrylonitrile, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene copolymer Polymer (ABS) resin, polyphenylene-ether copolymer (PPE) resin, modified PPE resin, aliphatic polyamides, aromatic polyamides, polyimide, polyamideimide, polymeth
  • Thermoplastic elastomers include styrene-butadiene block copolymers or hydrogenated products thereof, styrene-isoprene block copolymers or hydrogenated products thereof, styrene-based thermoplastic elastomers, olefin-based thermoplastic elastomers, and vinyl chloride-based thermoplastic elastomers. , polyester-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, and the like.
  • Thermosetting resins include crosslinked rubbers, epoxy resins, phenolic resins, polyimide resins, unsaturated polyester resins, diallyl phthalate resins, and the like.
  • Specific examples of crosslinked rubber include natural rubber, acrylic rubber, butadiene rubber, isoprene rubber, styrene-butadiene copolymer rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene-propylene copolymer rubber, chlorinated polyethylene rubber, Chlorosulfonated polyethylene rubber, butyl rubber, halogenated butyl rubber, fluororubber, urethane rubber, and silicone rubber.
  • a silicone resin is preferable in consideration of the adhesion between the heat generating surface of the electronic component and the heat sink surface.
  • the silicone resin for example, a two-component addition reaction type silicone resin composed of a silicone having an alkenyl group as a main component, a main agent containing a curing catalyst, and a curing agent having a hydrosilyl group (Si—H group).
  • the alkenyl group-containing silicone for example, a vinyl group-containing polyorganosiloxane can be used.
  • the curing catalyst is a catalyst for promoting the addition reaction between the alkenyl group in the alkenyl group-containing silicone and the hydrosilyl group in the hydrosilyl group-containing curing agent.
  • the curing catalyst well-known catalysts used for hydrosilylation reaction can be used.
  • platinum group curing catalysts such as platinum group metals such as platinum, rhodium and palladium, and platinum chloride can be used.
  • the curing agent having hydrosilyl groups for example, polyorganosiloxane having hydrosilyl groups can be used.
  • the binder resin 2 may be used individually by 1 type, and may use 2 or more types together.
  • the content of the binder resin 2 in the heat conductive sheet 1 is not particularly limited, and can be appropriately selected according to the purpose.
  • the content of the binder resin 2 in the heat conductive sheet 1 may be 20% by volume or more, may be 23% by volume or more, or may be 25% by volume from the viewpoint of the flexibility of the heat conductive sheet 1. or more, or 28% by volume or more.
  • the content of the binder resin 2 in the heat conductive sheet 1 is preferably less than 42% by volume from the viewpoint of the thermal conductivity of the heat conductive sheet 1 and the arithmetic mean roughness (Sa) of the sheet surface. It may be 40% by volume or less, 36% by volume or less, 34% by volume or less, 32% by volume or less, or 30% by volume or less.
  • the heat conductive sheet 1 preferably contains fibrous fillers 3 .
  • the fibrous filler 3 has a major axis and a minor axis, and the major axis and minor axis are different in length, and the aspect ratio (average major axis length/average minor axis length) exceeds 1. including.
  • the fibrous filler 3 may be used singly or in combination of two or more.
  • the fibrous filler 3 can be appropriately selected depending on the intended purpose. For example, metal fiber, carbon fiber, etc. can be used, and carbon fiber is preferable.
  • Carbon fibers include, for example, pitch-based carbon fiber, PAN-based carbon fiber, carbon fiber obtained by graphitizing PBO fiber, arc discharge method, laser evaporation method, CVD method (chemical vapor deposition method), CCVD method (catalytic chemical vapor deposition method), growth method) or the like can be used.
  • pitch-based carbon fibers are preferable from the viewpoint of thermal conductivity.
  • the average fiber length (average long axis length) of the fibrous filler 3 can be, for example, 50 to 250 ⁇ m, and may be 75 to 220 ⁇ m.
  • the average fiber diameter (average minor axis length) of the fibrous filler 3 can be appropriately selected according to the purpose, and can be, for example, 4 to 20 ⁇ m, and may be 5 to 14 ⁇ m.
  • the aspect ratio of the fibrous filler 3 can be appropriately selected depending on the purpose.
  • the average major axis length and average minor axis length of the fibrous filler 3 can be measured with a microscope or scanning electron microscope (SEM), for example.
  • the surface of the carbon fiber may be covered with an insulating film depending on the purpose.
  • insulation-coated carbon fibers can be used as the carbon fibers.
  • the insulation-coated carbon fiber has a carbon fiber and an insulation coating on at least part of the surface of the carbon fiber, and may contain other components as necessary.
  • the insulating film is made of an electrically insulating material, such as silicon oxide or a hardened polymer material.
  • the polymerizable material is, for example, a radical polymerizable material such as a polymerizable organic compound and a polymerizable resin.
  • the radically polymerizable material can be appropriately selected according to the purpose as long as it is a material that undergoes radical polymerization using energy. Examples thereof include compounds having a radically polymerizable double bond. Examples of radically polymerizable double bonds include vinyl groups, acryloyl groups, and methacryloyl groups.
  • the number of radically polymerizable double bonds in the compound having radically polymerizable double bonds is preferably two or more from the viewpoint of strength including heat resistance and solvent resistance.
  • Examples of compounds having two or more radically polymerizable double bonds include divinylbenzene (DVB) and compounds having two or more (meth)acryloyl groups.
  • the radically polymerizable material may be used singly or in combination of two or more.
  • the molecular weight of the radically polymerizable material can be appropriately selected depending on the purpose, and can be in the range of 50-500, for example.
  • the content of structural units derived from the polymerizable material in the insulating coating can be, for example, 50% by mass or more, and can be 90% by mass or more. can also
  • the average thickness of the insulating film can be appropriately selected depending on the purpose, and from the viewpoint of realizing high insulation, it can be 50 nm or more, may be 100 nm or more, or may be 200 nm or more. .
  • the upper limit of the average thickness of the insulating coating can be, for example, 1000 nm or less, and may be 500 nm or less.
  • the average thickness of the insulating coating can be determined, for example, by observation with a transmission electron microscope (TEM).
  • Examples of methods for coating carbon fibers with an insulating film include a sol-gel method, a liquid phase deposition method, a polysiloxane method, and a polymerizable material on at least a part of the surface of the carbon fiber described in JP-A-2018-98515. Examples include a method of forming an insulating film made of a cured product.
  • the content of the fibrous filler 3 in the heat conductive sheet 1 can be, for example, 5% by volume or more, or can be 10% by volume or more, from the viewpoint of the thermal conductivity of the heat conductive sheet 1. % or more, 20 volume % or more, 22 volume % or more, or 24 volume % or more. In addition, the content of the fibrous filler 3 in the heat conductive sheet 1 can be, for example, 30% by volume or less, or 28% by volume or less, from the viewpoint of the moldability of the heat conductive sheet 1. It can be 26 volume % or less, or 24 volume % or less.
  • the content of the fibrous filler 3 in the heat conductive sheet 1 can be, for example, 5 to 50% by volume, preferably 14 to 25% by volume. When two or more kinds of fibrous fillers 3 are used in combination, it is preferable that the total amount thereof satisfies the content described above.
  • the other thermally conductive material 4 is a thermally conductive material other than the fibrous filler 3 described above, and includes, for example, an inorganic filler.
  • Other shapes of the heat-conducting material 4 include, for example, a spherical shape, a crushed shape, an ellipsoidal shape, a massive shape, a granular shape, a flat shape, a needle shape, and the like.
  • the shape of the other thermally conductive material 4 is preferably spherical, oval, or the like from the viewpoint of filling properties.
  • Other thermally conductive materials 4 may be used singly or in combination of two or more.
  • thermally conductive material 4 examples include inorganic fillers, such as aluminum oxide (alumina, sapphire), aluminum nitride, aluminum hydroxide, aluminum, and zinc oxide.
  • inorganic fillers such as aluminum oxide (alumina, sapphire), aluminum nitride, aluminum hydroxide, aluminum, and zinc oxide.
  • the average particle diameter (D50) of the alumina particles may be, for example, 0.1 to 10 ⁇ m, may be 0.1 to 8 ⁇ m, may be 0.1 to 7 ⁇ m, may be 0.1 to It may be 5 ⁇ m.
  • the average particle size (D50) of the aluminum nitride particles may be, for example, 0.1 to 10 ⁇ m, may be 0.1 to 8 ⁇ m, may be 0.1 to 7 ⁇ m, may be 0.1 It may be ⁇ 2 ⁇ m.
  • the average particle size of the other thermally conductive material 4 is obtained by calculating the cumulative curve of the particle size value from the small particle size side of the particle size distribution when the entire particle size distribution of the other thermally conductive material 4 is taken as 100%. means the particle diameter when the cumulative value reaches 50%.
  • the particle size distribution (particle size distribution) is determined by volume. Examples of the method for measuring the particle size distribution include a method using a laser diffraction particle size distribution analyzer.
  • the other thermally conductive material 4 may be surface-treated.
  • the surface treatment includes, for example, treating the other thermally conductive material 4 with a coupling agent such as an alkoxysilane compound.
  • the processing amount of the coupling agent can be, for example, in the range of 0.1 to 1.5% by volume with respect to the total amount of the other thermally conductive material 4.
  • An alkoxysilane compound is a compound having a structure in which 1 to 3 of the 4 bonds of a silicon atom (Si) are bonded to alkoxy groups, and the remaining bonds are bonded to organic substituents.
  • Examples of the alkoxy group that the alkoxysilane compound has include a methoxy group, an ethoxy group, and a butoxy group.
  • Specific examples of alkoxysilane compounds include trimethoxysilane compounds and triethoxysilane compounds.
  • the content of the other thermally conductive material 4 in the thermally conductive sheet 1 is not particularly limited, and can be appropriately selected according to the purpose.
  • the content of the thermally conductive material 4 is more than 21% by volume from the viewpoint of reducing the thermal conductivity of the thermally conductive sheet 1 and the difference in thermal resistance due to load. It may be 36% by volume or more, 40% by volume or more, or 42% by volume or more.
  • the content of the other thermally conductive material 4 in the thermally conductive sheet 1 can be 50% by volume or less in terms of the arithmetic mean roughness (Sa) of the surface of the thermally conductive sheet 1, and 48% by volume. % or less, or 46 volume % or less.
  • Sa arithmetic mean roughness
  • the total content of the fibrous filler 3 and the other heat conductive material 4 in the heat conductive sheet 1 is From the viewpoint of making the conductivity and the arithmetic mean roughness (Sa) of the surface of the heat conductive sheet 1 5.0 ⁇ m or more and reducing the difference in thermal resistance, it can be 57% by volume or more, and 60% by volume or more. may be 63% by volume or more, 65% by volume or more, or 68% by volume or more.
  • the total content of the fibrous filler 3 and the other thermally conductive material 4 in the thermally conductive sheet 1 can be 75 volume or less, and 70% by volume or less, from the viewpoint of the moldability of the thermally conductive sheet 1. may be
  • the heat conductive sheet 1 may further contain components other than the components described above within a range that does not impair the effects of the present technology.
  • Other components include, for example, dispersants, curing accelerators, retarders, tackifiers, plasticizers, flame retardants, antioxidants, stabilizers, colorants, and the like.
  • a method for manufacturing a thermally conductive sheet according to the present technology includes a step A of preparing a thermally conductive composition containing a binder resin 2 and a fibrous filler 3, a step B of forming a molded block from the thermally conductive composition, and molding. It has a step C of slicing the body block into sheets to obtain a thermally conductive sheet precursor, and a step D of pressing the thermally conductive sheet precursor to obtain the thermally conductive sheet 1 described above.
  • step A a thermally conductive composition containing binder resin 2 and fibrous filler 3 is prepared.
  • the thermally conductive composition may contain other thermally conductive materials 4 as described above.
  • the thermally conductive composition may be uniformly mixed with various additives and volatile solvents by known methods.
  • a molded block is formed from the thermally conductive composition.
  • methods for forming the molded block include an extrusion molding method and a mold molding method.
  • the extrusion molding method and the mold molding method are not particularly limited, and various known extrusion molding methods and mold molding methods can be selected depending on the viscosity of the heat conductive composition and the properties required for the heat conductive sheet 1. can be adopted as appropriate.
  • the extrusion molding method when the thermally conductive composition is extruded from a die, or in the mold molding method, when the thermally conductive composition is pressed into the mold, the binder resin 2 flows, and the fibers are formed along the flow direction.
  • the long axis of the shaped filler 3 is oriented.
  • the size and shape of the molded block can be determined according to the required size of the heat conductive sheet. For example, a rectangular parallelepiped having a cross-sectional length of 0.5 to 15 cm and a width of 0.5 to 15 cm can be used. The length of the rectangular parallelepiped may be determined as required.
  • the obtained molded block is preferably heat-cured.
  • the curing temperature in thermosetting can be appropriately selected according to the purpose, and can be in the range of 60.degree. C. to 120.degree. C. when the binder resin 2 is a silicone resin, for example.
  • Curing time in thermal curing can be, for example, in the range of 30 minutes to 10 hours.
  • step C the molded block is sliced into sheets to obtain a thermally conductive sheet precursor in which the long axes of the fibrous fillers 3 are oriented in the thickness direction B.
  • the fibrous filler 3 is exposed on the surface (sliced surface) of the heat conductive sheet precursor obtained by slicing.
  • the slicing method is not particularly limited, and can be appropriately selected from among known slicing devices according to the size and mechanical strength of the compact block. Examples of the slicing device include an ultrasonic cutter and a planer.
  • the slicing direction of the molded block is 60 to 120 degrees with respect to the extrusion direction because the long axis of the fibrous filler 3 is oriented in the extrusion direction in some cases. preferably 70 to 100 degrees, more preferably 90 degrees (perpendicular).
  • step D the thermally conductive sheet precursor is pressed to obtain the thermally conductive sheet 1 .
  • step D by pressing the thermally conductive sheet precursor, the binder resin 2 constituting the thermally conductive sheet precursor 7 oozes out onto the surface of the thermally conductive sheet 1 (the thermally conductive sheet precursor after pressing), and heat is conducted.
  • the sheet 1 comes to have tackiness.
  • the binder resin 2 that oozes out onto the surface of the heat conductive sheet 1 may be in an uncured state or in a state in which curing has progressed by several percent.
  • the thermally conductive sheet 1 obtained in step D has a smoother surface and can further improve the adhesion between other members and the thermally conductive sheet 1 .
  • step D for example, by pressing the sliced surface (surface) of the thermally conductive sheet precursor, a regular shape is transferred to the surface of the thermally conductive sheet precursor.
  • a film or cushion having a regular shape on the surface is adhered to the surface of the thermally conductive sheet precursor and pressed to change the shape of the film or cushion surface to that of the thermally conductive sheet precursor. transfer to the surface.
  • step D a laminate obtained by sandwiching and pressing the sliced surface of the thermally conductive sheet precursor between films with smooth surfaces (a film with a smooth surface, the pressed thermally conductive sheet precursor, and a surface A laminate with a smooth film) is further pressed with a film or cushion having a regular shape on the surface, and the shape of the surface of the film or cushion having a regular shape on the surface is heated. It may be transferred to the surface of the conductive sheet precursor.
  • FIG. 2 is a cross-sectional view for explaining an example of step D of pressing a thermally conductive sheet precursor to obtain a thermally conductive sheet in the method for manufacturing a thermally conductive sheet.
  • the arrows in FIG. 2 represent the direction of pressing.
  • step D as shown in FIG. 2, the thermally conductive sheet precursor 7 is sandwiched between release films 6A and 6B, and a cushion 8 having a regular shape on the surface is placed outside the release films 6A and 6B. (hereinafter sometimes simply referred to as "cushion 8"), that is, the laminate 10 having the cushion 8A, the release film 6A, the thermal conductive sheet precursor 7, the release film 6B and the cushion 8B in this order. You can press.
  • the shape of the surface of the cushion 8 can be transferred to the surface of the heat conductive sheet precursor 7 by pressing the laminate 10 as described above. Further, by using the cushion 8 having a regular shape on the surface, the surface of the heat conductive sheet precursor 7 can be uniformly pressed, and the thermal resistance of the heat conductive sheet 1 can be effectively reduced. Furthermore, when the thermally conductive sheet precursor 7 is pressed, by sandwiching the thermally conductive sheet precursor 7 between the release films 6A and 6B, the thermally conductive sheet precursor 7 can be removed when the thermally conductive sheet precursor 7 is pressed. Adhesion to the press can be prevented.
  • step D the thermal conductive sheet precursor 7 is sandwiched between release films 6A and 6B, and the outer sides of the release films 6A and 6B have a regular shape on the surface.
  • a state in which a film 9 (hereinafter sometimes simply referred to as "film 9", etc.) is arranged, that is, a laminate having film 9A, release film 6A, thermally conductive sheet precursor 7, release film 6B and film 9B in this order 11 may be pressed.
  • the shape of the surface of the film 9 can also be transferred to the surface of the heat conductive sheet precursor 7 by pressing the laminate 11 as described above.
  • the film 9 having a regular shape on the surface the surface of the thermally conductive sheet precursor 7 can be uniformly pressed, and the thermal resistance of the thermally conductive sheet 1 can be effectively reduced.
  • step D the cushion 8 having a regular shape on the surface and the film 9 having a regular shape on the surface may be used together.
  • the heat conductive sheet precursor 7 is sandwiched between release films 6A and 6B, and a cushion 8 having a regular shape is arranged on the outer surface of the release film 6A, and the release film 6B A state in which a film 9 having a regular shape is arranged on the outer surface of the laminate, that is, a laminate having a cushion 8, a release film 6A, a heat conductive sheet precursor 7, a release film 6B and a film 9 in this order is pressed.
  • the release film 6 examples include PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyolefin, polymethylpentene, glassine paper, and the like.
  • the thickness of the release film 6 is not particularly limited, and can be appropriately selected according to the purpose. Also, the thinner the release film 6 is, the better the followability (adhesion) to the heat conductive sheet 1 is, and the more effectively the tack force of the heat conductive sheet 1 can be exhibited.
  • the release film 6 is preferably a thin PET film.
  • the release film 6A and the release film 6B may be made of the same material or may be made of different materials. Moreover, the thickness of the release film 6A and the release film 6B may be the same or may be different.
  • the cushion 8 one having a regular shape as described above can be used as a pattern in plan view. Rubber, for example, can be used as the material of the cushion 8 .
  • a specific example of the cushion 8 is YOM-F01 FDRR manufactured by Yamauchi Corporation.
  • the thickness of the cushion 8 is not particularly limited, and can be appropriately selected according to the purpose.
  • the regular shape of the surface of the cushion 8A and the cushion 8B may be the same or different.
  • the cushion 8A and the cushion 8B may be made of the same material or may be made of different materials.
  • the thickness of the cushion 8A and the cushion 8B may be the same, or may be different.
  • a film having a regular shape as described above can be used as a pattern in plan view.
  • an embossed film having regular unevenness on the surface can be used.
  • the material of the film 9 is not particularly limited, and for example, PET can be used.
  • Specific examples of the film 9 include the product name "ALEF", the product name "EF”, the product name "NEF”, and the product name "Kodia” (manufactured by Ishijima Kagaku Kogyo Co., Ltd.).
  • the film 9A and the film 9B may be made of the same material or may be made of different materials.
  • the film 9A and the film 9B may have the same or different shapes with surface regularity.
  • the thickness of the film 9 is not particularly limited and can be appropriately selected according to the purpose.
  • the film 9A and the film 9B may have the same thickness or may have different thicknesses.
  • a pair of pressing devices 5 consisting of a flat plate and a press head with a flat surface can be used.
  • the heat conductive sheet precursor 7 may be pressed with pinch rolls.
  • the pressure during pressing may be, for example, in the range of 0.1 to 100 MPa, may be in the range of 0.1 to 1 MPa, or may be in the range of 0.1 to 0.5 MPa.
  • the pressing temperature may be, for example, in the range of 0 to 180.degree. C., may be in the range of room temperature to 100.degree.
  • the term “normal temperature” refers to the range of 15 to 25° C. defined in JIS K 0050:2019 (general rules for chemical analysis methods).
  • pressing may be performed at a temperature higher than the glass transition temperature (Tg) of the binder resin 2 constituting the thermally conductive sheet precursor 7 .
  • Press times can range, for example, from 10 seconds to 5 minutes, and may range from 30 seconds to 3 minutes.
  • the pressure during pressing is preferably in the range of 0.2 to 0.7 MPa.
  • the pressing temperature and pressing time are preferably in the range of room temperature to 90°C. A high temperature (about 90° C.) and a long time (about 3 minutes) are preferable when the sheet 1 is not easily crushed.
  • step D instead of pressing the thermally conductive sheet precursor 7, the surface of the thermally conductive sheet precursor 7 is formed into a regular shape of the cushion 8 or the film 9 by the following method. may be transcribed.
  • the thermal conductive sheet precursor 7, the cushion 8, or the film 9 are placed in a vacuum pack and brought into close contact with each other so that the shape (pattern) of the surface of the cushion 8 or the film 9 can be changed into the thermal conductive sheet. It may be transferred to the surface of the precursor 7 .
  • a laminate in which the thermally conductive sheet precursor 7 is sandwiched between the cushion 8 and the film 9 can be obtained by the load of the thermally conductive sheet precursor 7 and the weight of the cushion 8 and the film 9.
  • the shape (pattern) of the surface of the cushion 8 or the film 9 may be transferred to the surface of the heat conductive sheet precursor 7 .
  • step D by pressing the thermally conductive sheet precursor 7 without physical processing such as polishing, the surface arithmetic mean roughness (Sa) is 5.0 ⁇ m or more, and the thickness A thermal conductive sheet 1 having a thermal resistance difference of less than 0.10° C. ⁇ cm 2 /W between a thermal resistance of 1 kgf/cm 2 at a thickness of 0.3 mm and a thermal resistance of 5 kgf/cm 2 at a thickness of 0.3 mm. obtain. Therefore, as described above, the heat conductive sheet 1 obtained in step D is less likely to contain air during mounting, and more likely to escape air, and can reduce the difference in thermal resistance due to load.
  • the heat conductive sheet 1 having a regular shape (unevenness) on the surface can be manufactured only by external pressure. No processing (physical scraping, processing, polishing, etc.) is required. Therefore, it is possible to prevent the risk of the conductive substance (eg, the fibrous filler 3) in the thermally conductive sheet 1 falling off, and to avoid the risk of short-circuiting when the thermally conductive sheet is mounted on an IC chip in which circuits are integrated. Therefore, the thermally conductive sheet 1 obtained by this manufacturing method has the advantage that it can be used in any location as compared with physically processed thermally conductive sheets. Furthermore, in this manufacturing method, even if the thermally conductive sheet precursor 7 has an arbitrary thickness, it is possible to easily obtain the thermally conductive sheet 1 having a regular shape on the surface.
  • step D when transferring a regular shape to the surface of the thermally conductive sheet precursor 7 by pressing the thermally conductive sheet precursor 7, as described above, in the thermally conductive sheet precursor 7
  • the content of the binder resin 2 prevent it from becoming too large, it is possible to make the regular shape (unevenness) formed on the heat conductive sheet 1 difficult to disappear.
  • the thermally conductive sheet 1 is, for example, an electronic device (thermal device) having a structure arranged between a heat generating body and a radiator so that the heat generated by the heat generating body is released to the heat radiator.
  • An electronic device has at least a heating element, a radiator, and a thermally conductive sheet 1, and may further have other members as necessary.
  • the electronic device has a surface arithmetic mean roughness (Sa) of 5.0 ⁇ m or more, a thermal resistance of 1 kgf/cm 2 at a thickness of 0.3 mm, and
  • the thermal conductive sheet 1 has a thermal resistance difference of less than 0.10° C. ⁇ cm 2 /W from a thermal resistance of 5 kgf/cm 2 at a thickness of 0.3 mm.
  • the thermal conductive sheet 1 does not easily enclose air during mounting and can reduce the difference in thermal resistance due to the load. can be prevented from breaking.
  • the thermally conductive sheet 1 having a large size is picked up by an automatic machine and mounted on an IC chip as a heating element, the surface of the thermally conductive sheet 1 is not smooth. It is possible to prevent the heat conductive sheet 1 from being mounted in parallel with the IC chip. Therefore, in the electronic device, it is possible to prevent air from being included in the central portion between the heat conductive sheet 1 and the IC chip.
  • the heating element is not particularly limited, for example, integrated circuit elements such as CPU, GPU (Graphics Processing Unit), DRAM (Dynamic Random Access Memory), flash memory, transistors, resistors, etc. Electronic parts that generate heat in electric circuits etc.
  • the heating element also includes components for receiving optical signals, such as optical transceivers in communication equipment.
  • the radiator is not particularly limited, and examples include those used in combination with integrated circuit elements, transistors, optical transceiver housings, such as heat sinks and heat spreaders.
  • Materials for the heat sink and heat spreader include, for example, copper and aluminum.
  • a heat pipe is, for example, a cylindrical, substantially cylindrical, or flat cylindrical hollow structure.
  • FIG. 3 is a cross-sectional view showing an example of a semiconductor device to which a heat conductive sheet is applied.
  • the heat conductive sheet 1 is mounted on a semiconductor device 50 built in various electronic devices, and sandwiched between a heat generator and a radiator.
  • a semiconductor device 50 shown in FIG. 3 includes an electronic component 51 , a heat spreader 52 , and a heat conductive sheet 1 .
  • sandwiching the heat conductive sheet 1 between the heat spreader 52 and the heat sink 53 , together with the heat spreader 52 a heat dissipation member for dissipating the heat of the electronic component 51 is configured.
  • the mounting location of the heat conductive sheet 1 is not limited to between the heat spreader 52 and the electronic component 51 or between the heat spreader 52 and the heat sink 53, but can be appropriately selected according to the configuration of the electronic device or semiconductor device.
  • the heat spreader 52 is formed, for example, in the shape of a square plate, and has a main surface 52a facing the electronic component 51 and side walls 52b erected along the outer circumference of the main surface 52a.
  • the heat spreader 52 is provided with the heat conductive sheet 1 on the principal surface 52a surrounded by the side walls 52b, and is provided with the heat sink 53 via the heat conductive sheet 1 on the other surface 52c opposite to the principal surface 52a.
  • Example 1 In Example 1, as shown in Table 1, 24% by volume of alumina particles with an average particle size of 4 ⁇ m and an average particle size of 1.3 ⁇ m were added to a two-component addition reaction type liquid silicone, which was coupled with a silane coupling agent. and 24% by volume of pitch-based carbon fiber having an average fiber length of 150 ⁇ m as a fibrous filler were mixed to prepare a silicone composition.
  • the two-liquid addition reaction type liquid silicone resin used was 28% by volume containing organopolysiloxane as a main component.
  • the resulting silicone composition was extruded into a hollow square prism-shaped mold (70 mm ⁇ 70 mm) to form a 70 mm square silicone molding.
  • the silicone molded product was heated in an oven at 100° C. for 6 hours to obtain a cured silicone product.
  • the cured silicone material was cut with a slicer so as to have a thickness of 0.3 mm to obtain a thermally conductive sheet precursor.
  • the pressing conditions were 0.5 MPa, temperature of 40° C., and time of 10 sec.
  • the outer diameter of the heat conductive sheet 1 after pressing was processed to 60 mm x 60 mm square.
  • the pressing conditions were 0.5 MPa, temperature of 40° C., and time of 10 sec.
  • the outer diameter of the heat conductive sheet 1 after pressing was processed to 60 mm x 60 mm square.
  • a thermally conductive sheet precursor 7 was obtained in the same manner as in Example 1, and copy paper (A4 paper) was applied to the surface of the thermally conductive sheet precursor 7 sandwiched between release films 6 (PET films subjected to release treatment). was attached and pressed.
  • the pressing conditions were 0.5 MPa, temperature of 40° C., and time of 10 sec.
  • the outer diameter of the heat conductive sheet 1 after pressing was processed to 60 mm x 60 mm square.
  • FIG. 4 is a cross-sectional view for explaining a method of pressing a press heat conductive sheet precursor without adhering a film or cushion having a regular shape on the surface in Comparative Example 2.
  • FIG. 4 a thermally conductive sheet precursor 7 was obtained in the same manner as in Example 1, and as shown in FIG. , without attaching a rubber cushion having a regular shape on the surface or an embossed film having a regular shape on the surface, and pressing as it was.
  • the pressing conditions were 0.5 MPa, temperature of 40° C., and time of 10 sec.
  • the outer diameter of the heat conductive sheet 1 after pressing was processed to 60 mm x 60 mm square.
  • Comparative Example 3 a thermally conductive sheet precursor 7 was obtained in the same manner as in Example 1, and the outer diameter of the thermally conductive sheet precursor 7 was processed to 60 mm ⁇ 60 mm square without pressing.
  • a thermal conductive sheet precursor 7 was obtained in the same manner as in Example 1, and sandpaper (manufactured by Sankyo Rikagaku Co., Ltd., product name: FUJISTAR waterproof abrasive paper DCCS-1000 (#1000)) was used to conduct heat.
  • the surface of the sheet precursor 7 was polished. Specifically, an abrasive paper with a weight of 300 g was dragged on the thermal conductive sheet precursor 7 100 times.
  • the outer diameter of the heat conductive sheet precursor 7 after polishing was processed to 60 mm ⁇ 60 mm square.
  • Comparative Example 5 In Comparative Example 5, as shown in Table 1, 44% by volume of alumina particles having an average particle diameter of 2 ⁇ m, which were subjected to coupling treatment with a silane coupling agent, to a two-liquid addition reaction type liquid silicone, and an average fiber as a fibrous filler. 14% by volume of pitch-based carbon fibers with a length of 200 ⁇ m were mixed to prepare a silicone composition, and 42% by volume of a two-liquid addition reaction type liquid silicone resin containing organopolysiloxane as a main component was used.
  • a thermally conductive sheet precursor 7 was obtained in the same manner as in Example 1 except that the thermally conductive sheet precursor 7 was pressed in the same manner as in Example 1. The pressing conditions were 0.5 MPa, temperature of 40° C., and time of 10 sec. The outer diameter of the heat conductive sheet 1 after pressing was processed to 60 mm x 60 mm square.
  • thermally conductive sheets 1 obtained in Examples 1 and 2 and Comparative Examples 1, 2 and 5 and the thermally conductive sheet precursors 7 obtained in Comparative Examples 3 and 4 in Shore type OO is based on ASTM-D2240.
  • Five thermally conductive sheets 1 (or thermally conductive sheet precursor 7) having a thickness of 2 mm were stacked to obtain a thickness of 10 mm, and five points on one side and a total of 10 points on both sides were measured by the measurement method described above. Table 1 shows the results.
  • ⁇ Tackiness> The tackiness of the thermally conductive sheets 1 immediately after being obtained in Examples 1 and 2 and Comparative Examples 1, 2 and 5 and the thermally conductive sheet precursors 7 immediately after being obtained in Comparative Examples 3 and 4 was visually evaluated. Specifically, when there was no tackiness, it was evaluated as " ⁇ " (OK), and when there was tackiness, it was evaluated as " ⁇ ” (NG). Table 1 shows the results.
  • FIG. 5 is a perspective view for explaining an example of a method for measuring the height of the heat conductive sheet from the copper plate.
  • the thermal conductive sheet 1 60 mm ⁇ 60 mm, thickness 0.3 mm
  • the sheet precursor 7 60 mm ⁇ 60 mm, thickness 0.3 mm
  • JIS H 3100 C1100P 10 cm square copper plate 21
  • a non-contact measuring device product name: KEYENCE ONE-SHOT 3D VR-5000
  • thermal resistance difference A thermally conductive sheet 1 (or thermally conductive sheet precursor 7) having a diameter of 20 mm and a thickness of 0.3 mm is prepared, and the thermal resistance (° C. cm 2 /W ) was measured by a method according to ASTM-D5470. Then, the thermal resistance (° C. cm 2 /W) of the thermal conductive sheet 1 (or thermal conductive sheet precursor 7) when a pressure of 1 kgf/cm 2 is applied and the thermal resistance (° C. cm 2 /W) when a pressure of 5 kgf/cm 2 is applied A difference from the thermal resistance (°C ⁇ cm 2 /W) of the thermally conductive sheet 1 (or the thermally conductive sheet precursor 7) was obtained. Table 1 shows the results.
  • the surface arithmetic mean roughness (Sa) was 5.0 ⁇ m or more, the thermal resistance was 1 kgf/cm 2 at a thickness of 0.3 mm, and the thermal resistance was 5 kgf/cm 2 at a thickness of 0.3 mm. It was found that a thermally conductive sheet having a thermal resistance difference of less than 0.10° C.cm 2 /W can be obtained.
  • the surface arithmetic mean roughness (Sa) was 5.0 ⁇ m or more, and the thermal resistance was 1 kgf/cm 2 at a thickness of 0.3 mm, and the thermal resistance was 5 kgf at a thickness of 0.3 mm. It was found that a thermally conductive sheet having a thermal resistance difference of less than 0.10° C. ⁇ cm 2 /W from the thermal resistance of 0.10° C. ⁇ cm 2 /cm 2 could not be obtained.
  • the thermally conductive sheets (or thermally conductive sheet precursors) obtained in Comparative Examples 1 to 3 had poor contact properties in a low load (1 kgf/cm 2 ) region, and when a high load (5 kgf/cm 2 ) was applied, It is considered that the heat conductive sheets obtained in Examples 1 and 2 had a larger difference in heat resistance due to the load because the contact property was improved.
  • the thermally conductive sheet precursor obtained in Comparative Example 4 like the thermally conductive sheets obtained in Examples 1 and 2, had a thermal resistance difference of 0.10° C. ⁇ cm 2 when measured while varying the load. /W.
  • Comparative Example 4 since the surface was polished with sandpaper, the surface smoothness was improved and the unevenness of the surface was small.
  • the surface of the thermally conductive sheet precursor was polished with sandpaper, that is, the thermally conductive sheet precursor was physically processed. It was found that the appearance of the sheet precursor was darkened.
  • Example 1 a film or cushion having a regular shape (unevenness) on the surface was attached to the thermal conductive sheet precursor and pressed, so that the surface of the thermal conductive sheet after processing had unevenness. was transferred (unevenness remained).
  • Comparative Example 5 As in Examples 1 and 2, a film or cushion having a regular shape (unevenness) on the surface was attached to the thermally conductive sheet precursor and pressed. It was found that the unevenness was not transferred to the surface of the conductive sheet (the unevenness did not remain).
  • the heat conductive sheet obtained in Comparative Example 5 had a high silicone resin content of 42% by volume, so it is considered that the irregularities were difficult to transfer to the surface. This is supported by the fact that the arithmetic mean roughness (Sa) of the surface of the thermally conductive sheet obtained in Comparative Example 5 was less than 5.0 ⁇ m.
  • the heat conductive sheets obtained in Examples 1 and 2 followed the copper plate.
  • the thermally conductive sheets obtained in Examples 1 and 2 had a surface arithmetic mean roughness (Sa) of 5.0 ⁇ m or more.
  • the thermally conductive sheets obtained in Comparative Examples 1 and 2 had smoother surfaces and tackiness than the thermally conductive sheets of Examples 1 and 2, and bubbles and floating were observed on the copper plate.
  • the heat conductive sheets obtained in Comparative Examples 1 and 2 have tackiness compared to the heat conductive sheets obtained in Examples 1 and 2, so that when the heat conductive sheet is separated from the suction pad, the heat conductive sheet is separated from the suction pad. It is thought that the air bubbles were contained because the heat conductive sheet at the contact portion did not sufficiently adhere to the copper plate.
  • Comparative Example 4 a method of reducing the thermal resistance difference due to the load of the thermally conductive sheet by performing physical processing on the surface of the thermally conductive sheet is also conceivable. From the viewpoint of risk, the places where the thermally conductive sheet can be used are limited. On the other hand, as in Examples 1 and 2, the heat conductive sheet having the unevenness (regular shape) transferred to the surface by pressing does not require physical processing of the surface as in Comparative Example 4. Therefore, it was suggested that the risk of short circuit can be reduced compared to the heat conductive sheet of Comparative Example 4.

Abstract

実装時にエアーを内包しにくく、荷重による熱抵抗差を低減できる熱伝導シートを提供する。 熱伝導シート1は、表面の算術平均粗さ(Sa)が5.0μm以上であり、厚さ0.3mmにおける1kgf/cm2の熱抵抗と、厚さ0.3mmにおける5kgf/cm2の熱抵抗との熱抵抗差が0.10℃・cm2/W未満である。

Description

熱伝導シート及び熱伝導シートの製造方法
 本技術は、熱伝導シート及び熱伝導シートの製造方法に関する。本出願は、日本国において2021年2月24日に出願された日本特許出願番号特願2021-028001を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 従来、パーソナルコンピュータ等の各種電気機器やその他の機器に搭載されている半導体素子は、駆動により熱が発生し、発生した熱が蓄積すると半導体素子の駆動や周辺機器へ悪影響が生じるおそれがあるため、各種の冷却方法が用いられている。
 半導体素子を有する機器の冷却方法としては、当該機器にファンを取り付けて機器筐体内の空気を冷却する方法、半導体素子に放熱フィンや放熱板等のヒートシンクを取り付ける方法、フッ素系不活性液体に浸漬する方式等が知られている。半導体素子にヒートシンクを取り付けて冷却を行う場合、半導体素子の熱を効率よく放出させるために、半導体素子とヒートシンクとの間に熱伝導シートが設けられる。
 熱伝導シートの一例として、バインダ樹脂に充填剤(例えば、炭素繊維などの熱伝導性フィラー)を分散含有させたものが広く用いられている(例えば、特許文献1を参照)。
 ところで、パーソナルコンピュータのCPU(Central Processing Unit)などの電子部品は、その高速化、高性能化に伴って、放熱量が年々増大する傾向にある。しかし、プロセッサ等のチップサイズは、微細シリコン回路技術の進歩によって、従来と同等以下に小さいサイズとなり、単位面積あたりの熱流速が高くなっている。このような電子部品の温度上昇による不具合などを回避するために、電子部品を、より効率的に放熱、冷却することが求められている。
 熱伝導シートの放熱特性を向上するためには、例えば、熱の伝わりにくさを示す指標である熱抵抗を下げることが求められる。熱伝導シートの熱抵抗を下げるためには、例えば、発熱体(例えば電子部品)や放熱体(例えばヒートシンク)に対する熱伝導シートの密着性を向上させることが有効となる。
 例えば、特許文献2,3に記載された技術では、熱伝導シートをプレスすることで、熱伝導シート表面の平滑性を上げ、接触性を良好にして、熱抵抗の低下を図っている。
 近年、被着体(例えばICチップ)などが大きくなることに伴い、使用する熱伝導シートのサイズも大きくなっている。例えば、サイズが大きく全面にタックがある薄い熱伝導シートをICチップ上に実装する場合、熱伝導シートの表面が平滑であると、熱伝導シートとICチップとの間にエアー(気泡)を内包しやすくなり、そのまま加圧すると、熱伝導シート内部に折れが発生してしまうおそれがある。これにより、熱伝導シートの面内厚みが不均一となり、接触熱抵抗が増加し、熱伝導シートの熱抵抗を下げるのが困難な場合がある。また、表面が平滑な熱伝導シートは、荷重による熱抵抗差が大きい傾向にあり、被着体による荷重の大きさに偏りがある場合、十分に熱抵抗を下げることができないおそれがある。
 同様に、サイズが大きい熱伝導シートを自動機でピックアップしてICチップ上に実装する場合も、熱伝導シートの表面が平滑であると、熱伝導シートが複数の端部から実装されたり、熱伝導シートがICチップと平行に実装されやすくなり、熱伝導シートとICチップとの間の中央部にエアーが内包されやすい傾向にある。
 以上のように、従来は、熱伝導シートの表面(接着面)をより平滑にすることで、発熱体や放熱体との接触性を改善し、熱抵抗を小さくすることが検討されていた。しかし、熱伝導シートの表面の平滑性を良好にすると、熱伝導シートの実装時にエアーが混入しやすく、荷重による熱抵抗差を低減するのが難しい傾向にあった。
特開2012-23335号公報 特許第6178389号公報 特許第5752299号公報
 本技術は、このような従来の実情に鑑みて提案されたものであり、実装時にエアーを内包しにくく、荷重による熱抵抗差を低減できる熱伝導シートを提供する。
 本技術に係る熱伝導シートは、表面の算術平均粗さ(Sa)が5.0μm以上であり、厚さ0.3mmにおける1kgf/cmの熱抵抗と、厚さ0.3mmにおける5kgf/cmの熱抵抗との熱抵抗差が0.10℃・cm/W未満である。
 本技術に係る熱伝導シートの製造方法は、バインダ樹脂と繊維状フィラーとを含む熱伝導組成物を調製する工程Aと、熱伝導組成物から成形体ブロックを形成する工程Bと、成形体ブロックをシート状にスライスして熱伝導シート前駆体を得る工程Cと、熱伝導シート前駆体をプレスして、熱伝導シートを得る工程Dとを有し、熱伝導シートは、表面の算術平均粗さ(Sa)が5.0μm以上であり、熱伝導シートは、厚さ0.3mmにおける1kgf/cmの熱抵抗と、厚さ0.3mmにおける5kgf/cmの熱抵抗との熱抵抗差が0.10℃・cm/W未満である。
 本技術によれば、実装時にエアーを内包しにくく、荷重による熱抵抗差を低減できる熱伝導シートを提供できる。
図1は、熱伝導シートの一例を示す断面図である。 図2は、熱伝導シート前駆体をプレスして、熱伝導シートを得る工程Dの一例を説明するための断面図である。 図3は、熱伝導シートを適用した半導体装置の一例を示す断面図である。 図4は、比較例2において、表面に規則性のある形状を有するフィルム又はクッションを貼付せずにプレス熱伝導シート前駆体をプレスする方法を説明するための断面図である。 図5は、銅板からの熱伝導シートの高さを測定する方法の一例を説明するための斜視図である。
 <熱伝導シート>
 本技術に係る熱伝導シートは、表面の算術平均粗さ(Sa)が5.0μm以上であり、厚さ0.3mmにおける1kgf/cmの熱抵抗と、厚さ0.3mmにおける5kgf/cmの熱抵抗との熱抵抗差が0.10℃・cm/W未満である。このような熱伝導シートによれば、実装時にエアーを内包しにくく、かつ、エアーが抜けやすいとともに、荷重による熱抵抗差を低減できる。
 熱伝導シートは、表面の算術平均粗さ(Sa)が5.000μm以上であってもよく、5.100μm以上であってもよく、5.200μm以上であってもよく、5.300μm以上であってもよく、5.400μm以上であってもよく、5.500μm以上であってもよく、5.600μm以上であってもよく、5.700μm以上であってもよく、5.800μm以上であってもよく、5.900μm以上であってもよい。熱伝導シートの表面の算術平均粗さ(Sa)の上限値は、特に限定されないが、荷重による熱抵抗差をより効果的に低減する観点では、例えば、6.500μm以下とすることができ、6.400μm以下であってもよく、6.300μm以下であってもよく、6.200μm以下であってもよく、6.100μm以下であってもよく、6.000μm以下であってもよい。熱伝導シートの表面の算術平均粗さ(Sa)は、5.400~5.950μmの範囲とすることもできる。熱伝導シートの表面の算術平均粗さ(Sa)は、後述する実施例の方法で測定することができる。
 熱伝導シート1は、厚さ0.3mmにおける1kgf/cmの熱抵抗と、厚さ0.3mmにおける5kgf/cmの熱抵抗との熱抵抗差が、小さいほど好ましく、0.09℃・cm/W以下であってもよく、0.08℃・cm/W以下であってもよく、0.07℃・cm/W以下であってもよく、0.06℃・cm/W以下であってもよく、0.05℃・cm/W以下であってもよい。熱伝導シート1の熱抵抗は、後述する実施例に記載の方法で測定することができる。荷重による熱抵抗差として、熱伝導シート1に低荷重(1kgf/cm)をかけたときと、高荷重(5kgf/cm)をかけたときの熱抵抗差を規定したのは、熱伝導シート1の接触熱抵抗の比較をしやすくするためである。
 熱伝導シート1は、厚さ0.3mmにおける1kgf/cmの熱抵抗と、厚さ0.3mmにおける5kgf/cmの熱抵抗との熱抵抗差が上述した範囲を満たす限り、各荷重をかけたときの熱抵抗値の大きさは特に限定されない。例えば、熱伝導シート1は、0.3mmにおける1kgf/cmの熱抵抗が0.25℃・cm/W以下であってもよく、0.23℃・cm/W以下であってもよく、0.21℃・cm/W以下であってもよい。熱伝導シート1は、厚さ0.3mmにおける5kgf/cmの熱抵抗が、0.20℃・cm/W以下であってもよく、0.18℃・cm/W以下であってもよく、0.15℃・cm/W以下であってもよい。
 熱伝導シート1は、表面に規則性のある形状を有することが好ましい。熱伝導シート1が表面に規則性のある形状を有することにより、熱伝導シート1の表面の算術平均粗さ(Sa)を5.000μm以上にするとともに、熱伝導シート1の荷重による熱抵抗差をより効果的に低減できる。熱伝導シート1における規則性のある形状とは、例えば、規則性のある凹凸であり、平面視における凹部または凸部の模様(形状)が、互いに直交しない辺を有する多角形状等の幾何学模様や、複数の円形、楕円形が連続する模様、あるいはこれら幾何学模様と円形、楕円形の模様が混在する模様などが挙げられる。また、規則性のある形状は、平面視における凹部または凸部の模様が、ライン状や波状であってもよい。
 図1は、熱伝導シートの一例を示す断面図である。熱伝導シート1は、バインダ樹脂2と、繊維状フィラー3とを含み、繊維状フィラー3が、断面視で厚さ方向Bに配向している。例えば、熱伝導シート1において、繊維状フィラー3の長軸が、熱伝導シート1の厚さ方向に配向している。また、熱伝導シート1は、繊維状フィラー3以外の他の熱伝導材料4をさらに含んでもよい。
 熱伝導シート1は、例えば、ショアタイプOOにおける硬度が30超であることが好ましく、35~80の範囲であってもよく、40~75の範囲であってもよく、45~70の範囲であってもよく、50~70の範囲であってもよい。熱伝導シート1の硬度がこのような範囲であることにより、例えば後述するように、熱伝導シート1の表面に規則性のある形状を転写する場合、形成した規則性のある形状(凹凸)を消えにくくすることができる。熱伝導シート1の硬度は、後述する実施例の方法で測定することができる。
 熱伝導シート1の厚みは、特に限定されず、目的に応じて適宜選択することができる。例えば、熱伝導シート1の厚みは、0.05mm以上とすることができ、0.1mm以上とすることもできる。また、熱伝導シート1の厚みの上限値は、5mm以下とすることができ、4mm以下であってもよく、3mm以下であってもよい。熱伝導シート1は、取扱性の観点では、厚みが0.1~4mmであることが好ましい。熱伝導シート1の厚みは、例えば、熱伝導シート1の厚みを任意の5箇所で測定し、その算術平均値から求めることができる。
 以下、熱伝導シート1の構成要素の具体例について説明する。
 <バインダ樹脂>
 バインダ樹脂2は、繊維状フィラー3や他の熱伝導材料4を熱伝導シート1内に保持するためのものである。バインダ樹脂2は、熱伝導シート1に要求される機械的強度、耐熱性、電気的性質等の特性に応じて選択される。バインダ樹脂2としては、熱可塑性樹脂、熱可塑性エラストマー、熱硬化性樹脂の中から選択することができる。
 熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のエチレン-αオレフィン共重合体、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリフッ化ビニリデン及びポリテトラフルオロエチレン等のフッ素系重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリアクリロニトリル、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)樹脂、ポリフェニレン-エーテル共重合体(PPE)樹脂、変性PPE樹脂、脂肪族ポリアミド類、芳香族ポリアミド類、ポリイミド、ポリアミドイミド、ポリメタクリル酸、ポリメタクリル酸メチルエステル等のポリメタクリル酸エステル類、ポリアクリル酸類、ポリカーボネート、ポリフェニレンスルフィド、ポリサルホン、ポリエーテルサルホン、ポリエーテルニトリル、ポリエーテルケトン、ポリケトン、液晶ポリマー、シリコーン樹脂、アイオノマー等が挙げられる。
 熱可塑性エラストマーとしては、スチレン- ブタジエンブロック共重合体又はその水添化物、スチレン-イソプレンブロック共重合体又はその水添化物、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等が挙げられる。
 熱硬化性樹脂としては、架橋ゴム、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂等が挙げられる。架橋ゴムの具体例としては、天然ゴム、アクリルゴム、ブタジエンゴム、イソプレンゴム、スチレン-ブタジエン共重合ゴム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、エチレン-プロピレン共重合ゴム、塩素化ポリエチレンゴム、クロロスルホン化ポリエチレンゴム、ブチルゴム、ハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、及びシリコーンゴムが挙げられる。
 バインダ樹脂2としては、例えば、電子部品の発熱面とヒートシンク面との密着性を考慮するとシリコーン樹脂が好ましい。シリコーン樹脂としては、例えば、アルケニル基を有するシリコーンを主成分とし、硬化触媒を含有する主剤と、ヒドロシリル基(Si-H基)を有する硬化剤とからなる、2液型の付加反応型シリコーン樹脂を用いることができる。アルケニル基を有するシリコーンとしては、例えば、ビニル基を有するポリオルガノシロキサンを用いることができる。硬化触媒は、アルケニル基を有するシリコーン中のアルケニル基と、ヒドロシリル基を有する硬化剤中のヒドロシリル基との付加反応を促進するための触媒である。硬化触媒としては、ヒドロシリル化反応に用いられる触媒として周知の触媒が挙げられ、例えば、白金族系硬化触媒、例えば白金、ロジウム、パラジウムなどの白金族金属単体や塩化白金などを用いることができる。ヒドロシリル基を有する硬化剤としては、例えば、ヒドロシリル基を有するポリオルガノシロキサンを用いることができる。バインダ樹脂2は、1種単独で用いてもよいし、2種以上を併用してもよい。
 熱伝導シート1中のバインダ樹脂2の含有量は、特に限定されず、目的に応じて適宜選択することができる。例えば、熱伝導シート1中のバインダ樹脂2の含有量は、熱伝導シート1の柔軟性の観点では、20体積%以上とすることができ、23体積%以上であってもよく、25体積%以上であってもよく、28体積%以上であってもよい。また、熱伝導シート1中のバインダ樹脂2の含有量は、熱伝導シート1の熱伝導率や、シート表面の算術平均粗さ(Sa)の観点では、42体積%未満とすることが好ましく、40体積%以下であってもよく、36体積%以下であってもよく、34体積%以下であってもよく、32体積%以下であってもよく、30体積%以下であってもよい。
 <繊維状フィラー>
 熱伝導シート1は、繊維状フィラー3を含むことが好ましい。繊維状フィラー3とは、長軸と短軸とを有し、長軸と短軸の長さが異なりアスペクト比(平均長軸長さ/平均短軸長さ)が1を超える形状であるものを含む。繊維状フィラー3は、1種単独で用いてもよいし、2種以上を併用してもよい。繊維状フィラー3は、目的に応じて適宜選択することができ、例えば、金属繊維、炭素繊維などを用いることができ、炭素繊維が好ましい。
 炭素繊維は、例えば、ピッチ系炭素繊維、PAN系炭素繊維、PBO繊維を黒鉛化した炭素繊維、アーク放電法、レーザー蒸発法、CVD法(化学気相成長法)、CCVD法(触媒化学気相成長法)等で合成された炭素繊維を用いることができる。これらの中でも、熱伝導性の観点では、ピッチ系炭素繊維が好ましい。
 繊維状フィラー3の平均繊維長(平均長軸長さ)は、例えば、50~250μmとすることができ、75~220μmであってもよい。また、繊維状フィラー3の平均繊維径(平均短軸長さ)は、目的に応じて適宜選択することができ、例えば、4~20μmとすることができ、5~14μmであってもよい。繊維状フィラー3のアスペクト比は、目的に応じて適宜選択することができ、例えば、熱伝導性の観点では、例えば、8以上とすることができ、9~30であってもよい。繊維状フィラー3の平均長軸長さ及び平均短軸長さは、例えば、マイクロスコープや走査型電子顕微鏡(SEM)で測定することができる。
 炭素繊維は、目的に応じて、表面が絶縁被膜によって被覆されていてもよい。このように、炭素繊維として、絶縁被覆炭素繊維を用いることができる。絶縁被覆炭素繊維は、炭素繊維と、炭素繊維の表面の少なくとも一部に絶縁皮膜とを有し、必要に応じて、その他の成分を含有してもよい。
 絶縁皮膜は、電気絶縁性を有する材料からなり、例えば、酸化ケイ素や、重合性材料の硬化物で形成されている。重合性材料は、例えばラジカル重合性材料であり、重合性を有する有機化合物、重合性を有する樹脂などが挙げられる。ラジカル重合性材料は、エネルギーを利用してラジカル重合する材料であれば、目的に応じて適宜選択することができ、例えば、ラジカル重合性2重結合を有する化合物が挙げられる。ラジカル重合性2重結合としては、例えば、ビニル基、アクリロイル基、メタクリロイル基などが挙げられる。ラジカル重合性2重結合を有する化合物におけるラジカル重合性2重結合の個数は、耐熱性や、耐溶剤性を含む強度の観点では、2つ以上が好ましい。ラジカル重合性2重結合を2つ以上有する化合物は、例えば、ジビニルベンゼン(Divinylbenzene:DVB)、(メタ)アクリロイル基を2つ以上有する化合物が挙げられる。ラジカル重合性材料は、1種単独で用いてもよいし、2種以上を併用してもよい。ラジカル重合性材料の分子量は、目的に応じて適宜選択することができ、例えば、50~500の範囲とすることができる。絶縁皮膜が重合性材料の硬化物で形成されている場合、絶縁被膜における重合性材料に由来する構成単位の含有量は、例えば、50質量%以上とすることができ、90質量%以上とすることもできる。
 絶縁皮膜の平均厚みは、目的に応じて適宜選択することができ、高い絶縁性を実現する観点では、50nm以上とすることができ、100nm以上であってもよく、200nm以上であってもよい。絶縁被膜の平均厚みの上限値は、例えば、1000nm以下とすることができ、500nm以下であってもよい。絶縁被膜の平均厚みは、例えば、透過型電子顕微鏡(TEM)観察により求めることができる。
 絶縁皮膜により炭素繊維を被覆する方法としては、例えば、ゾルゲル法、液相堆積法、ポリシロキサン法、特開2018-98515号公報に記載された炭素繊維の表面の少なくとも一部に重合性材料の硬化物からなる絶縁皮膜を形成する方法等が挙げられる。
 熱伝導シート1中の繊維状フィラー3の含有量は、熱伝導シート1の熱伝導性の観点では、例えば、5体積%以上とすることができ、10体積%以上とすることもでき、14積%以上とすることもでき、20体積%以上とすることもでき、22体積%以上とすることもでき、24体積%以上とすることもできる。また、熱伝導シート1中の繊維状フィラー3の含有量は、熱伝導シート1の成形性の観点では、例えば、30体積%以下とすることができ、28体積%以下とすることもでき、26体積%以下とすることもでき、24体積%以下とすることもできる。熱伝導シート1中の繊維状フィラー3の含有量は、例えば、5~50体積%とすることができ、14~25体積%とすることが好ましい。2種以上の繊維状フィラー3を併用する場合、その合計量が上述した含有量を満たすことが好ましい。
 <他の熱伝導材料>
 他の熱伝導材料4は、上述した繊維状フィラー3以外の熱伝導材料であり、例えば、無機フィラーが挙げられる。他の熱伝導材料4の形状は、例えば、球状、破砕状、楕円球状、塊状、粒状、扁平状、針状などが挙げられる。他の熱伝導材料4の形状は、充填性の観点では、球状、楕円球状などが好ましい。他の熱伝導材料4は、1種単独で用いてもよいし、2種以上を併用してもよい。
 他の熱伝導材料4の材質は、無機フィラーが挙げられ、例えば、酸化アルミニウム(アルミナ、サファイア)、窒化アルミニウム、水酸化アルミニウム、アルミニウム、酸化亜鉛などを用いることができる。特に、熱伝導シート1の熱伝導率を向上させるとともに、熱伝導シート1の荷重による熱抵抗差を小さくする観点では、アルミナ及び窒化アルミニウムの少なくとも1種を用いることが好ましく、アルミナと窒化アルミニウムを併用することがより好ましい。
 アルミナ粒子の平均粒径(D50)は、例えば、0.1~10μmとすることができ、0.1~8μmであってもよく、0.1~7μmであってもよく、0.1~5μmであってもよい。窒化アルミニウム粒子の平均粒径(D50)は、例えば、0.1~10μmとすることができ、0.1~8μmであってもよく、0.1~7μmであってもよく、0.1~2μmであってもよい。他の熱伝導材料4の平均粒径は、他の熱伝導材料4の粒子径分布全体を100%とした場合に、粒子径分布の小粒子径側から粒子径の値の累積カーブを求めたとき、その累積値が50%となるときの粒子径をいう。粒度分布(粒子径分布)は、体積基準によって求められたものである。粒度分布の測定方法としては、例えば、レーザー回折型粒度分布測定機を用いる方法が挙げられる。
 他の熱伝導材料4は、表面処理が施されていてもよい。表面処理としては、例えば、アルコキシシラン化合物などのカップリング剤により他の熱伝導材料4を処理することが挙げられる。カップリング剤の処理量は、例えば、他の熱伝導材料4の総量に対して0.1~1.5体積%の範囲とすることができる。
 アルコキシシラン化合物は、ケイ素原子(Si)が持つ4個の結合のうち、1~3個がアルコキシ基と結合し、残りの結合が有機置換基と結合した構造を有する化合物である。アルコキシシラン化合物が有するアルコキシ基としては、例えば、メトキシ基、エトキシ基、ブトキシ基などが挙げられる。アルコキシシラン化合物の具体例としては、トリメトキシシラン化合物、トリエトキシシラン化合物などが挙げられる。
 熱伝導シート1中の他の熱伝導材料4の含有量は、特に限定されず、目的に応じて適宜選択できる。熱伝導シート1が他の熱伝導材料4を含む場合、熱伝導材料4の含有量は、熱伝導シート1の熱伝導率や、荷重による熱抵抗差を低減する観点では、21体積%超とすることができ、36体積%以上であってもよく、40体積%以上であってもよく、42体積%以上であってもよい。また、熱伝導シート1中の他の熱伝導材料4の含有量は、熱伝導シーシート1の表面の算術平均粗さ(Sa)の観点では、50体積%以下とすることができ、48体積%以下であってもよく、46体積%以下であってもよい。2種以上の他の熱伝導材料4を併用する場合、その合計量が上述した含有量を満たすことが好ましい。
 熱伝導シート1が繊維状フィラー3と他の熱伝導材料4を含む場合、熱伝導シート1中の繊維状フィラー3と他の熱伝導材料4の含有量の合計は、熱伝導シート1の熱伝導率や、熱伝導シート1表面の算術平均粗さ(Sa)を5.0μm以上とし、熱抵抗差を小さくする観点では、57体積%以上とすることができ、60体積%以上であってもよく、63体積%以上であってもよく、65体積%以上であってもよく、68体積%以上であってもよい。また、熱伝導シート1中の繊維状フィラー3と他の熱伝導材料4の含有量の合計は、熱伝導シート1の成形性の観点では、75体積以下とすることができ、70体積%以下であってもよい。
 熱伝導シート1は、本技術の効果を損なわない範囲で、上述した成分以外の他の成分をさらに含有してもよい。他の成分としては、例えば、分散剤、硬化促進剤、遅延剤、粘着付与剤、可塑剤、難燃剤、酸化防止剤、安定剤、着色剤などが挙げられる。
 <熱伝導シートの製造方法>
 本技術に係る熱伝導シートの製造方法は、バインダ樹脂2と繊維状フィラー3とを含む熱伝導組成物を調製する工程Aと、熱伝導組成物から成形体ブロックを形成する工程Bと、成形体ブロックをシート状にスライスして熱伝導シート前駆体を得る工程Cと、熱伝導シート前駆体をプレスして、上述した熱伝導シート1を得る工程Dとを有を有する。
 [工程A]
 工程Aでは、バインダ樹脂2と繊維状フィラー3とを含む熱伝導組成物を調製する。熱伝導組成物は、上述した他の熱伝導材料4を含んでもよい。熱伝導組成物は、各種添加剤や揮発性溶剤ととともに公知の手法で均一に混合してもよい。
 [工程B]
 工程Bでは、熱伝導組成物から成形体ブロックを形成する。成形体ブロックの形成方法としては、押出成形法、金型成形法などが挙げられる。押出成形法、金型成形法としては、特に制限されず、公知の各種押出成形法、金型成形法の中から、熱伝導組成物の粘度や熱伝導シート1に要求される特性等に応じて適宜採用することができる。例えば、押出成形法において、熱伝導組成物をダイより押し出す際、あるいは金型成形法において、熱伝導組成物を金型へ圧入する際、バインダ樹脂2が流動し、その流動方向に沿って繊維状フィラー3の長軸が配向する。
 成形体ブロックの大きさ・形状は、求められる熱伝導シートの大きさに応じて決めることができる。例えば、断面の縦の大きさが0.5~15cmで横の大きさが0.5~15cmの直方体が挙げられる。直方体の長さは必要に応じて決定すればよい。押出成形法では、熱伝導組成物の硬化物からなり、押出方向に繊維状フィラー3の長軸が配向した、柱状の成形体ブロックを形成しやすい。
 得られた成形体ブロックは、熱硬化させることが好ましい。熱硬化における硬化温度は、目的に応じて適宜選択することができ、例えば、バインダ樹脂2がシリコーン樹脂である場合、60℃~120℃の範囲とすることができる。熱硬化における硬化時間は、例えば、30分~10時間の範囲とすることができる。
 [工程C]
 工程Cでは、成形体ブロックをシート状にスライスして、厚さ方向Bに繊維状フィラー3の長軸が配向した熱伝導シート前駆体を得る。スライスにより得られる熱伝導シート前駆体の表面(スライス面)には、繊維状フィラー3が露出する。スライスする方法としては特に制限はなく、成形体ブロックの大きさや機械的強度により公知のスライス装置の中から適宜選択することができる。スライス装置としては、例えば、超音波カッタ、かんな(鉋)などが挙げられる。成形体ブロックのスライス方向としては、成形方法が押出成形法である場合、押出し方向に繊維状フィラー3の長軸が配向しているものもあるため、押出し方向に対して60~120度であることが好ましく、70~100度の方向であることがより好ましく、90度(垂直)の方向であることがさらに好ましい。
 [工程D]
 工程Dでは、熱伝導シート前駆体をプレスして熱伝導シート1を得る。工程Dでは、熱伝導シート前駆体をプレスすることにより、熱伝導シート前駆体7を構成するバインダ樹脂2が熱伝導シート1(プレス後の熱伝導シート前駆体)の表面に染み出し、熱伝導シート1がタック性を有するようになる。熱伝導シート1の表面に染み出すバインダ樹脂2は、未硬化の状態であってもよく、数%程度硬化が進んだ状態であってもよい。工程Dで得られる熱伝導シート1は、表面がより平滑化され、他の部材と熱伝導シート1との密着性をより向上させることができる。
 工程Dでは、例えば、熱伝導シート前駆体のスライス面(表面)をプレスすることにより、熱伝導シート前駆体の表面に規則性のある形状を転写する。工程Dの一態様では、熱伝導シート前駆体の表面に、表面に規則性のある形状を有するフィルム又はクッションを貼付してプレスすることにより、フィルム又はクッション表面の形状を熱伝導シート前駆体の表面に転写する。また、工程Dでは、熱伝導シート前駆体のスライス面を、表面が平滑なフィルムに挟んでプレスすることにより得た積層体(表面が平滑なフィルムと、プレスした熱伝導シート前駆体と、表面が平滑なフィルムとの積層体)を、さらに表面に規則性のある形状を有するフィルム又はクッションを用いてプレスすることにより、表面に規則性のある形状を有するフィルム又はクッションの表面の形状を熱伝導シート前駆体の表面に転写するようにしてもよい。
 図2は、熱伝導シートの製造方法における、熱伝導シート前駆体をプレスして熱伝導シートを得る工程Dの一例を説明するための断面図である。図2の矢印は、プレスの方向を表す。工程Dでは、図2に示すように、熱伝導シート前駆体7を剥離フィルム6A,6Bで挟持し、さらに、この剥離フィルム6A,6Bの外側に、表面に規則性のある形状を有するクッション8(以下、単に「クッション8」などと称することもある)を配置した状態、すなわち、クッション8A、剥離フィルム6A、熱伝導シート前駆体7、剥離フィルム6B及びクッション8Bをこの順に有する積層体10をプレスしてもよい。このような積層体10をプレスすることにより、クッション8の表面の形状を熱伝導シート前駆体7の表面に転写できる。また、表面に規則性のある形状を有するクッション8を用いることにより、熱伝導シート前駆体7の表面を均一にプレスすることができ、熱伝導シート1の熱抵抗を効果的に小さくできる。さらに、熱伝導シート前駆体7をプレスする際に、熱伝導シート前駆体7を剥離フィルム6A,6Bで挟持することにより、熱伝導シート前駆体7をプレスする際に熱伝導シート前駆体7がプレス装置に付着するのを防止できる。
 また、工程Dでは、図2に示すように、熱伝導シート前駆体7を剥離フィルム6A,6Bで挟持し、さらに、この剥離フィルム6A,6Bの外側に、表面に規則性のある形状を有するフィルム9(以下、単に「フィルム9」などと称することもある)を配置した状態、すなわち、フィルム9A、剥離フィルム6A、熱伝導シート前駆体7、剥離フィルム6B及びフィルム9Bをこの順に有する積層体11をプレスしてもよい。このような積層体11をプレスすることでも、フィルム9の表面の形状を熱伝導シート前駆体7の表面に転写できる。また、表面に規則性のある形状を有するフィルム9を用いることにより、熱伝導シート前駆体7の表面を均一にプレスすることができ、熱伝導シート1の熱抵抗を効果的に小さくできる。
 なお、図示しないが、工程Dでは、表面に規則性のある形状を有するクッション8と、表面に規則性のある形状を有するフィルム9とを併用してもよい。例えば、工程Dでは、熱伝導シート前駆体7を剥離フィルム6A,6Bで挟持し、さらに、この剥離フィルム6Aの外側の表面に規則性のある形状を有するクッション8を配置するとともに、剥離フィルム6Bの外側の表面に規則性のある形状を有するフィルム9を配置した状態、すなわち、クッション8、剥離フィルム6A、熱伝導シート前駆体7、剥離フィルム6B及びフィルム9をこの順に有する積層体をプレスしてもよい。
 剥離フィルム6は、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、ポリオレフィン、ポリメチルペンテン、グラシン紙等が挙げられる。剥離フィルム6の厚みは、特に限定されず、目的に応じて適宜選択することができ、例えば、5~200μmとすることができる。また、剥離フィルム6は、厚みが薄い方が、熱伝導シート1に対する追従性(密着性)がより良好となり、熱伝導シート1のタック力をより効果的に発現できる。例えば、熱伝導シート1のタック力をより効果的に発現させる観点では、剥離フィルム6は、厚みが薄いPETフィルムが好ましい。剥離フィルム6Aと剥離フィルム6Bは、材質が同じであってもよいし、材質が異なっていてもよい。また、剥離フィルム6Aと剥離フィルム6Bは、厚みが同じであってもよいし、厚みが異なっていてもよい。
 クッション8としては、平面視における模様として、上述のような規則性のある形状を有するものを使用できる。クッション8の材質は、例えば、ラバーを用いることができる。クッション8の具体例としては、ヤマウチ社製の製品名YOM-F01 FDRRが挙げられる。クッション8の厚みは、特に限定されず、目的に応じて適宜選択することができる。クッション8Aとクッション8Bは、表面の規則性のある形状が同じであってもよいし、異なっていてもよい。クッション8Aとクッション8Bは、材質が同じであってもよいし、材質が異なっていてもよい。クッション8Aとクッション8Bは、厚みが同じであってもよいし、厚みが異なっていてもよい。
 フィルム9としては、平面視における模様として、上述のような規則性のある形状を有するものを使用できる。フィルム9としては、例えば、表面に規則性のある凹凸を有するエンボスフィルムを使用できる。フィルム9の材質は、特に限定されず、例えば、PETを用いることができる。フィルム9の具体例としては、製品名「ALEF」、製品名「EF」、製品名「NEF」、製品名「小ダイヤ」(以上、石島化学工業社製)などが挙げられる。フィルム9Aとフィルム9Bは、材質が同じであってもよいし、材質が異なっていてもよい。フィルム9Aとフィルム9Bは、表面の規則性のある形状が同じであってもよいし、異なっていてもよい。フィルム9の厚みは、特に限定されず、目的に応じて適宜選択することができ、例えば、0.004~0.3mmの範囲とすることができる。フィルム9Aとフィルム9Bは、厚みが同じであってもよいし、厚みが異なっていてもよい。
 熱伝導シート前駆体7のプレスには、平盤と表面が平坦なプレスヘッドとからなる一対のプレス装置5を使用できる。また、ピンチロールで熱伝導シート前駆体7をプレスしてもよい。プレスの際の圧力は、例えば、0.1~100MPaの範囲とすることができ、0.1~1MPaの範囲であってもよく、0.1~0.5MPaの範囲であってもよい。プレス温度は、例えば、0~180℃の範囲とすることができ、常温~100℃の範囲であってもよく、30~100℃の範囲であってもよい。なお、本明細書において、「常温」とは、JIS K 0050:2019(化学分析方法通則)に規定される15~25℃の範囲をいう。プレスの効果をより高め、プレス時間を短縮するために、熱伝導シート前駆体7を構成するバインダ樹脂2のガラス転移温度(Tg)以上でプレスを行ってもよい。プレス時間は、例えば、10秒~5分の範囲とすることができ、30秒~3分の範囲であってもよい。例えば、プレスの際の圧力は0.2~0.7MPaの範囲が好ましい。また、プレス温度とプレス時間は、常温~90℃の範囲が好ましく、熱伝導シート1がつぶれやすい場合は、低温(例えば25~40℃程度)かつ短時間(10秒程度)が好ましく、熱伝導シート1がつぶれにくい場合は、高温(90℃程度)かつ長時間(3分程度)が好ましい。
 なお、工程Dでは、熱伝導シート前駆体7をプレスすることに替えて、次のような方法で、熱伝導シート前駆体7の表面に、クッション8やフィルム9の表面の規則性のある形状を転写してもよい。例えば、プレス機を使用せずに、熱伝導シート前駆体7と、クッション8やフィルム9を真空パックに入れて密着させることで、クッション8やフィルム9の表面の形状(模様)を熱伝導シート前駆体7の表面に転写させてもよい。あるいは、特殊な機械を使用せずに、熱伝導シート前駆体7を、クッション8やフィルム9に挟んだ積層体を、熱伝導シート前駆体7などの荷重や、クッション8やフィルム9の重みによって、クッション8やフィルム9の表面の形状(模様)を熱伝導シート前駆体7の表面に転写させてもよい。
 このように、工程Dでは、研磨などの物理的な加工をせずに、熱伝導シート前駆体7をプレスすることで、表面の算術平均粗さ(Sa)が5.0μm以上であり、厚さ0.3mmにおける1kgf/cmの熱抵抗と、厚さ0.3mmにおける5kgf/cmの熱抵抗との熱抵抗差が0.10℃・cm/W未満である熱伝導シート1を得る。そのため、工程Dで得られた熱伝導シート1は、上述のように、実装時にエアーを内包しにくく、かつ、エアーが抜けやすいとともに、荷重による熱抵抗差を低減できる。
 また、本製造方法では、表面に規則性のある形状(凹凸)を有する熱伝導シート1を、外部からの圧力のみで作製することができ、熱伝導シート前駆体7に対して、物理的な加工(物理的に削ること、加工、研磨など)を行う必要がない。そのため、熱伝導シート1中の導電物質(例えば繊維状フィラー3)の粉落ちのリスクを防止でき、回路が集積したICチップ上に熱伝導シートを実装した際のショートのリスクを回避できる。したがって、本製造方法で得られる熱伝導シート1は、物理的な加工を施した熱伝導シートに比べて、使用箇所が制限されないという利点がある。さらに、本製造方法では、熱伝導シート前駆体7が任意の厚みであっても、表面に規則性のある形状を有する熱伝導シート1を容易に得ることができる。
 また、工程Dにおいて、熱伝導シート前駆体7をプレスすることにより、熱伝導シート前駆体7の表面に規則性のある形状を転写する場合、上述のように、熱伝導シート前駆体7中のバインダ樹脂2の含有量を制御する(多くなりすぎないようにする)ことで、熱伝導シート1に形成した規則性のある形状(凹凸)を消えにくくすることもできる。
 <電子機器>
 熱伝導シート1は、例えば、発熱体と放熱体との間に配置させることにより、発熱体で生じた熱を放熱体に逃がすためにそれらの間に配された構造の電子機器(サーマルデバイス)とすることができる。電子機器は、発熱体と放熱体と熱伝導シート1とを少なくとも有し、必要に応じて、その他の部材をさらに有していてもよい。
 本技術に係る電子機器は、発熱体と放熱体との間に、表面の算術平均粗さ(Sa)が5.0μm以上であり、厚さ0.3mmにおける1kgf/cmの熱抵抗と、厚さ0.3mmにおける5kgf/cmの熱抵抗との熱抵抗差が0.10℃・cm/W未満である熱伝導シート1を備える。このような構成の電子機器は、熱伝導シート1が、実装時にエアーを内包しにくく、荷重による熱抵抗差を低減できるため、熱伝導シート1の実装時に加圧した際、熱伝導シート1内部の折れを防止できる。そのため、熱伝導シート1の面内厚みが不均一となることや、接触熱抵抗の増加による熱伝導シート1の熱抵抗の悪化を抑制できる。また、サイズが大きい熱伝導シート1を自動機でピックアップして、発熱体としてのICチップ上に実装する場合、熱伝導シート1の表面が平滑ではないため、熱伝導シート1が複数の端部から実装されたり、熱伝導シート1がICチップと平行に実装されることを防止できる。そのため、電子機器において、熱伝導シート1とICチップとの間の中央部にエアーが内包されるのを防止できる。
 発熱体としては、特に限定されず、例えば、CPU、GPU(Graphics Processing Unit)、DRAM(Dynamic Random Access Memory)、フラッシュメモリなどの集積回路素子、トランジスタ、抵抗器など、電気回路において発熱する電子部品等が挙げられる。また、発熱体には、通信機器における光トランシーバ等の光信号を受信する部品も含まれる。
 放熱体としては、特に限定されず、例えば、ヒートシンクやヒートスプレッダなど、集積回路素子やトランジスタ、光トランシーバ筐体などと組み合わされて用いられるものが挙げられる。ヒートシンクやヒートスプレッダの材質としては、例えば、銅、アルミニウムなどが挙げられる。放熱体としては、ヒートスプレッダやヒートシンク以外にも、熱源から発生する熱を伝導して外部に放散させるものであればよく、例えば、放熱器、冷却器、ダイパッド、プリント基板、冷却ファン、ペルチェ素子、ヒートパイプ、ベーパーチャンバー、金属カバー、筐体等が挙げられる。ヒートパイプは、例えば、円筒状、略円筒状又は扁平筒状の中空構造体である。
 図3は、熱伝導シートを適用した半導体装置の一例を示す断面図である。例えば、熱伝導シート1は、図3に示すように、各種電子機器に内蔵される半導体装置50に実装され、発熱体と放熱体との間に挟持される。図3に示す半導体装置50は、電子部品51と、ヒートスプレッダ52と、熱伝導シート1とを備え、熱伝導シート1がヒートスプレッダ52と電子部品51との間に挟持される。熱伝導シート1が、ヒートスプレッダ52とヒートシンク53との間に挟持されることにより、ヒートスプレッダ52とともに、電子部品51の熱を放熱する放熱部材を構成する。熱伝導シート1の実装場所は、ヒートスプレッダ52と電子部品51との間や、ヒートスプレッダ52とヒートシンク53との間に限らず、電子機器や半導体装置の構成に応じて、適宜選択できる。ヒートスプレッダ52は、例えば方形板状に形成され、電子部品51と対峙する主面52aと、主面52aの外周に沿って立設された側壁52bとを有する。ヒートスプレッダ52は、側壁52bに囲まれた主面52aに熱伝導シート1が設けられ、主面52aと反対側の他面52cに熱伝導シート1を介してヒートシンク53が設けられる。
 以下、本技術の実施例について説明する。本技術は、これらの実施例に限定されるものではない。
 <実施例1>
 実施例1では、表1に示すように、2液性の付加反応型液状シリコーンに、シランカップリング剤でカップリング処理した平均粒径4μmのアルミナ粒子24体積%と、平均粒径1.3μmの窒化アルミニウム粒子24体積%と、繊維状フィラーとして平均繊維長150μmのピッチ系炭素繊維24体積%とを混合し、シリコーン組成物を調製した。2液性の付加反応型液状シリコーン樹脂は、オルガノポリシロキサンを主成分とするものを28体積%使用した。得られたシリコーン組成物を、中空四角柱状の金型(70mm×70mm)の中に押出成形し、70mm□のシリコーン成型体を成型した。シリコーン成型体をオーブンにて100℃で6時間加熱してシリコーン硬化物とした。シリコーン硬化物を、厚みが0.3mmとなるようにスライサーで切断し、熱伝導シート前駆体を得た。図2に示すように、剥離フィルム6(剥離処理したPETフィルム)で挟持した熱伝導シート前駆体7の表面に、表面に規則性のある形状を有するラバークッション(表面の算術平均粗さ(Sa)=29.915μm)を貼付してプレスを行った。プレス条件は、0.5MPa、温度40℃、時間10secとした。プレス後の熱伝導シート1を60mm×60mm角に外径加工した。
 <実施例2>
 実施例2では、実施例1と同様に熱伝導シート前駆体7を得て、図2に示すように、剥離フィルム6(剥離処理したPETフィルム)で挟持した熱伝導シート前駆体7の表面に、表面に規則性のある形状を有するエンボスフィルム(表面の算術平均粗さ(Sa)=26.736)を貼付けしてプレスを行った。プレス条件は、0.5MPa、温度40℃、時間10secとした。プレス後の熱伝導シート1を60mm×60mm角に外径加工した。
 <比較例1>
 比較例1では、実施例1と同様に熱伝導シート前駆体7を得て、剥離フィルム6(剥離処理したPETフィルム)で挟持した熱伝導シート前駆体7の表面に、コピー用紙(A4紙)を貼付けしてプレスを行った。プレス条件は、0.5MPa、温度40℃、時間10secとした。プレス後の熱伝導シート1を60mm×60mm角に外径加工した。
 <比較例2>
 図4は、比較例2において、表面に規則性のある形状を有するフィルム又はクッションを貼付せずにプレス熱伝導シート前駆体をプレスする方法を説明するための断面図である。比較例2では、実施例1と同様に熱伝導シート前駆体7を得て、図4に示すように、剥離フィルム6(剥離処理したPETフィルム)で挟持した熱伝導シート前駆体7の表面に、表面に規則性のある形状を有するラバークッション又は表面に規則性のある形状を有するエンボスフィルムを貼付せず、そのままプレスした。プレス条件は、0.5MPa、温度40℃、時間10secとした。プレス後の熱伝導シート1を60mm×60mm角に外径加工した。
 <比較例3>
 比較例3では、実施例1と同様に熱伝導シート前駆体7を得て、熱伝導シート前駆体7をプレス処理せずに、60mm×60mm角に外径加工した。
 <比較例4>
 比較例4では、実施例1と同様に熱伝導シート前駆体7を得て、紙やすり(三共理化学社製、品名:FUJISTAR 耐水研磨紙DCCS-1000(#1000番))を使用して熱伝導シート前駆体7の表面を研磨した。具体的には、300gの重りがついた研磨紙で、熱伝導シート前駆体7上を引きずる操作を100回行った。研磨後の熱伝導シート前駆体7を60mm×60mm角に外径加工した。
 <比較例5>
 比較例5では、表1に示すように、2液性の付加反応型液状シリコーンに、シランカップリング剤でカップリング処理した平均粒径2μmのアルミナ粒子44体積%と、繊維状フィラーとして平均繊維長200μmのピッチ系炭素繊維14体積%とを混合し、シリコーン組成物を調製したこと、2液性の付加反応型液状シリコーン樹脂としてオルガノポリシロキサンを主成分とするものを42体積%使用したこと以外は、実施例1と同様に、熱伝導シート前駆体7を得て、実施例1と同様に熱伝導シート前駆体7にプレスを行った。プレス条件は、0.5MPa、温度40℃、時間10secとした。プレス後の熱伝導シート1を60mm×60mm角に外径加工した。
 <ショアタイプOOにおける硬度>
 実施例1,2及び比較例1,2,5で得られた熱伝導シート1及び比較例3,4で得られた熱伝導シート前駆体7のショアタイプOOにおける硬度は、ASTM-D2240に準拠した測定方法で、2mm厚の熱伝導シート1(又は熱伝導シート前駆体7)を5枚重ねて10mm厚とし、片面5点、両面で合計10点測定した測定結果の平均値とした。結果を表1に示す。
 <タック性>
 実施例1,2及び比較例1,2,5で得られた直後の熱伝導シート1及び比較例3,4で得られた直後の熱伝導シート前駆体7のタック性を目視で評価した。具体的には、タック性がないときを「×」(OK)と評価し、タック性があったときを「〇」(NG)と評価した。結果を表1に示す。
 <加工後10分後の凹凸>
 実施例1,2及び比較例1,2,5で得られた熱伝導シート1及び比較例3,4で得られた熱伝導シート前駆体7を作製してから10分後、熱伝導シート1(又は熱伝導シート前駆体7)の表面の凹凸を目視で評価した。シート表面の凹凸が目視で確認できたときを「〇」(OK)と評価し、シート表面の凹凸が目視で確認できなかったときを「×」(NG)と評価した。結果を表1に示す。
 <加工後1週間後の凹凸>
 実施例1,2及び比較例1,2,5で得られた熱伝導シート1及び比較例3,4で得られた熱伝導シート前駆体7を作製してから1週間後、熱伝導シート1(又は熱伝導シート前駆体7)の表面の凹凸を目視で評価した。シート表面の凹凸が目視で確認できたときを「〇」(OK)と評価し、シート表面の凹凸が目視で確認できなかったときを「×」(NG)と評価した。結果を表1に示す。
 <銅板からのシート高さ(最大)>
 図5は、銅板からの熱伝導シートの高さを測定する方法の一例を説明するための斜視図である。図5に示すように、実施例1,2、比較例1,2,5で得られた熱伝導シート1(60mm×60mm、厚み0.3mm)又は比較例3,4で得られた熱伝導シート前駆体7(60mm×60mm、厚み0.3mm)を吸着パット20で持ち上げ、10cm角の銅板21(JIS H 3100 C1100P)の上にセットし、熱伝導シート1(又は熱伝導シート前駆体7)を吸着パット20から外した後、非接触測定器(製品名:KEYENCE ONE-SHOT 3D VR-5000)で、銅板21の表面から熱伝導シート1(又は熱伝導シート前駆体7)の上面までの高さを測定した。結果を表1に示す。
 <銅板上での気泡の含有>
 銅板21からの熱伝導シート1の高さの結果に基づいて、銅板21上の熱伝導シート1(又は熱伝導シート前駆体7)の気泡の含有の有無、すなわち、熱伝導シート1(又は熱伝導シート前駆体7)の脱気ができているかを評価した。結果を表1に示す。
 <算術平均粗さ(Sa)>
 熱伝導シート1(又は熱伝導シート前駆体7)の高さの測定と同時に、熱伝導シート1(又は熱伝導シート前駆体7)の算術平均粗さ(Sa)[μm]を測定した。算術平均粗さ(Sa)の算出面積は、24.193cm×18.16cmとした。結果を表1に示す。
 <熱抵抗、熱抵抗差>
 直径20mm、厚さ0.3mmの熱伝導シート1(又は熱伝導シート前駆体7)を準備し、この熱伝導シート1(又は熱伝導シート前駆体7)の熱抵抗(℃・cm/W)を、ASTM-D5470に準拠した方法で測定した。そして、1kgf/cmの圧力をかけたときの熱伝導シート1(又は熱伝導シート前駆体7)の熱抵抗(℃・cm/W)と、5kgf/cmの圧力をかけたときの熱伝導シート1(又は熱伝導シート前駆体7)の熱抵抗(℃・cm/W)との差を求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1,2では、表面の算術平均粗さ(Sa)が5.0μm以上であり、厚さ0.3mmにおける1kgf/cmの熱抵抗と、厚さ0.3mmにおける5kgf/cmの熱抵抗との熱抵抗差が0.10℃・cm/W未満である熱伝導シートが得られることが分かった。
 一方、比較例1~5では、表面の算術平均粗さ(Sa)が5.0μm以上であり、かつ、厚さ0.3mmにおける1kgf/cmの熱抵抗と、厚さ0.3mmにおける5kgf/cmの熱抵抗との熱抵抗差が0.10℃・cm/W未満である熱伝導シートが得られないことが分かった。
 また、実施例1,2及び比較例1~4の結果から、熱伝導シートの組成が同じであっても、熱抵抗差に違いが出ることが分かった。
 比較例1~3で得られた熱伝導シート(又は熱伝導シート前駆体)は、低荷重(1kgf/cm)領域での接触性が悪く、高荷重(5kgf/cm)をかけたときに接触性が改善されたため、実施例1,2で得られた熱伝導シートと比べて、荷重による熱抵抗差が大きくなったと考えられる。
 比較例4で得られた熱伝導シート前駆体は、実施例1,2で得られた熱伝導シートと同様に、荷重を変化させて測定したときの熱抵抗差が0.10℃・cm/W未満であった。比較例4では、紙やすりで表面の研磨を行ったため、表面の平滑度が向上し、表面の凹凸が小さいものの、接触熱抵抗が下がったことで荷重による熱抵抗差が小さくなったと考えられる。しかし、比較例4では、紙やすりで熱伝導シート前駆体の表面を研磨した、すなわち、物理的に熱伝導シート前駆体を加工したため、炭素繊維の一部に脱落や折れが発生し、熱伝導シート前駆体の外観が黒ずんでいることが分かった。
 また、実施例及び比較例で得られた熱伝導シート(又は熱伝導シート前駆体)の表面の算術平均粗さ(Sa)を測定した結果、比較例1のような平らなA4紙や、比較例2のような金属板を用いて熱伝導シート前駆体をプレスした場合、実施例1,2のように表面に規則性のある形状(凹凸)を有するフィルム又はクッションを用いてプレスした場合と比べて、熱伝導シートの表面の平滑度が高い、すなわち、熱伝導シートの表面の算術平均粗さ(Sa)が小さいことが分かった。また、比較例3で得られた熱伝導シートは、表面の算術平均粗さ(Sa)が5.0μm以上であったものの、表面の形状に規則性が確認できず、表面全体が荒れていることが分かった。
 また、実施例1,2では、熱伝導シート前駆体に、表面に規則性のある形状(凹凸)を有するフィルム又はクッションを貼付してプレスすることにより、加工後の熱伝導シートの表面に凹凸が転写される(凹凸が残る)ことが分かった。
 一方、比較例5では、実施例1,2のように、熱伝導シート前駆体に、表面に規則性のある形状(凹凸)を有するフィルム又はクッションを貼付してプレスしたが、加工後の熱伝導シートの表面に凹凸が転写されない(凹凸が残らない)ことが分かった。比較例5で得られた熱伝導シートは、シリコーン樹脂の含有量が42体積%と多かったため、表面に凹凸が転写されにくかったと考えられる。このことは、比較例5で得られた熱伝導シートの表面の算術平均粗さ(Sa)が5.0μm未満であったことからも裏付けられる。
 また、銅板からの熱伝導シートの高さを測定した結果、実施例1,2で得られた熱伝導シートは、銅板に追従することが分かった。実施例1,2で得られた熱伝導シートは、表面の算術平均粗さ(Sa)が5.0μm以上である、すなわち、表面に凹凸があることで、タック性が軽減されたためと考えられる。一方、比較例1、2で得られた熱伝導シートは、実施例1,2の熱伝導シートと比べて表面が平滑でタック性があり、銅板上での気泡・浮きが見られた。比較例1、2で得られた熱伝導シートは、実施例1,2で得られた熱伝導シートと比べてタックがあることで、熱伝導シートを吸着パットから離した際に、吸着パットと接触した部位の熱伝導シートが銅板に対して十分に密着しなかったことで気泡が含有したと考えられる。
 従来、熱伝導シートの接触性(熱伝導シートの熱抵抗)を改善するために、熱伝導シートをいかにして平滑にするかの技術について検討が積み重ねられてきた。しかし、実施例及び比較例の結果から、熱伝導シートの平滑性のみが重要ではなく、ある程度熱伝導シートの表面に凹凸があっても、荷重による熱抵抗差を低減できることが分かった。
 また、比較例4のように、熱伝導シートの表面に対して物理的な加工を行うことで熱伝導シートの荷重による熱抵抗差を小さくする方法も考えられるが、この場合、上述したショートのリスクの観点で、熱伝導シートの使用箇所が制限されてしまう。一方、実施例1,2のように、プレスにより表面に凹凸(規則性のある形状)を転写した熱伝導シートは、比較例4のように表面に対して物理的な加工を行わずに済むので、比較例4の熱伝導シートと比べてショートのリスクを低減できることが示唆された。
 1 熱伝導シート、2 バインダ樹脂、3 繊維状フィラー、4 他の熱伝導材料、5 プレス装置、6 剥離フィルム、7 熱伝導シート前駆体、8 表面に規則性のある形状を有するクッション、9 表面に規則性のある形状を有するフィルム、10 積層体、11 積層体、20 吸着パット、21 銅板、50 半導体装置、51 電子部品、52 ヒートスプレッダ、52a 主面、52b 側壁、52c 他面、53 ヒートシンク

Claims (12)

  1.  当該熱伝導シート表面の算術平均粗さ(Sa)が5.0μm以上であり、
     厚さ0.3mmにおける1kgf/cmの熱抵抗と、厚さ0.3mmにおける5kgf/cmの熱抵抗との熱抵抗差が0.10℃・cm/W未満である、熱伝導シート。
  2.  表面に規則性のある形状を有する、請求項1に記載の熱伝導シート。
  3.  繊維状フィラーを含み、上記繊維状フィラーが厚さ方向に配向している、請求項1又は2に記載の熱伝導シート。
  4.  バインダ樹脂としてシリコーン樹脂を含む、請求項1~3のいずれか1項に記載の熱伝導シート。
  5.  上記シリコーン樹脂の含有量が42体積%未満である、請求項4に記載の熱伝導シート。
  6.  上記繊維状フィラー以外の他の熱伝導材料をさらに含む、請求項1~5のいずれか1項に記載の熱伝導シート。
  7.  上記他の熱伝導材料が、アルミナ及び窒化アルミニウムの少なくとも1種である、請求項6に記載の熱伝導シート。
  8.  バインダ樹脂と繊維状フィラーとを含む熱伝導組成物を調製する工程Aと、
     上記熱伝導組成物から成形体ブロックを形成する工程Bと、
     上記成形体ブロックをシート状にスライスして熱伝導シート前駆体を得る工程Cと、
     上記熱伝導シート前駆体をプレスして、熱伝導シートを得る工程Dとを有し、
     上記熱伝導シートは、表面の算術平均粗さ(Sa)が5.0μm以上であり、
     上記熱伝導シートは、厚さ0.3mmにおける1kgf/cmの熱抵抗と、厚さ0.3mmにおける5kgf/cmの熱抵抗との熱抵抗差が0.10℃・cm/W未満である、熱伝導シートの製造方法。
  9.  上記工程Dでは、上記熱伝導シート前駆体をプレスすることにより、上記熱伝導シート前駆体の表面に規則性のある形状を転写する、請求項8に記載の熱伝導シートの製造方法。
  10.  上記工程Dでは、上記熱伝導シート前駆体の表面に、表面に規則性のある形状を有するフィルム又はクッションを貼付してプレスすることにより、上記フィルム又はクッション表面の形状を上記熱伝導シート前駆体の表面に転写する、請求項8又は9に記載の熱伝導シートの製造方法。
  11.  上記熱伝導シートの表面がプレス面である、請求項8~10のいずれか1項に記載の熱伝導シートの製造方法。
  12.  発熱体と、
     放熱体と、
     上記発熱体と上記放熱体との間に配置された請求項1~7のいずれか1項に記載の熱伝導シートとを備える、電子機器。
PCT/JP2022/003009 2021-02-24 2022-01-27 熱伝導シート及び熱伝導シートの製造方法 WO2022181172A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021028001A JP2022129312A (ja) 2021-02-24 2021-02-24 熱伝導シート及び熱伝導シートの製造方法
JP2021-028001 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022181172A1 true WO2022181172A1 (ja) 2022-09-01

Family

ID=83049112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003009 WO2022181172A1 (ja) 2021-02-24 2022-01-27 熱伝導シート及び熱伝導シートの製造方法

Country Status (2)

Country Link
JP (1) JP2022129312A (ja)
WO (1) WO2022181172A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158942A1 (ja) * 2010-06-17 2011-12-22 ソニーケミカル&インフォメーションデバイス株式会社 熱伝導性シート及びその製造方法
JP2014027144A (ja) * 2012-07-27 2014-02-06 Polymatech Co Ltd 熱伝導性成形体及びその製造方法
JP2015035580A (ja) * 2013-07-10 2015-02-19 デクセリアルズ株式会社 熱伝導性シート
WO2017145957A1 (ja) * 2016-02-25 2017-08-31 日本ゼオン株式会社 熱伝導シートおよびその製造方法、ならびに放熱装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158942A1 (ja) * 2010-06-17 2011-12-22 ソニーケミカル&インフォメーションデバイス株式会社 熱伝導性シート及びその製造方法
JP2014027144A (ja) * 2012-07-27 2014-02-06 Polymatech Co Ltd 熱伝導性成形体及びその製造方法
JP2015035580A (ja) * 2013-07-10 2015-02-19 デクセリアルズ株式会社 熱伝導性シート
WO2017145957A1 (ja) * 2016-02-25 2017-08-31 日本ゼオン株式会社 熱伝導シートおよびその製造方法、ならびに放熱装置

Also Published As

Publication number Publication date
JP2022129312A (ja) 2022-09-05

Similar Documents

Publication Publication Date Title
JP6302034B2 (ja) 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置
WO2020153346A1 (ja) 熱伝導性シートの製造方法
JP2017092345A (ja) 熱伝導シート、及びその製造方法、並びに半導体装置
WO2022181172A1 (ja) 熱伝導シート及び熱伝導シートの製造方法
WO2022176628A1 (ja) 熱伝導シートの製造方法、熱伝導シートパッケージ及び熱伝導シートパッケージの製造方法
JP6986648B2 (ja) 熱伝導シート及びその製造方法、並びに放熱構造体及び電子機器
WO2022044724A1 (ja) 熱伝導性シート及び熱伝導性シートの製造方法
JP2022019761A (ja) 熱伝導性シート及びその製造方法
WO2022181171A1 (ja) 熱伝導シート及び熱伝導シートの製造方法
CN114174435B (zh) 导热片及其制造方法以及散热结构体和电子设备
JP2022129325A (ja) 熱伝導シート及び熱伝導シートの製造方法
WO2022050160A1 (ja) 熱伝導部材及びその製造方法、並びに放熱構造体
JP6999054B1 (ja) 熱伝導シートの供給形態及び熱伝導シート
WO2023190751A1 (ja) 熱伝導性シート及び熱伝導性シートの製造方法
WO2022181206A1 (ja) 熱伝導シート、熱伝導シートの製造方法、電子機器
WO2022172795A1 (ja) 熱伝導シートの供給形態及び熱伝導シート本体
WO2023190726A1 (ja) 熱伝導性シート及び熱伝導性シートの製造方法
JP2014216399A (ja) 熱伝導シート及び熱伝導シートの製造方法
CN116941030A (zh) 导热片和导热片的制造方法
JP2014216398A (ja) 熱伝導シートの製造方法、熱伝導シート
WO2016068157A1 (ja) 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759214

Country of ref document: EP

Kind code of ref document: A1