WO2016068157A1 - 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置 - Google Patents

熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置 Download PDF

Info

Publication number
WO2016068157A1
WO2016068157A1 PCT/JP2015/080303 JP2015080303W WO2016068157A1 WO 2016068157 A1 WO2016068157 A1 WO 2016068157A1 JP 2015080303 W JP2015080303 W JP 2015080303W WO 2016068157 A1 WO2016068157 A1 WO 2016068157A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
heat
heat conductive
carbon fiber
conductive sheet
Prior art date
Application number
PCT/JP2015/080303
Other languages
English (en)
French (fr)
Inventor
荒巻 慶輔
紘希 金谷
正英 大門
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015201410A external-priority patent/JP6295238B2/ja
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201580055236.8A priority Critical patent/CN106796926B/zh
Priority to KR1020177006129A priority patent/KR102011652B1/ko
Priority to US15/521,426 priority patent/US9922901B2/en
Publication of WO2016068157A1 publication Critical patent/WO2016068157A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a heat conductive sheet disposed between a heating element such as a semiconductor element and a heat radiator such as a heat sink, a method for manufacturing the heat conductive sheet, a heat radiating member including the heat conductive sheet, and a semiconductor device.
  • a heat conduction sheet is provided between the semiconductor device and the heat sink in order to efficiently release the heat of the semiconductor device.
  • a heat conductive sheet a material in which a heat conductive filler [for example, scaly particles (boron nitride (BN), graphite, etc.), carbon fiber, etc.] is dispersed and contained in a silicone resin is widely used (Patent Document 1). reference).
  • heat conductive fillers have anisotropy of heat conduction.
  • a heat of about 600 W / m ⁇ K to 1200 W / m ⁇ K in the fiber direction.
  • boron nitride when used, it has a thermal conductivity of about 110 W / m ⁇ K in the plane direction and about 2 W / m ⁇ K in the direction perpendicular to the plane direction. It is known to have.
  • thermally conductive filler is buried in the sheet body in order to ensure the electrical insulation of the thermally conductive sheet, the effect of high thermal conductivity by the thermally conductive filler is impaired.
  • the present invention is a thermal conductive sheet that can ensure electrical insulation and maintain high thermal conductivity even in unexpected situations such as contact of the thermal conductive sheet, a method for manufacturing the thermal conductive sheet, An object is to provide a heat dissipation member and a semiconductor device.
  • a heat conductive sheet according to the present invention has a sheet body in which a heat conductive resin composition containing a binder resin and carbon fibers covered with an insulating film is cured, The carbon fibers exposed on the surface of the sheet body are not covered with the insulating film and are covered with the binder resin component.
  • the method for producing a heat conductive sheet according to the present invention includes forming a heat conductive resin composition containing a binder resin and a carbon fiber covered with an insulating film into a predetermined shape and curing the composition. Obtaining a molded body of the thermally conductive resin composition; Cutting the molded body into a sheet and obtaining a sheet body; Covering the carbon fiber exposed on the surface of the sheet body with a component of the binder resin, In the step of obtaining the sheet body, the insulating film covering the carbon fibers exposed on the surface of the sheet body is removed.
  • the heat dissipating member according to the present invention includes a heat spreader that dissipates heat generated by an electronic component, and the heat conductive sheet that is disposed on the heat spreader and is sandwiched between the heat spreader and the electronic component. is there.
  • the semiconductor device includes a heat spreader that dissipates heat generated by the semiconductor element, and the heat conductive sheet that is disposed on the heat spreader and is sandwiched between the heat spreader and the semiconductor element. It is.
  • the carbon fiber exposed on the surface of the sheet body is not covered with the insulating film, it is possible to suppress a decrease in thermal conductivity due to the insulating film.
  • the heat conductive sheet according to the present invention is coated with the binder resin component on the carbon fiber that is exposed on the surface of the sheet body and is not covered with the insulating film, the sheet has both insulating properties and heat conductivity. can do.
  • FIG. 1 is a cross-sectional view showing a heat conductive sheet, a heat radiating member, and a semiconductor device to which the present invention is applied.
  • FIG. 2 is a perspective view showing a process of slicing the resin molded body and cutting out the sheet body.
  • FIG. 3A is a perspective view showing a sheet body cut out from a resin molded body.
  • FIG. 3B is a perspective view showing a state in which the sheet body is covered with a binder resin component.
  • FIG. 4 is a perspective view showing a carbon fiber covered with an insulating film.
  • FIG. 5 is a cross-sectional view showing an example of the surface shape of the heat conductive sheet.
  • FIG. 6 is a cross-sectional view showing another example of the surface shape of the heat conductive sheet.
  • FIG. 7 is a perspective view illustrating a state in which the sheet body is pressed through the spacer.
  • a heat conductive sheet 1 to which the present invention is applied dissipates heat generated by an electronic component 3 such as a semiconductor element, and is fixed to a main surface 2a facing the electronic component 3 of a heat spreader 2 as shown in FIG. Then, it is sandwiched between the electronic component 3 and the heat spreader 2. Further, the heat conductive sheet is sandwiched between the heat spreader 2 and the heat sink 5.
  • the heat conductive sheet and the heat spreader 2 constitute a heat radiating member 4 that radiates heat from the electronic component 3.
  • the heat spreader 2 is formed in, for example, a rectangular plate shape, and has a main surface 2a facing the electronic component 3 and a side wall 2b erected along the outer periphery of the main surface 2a.
  • a heat conductive sheet 1 is provided on a main surface 2a surrounded by a side wall 2b, and a heat sink 5 is provided on the other surface 2c opposite to the main surface 2a via the heat conductive sheet 1.
  • the heat spreader 2 is formed using, for example, copper or aluminum having good thermal conductivity, for example, because the higher the thermal conductivity, the lower the thermal resistance and the more efficiently absorbs the heat of the electronic component 4 such as a semiconductor element. be able to.
  • the electronic component 3 is a semiconductor element such as BGA, for example, and is mounted on the wiring board 6. Further, the heat spreader 2 also has the front end surface of the side wall 2b mounted on the wiring board 6, thereby enclosing the electronic component 3 at a predetermined distance by the side wall 2b.
  • the heat conductive sheet 1 is bonded to the main surface 2 a of the heat spreader 2, thereby forming a heat radiating member 4 that absorbs heat generated by the semiconductor element and dissipates heat from the heat sink 5.
  • Adhesion between the heat spreader 2 and the heat conductive sheet 1 can be performed by the adhesive force of the heat conductive sheet 1 itself described later, but an adhesive may be used as appropriate.
  • the adhesive a well-known heat-dissipating resin or heat-dissipating adhesive film responsible for adhesion and heat conduction of the heat conductive sheet 1 to the heat spreader 2 can be used.
  • the heat conductive sheet 1 has a sheet body 7 in which a heat conductive resin composition containing a binder resin and a carbon fiber 11 coated with an insulating film is cured, and the carbon exposed on the surface of the sheet body 7.
  • the fiber 11 is not covered with the insulating film, and is covered with the uncured component 8 of the binder resin that has oozed out of the sheet body 7.
  • the heat conductive sheet 1 is formed by curing a heat conductive resin composition containing a binder resin and carbon fibers 11 covered with an insulating film.
  • the body 9 is cut into a sheet shape to obtain a sheet body 7 in which the carbon fibers 11 are exposed on the sheet surface, and then the sheet body 7 is pressed or left to stand on the surface of the sheet body 7 and the sheet body 7. It is manufactured by coating the exposed carbon fiber 11 with the uncured component 8 of the binder resin.
  • the carbon fibers 11 exposed on the surface of the sheet body 7 are not covered with the insulating film 12. Details will be described later.
  • the carbon fiber 11 constituting the heat conductive sheet 1 is for efficiently conducting heat from the electronic component 3 to the heat spreader 2. If the average diameter of the carbon fiber 11 is too small, there is a concern that the specific surface area becomes excessive and the viscosity of the resin composition when the heat conductive sheet 1 is formed becomes too high. Since it may be difficult, the average diameter of the carbon fibers 11 is preferably 5 ⁇ m to 12 ⁇ m. The average fiber length is preferably 30 ⁇ m to 300 ⁇ m. If the average fiber length of the carbon fiber 11 is less than 30 ⁇ m, the specific surface area becomes excessive and the viscosity of the heat conductive resin composition tends to be too high, and if it is larger than 300 ⁇ m, the compression of the heat conductive sheet 1 is inhibited. Tend.
  • the carbon fiber 11 is selected according to characteristics such as mechanical properties, thermal properties, and electrical properties required for the heat conductive sheet 1.
  • characteristics such as mechanical properties, thermal properties, and electrical properties required for the heat conductive sheet 1.
  • pitch-based carbon fibers or carbon fibers obtained by graphitizing polybenzazole can be preferably used because they exhibit high elastic modulus, good thermal conductivity, high conductivity, radio wave shielding properties, low thermal expansion properties, and the like.
  • the content of the carbon fiber 11 in the heat conductive sheet 1 is too small, the thermal conductivity tends to be low, and if it is too large, the viscosity tends to increase, so it is preferably 16% to 40% by volume.
  • the surface of the carbon fiber 11 is covered with an insulating film 12.
  • the insulating film 12 can be made of a material having excellent electrical insulation properties such as silicon oxide and boron nitride.
  • Examples of the method for coating the carbon fiber 11 with the insulating film 12 include a sol-gel method, a liquid phase deposition method, and a polysiloxane method.
  • the surface of the carbon fiber 11 may be oxidized by a vapor phase method, a chemical treatment method, an electrolytic method, or the like.
  • the average thickness of the insulating film 12 observed by cross-sectional TEM observation be 50 nm or more and less than 100 nm.
  • an insulating film 12 having an average thickness of less than 50 nm is to be formed, it is necessary to reduce the film treatment concentration, so that it takes a long time to form the film, resulting in a loss of productivity, and a reduction in batch throughput and an increase in waste liquid. .
  • the coating treatment concentration is increased, it is difficult to control the thickness and productivity is impaired, and there is a possibility that the insulation performance is impaired, for example, the carbon fibers 11 are partially exposed.
  • the insulating film 12 having an average thickness of 100 nm or more when the insulating film 12 having an average thickness of 100 nm or more is formed, fine-particle silica is formed in addition to the silica that contributes to the formation of the insulating film 12 covering the carbon fibers 11. For this reason, when the carbon fiber 11 covered with the insulating film 12 is mixed with the binder resin, the particulate silica is also mixed at the same time, leading to deterioration of the thermal resistance value.
  • a method of adjusting the film treatment concentration and adjusting the film thickness by repeating a plurality of times is also conceivable, an increase in the number of coating treatments leads to a decrease in production efficiency and an increase in the amount of waste liquid, which is not preferable.
  • thermally conductive filler such as a fibrous filler, a plate-like filler, a scaly filler, or a spherical filler can be used in combination as long as the effects of the present invention are not impaired.
  • thermally conductive filler examples include metal (eg, nickel, iron, etc.), glass, ceramics (eg, oxide (eg, aluminum oxide, silicon dioxide, etc.), nitride (eg, boron nitride, aluminum nitride, etc.). And non-metallic inorganic fibers such as borides (for example, aluminum boride) and carbides (for example, silicon carbide)).
  • a spherical filler (preferably spherical alumina or spherical aluminum nitride) having a diameter of 0.1 ⁇ m to 10 ⁇ m is used, and the carbon fiber 11 is made 100%.
  • 50 parts by weight to 900 parts by weight are used in combination with respect to parts by weight.
  • the binder resin holds the carbon fiber 11 and the appropriately added thermally conductive filler in the thermally conductive sheet 1 and has characteristics such as mechanical strength, heat resistance, and electrical properties required for the thermally conductive sheet 1. It is selected according to.
  • a binder resin can be selected from thermoplastic resins, thermoplastic elastomers, and thermosetting resins.
  • Thermoplastic resins include polyethylene, polypropylene, ethylene- ⁇ olefin copolymers such as ethylene-propylene copolymer, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, ethylene-vinyl acetate copolymer, Fluoropolymers such as polyvinyl alcohol, polyvinyl acetal, polyvinylidene fluoride and polytetrafluoroethylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polyacrylonitrile, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene copolymer Polymer (ABS) resin, polyphenylene-ether copolymer (PPE) resin, modified PPE resin, aliphatic polyamides, aromatic polyamides, polyimide, Polymethacrylates such
  • thermoplastic elastomer examples include styrene-butadiene block copolymer or hydrogenated product thereof, styrene-isoprene block copolymer or hydrogenated product thereof, styrene-based thermoplastic elastomer, olefin-based thermoplastic elastomer, vinyl chloride-based thermoplastic elastomer. Polyester thermoplastic elastomer, polyurethane thermoplastic elastomer, polyamide thermoplastic elastomer, and the like.
  • thermosetting resin examples include crosslinked rubber, epoxy resin, phenol resin, polyimide resin, unsaturated polyester resin, diallyl phthalate resin and the like.
  • crosslinked rubber examples include natural rubber, acrylic rubber, butadiene rubber, isoprene rubber, styrene-butadiene copolymer rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene-propylene copolymer rubber, chlorinated polyethylene rubber, Examples include chlorosulfonated polyethylene rubber, butyl rubber, halogenated butyl rubber, fluorine rubber, urethane rubber, and silicone rubber.
  • the heat conductive resin composition can be prepared by uniformly mixing various additives and volatile solvents as necessary in addition to the fibrous filler and the binder resin.
  • such a heat conductive sheet 1 is obtained by curing a resin molding 9 formed by curing a heat conductive resin composition containing carbon fibers 11 covered with an insulating film 12 in a binder resin.
  • the sheet body 7 with the carbon fiber 11 exposed on the sheet surface is obtained by slicing the sheet body, and then the sheet body 7 is manufactured by pressing or leaving it.
  • the thermal conductive sheet 1 can suppress a decrease in thermal conductivity due to the insulating film 12. Thereafter, the heat conductive sheet 1 is coated with the carbon fiber 11 from which the insulating film 12 has been removed by the uncured component 8 of the binder resin that has oozed out on the surface by pressing or leaving the sheet body 7. Both insulation and thermal conductivity can be achieved.
  • the heat conductive sheet 1 when the heat conductive sheet 1 is pressed or left, the uncured component 8 of the binder resin oozes from the sheet body 7 over the entire surface, and the uncured component 8 causes the following (1) and (2). ) Is coated. (1) Surface of sheet body 7 (2) Carbon fiber 11 exposed on the surface of sheet body 7 Thereby, the heat conductive sheet 1 expresses slight adhesiveness (tackiness) on the sheet surface. Therefore, the heat conductive sheet 1 has improved followability and adhesion to the surfaces of the electronic component 3 and the heat spreader 2, and can reduce thermal resistance even in a low load region.
  • the surface of the sheet body 7 is coated with the uncured component 8 of the binder resin, and the surface of the heat conductive sheet 1 is slightly adhered to the main surface 2a of the heat spreader 2, or an electronic component. 3 can be temporarily fixed to the upper surface 3a. Therefore, the heat conductive sheet 1 does not need to use a separate adhesive, and can realize labor saving and cost reduction of the manufacturing process.
  • the coating of the surface of the sheet body 7 with the uncured component 8 and the coating of the carbon fiber 11 from which the insulating film 12 has been removed with the uncured component 8 are not necessarily embedded in the carbon fiber 11 from which the insulating film 12 has been removed.
  • the thickness of the carbon fiber 11 from which the insulating film 12 is removed can be determined if the surface of the sheet body 7 and the carbon fiber 11 from which the insulating film 12 has been removed are coated. Is enough.
  • the heat conductive sheet 1 can obtain desired fine adhesiveness (tackiness) by adjusting the component ratio of the main component and the curing agent of the binder resin of the heat conductive resin composition.
  • the heat conductive sheet 1 is pressed or allowed to stand while maintaining the sheet shape, so that the uncured component 8 of the binder resin oozes out and covers the entire surface of the sheet body 7. Appropriate fine tackiness can be obtained for the entire sheet.
  • the heat conductive sheet 1 is hardened by the binder resin and lacks flexibility, and the coating of the binder resin of the sheet body 7 with the uncured component 8 is insufficient. At least a part of the sheet main body 7 does not exhibit fine adhesion.
  • the amount of the curing agent is less than this component ratio, the adhesiveness is excessively exhibited and the sheet shape cannot be maintained, and it becomes difficult to cut out the sheet from the molded body, thereby impairing the handleability.
  • the heat conduction sheet 1 has a Shore OO hardness of 70 or less according to the measuring method of ASTM-D2240.
  • the hardness of the heat conductive sheet 1 exceeds 70 in Shore OO hardness, the sheet body 7 cannot exhibit sufficient flexibility, and the followability and adhesion to the surface of the electronic component 3 and the heat spreader 2 are reduced. There is a risk of increasing thermal resistance.
  • the minimum of the hardness of the heat conductive sheet 1 is not specifically limited.
  • the volume resistivity of the heat conductive sheet 1 is preferably 1 ⁇ 10 6 ⁇ ⁇ cm or more. Thereby, even if the heat conductive sheet 1 comes into contact with peripheral circuit components, there is no fear of causing failure of the electronic device.
  • Examples of the surface shape of the heat conductive sheet include the following examples.
  • One is a mode in which the surface is smooth as shown in FIG.
  • the surface of the uncured component 8 covering the carbon fiber 11 is smooth.
  • the other is an aspect in which the surface has a convex portion derived from the carbon fiber 11 exposed on the surface of the sheet body 7 as shown in FIG.
  • the surface of the uncured component 8 covering the carbon fiber 11 is not smooth and has a convex portion derived from the carbon fiber 11. 5 and 6, the insulating film 12 that covers the carbon fibers 11 is omitted.
  • the heat conductive sheet 1 of the present invention can be produced by a production method having the following steps (A) to (D). Hereinafter, it demonstrates in detail for every process.
  • the heat conductive resin composition for heat conductive sheet 1 formation is prepared by disperse
  • a block-shaped resin molded body 9 is formed from the prepared thermally conductive resin composition by an extrusion molding method or a mold molding method.
  • the extrusion molding method and the mold molding method are not particularly limited. Among various known extrusion molding methods and mold molding methods, the viscosity of the heat conductive resin composition, the characteristics required for the heat conductive sheet 1, and the like. Depending on the situation, it can be adopted as appropriate.
  • the binder resin flows and follows the flow direction. Some carbon fibers 11 are oriented, but many are randomly oriented.
  • the carbon fiber 11 tends to be easily oriented at the center with respect to the width direction of the extruded resin molded body 9.
  • the carbon fiber 11 is likely to be randomly oriented in the peripheral portion with respect to the width direction of the resin molded body 9 due to the influence of the slit wall.
  • the size and shape of the resin molded body 9 can be determined according to the required size of the heat conductive sheet 1. For example, there is a rectangular parallelepiped having a vertical size of 0.5 cm to 15 cm and a horizontal size of 0.5 cm to 15 cm. The length of the rectangular parallelepiped may be determined as necessary.
  • the formed resin molding 9 is sliced into sheets. Thereby, the sheet body 7 is obtained.
  • the carbon fibers 11 are exposed on the surface (sliced surface) of the sheet obtained by slicing.
  • the insulating film 12 covering the carbon fiber 11 exposed on the sheet surface is removed (that is, the carbon fiber 11 exposed on the sheet surface is removed). And not covered with the insulating film 12). Therefore, the heat conductive sheet 1 can maintain a good heat conductivity over the thickness direction.
  • the method of slicing is not particularly limited, and can be appropriately selected from known slicing apparatuses 13 (preferably an ultrasonic cutter or a planer) depending on the size and mechanical strength of the resin molded body 9.
  • slicing direction of the resin molded body 9 when the molding method is an extrusion molding method, some of the molding direction is oriented in the extrusion direction, and therefore, 60 ° to 120 °, more preferably 70 ° to the extrusion direction.
  • the direction is ⁇ 100 degrees.
  • the direction is particularly preferably 90 degrees (vertical).
  • the carbon fibers 11 exposed on the surface of the sheet body 7 are covered with a binder resin component.
  • this method include the following methods. (1) By pressing the sheet main body 7, the carbon fiber 11 exposed from the surface of the sheet main body 7 and the surface of the sheet main body 7 is covered with the uncured component 8 of the binder resin that has oozed out of the sheet main body 7. (2) By leaving the sheet main body 7, the carbon fiber 11 exposed from the surface of the sheet main body 7 and the surface of the sheet main body 7 is covered with the uncured component 8 of the binder resin that has oozed out of the sheet main body 7.
  • the slice surface of the obtained sheet body 7 is pressed.
  • a pair of pressing devices including a flat plate and a press head having a flat surface can be used. Moreover, you may press with a pinch roll.
  • the shape of the surface of the heat conductive sheet obtained varies depending on the pressing conditions.
  • the obtained sheet body 7 is left to stand.
  • the shape of the surface of the heat conductive sheet obtained varies depending on the standing time. For example, if left for a short time, a heat conductive sheet having a convex portion derived from the carbon fiber 11 whose surface is exposed on the surface of the sheet body 7 as shown in FIG. 6 is obtained. On the other hand, if left for a long time, a heat conductive sheet having a smooth surface as shown in FIG. 5 is obtained.
  • the uncured component 8 of the binder resin oozes out from the sheet body 7, and the heat conductive sheet 1 having the surface of the sheet body 7 covered with the uncured component 8 is obtained (see FIG. 3B).
  • the heat conductive sheet 1 the carbon fiber 11 (carbon fiber 11 which is not coat
  • the heat conductive sheet 1 exhibits slight adhesiveness (tackiness) on the sheet surface. Therefore, the heat conductive sheet 1 can improve followability and adhesion to the surfaces of the electronic component 3 and the heat spreader 2 and can reduce thermal resistance.
  • the surface of the sheet body 7 is coated with the uncured component 8 of the binder resin, and the surface of the heat conductive sheet 1 is slightly adhered to the main surface 2a of the heat spreader 2, or an electronic component. 3 can be temporarily fixed to the upper surface 3a. Therefore, the heat conductive sheet 1 does not need to use a separate adhesive, and can realize labor saving and cost reduction of the manufacturing process.
  • the heat conductive sheet 1 loses the slight adhesiveness of the surface during handling, if the pressing is performed, the uncured component 8 of the binder resin exudes from the sheet body 7 again, and the uncured component 8 The surface is coated. Therefore, the heat conductive sheet 1 can be repaired even when the bonding position to the heat spreader 2 or the temporary fixing position to the electronic component 3 is shifted.
  • the uncured component 8 of the binder resin oozes out from the entire surface of the sheet body 7, and the side surface as well as the front and back surfaces of the sheet body 7 are covered. Since the uncured component 8 of the binder resin has an insulating property, the heat conductive sheet 1 is provided with an insulating property on the side surface. Therefore, even when the heat conductive sheet 1 is sandwiched between the electronic component 3 and the heat spreader 2 and bulges out to the periphery and comes into contact with the conductive member disposed in the periphery, the semiconductor element or It is possible to prevent a short circuit between the heat sink and the conductive member.
  • the heat conductive sheet 1 is compressed in the thickness direction by being pressed, and the frequency of contact between the carbon fibers 11 and the heat conductive fillers can be increased. Thereby, it becomes possible to reduce the thermal resistance of the heat conductive sheet 1. Moreover, the surface of the heat conductive sheet 1 is smoothed by being pressed.
  • the thermal resistance tends to be the same as when not pressing, and if it is too high, the sheet tends to stretch, and therefore preferably 0.0098 MPa to 9.8 MPa, more preferably It is 0.049 MPa to 9.3 MPa.
  • the heat conductive sheet 1 has a spacer 10 disposed on a mounting surface facing the press head and the sheet body 7 is pressed, so that a predetermined amount corresponding to the height of the spacer 10 is obtained.
  • the sheet thickness can be formed as follows.
  • the uncured component 8 of the binder resin in the sheet body 7 oozes out, and the oozing stops when the entire sheet surface is covered.
  • the uncured component 8 of the binder resin oozes out according to the blending ratio of the binder resin component and the curing agent component in the binder resin, the pressing pressure, the sheet area, etc., and covers the entire surface of the sheet body 7. A sufficient time can be set as appropriate.
  • the pressing step may be performed while heating using a press head with a built-in heater in order to further promote the effect of oozing out the uncured component 8 of the binder resin and covering the surface of the sheet body 7.
  • the heating temperature is preferably higher than the glass transition temperature of the binder resin.
  • a sample of the heat conductive sheet was formed by changing the component ratio of the binder component and the curing agent component of the heat conductive resin composition, and the presence or absence of the carbon fiber insulating coating by the insulating film.
  • the presence or absence of tackiness, Shore OO hardness, compressive stress [N], initial sheet thickness [mm], thermal resistance (K ⁇ cm 2 / W), and volume resistivity [ ⁇ ⁇ cm] were measured and evaluated.
  • the insulating film was formed on the carbon fiber used in each example by the following method.
  • the first compound [300 g of pitch-based carbon fiber (heat conductive fiber: manufactured by Nippon Graphite Fiber Co., Ltd.) having an average fiber length of 100 ⁇ m and an average fiber diameter of 9 ⁇ m, 600 g of tetraethoxysilane, and 2700 g of ethanol] And mixed with a stirring blade.
  • the 2nd compound (1050 mass% aqueous ammonia 1050g) was thrown into this over 5 minutes. Stirring was carried out for 3 hours with the time when the addition of the second formulation was completed as 0 minutes.
  • suction filtration was performed using a vacuum pump, and the collected sample was transferred to a beaker, washed with water or ethanol, and then filtered again to collect the sample.
  • the collected sample was dried at 100 ° C. for 2 hours and fired at 200 ° C. for 8 hours to obtain coated carbon fibers.
  • Production Example 2 Insulating film treatment of carbon fiber
  • an insulating film treatment of the carbon fiber was performed in the same manner as in Production Example 1 to obtain a coated carbon fiber.
  • ⁇ Pitch-based carbon fiber thermoally conductive fiber, average fiber length 150 ⁇ m, average fiber diameter 9 ⁇ m, manufactured by Nippon Graphite Fiber Co., Ltd.
  • Production Example 3 Insulating film treatment of carbon fiber
  • an insulating film treatment of the carbon fiber was performed in the same manner as in Production Example 1 to obtain a coated carbon fiber.
  • ⁇ Pitch-based carbon fiber thermoally conductive fiber, average fiber length 90 ⁇ m, average fiber diameter 9 ⁇ m, manufactured by Nippon Graphite Fiber Co., Ltd.
  • Production Example 4 Insulating film treatment of carbon fiber
  • an insulating film treatment of the carbon fiber was performed in the same manner as in Production Example 1 to obtain a coated carbon fiber.
  • ⁇ Pitch-based carbon fiber thermoally conductive fiber, average fiber length 110 ⁇ m, average fiber diameter 9 ⁇ m, manufactured by Nippon Graphite Fiber Co., Ltd.
  • the processing conditions are the same except that the average fiber length of the pitch-based carbon fibers is changed. Even under the same processing conditions, the thickness of the formed film was changed by changing the average fiber length of the pitch-based carbon fibers. Specifically, the thickness of the formed film became thinner as the average fiber length of the carbon fibers was longer.
  • the average fiber length of the carbon fiber is one of the factors that change the thickness of the coating.
  • thermal resistance values of the heat conductive sheet samples according to Examples 1 to 16 and Comparative Examples 1 to 6 were measured in a load range of 1.0 kgf / cm 2 by a method based on ASTM-D5470.
  • Example 1 In Example 1, 20 parts by volume of alumina particles (thermal conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size: 4 ⁇ m) coupled to a two-component addition reaction type liquid silicone resin with a silane coupling agent, Coated carbon fiber obtained in Production Example 1 (average fiber length 100 ⁇ m, average fiber diameter 9 ⁇ m) 22 vol% and aluminum nitride coupled with a silane coupling agent (thermally conductive particles: manufactured by Tokuyama Corporation, average particle diameter) 1 ⁇ m) and 24 vol% were dispersed to prepare a silicone resin composition (thermally conductive resin composition).
  • alumina particles thermal conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size: 4 ⁇ m
  • Coated carbon fiber obtained in Production Example 1 (average fiber length 100 ⁇ m, average fiber diameter 9 ⁇ m) 22 vol% and aluminum nitride coupled with a silane coupling agent (thermally conductive particles: manufactured by To
  • the two-component addition reaction type liquid silicone resin is a mixture of 50% by mass of silicone A solution and 50% by mass of silicone B solution.
  • the silicone A liquid and the silicone B liquid used in the following examples and comparative examples are the same as the silicone A liquid and the silicone B liquid, respectively.
  • the obtained silicone resin composition was extruded into a rectangular parallelepiped hollow mold (30 mm ⁇ 30 mm) having a PET film peeled on the inner wall to mold a silicone molded body.
  • the obtained silicone molding was cured in an oven at 100 ° C. for 6 hours to obtain a silicone cured product.
  • the obtained silicone cured product was cut with an ultrasonic cutter to obtain a molded body sheet having a thickness of about 2 mm.
  • the slice speed of the ultrasonic cutter was 50 mm per second.
  • the ultrasonic vibration applied to the ultrasonic cutter had an oscillation frequency of 20.5 kHz and an amplitude of 60 ⁇ m.
  • the obtained molded sheet was sandwiched between peeled PET films and then pressed with a 1.97 mm thick spacer, whereby the sheet surface was covered with an uncured component of the binder resin.
  • Got. The pressing conditions were 3 min at 80 ° C. and 1 MPa setting.
  • the coated carbon fiber had an insulating film thickness of 77 nm.
  • the heat conductive sheet sample had a Shore OO hardness of 61, an initial sheet thickness of 1.998 mm, and a compressive stress of 900N. Slight tackiness was developed on the sheet surface.
  • the heat conductive sheet sample according to Example 1 had a thermal resistance of 1.00 [K ⁇ cm 2 / W] and a volume resistivity of 2.3 ⁇ 10 10 [ ⁇ ⁇ cm] at an applied voltage of 100 V. .
  • Example 2 As a two-component addition reaction type liquid silicone resin, except that a mixture of 55% by mass of silicone A solution and 45% by mass of silicone B solution was used, the same conditions as in Example 1, A heat conduction sheet sample was prepared.
  • the coated carbon fiber had an insulating film thickness of 77 nm.
  • the heat conductive sheet sample had a Shore OO hardness of 55, an initial sheet thickness of 2.031 mm, and a compressive stress of 700N. Slight tackiness was developed on the sheet surface.
  • the heat conductive sheet sample according to Example 2 had a thermal resistance of 0.95 [K ⁇ cm 2 / W] and a volume resistivity of 2.7 ⁇ 10 10 [ ⁇ ⁇ cm] at an applied voltage of 100 V. .
  • Example 3 As a two-component addition reaction type liquid silicone resin, except that a mixture of 60% by mass of a silicone A solution and 40% by mass of a silicone B solution was used, the same conditions as in Example 1, A heat conduction sheet sample was prepared.
  • the coated carbon fiber had an insulating film thickness of 77 nm.
  • the heat conductive sheet sample had a Shore OO hardness of 50, an initial sheet thickness of 2.005 mm, and a compressive stress of 450 N. Slight tackiness was developed on the sheet surface.
  • the heat conductive sheet sample according to Example 3 had a thermal resistance of 0.92 [K ⁇ cm 2 / W] and a volume resistivity of 3.6 ⁇ 10 10 [ ⁇ ⁇ cm] at an applied voltage of 100 V. .
  • Example 4 As the two-component addition reaction type liquid silicone resin, except that a mixture of 65% by mass of silicone A solution and 35% by mass of silicone B solution was used, the same conditions as in Example 1, A heat conduction sheet sample was prepared.
  • the coated carbon fiber had an insulating film thickness of 77 nm.
  • the heat conductive sheet sample had a Shore OO hardness of 42, an initial sheet thickness of 1.982 mm, and a compressive stress of 300N. Slight tackiness was developed on the sheet surface.
  • the heat conductive sheet sample according to Example 4 had a thermal resistance of 0.94 [K ⁇ cm 2 / W] and a volume resistivity at an applied voltage of 100 V of 4.4 ⁇ 10 10 [ ⁇ ⁇ cm]. .
  • Example 5 a heat conductive sheet sample was prepared under the same conditions as in Example 1 except that the coated carbon fiber (average fiber length 150 ⁇ m) obtained in Production Example 2 was used as the carbon fiber.
  • the coated carbon fiber had an insulating film thickness of 55 nm.
  • the heat conductive sheet sample had a Shore OO hardness of 70, an initial sheet thickness of 2.000 mm, and a compressive stress of 950 N. Slight tackiness was developed on the sheet surface.
  • the heat conductive sheet sample according to Example 5 had a thermal resistance of 0.91 [K ⁇ cm 2 / W] and a volume resistivity of 3.6 ⁇ 10 9 [ ⁇ ⁇ cm] at an applied voltage of 100 V. .
  • Example 6 a heat conductive sheet sample was prepared under the same conditions as in Example 2 except that the coated carbon fiber (average fiber length 150 ⁇ m) obtained in Production Example 2 was used as the carbon fiber.
  • the coated carbon fiber had an insulating film thickness of 55 nm.
  • the heat conductive sheet sample had a Shore OO hardness of 58, an initial sheet thickness of 2.009 mm, and a compressive stress of 800N. Slight tackiness was developed on the sheet surface.
  • the heat conductive sheet sample according to Example 6 had a thermal resistance of 0.88 [K ⁇ cm 2 / W] and a volume resistivity of 4.7 ⁇ 10 9 [ ⁇ ⁇ cm] at an applied voltage of 100 V. .
  • Example 7 a heat conductive sheet sample was prepared under the same conditions as in Example 3 except that the coated carbon fiber (average fiber length 150 ⁇ m) obtained in Production Example 2 was used as the carbon fiber.
  • the coated carbon fiber had an insulating film thickness of 55 nm.
  • the heat conductive sheet sample had a Shore OO hardness of 57, an initial sheet thickness of 1.991 mm, and a compressive stress of 550N. Slight tackiness was developed on the sheet surface.
  • the heat conductive sheet sample according to Example 7 had a thermal resistance of 0.86 [K ⁇ cm 2 / W] and a volume resistivity at an applied voltage of 100 V of 6.7 ⁇ 10 9 [ ⁇ ⁇ cm]. .
  • Example 8 a heat conductive sheet sample was prepared under the same conditions as in Example 4 except that the coated carbon fiber (average fiber length 150 ⁇ m) obtained in Production Example 2 was used as the carbon fiber.
  • the coated carbon fiber had an insulating film thickness of 55 nm.
  • the heat conductive sheet sample had a Shore OO hardness of 50, an initial sheet thickness of 2.016 mm, and a compressive stress of 350 N. Slight tackiness was developed on the sheet surface. Further, the heat conductive sheet sample according to Example 8 had a thermal resistance of 0.88 [K ⁇ cm 2 / W] and a volume resistivity of 8.2 ⁇ 10 9 [ ⁇ ⁇ cm] at an applied voltage of 100 V. .
  • Example 9 In Example 9, 43 vol% of alumina particles (thermal conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 4 ⁇ m) coupled to a two-component addition reaction type liquid silicone resin with a silane coupling agent, 23 vol% of the coated carbon fiber (average fiber length 90 ⁇ m, average fiber diameter 9 ⁇ m) obtained in Production Example 3 was dispersed to prepare a silicone resin composition (thermally conductive resin composition).
  • the two-component addition reaction type liquid silicone resin is a mixture of 50% by mass of silicone A solution and 50% by mass of silicone B solution.
  • the obtained silicone resin composition was extruded into a rectangular parallelepiped hollow mold (30 mm ⁇ 30 mm) having a PET film peeled on the inner wall to mold a silicone molded body.
  • the obtained silicone molding was cured in an oven at 100 ° C. for 6 hours to obtain a silicone cured product.
  • the obtained silicone cured product was cut with an ultrasonic cutter to obtain a molded body sheet having a thickness of about 2 mm.
  • the slice speed of the ultrasonic cutter was 50 mm per second.
  • the ultrasonic vibration applied to the ultrasonic cutter had an oscillation frequency of 20.5 kHz and an amplitude of 60 ⁇ m.
  • a spacer was inserted and pressed to obtain a heat conductive sheet sample in which the sheet surface was covered with an uncured component of the binder resin.
  • the pressing conditions were 3 min at 80 ° C. and 1 MPa setting.
  • the coated carbon fiber had an insulating film thickness of 95 nm.
  • the heat conductive sheet sample had a Shore OO hardness of 59, an initial sheet thickness of 2.017 mm, and a compressive stress of 900N. Slight tackiness was developed on the sheet surface.
  • the heat conductive sheet sample according to Example 9 had a thermal resistance of 1.89 [K ⁇ cm 2 / W] and a volume resistivity of 1.2 ⁇ 10 10 [ ⁇ ⁇ cm] at an applied voltage of 100 V. .
  • Example 10 As a two-component addition reaction type liquid silicone resin, except that a mixture of 55% by mass of a silicone A solution and 45% by mass of a silicone B solution was used, the same conditions as in Example 9, A heat conduction sheet sample was prepared.
  • the coated carbon fiber had an insulating film thickness of 95 nm.
  • the heat conductive sheet sample had a Shore OO hardness of 53, an initial sheet thickness of 2.008 mm, and a compressive stress of 800N. Slight tackiness was developed on the sheet surface. Further, the heat conductive sheet sample according to Example 10 had a thermal resistance of 1.83 [K ⁇ cm 2 / W] and a volume resistivity at an applied voltage of 100 V of 2.9 ⁇ 10 10 [ ⁇ ⁇ cm]. .
  • Example 11 As a two-component addition reaction type liquid silicone resin, except that a mixture of 60% by mass of silicone A solution and 40% by mass of silicone B solution was used, the same conditions as in Example 9 A heat conduction sheet sample was prepared.
  • the coated carbon fiber had an insulating film thickness of 95 nm.
  • the heat conductive sheet sample had a Shore OO hardness of 51, an initial sheet thickness of 1.982 mm, and a compressive stress of 500N. Slight tackiness was developed on the sheet surface. Further, the heat conductive sheet sample according to Example 11 had a thermal resistance of 1.79 [K ⁇ cm 2 / W] and a volume resistivity at an applied voltage of 100 V of 4.2 ⁇ 10 10 [ ⁇ ⁇ cm]. .
  • Example 12 As a two-component addition reaction type liquid silicone resin, except that a mixture of 65% by mass of a silicone A solution and 35% by mass of a silicone B solution was used, the same conditions as in Example 9, A heat conduction sheet sample was prepared.
  • the coated carbon fiber had an insulating film thickness of 95 nm.
  • the heat conductive sheet sample had a Shore OO hardness of 45, an initial sheet thickness of 1.996 mm, and a compressive stress of 250N. Slight tackiness was developed on the sheet surface.
  • the heat conductive sheet sample according to Example 12 had a thermal resistance of 1.85 [K ⁇ cm 2 / W] and a volume resistivity at an applied voltage of 100 V of 5.5 ⁇ 10 10 [ ⁇ ⁇ cm]. .
  • Example 13 a molded body sheet was prepared under the same conditions as in Example 3 except that the coated carbon fiber (average fiber length 110 ⁇ m) obtained in Production Example 4 was used.
  • the obtained molded sheet was sandwiched between peeled PET films and then pressed with a 1.97 mm thick spacer, whereby the sheet surface was covered with an uncured component of the binder resin.
  • the pressing conditions were set at 100 ° C. and 1 MPa for 30 sec. By increasing the temperature and shortening the press time, the sheet surface was coated with a component that did not contribute to the reaction while reflecting the shape of the heat conductive filler.
  • the coated carbon fiber had an insulating film thickness of 65 nm.
  • the heat conductive sheet sample had a Shore OO hardness of 52, an initial sheet thickness of 2.011 mm, and a compressive stress of 500N. Slight tackiness was developed on the sheet surface. Further, the heat conductive sheet sample according to Example 13 had a thermal resistance of 0.85 [K ⁇ cm 2 / W] and a volume resistivity at an applied voltage of 100 V of 8.9 ⁇ 10 9 [ ⁇ ⁇ cm]. .
  • Example 14 a molded body sheet was prepared under the same conditions as in Example 4 except that the coated carbon fiber (average fiber length 110 ⁇ m) obtained in Production Example 4 was used.
  • the obtained molded sheet was sandwiched between peeled PET films and then pressed with a 1.97 mm thick spacer, whereby the sheet surface was covered with an uncured component of the binder resin.
  • the pressing conditions were set at 100 ° C. and 1 MPa for 30 sec. By increasing the temperature and shortening the press time, the sheet surface was coated with a component that did not contribute to the reaction while reflecting the shape of the heat conductive filler.
  • the coated carbon fiber had an insulating film thickness of 65 nm.
  • the heat conductive sheet sample had a Shore OO hardness of 48, an initial sheet thickness of 1.978 mm, and a compressive stress of 330 N. Slight tackiness was developed on the sheet surface.
  • the heat conductive sheet sample according to Example 14 had a thermal resistance of 0.84 [K ⁇ cm 2 / W] and a volume resistivity at an applied voltage of 100 V of 8.3 ⁇ 10 9 [ ⁇ ⁇ cm]. .
  • Example 15 a molded body sheet was prepared under the same conditions as in Example 3 except that the coated carbon fiber (average fiber length 110 ⁇ m) obtained in Production Example 4 was used.
  • the sheet was left for one day without pressing to obtain a heat conductive sheet sample in which the sheet surface was covered with an uncured component of the binder resin.
  • the surface of the sheet was coated with a component that did not contribute to the reaction while reflecting the shape of the heat conductive filler.
  • the coated carbon fiber had an insulating film thickness of 65 nm.
  • the heat conductive sheet sample had a Shore OO hardness of 50, an initial sheet thickness of 2.023 mm, and a compressive stress of 400N. Slight tackiness was developed on the sheet surface.
  • the heat conductive sheet sample according to Example 15 had a thermal resistance of 0.88 [K ⁇ cm 2 / W] and a volume resistivity at an applied voltage of 100 V of 9.4 ⁇ 10 9 [ ⁇ ⁇ cm]. .
  • Example 16 a molded body sheet was prepared under the same conditions as in Example 3 except that the coated carbon fiber (average fiber length 110 ⁇ m) obtained in Production Example 4 was used.
  • the sheet was left for 1 week without pressing to obtain a heat conductive sheet sample in which the sheet surface was covered with an uncured component of the binder resin.
  • the surface of the sheet was coated with a component that does not contribute to the reaction on the surface of the heat conductive sheet.
  • the coated carbon fiber had an insulating film thickness of 65 nm.
  • the heat conductive sheet sample had a Shore OO hardness of 49, an initial sheet thickness of 2.001 mm, and a compressive stress of 350 N. Slight tackiness was developed on the sheet surface.
  • the heat conductive sheet sample according to Example 16 had a thermal resistance of 0.90 [K ⁇ cm 2 / W] and a volume resistivity of 1.2 ⁇ 10 10 [ ⁇ ⁇ cm] at an applied voltage of 100 V. .
  • Comparative Example 1 is the same as Example 1 except that pitch-based carbon fiber (thermal conductive fiber: manufactured by Nippon Graphite Fiber Co., Ltd., average fiber length: 100 ⁇ m, average fiber diameter: 9 ⁇ m) that has not been subjected to insulation coating treatment is used. Under the conditions, a heat conduction sheet sample was prepared.
  • pitch-based carbon fiber thermo conductive fiber: manufactured by Nippon Graphite Fiber Co., Ltd., average fiber length: 100 ⁇ m, average fiber diameter: 9 ⁇ m
  • the heat conductive sheet sample according to Comparative Example 1 had a Shore OO hardness of 72, an initial sheet thickness of 2.010 mm, and a compressive stress of 1000N. Slight tackiness was developed on the sheet surface.
  • the heat conductive sheet sample according to Comparative Example 1 had a thermal resistance of 0.88 [K ⁇ cm 2 / W] and a volume resistivity of 3.4 ⁇ 10 4 [ ⁇ ⁇ cm] at an applied voltage of 1 V. .
  • Comparative Example 2 is the same as Example 2 except that pitch-based carbon fiber (thermal conductive fiber: manufactured by Nippon Graphite Fiber Co., Ltd., average fiber length: 100 ⁇ m, average fiber diameter: 9 ⁇ m) that has not been subjected to insulation coating treatment is used. Under the conditions, a heat conduction sheet sample was prepared.
  • pitch-based carbon fiber thermo conductive fiber: manufactured by Nippon Graphite Fiber Co., Ltd., average fiber length: 100 ⁇ m, average fiber diameter: 9 ⁇ m
  • the heat conductive sheet sample according to Comparative Example 2 had a Shore OO hardness of 63, an initial sheet thickness of 1.99 mm, and a compressive stress of 900N. Slight tackiness was developed on the sheet surface.
  • the heat conductive sheet sample according to Comparative Example 2 had a thermal resistance of 0.85 [K ⁇ cm 2 / W] and a volume resistivity of 3.6 ⁇ 10 4 [ ⁇ ⁇ cm] at an applied voltage of 1 V. .
  • Comparative Example 3 is the same as Example 3 except that pitch-based carbon fiber (thermal conductive fiber: manufactured by Nippon Graphite Fiber Co., Ltd., average fiber length: 100 ⁇ m, average fiber diameter: 9 ⁇ m) that has not been subjected to an insulating coating treatment is used. Under the conditions, a heat conduction sheet sample was prepared.
  • pitch-based carbon fiber thermo conductive fiber: manufactured by Nippon Graphite Fiber Co., Ltd., average fiber length: 100 ⁇ m, average fiber diameter: 9 ⁇ m
  • the heat conductive sheet sample according to Comparative Example 3 had a Shore OO hardness of 59, an initial sheet thickness of 1.999 mm, and a compressive stress of 450 N. Slight tackiness was developed on the sheet surface. Further, the heat conductive sheet sample according to Comparative Example 3 had a thermal resistance of 0.84 [K ⁇ cm 2 / W] and a volume resistivity at an applied voltage of 1 V of 3.9 ⁇ 10 4 [ ⁇ ⁇ cm]. .
  • Comparative Example 4 is the same as Example 4 except that pitch-based carbon fiber (thermal conductive fiber: manufactured by Nippon Graphite Fiber Co., Ltd., average fiber length: 100 ⁇ m, average fiber diameter: 9 ⁇ m) that has not been subjected to an insulating coating treatment is used. Under the conditions, a heat conduction sheet sample was prepared.
  • pitch-based carbon fiber thermo conductive fiber: manufactured by Nippon Graphite Fiber Co., Ltd., average fiber length: 100 ⁇ m, average fiber diameter: 9 ⁇ m
  • the heat conductive sheet sample according to Comparative Example 4 had a Shore OO hardness of 50, an initial sheet thickness of 2.005 mm, and a compressive stress of 300N. Slight tackiness was developed on the sheet surface.
  • the heat conductive sheet sample according to Comparative Example 4 had a thermal resistance of 0.87 [K ⁇ cm 2 / W] and a volume resistivity of 4.7 ⁇ 10 4 [ ⁇ ⁇ cm] at an applied voltage of 1 V. .
  • Comparative Example 5 the heat conductive sheet obtained in Comparative Example 1 was coated with a mixture of 50% by mass of silicone A solution and 50% by mass of silicone B solution as a two-component addition reaction type liquid silicone resin. A heat conductive sheet sample was prepared.
  • the heat conductive sheet sample according to Comparative Example 5 had a Shore OO hardness of 75, an initial sheet thickness of 2.030 mm, and a compressive stress of 1050 N. Slight tackiness was developed on the sheet surface.
  • the heat conductive sheet sample according to Comparative Example 5 had a thermal resistance of 2.43 [K ⁇ cm 2 / W] and a volume resistivity of 1.0 ⁇ 10 12 [ ⁇ ⁇ cm] at an applied voltage of 100 V. .
  • Comparative Example 6 In Comparative Example 6, the same conditions as in Comparative Example 5 were used except that the two-component addition reaction type liquid silicone resin to be applied was a mixture of 45% by mass of silicone A solution and 55% by mass of silicone B solution. Thus, a heat conductive sheet sample was prepared.
  • the heat conductive sheet sample according to Comparative Example 6 had a Shore OO hardness of 75, an initial sheet thickness of 2.015 mm, and a compressive stress of 1200 N. Slight tackiness was not expressed on the sheet surface.
  • the heat conductive sheet sample according to Comparative Example 6 had a thermal resistance of 2.56 [K ⁇ cm 2 / W] and a volume resistivity of 8.1 ⁇ 10 11 [ ⁇ ⁇ cm] at an applied voltage of 100 V. .
  • thermal adhesion sheet samples according to Examples 1 to 16 and Comparative Examples 1 to 6 were evaluated for slight adhesiveness.
  • the evaluation of the slight adhesion was made by sandwiching a molded product sheet obtained by slicing the cured silicone products according to Examples 1 to 16 and Comparative Examples 1 to 6 with a PET film not subjected to release treatment, and then adding a thickness of 1.
  • a 97 mm spacer was put in, pressed at 80 ° C. and a setting of 2.45 MPa for 3 min, and then cooled to room temperature to obtain a heat conductive sheet sample for evaluation of slight adhesion.
  • the thermal resistance is 1.89 [K ⁇ cm 2 / W] at the maximum and the volume resistivity is 3.6 ⁇ at the minimum. It is 10 9 [ ⁇ ⁇ cm], and both thermal conductivity and insulation properties are generally achieved.
  • the carbon fiber contained in the heat conductive sheet sample is coated with an insulating film with a thickness of 50 nm or more and less than 100 nm, so that the insulating film is formed with a desired film thickness and good volume resistivity.
  • the generation of silica fine particles can be suppressed, and the decrease in thermal conductivity can be prevented.
  • the carbon fibers exposed on the sheet surface are cut by the insulating film at the time of slicing to expose the carbon fibers, but are covered with the uncured component of the binder resin. Therefore, it has insulation with respect to surrounding members without impairing the thermal conductivity.
  • heat conductive sheets having a smooth surface as shown in FIG. 5 were obtained.
  • heat conductive sheets having protrusions derived from carbon fibers whose surfaces were exposed on the surface of the sheet main body as shown in FIG. 6 were obtained.
  • coated silicone resin is as low as 45%, an uncured component does not remain sufficiently, and even if it presses, the whole surface of a sheet

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 バインダ樹脂と、絶縁皮膜により被覆された炭素繊維とを含有する熱伝導性樹脂組成物が硬化されたシート本体を有し、 前記シート本体の表面に露出した前記炭素繊維は、前記絶縁皮膜により被覆されておらず、且つ前記バインダ樹脂の成分によって被覆されている熱伝導シート。

Description

熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置
 本発明は、半導体素子等の発熱体とヒートシンク等の放熱体との間に配置される熱伝導シート、熱伝導シートの製造方法、熱伝導シートを備えた放熱部材及び半導体装置に関する。
 従来、パーソナルコンピュータ等の各種電気機器やその他の機器に搭載されている半導体素子においては、駆動により熱が発生し、発生した熱が蓄積されると半導体素子の駆動や周辺機器へ悪影響が生じることから、各種冷却手段が用いられている。半導体素子等の電子部品の冷却方法としては、当該機器にファンを取り付け、機器筐体内の空気を冷却する方式や、その冷却すべき半導体素子に放熱フィンや放熱板等のヒートシンクを取り付ける方法等が知られている。
 半導体素子にヒートシンクを取り付けて冷却する場合、半導体素子の熱を効率よく放出させるために、半導体素子とヒートシンクとの間に熱伝導シートが設けられている。熱伝導シートとしては、シリコーン樹脂に熱伝導性フィラー〔例えば、鱗片状粒子(窒化ホウ素(BN)、黒鉛等)、炭素繊維等〕を分散含有させたものが広く用いられている(特許文献1参照)。
 これら熱伝導性フィラーは、熱伝導の異方性を有しており、例えば熱伝導性フィラーとして炭素繊維を用いた場合、繊維方向には約600W/m・K~1200W/m・Kの熱伝導率を有し、窒化ホウ素を用いた場合には、面方向では約110W/m・K、面方向に垂直な方向では約2W/m・Kの熱伝導率を有し、異方性を有することが知られている。
特開2012-23335号公報
 しかし、熱伝導性に優れるが導電性をも備えた炭素繊維等の熱伝導性フィラーを用いた熱伝導シートでは、熱伝導シートが半導体素子周辺の回路に接触した場合や、シートに欠損が生じて回路に落下した場合に、シート表面に露出した熱伝導性フィラーによってショートが生じる等、電子機器の故障を招くことが懸念される。
 一方で、熱伝導シートの電気的な絶縁性を確保するために、熱伝導性フィラーをシート本体に埋没させると熱伝導性フィラーによる高い熱伝導率の効果を損なってしまう。
 そこで、本発明は、熱伝導シートの接触等の不測の事態においても、電気的な絶縁性を確保するとともに、高い熱伝導率を維持することができる熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置を提供することを目的とする。
 上述した課題を解決するために、本発明に係る熱伝導シートは、バインダ樹脂と、絶縁皮膜により被覆された炭素繊維とを含有する熱伝導性樹脂組成物が硬化されたシート本体を有し、
 前記シート本体の表面に露出した前記炭素繊維は、前記絶縁皮膜により被覆されておらず、且つ前記バインダ樹脂の成分によって被覆されているものである。
 また、本発明に係る熱伝導シートの製造方法は、バインダ樹脂と、絶縁皮膜により被覆された炭素繊維とを含有する熱伝導性樹脂組成物を所定の形状に成型して硬化することにより、前記熱伝導性樹脂組成物の成型体を得る工程と、
 前記成型体をシート状に切断し、シート本体を得る工程と、
 前記シート本体の表面に露出した前記炭素繊維を、前記バインダ樹脂の成分で被覆する工程とを有し、
 前記シート本体を得る工程において、前記シート本体の表面に露出する前記炭素繊維を被覆する前記絶縁皮膜が除去されるものである。
 また、本発明に係る放熱部材は、電子部品の発する熱を放熱するヒートスプレッダと、前記ヒートスプレッダに配設され、前記ヒートスプレッダと前記電子部品との間に挟持される前記熱伝導シートとを有するものである。
 また、本発明に係る半導体装置は、前記半導体素子の発する熱を放熱するヒートスプレッダと、前記ヒートスプレッダに配設され、前記ヒートスプレッダと前記半導体素子との間に挟持される前記熱伝導シートとを有するものである。
 本発明によれば、シート本体の表面に露出された炭素繊維は絶縁皮膜に被覆されていないため前記絶縁皮膜による熱伝導率の低下を抑制できる。また、本発明に係る熱伝導シートは、シート本体の表面に露出した、絶縁皮膜に被覆されていない炭素繊維が、バインダ樹脂の成分で被覆されるため、シートの絶縁性と熱伝導率を両立することができる。
図1は、本発明が適用された熱伝導シート、放熱部材及び半導体装置を示す断面図である。 図2は、樹脂成型体をスライスしシート本体を切り出す工程を示す斜視図である。 図3Aは、樹脂成型体より切り出されたシート本体を示す斜視図である。 図3Bは、シート本体がバインダ樹脂の成分によって被覆された状態を示す斜視図である。 図4は、絶縁皮膜によって被覆された炭素繊維を示す斜視図である。 図5は、熱伝導シートの表面形状の一例を示す断面図である。 図6は、熱伝導シートの表面形状の他の一例を示す断面図である。 図7は、シート本体がスペーサを介してプレスされる状態を示す斜視図である。
 以下、本発明が適用された熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 本発明が適用された熱伝導シート1は、半導体素子等の電子部品3の発する熱を放熱するものであり、図1に示すように、ヒートスプレッダ2の電子部品3と対峙する主面2aに固定され、電子部品3と、ヒートスプレッダ2との間に挟持されるものである。また、熱伝導シートは、ヒートスプレッダ2とヒートシンク5との間に挟持される。そして、熱伝導シートは、ヒートスプレッダ2とともに、電子部品3の熱を放熱する放熱部材4を構成する。
 ヒートスプレッダ2は、例えば方形板状に形成され、電子部品3と対峙する主面2aと、主面2aの外周に沿って立設された側壁2bとを有する。ヒートスプレッダ2は、側壁2bに囲まれた主面2aに熱伝導シート1が設けられ、また主面2aと反対側の他面2cに熱伝導シート1を介してヒートシンク5が設けられる。ヒートスプレッダ2は、高い熱伝導率を有するほど、熱抵抗が減少し、効率よく半導体素子等の電子部品4の熱を吸熱することから、例えば、熱伝導性の良い銅やアルミニウムを用いて形成することができる。
 電子部品3は、例えばBGA等の半導体素子であり、配線基板6へ実装される。またヒートスプレッダ2も、側壁2bの先端面が配線基板6に実装され、これにより側壁2bによって所定の距離を隔てて電子部品3を囲んでいる。
 そして、ヒートスプレッダ2の主面2aに、熱伝導シート1が接着されることにより、半導体素子の発する熱を吸収し、ヒートシンク5より放熱する放熱部材4が形成される。ヒートスプレッダ2と熱伝導シート1との接着は、後述する熱伝導シート1自身の粘着力によって行うことができるが、適宜、接着剤を用いてもよい。接着剤としては、熱伝導シート1のヒートスプレッダ2への接着と熱伝導を担う公知の放熱性樹脂、あるいは放熱性の接着フィルムを用いることができる。
 [熱伝導シート]
 熱伝導シート1は、バインダ樹脂と、絶縁皮膜に被覆された炭素繊維11とを含有する熱伝導性樹脂組成物が硬化されたシート本体7を有し、前記シート本体7の表面に露出した炭素繊維11は、前記絶縁皮膜により被覆されておらず、前記シート本体7より滲み出た前記バインダ樹脂の未硬化成分8によって被覆されている。
 熱伝導シート1は、図2、図3A及び図3Bに示すように、バインダ樹脂と、絶縁皮膜に被覆された炭素繊維11とを含有する熱伝導性樹脂組成物を硬化して形成した樹脂成型体9を、シート状に切断してシート表面に炭素繊維11が露出されたシート本体7を得、その後、シート本体7をプレスして又は放置して、シート本体7及びシート本体7の表面に露出された炭素繊維11をバインダ樹脂の未硬化成分8によって被覆することにより製造される。なお、シート本体7の表面に露出された炭素繊維11は、絶縁皮膜12によって被覆されていない。詳しくは後述する。
 熱伝導シート1を構成する炭素繊維11は、電子部品3からの熱を効率良くヒートスプレッダ2に伝導させるためのものである。炭素繊維11は、平均径が小さすぎるとその比表面積が過大となって熱伝導シート1を作成する際の樹脂組成物の粘度が高く成りすぎることが懸念され、大きすぎると成型体の作成が困難になるおそれがあることから、炭素繊維11の平均径は、好ましくは5μm~12μmである。また、その平均繊維長は、好ましくは30μm~300μmである。炭素繊維11の平均繊維長が、30μm未満ではその比表面積が過大となって熱伝導性樹脂組成物の粘度が高くなりすぎる傾向があり、300μmより大きすぎると熱伝導シート1の圧縮を阻害する傾向がある。
 炭素繊維11は、熱伝導シート1に対して要求される機械的性質、熱的性質、電気的性質などの特性に応じて選択される。中でも、高弾性率、良好な熱伝導性、高導電性、電波遮蔽性、低熱膨張性等を示す点からピッチ系炭素繊維あるいはポリベンザゾールを黒鉛化した炭素繊維を好ましく使用することができる。
 炭素繊維11の熱伝導シート1中の含有量は、少なすぎると熱伝導率が低くなり、多すぎると粘度が高くなる傾向があるので、好ましくは16体積%~40体積%である。
 [絶縁皮膜]
 図4に示すように、炭素繊維11は表面が絶縁皮膜12によって被覆されている。絶縁皮膜12は、例えば酸化ケイ素、窒化ホウ素等の優れた電気絶縁性を有する材料を用いることができる。また、絶縁皮膜12により炭素繊維11を被覆する方法としては、例えばゾルゲル法、液相堆積法、ポリシロキサン法等が挙げられる。なお、炭素繊維11と絶縁皮膜12との接着性を高めるために、炭素繊維11の表面を気相法、薬液処理法、電解法などによって酸化させてもよい。
 炭素繊維11を被覆する絶縁皮膜12を酸化ケイ素とした場合、断面TEM観察により観察される絶縁皮膜12の平均厚さを50nm以上、100nm未満とすることが好ましい。
 平均厚さ50nm未満の絶縁皮膜12を形成しようとすると、皮膜処理濃度を低下させる必要があるため、皮膜形成に長時間を要し生産性が損なわれるほか、バッチの処理量が減り廃液が増える。また、皮膜処理濃度を高めても厚み制御が難しく、生産性が損なわれるほか、炭素繊維11が部分的に露出するなど絶縁性能を損なうおそれもある。
 また、平均厚さ100nm以上の絶縁皮膜12を形成する場合、炭素繊維11を被覆する絶縁皮膜12の形成に寄与するシリカの他に、微粒子状のシリカが形成されてしまう。このため、絶縁皮膜12により被覆された炭素繊維11をバインダ樹脂に混合しようとすると、微粒子状のシリカも同時に混合されてしまい、熱抵抗値の悪化を招く。また、被膜処理濃度を調整して複数回繰り返して膜厚を調整する方法も考えられるが、被覆処理の回数が増える事で、生産効率の低下と廃液量の増加につながるため、好ましくない。
 [熱伝導性フィラー]
 なお、炭素繊維11の他に、本発明の効果を損なわない範囲で、繊維状フィラー、板状フィラー、鱗片状フィラー、球状フィラー等の熱伝導性フィラーを併用することができる。
 熱伝導性フィラーとしては、例えば、金属(例えば、ニッケル、鉄等)、ガラス、セラミックス〔例えば、酸化物(例えば、酸化アルミニウム、二酸化ケイ素等)、窒化物(例えば、窒化ホウ素、窒化アルミニウム等)、ホウ化物(例えば、ホウ化アルミニウム等)、炭化物(例えば、炭化ケイ素等)等の非金属系無機繊維〕等の各種フィラーを挙げることができる。
 特に、炭素繊維11の熱伝導性樹脂組成物中での二次凝集の抑制という観点から、0.1μm~10μm径の球状フィラー(好ましくは球状アルミナや球状窒化アルミ)を、炭素繊維11を100質量部に対し、好ましくは50質量部~900質量部併用することが好ましい。
 [バインダ樹脂]
 バインダ樹脂は、炭素繊維11及び適宜添加された熱伝導性フィラーを熱伝導シート1内に保持するものであり、熱伝導シート1に要求される機械的強度、耐熱性、電気的性質等の特性に応じて選択される。このようなバインダ樹脂としては、熱可塑性樹脂、熱可塑性エラストマー、熱硬化性樹脂の中から選択することができる。
 熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のエチレン-αオレフィン共重合体、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリフッ化ビニリデン及びポリテトラフルオロエチレン等のフッ素系重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリアクリロニトリル、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)樹脂、ポリフェニレン-エーテル共重合体(PPE)樹脂、変性PPE樹脂、脂肪族ポリアミド類、芳香族ポリアミド類、ポリイミド、ポリアミドイミド、ポリメタクリル酸、ポリメタクリル酸メチルエステル等のポリメタクリル酸エステル類、ポリアクリル酸類、ポリカーボネート、ポリフェニレンスルフィド、ポリサルホン、ポリエーテルサルホン、ポリエーテルニトリル、ポリエーテルケトン、ポリケトン、液晶ポリマー、シリコーン樹脂、アイオノマー等が挙げられる。
 熱可塑性エラストマーとしては、スチレン-ブタジエンブロック共重合体又はその水添化物、スチレン-イソプレンブロック共重合体又はその水添化物、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等が挙げられる。
 熱硬化性樹脂としては、架橋ゴム、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂等が挙げられる。架橋ゴムの具体例としては、天然ゴム、アクリルゴム、ブタジエンゴム、イソプレンゴム、スチレン-ブタジエン共重合ゴム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、エチレン-プロピレン共重合ゴム、塩素化ポリエチレンゴム、クロロスルホン化ポリエチレンゴム、ブチルゴム、ハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、及びシリコーンゴムが挙げられる。
 熱伝導性樹脂組成物は、繊維状フィラーとバインダ樹脂とに加えて、必要に応じて各種添加剤や揮発性溶剤を、公知の手法により均一に混合することにより調整することができる。
 このような熱伝導シート1は、後述するように、バインダ樹脂中に絶縁皮膜12によって被覆された炭素繊維11を含有する熱伝導性樹脂組成物を硬化して形成した樹脂成型体9を、シート状にスライスしてシート表面に炭素繊維11が露出されたシート本体7を得、その後、シート本体7をプレスする又は放置することにより製造される。
 このとき、スライスにより、シート表面に露出された炭素繊維11の絶縁皮膜12が除去されるため、熱伝導シート1は、絶縁皮膜12による熱伝導率の低下を抑制できる。その後、熱伝導シート1は、シート本体7をプレスする又は放置することにより表面に滲み出したバインダ樹脂の未硬化成分8で絶縁皮膜12が除去された炭素繊維11が被覆されるため、シートの絶縁性と熱伝導率を両立することができる。
 また、熱伝導シート1は、プレスされる又は放置されることにより、シート本体7より全表面にわたってバインダ樹脂の未硬化成分8が滲み出し、当該未硬化成分8によって以下の(1)及び(2)が被覆されている。
 (1)シート本体7の表面
 (2)シート本体7の表面に露出された炭素繊維11
 これにより、熱伝導シート1は、シート表面に微粘着性(タック性)が発現する。したがって、熱伝導シート1は、電子部品3やヒートスプレッダ2の表面に対する追従性、密着性が向上し、低荷重領域においても熱抵抗を低減させることができる。
 また、熱伝導シート1は、シート本体7の表面がバインダ樹脂の未硬化成分8によって被覆され、表面に微粘着性が発現することにより、ヒートスプレッダ2の主面2aへの接着、あるいは、電子部品3の上面3aへの仮固定が可能となる。したがって、熱伝導シート1は、別途接着剤を用いる必要がなく、製造工程の省力化、低コスト化を実現することができる。
 なお、未硬化成分8によるシート本体7の表面の被覆、及び未硬化成分8による絶縁皮膜12が除去された炭素繊維11の被覆は、必ずしも絶縁皮膜12が除去された炭素繊維11が完全に埋没する厚みは必要なく、シート本体7の表面ならびに絶縁皮膜12が除去された炭素繊維11が被覆されていれば、絶縁皮膜12が除去された炭素繊維11の形状が判断できる程度の厚みであっても十分である。
 ここで、熱伝導シート1は、熱伝導性樹脂組成物のバインダ樹脂の主剤と硬化剤の成分比を調整することにより、所望の微粘着性(タック性)を得ることができる。例えば、熱伝導性樹脂組成物のバインダ樹脂として2液性の付加反応型液状シリコーン樹脂を用いた場合、主剤と硬化剤の成分比率は、
 主剤:硬化剤=50:50~65:35(質量比)
とすることが好ましい。
 この成分比で調整することにより、熱伝導シート1は、シート形状を維持しつつ、プレスする又は放置することによってバインダ樹脂の未硬化成分8が滲み出し、シート本体7の全表面を被覆して、シート全体に適度な微粘着性を得ることができる。
 一方、この成分比よりも主剤の成分が少ないと、熱伝導シート1は、バインダ樹脂の硬化が進み、柔軟性に欠けるとともに、シート本体7のバインダ樹脂の未硬化成分8による被覆も不十分でシート本体7の少なくとも一部では微粘着性も発現しない。また、この成分比よりも硬化剤の成分が少ないと、粘着性が過剰に発現してシート形状が維持できず、また成型体からシート状に切り出すことも困難となり、取扱い性を損なう。
 また、熱伝導シート1は、ASTM-D2240の測定方法によるショアOO硬度が70以下であることが好ましい。熱伝導シート1の硬度がショアOO硬度で70を超えると、シート本体7が十分な柔軟性を発揮することができず、電子部品3やヒートスプレッダ2の表面に対する追従性、密着性が低下し、熱抵抗を上昇させるおそれがある。なお、熱伝導シート1の硬度の下限は特に限定されない。
 なお、熱伝導シート1の体積抵抗率は、1×10Ω・cm以上が好ましい。これにより、周辺の回路部品に熱伝導シート1が接触しても、電子機器の故障等を招く懸念がない。
 熱伝導シートの表面形状は、例えば、以下の例が挙げられる。
 一つは、図5に示すように、表面が平滑な態様である。この場合、炭素繊維11を被覆する未硬化成分8の表面が平滑である。
 もう一つは、図6に示すように、表面が、シート本体7の表面に露出した炭素繊維11に由来する凸部を有する態様である。この場合、炭素繊維11を被覆する未硬化成分8の表面が平滑ではなく、炭素繊維11に由来する凸部を有している。
 なお、図5及び図6においては、炭素繊維11を被覆する絶縁皮膜12を省略している。
 [熱伝導シートの製造工程]
 本発明の熱伝導シート1は、以下の工程(A)~(D)を有する製造方法によって製造することができる。以下、工程毎に詳細に説明する。
 <工程A>
 まず、絶縁皮膜12によって被覆された炭素繊維11及び適宜添加される熱伝導性フィラーをバインダ樹脂に分散させることにより熱伝導シート1形成用の熱伝導性樹脂組成物を調製する。この調製は、炭素繊維11及び熱伝導性フィラーとバインダ樹脂と必要に応じて配合される各種添加剤や揮発性溶剤とを公知の手法により均一に混合することにより行うことができる。
 <工程B>
 次に、調製された熱伝導性樹脂組成物から、押出し成型法又は金型成型法によりブロック状の樹脂成型体9を形成する。
 押出し成型法、金型成型法としては、特に制限されず、公知の各種押出し成型法、金型成型法の中から、熱伝導性樹脂組成物の粘度や熱伝導シート1に要求される特性等に応じて適宜採用することができる。
 押出し成型法において、熱伝導性樹脂組成物をダイより押し出す際、あるいは金型成型法において、熱伝導性樹脂組成物を金型へ圧入する際、バインダ樹脂が流動し、その流動方向に沿って一部の炭素繊維11が配向するが、多くは配向がランダムになっている。
 なお、ダイの先端にスリットを取り付けた場合、押し出された樹脂成型体9の幅方向に対して中央部は、炭素繊維11が配向しやすい傾向がある。その一方、樹脂成型体9の幅方向に対して周辺部は、スリット壁の影響を受けて炭素繊維11がランダムに配向されやすい。
 樹脂成型体9の大きさ・形状は、求められる熱伝導シート1の大きさに応じて決めることができる。例えば、断面の縦の大きさが0.5cm~15cmで横の大きさが0.5cm~15cmの直方体が挙げられる。直方体の長さは必要に応じて決定すればよい。
<工程C>
 次に、形成された樹脂成型体9をシート状にスライスする。これによりシート本体7が得られる。このシート本体7は、スライスにより得られるシートの表面(スライス面)に炭素繊維11が露出する。このとき、樹脂成型体9とともに炭素繊維11もカットされることから、シート表面に露出された炭素繊維11を被覆する絶縁皮膜12が除去される(即ち、シート表面に露出された炭素繊維11は、絶縁皮膜12によって被覆されていない)。したがって、熱伝導シート1は厚さ方向に亘って良好な熱伝導率を維持することができる。
 スライスする方法としては特に制限はなく、樹脂成型体9の大きさや機械的強度により公知のスライス装置13(好ましくは超音波カッターやかんな)の中から適宜選択することができる。樹脂成型体9のスライス方向としては、成型方法が押出し成型方法である場合には、押出し方向に配向しているものもあるために押出し方向に対して60度~120度、より好ましくは70度~100度の方向である。特に好ましくは90度(垂直)の方向である。
 スライス厚としても、特に制限はなく、熱伝導シート1の使用目的等に応じて適宜選択することができる。
 <工程D>
 次いで、シート本体7の表面に露出した炭素繊維11を、バインダ樹脂の成分で被覆する。この方法としては、例えば、以下の方法が挙げられる。
 (1)シート本体7をプレスすることにより、シート本体7より滲み出たバインダ樹脂の未硬化成分8によって、シート本体の7表面及びシート本体7の表面より露出する炭素繊維11を被覆する。
 (2)シート本体7を放置することにより、シート本体7より滲み出たバインダ樹脂の未硬化成分8によって、シート本体7の表面及びシート本体7の表面より露出する炭素繊維11を被覆する。
 まず、前記(1)の方法について説明する。
 得られたシート本体7のスライス面をプレスする。プレスの方法としては、平盤と表面が平坦なプレスヘッドとからなる一対のプレス装置を使用することができる。また、ピンチロールでプレスしてもよい。
 プレスの条件によって、得られる熱伝導シートの表面の形状は異なる。
 次に、前記(2)の方法について説明する。
 得られたシート本体7を放置する。放置時間によって、得られる熱伝導シートの表面の形状は異なる。
 例えば、短時間の放置であれば、図6に示すような、表面がシート本体7の表面に露出した炭素繊維11に由来する凸部を有する熱伝導シートが得られる。
 一方、長時間の放置であれば、図5に示すような、表面が平滑な熱伝導シートが得られる。
 これにより、シート本体7からバインダ樹脂の未硬化成分8が滲み出し、当該未硬化成分8によってシート本体7の表面が被覆された熱伝導シート1を得る(図3B参照)。熱伝導シート1は、スライス面に露出されていた炭素繊維11(絶縁皮膜により被覆されていない炭素繊維11)が、バインダ樹脂の未硬化成分8に被覆される。したがって、熱伝導シート1は、電気的な絶縁性を確保することができ、半導体素子周辺の回路に接触した場合や、熱伝導シート1に欠損が生じて回路に落下した場合にも、ショートによる電子機器の故障を防止することができる。
 また、熱伝導シート1は、シート表面に微粘着性(タック性)が発現する。したがって、熱伝導シート1は、電子部品3やヒートスプレッダ2の表面に対する追従性、密着性が向上し、熱抵抗を低減させることができる。
 また、熱伝導シート1は、シート本体7の表面がバインダ樹脂の未硬化成分8によって被覆され、表面に微粘着性が発現することにより、ヒートスプレッダ2の主面2aへの接着、あるいは、電子部品3の上面3aへの仮固定が可能となる。したがって、熱伝導シート1は、別途接着剤を用いる必要がなく、製造工程の省力化、低コスト化を実現することができる。
 さらに、熱伝導シート1は、取扱い中に表面の微粘着性を喪失した場合にも、プレスを行うと、再度シート本体7よりバインダ樹脂の未硬化成分8が滲み出し、当該未硬化成分8によって表面が被覆される。したがって、熱伝導シート1は、ヒートスプレッダ2への接着位置や、電子部品3への仮固定位置がずれた場合にも、リペアが可能となる。
 また、熱伝導シート1は、バインダ樹脂の未硬化成分8がシート本体7の全面から滲み出し、シート本体7の表裏面のみならず側面も被覆される。バインダ樹脂の未硬化成分8は絶縁性を有するため、熱伝導シート1は、側面に絶縁性が付与される。したがって、熱伝導シート1は、電子部品3とヒートスプレッダ2とに挟持されて周辺に膨出し、周辺に配置された導電性の部材と接触した場合にも、熱伝導シート1を介して半導体素子やヒートシンクと当該導電性部材とが短絡することを防止することができる。
 なお、熱伝導シート1は、プレスされることにより厚み方向に圧縮され、炭素繊維11や熱伝導性フィラー同士の接触の頻度を増大させることができる。これにより、熱伝導シート1の熱抵抗を低減させることが可能となる。また、熱伝導シート1は、プレスされることにより、表面が平滑化される。
 プレスの際の圧力としては、低すぎるとプレスをしない場合と熱抵抗が変わらない傾向があり、高すぎるとシートが延伸する傾向があるので、好ましくは0.0098MPa~9.8MPa、より好ましくは0.049MPa~9.3MPaである。
 また、熱伝導シート1は、図7に示すように、プレスヘッドと対峙する載置面にスペーサ10を配置してシート本体7がプレスされることにより、当該スペーサ10の高さに応じた所定のシート厚に形成することができる。
 熱伝導シート1は、プレスされることにより、シート本体7内のバインダ樹脂の未硬化成分8が滲み出し、シート表面の全体を被覆すると、滲み出しが止まる。プレス時間は、バインダ樹脂中のバインダ樹脂の成分と硬化剤成分の配合比、プレス圧力、シート面積等に応じて、バインダ樹脂の未硬化成分8が滲み出し、シート本体7の表面の全体を被覆するのに十分な時間を適宜設定することができる。
 また、プレス工程は、バインダ樹脂の未硬化成分8の滲み出し、シート本体7表面の被覆の効果をより促進させるために、ヒータを内蔵したプレスヘッドを用いて、加熱しながら行ってもよい。このような効果を高めるため、加熱温度はバインダ樹脂のガラス転移温度以上で行うことが好ましい。これにより、プレス時間を短縮することができる。
 次いで、本発明の実施例について説明する。本実施例では、熱伝導性樹脂組成物のバインダ成分と硬化剤成分の成分比、及び絶縁皮膜による炭素繊維の絶縁被覆の有無を変えて熱伝導シートのサンプルを形成し、各サンプルについて、微粘着性の有無、ショアOO硬度、圧縮応力[N]、シートの初期厚み[mm]、熱抵抗(K・cm/W)、体積抵抗率[Ω・cm]を測定、評価した。
 [製造例1:炭素繊維の絶縁皮膜処理]
 各実施例に用いた炭素繊維への絶縁被膜の形成は、以下の方法により行った。
 樹脂容器(PE)に、第一配合物〔平均繊維長100μm、平均繊維径9μmのピッチ系炭素繊維(熱伝導性繊維:日本グラファイトファイバー株式会社製)300g、テトラエトキシシラン600g、及びエタノール2700g〕を投入し撹拌翼にて混合した。これに、第二配合物(10質量%アンモニア水1050g)を5分間かけて投入した。第二配合物の投入が完了した時点を0分として3時間攪拌を行った。攪拌終了後、真空ポンプを用いて吸引濾過を行い、回収したサンプルをビーカーに移し、水やエタノールで洗浄後、再度濾過を行い、サンプルを回収した。回収したサンプルを100℃で2時間乾燥し、200℃で8時間焼成を行い、被覆炭素繊維を得た。
 TEMにて断面測長することにより、平均厚み77nmのSiOを主とする皮膜が観察された。
 [製造例2:炭素繊維の絶縁皮膜処理]
 製造例1において、ピッチ系炭素繊維を以下のピッチ系炭素繊維に代えた以外は、製造例1と同様にして、炭素繊維の絶縁皮膜処理を行い、被覆炭素繊維を得た。
 ・ピッチ系炭素繊維(熱伝導性繊維、平均繊維長150μm、平均繊維径9μm、日本グラファイトファイバー株式会社製)
 TEMにて断面測長することにより、平均厚み55nmのSiOを主とする皮膜が観察された。
 [製造例3:炭素繊維の絶縁皮膜処理]
 製造例1において、ピッチ系炭素繊維を以下のピッチ系炭素繊維に代えた以外は、製造例1と同様にして、炭素繊維の絶縁皮膜処理を行い、被覆炭素繊維を得た。
 ・ピッチ系炭素繊維(熱伝導性繊維、平均繊維長90μm、平均繊維径9μm、日本グラファイトファイバー株式会社製)
 TEMにて断面測長することにより、平均厚み95nmのSiOを主とする皮膜が観察された。
 [製造例4:炭素繊維の絶縁皮膜処理]
 製造例1において、ピッチ系炭素繊維を以下のピッチ系炭素繊維に代えた以外は、製造例1と同様にして、炭素繊維の絶縁皮膜処理を行い、被覆炭素繊維を得た。
 ・ピッチ系炭素繊維(熱伝導性繊維、平均繊維長110μm、平均繊維径9μm、日本グラファイトファイバー株式会社製)
 TEMにて断面測長することにより、平均厚み65nmのSiOを主とする皮膜が観察された。
 なお、製造例1~4においては、ピッチ系炭素繊維の平均繊維長を変えた以外は、同じ処理条件である。同じ処理条件でも、ピッチ系炭素繊維の平均繊維長を変えることで、形成される皮膜の厚みが変化した。具体的には、炭素繊維の平均繊維長が長くなるほど、形成される皮膜の厚みが薄くなった。なお、炭素繊維の平均繊維長は、被覆の厚みが変わる要素の一つである。
 [ショアOO硬度の測定]
 実施例1~16、及び比較例1~6に係る各熱伝導シートサンプルについて、ASTM-D2240の測定方法によるショアOO硬度を測定した。
 [圧縮応力の測定]
 また、実施例1~16、及び比較例1~6に係るシート本体プレス後の熱伝導シートについて、引張圧縮試験機((株)エーアンドデー製、テンシロンRTG1225)を用いて、圧縮速度25.4mm/minで40%圧縮した際の最大圧縮応力を測定した。
 [熱抵抗値の測定]
 また、実施例1~16、及び比較例1~6に係る各熱伝導シートサンプルについて、ASTM-D5470に準拠した方法で荷重1.0kgf/cmの範囲で熱抵抗値を測定した。
 [体積抵抗率の測定]
 また、実施例1~16、及び比較例1~6に係る各熱伝導シートサンプルについて、JIS K-6911に準拠した方法で、三菱化学アナリテック社製ハイレスタ(MCP-HT800)及びURSプローブを用いて、体積抵抗率を測定した。印加電圧は実施例1~16では100V、比較例1~4では1V、比較例5~6では100Vとした。
 なお、比較例1~4において、印加電圧を1Vとするのは、実施例や、比較例5~6とは異なり、印加電圧が低くても測定が可能な為である。
 [実施例1]
 実施例1では、2液性の付加反応型液状シリコーン樹脂に、シランカップリング剤でカップリング処理したアルミナ粒子(熱伝導性粒子:電気化学工業株式会社製、平均粒径4μm)20vol%と、製造例1で得られた被覆炭素繊維(平均繊維長100μm、平均繊維径9μm)22vol%と、シランカップリング剤でカップリング処理した窒化アルミ(熱伝導性粒子:株式会社トクヤマ製、平均粒径1μm)24vol%とを分散させて、シリコーン樹脂組成物(熱伝導性樹脂組成物)を調製した。
 2液性の付加反応型液状シリコーン樹脂は、シリコーンA液50質量%、シリコーンB液50質量%の比率で混合したものである。なお、以下の実施例・比較例において用いたシリコーンA液、及びシリコーンB液は、前記シリコーンA液、及び前記シリコーンB液とそれぞれ同じものである。
 得られたシリコーン樹脂組成物を、内壁に剥離処理したPETフィルムを貼った直方体状の中空金型(30mm×30mm)の中に押し出してシリコーン成型体を成型した。得られたシリコーン成型体をオーブンにて100℃で6時間硬化してシリコーン硬化物とした。得られたシリコーン硬化物を、超音波カッターで切断し、厚み約2mmの成型体シートを得た。超音波カッターのスライス速度は、毎秒50mmとした。また、超音波カッターに付与する超音波振動は、発振周波数を20.5kHzとし、振幅を60μmとした。
 得られた成型体シートを剥離処理をしたPETフィルムで挟んだ後、厚さ1.97mmのスペーサを入れてプレスすることにより、シート表面がバインダ樹脂の未硬化成分で覆われた熱伝導シートサンプルを得た。プレス条件は、80℃、1MPa設定で、3minとした。
 被覆炭素繊維は絶縁皮膜の厚さが77nmであった。
 熱伝導シートサンプルは、ショアOO硬度が61、シートの初期厚みが1.998mm、圧縮応力が900Nであった。
 シート表面には微粘着性が発現した。
 また、実施例1に係る熱伝導シートサンプルは、熱抵抗が1.00[K・cm/W]、印加電圧100Vにおける体積抵抗率が2.3×1010[Ω・cm]であった。
 [実施例2]
 実施例2では、2液性の付加反応型液状シリコーン樹脂として、シリコーンA液55質量%と、シリコーンB液45質量%とを混合したものを用いた他は、実施例1と同じ条件で、熱伝導シートサンプルを作成した。
 被覆炭素繊維は絶縁皮膜の厚さが77nmであった。
 熱伝導シートサンプルは、ショアOO硬度が55、シートの初期厚みが2.031mm、圧縮応力が700Nであった。
 シート表面には微粘着性が発現した。
 また、実施例2に係る熱伝導シートサンプルは、熱抵抗が0.95[K・cm/W]、印加電圧100Vにおける体積抵抗率が2.7×1010[Ω・cm]であった。
 [実施例3]
 実施例3では、2液性の付加反応型液状シリコーン樹脂として、シリコーンA液60質量%と、シリコーンB液40質量%とを混合したものを用いた他は、実施例1と同じ条件で、熱伝導シートサンプルを作成した。
 被覆炭素繊維は絶縁皮膜の厚さが77nmであった。
 熱伝導シートサンプルは、ショアOO硬度が50、シートの初期厚みが2.005mm、圧縮応力が450Nであった。
 シート表面には微粘着性が発現した。
 また、実施例3に係る熱伝導シートサンプルは、熱抵抗が0.92[K・cm/W]、印加電圧100Vにおける体積抵抗率が3.6×1010[Ω・cm]であった。
 [実施例4]
 実施例4では、2液性の付加反応型液状シリコーン樹脂として、シリコーンA液65質量%と、シリコーンB液35質量%とを混合したものを用いた他は、実施例1と同じ条件で、熱伝導シートサンプルを作成した。
 被覆炭素繊維は絶縁皮膜の厚さが77nmであった。
 熱伝導シートサンプルは、ショアOO硬度が42、シートの初期厚みが1.982mm、圧縮応力が300Nであった。
 シート表面には微粘着性が発現した。
 また、実施例4に係る熱伝導シートサンプルは、熱抵抗が0.94[K・cm/W]、印加電圧100Vにおける体積抵抗率が4.4×1010[Ω・cm]であった。
 [実施例5]
 実施例5では、炭素繊維として、製造例2で得られた被覆炭素繊維(平均繊維長150μm)を用いた他は、実施例1と同じ条件で、熱伝導シートサンプルを作成した。
 被覆炭素繊維は絶縁皮膜の厚さが55nmであった。
 熱伝導シートサンプルは、ショアOO硬度が70、シートの初期厚みが2.000mm、圧縮応力が950Nであった。
 シート表面には微粘着性が発現した。
 また、実施例5に係る熱伝導シートサンプルは、熱抵抗が0.91[K・cm/W]、印加電圧100Vにおける体積抵抗率が3.6×10[Ω・cm]であった。
 [実施例6]
 実施例6では、炭素繊維として、製造例2で得られた被覆炭素繊維(平均繊維長150μm)を用いた他は、実施例2と同じ条件で、熱伝導シートサンプルを作成した。
 被覆炭素繊維は絶縁皮膜の厚さが55nmであった。
 熱伝導シートサンプルは、ショアOO硬度が58、シートの初期厚みが2.009mm、圧縮応力が800Nであった。
 シート表面には微粘着性が発現した。
 また、実施例6に係る熱伝導シートサンプルは、熱抵抗が0.88[K・cm/W]、印加電圧100Vにおける体積抵抗率が4.7×10[Ω・cm]であった。
 [実施例7]
 実施例7では、炭素繊維として、製造例2で得られた被覆炭素繊維(平均繊維長150μm)を用いた他は、実施例3と同じ条件で、熱伝導シートサンプルを作成した。
 被覆炭素繊維は絶縁皮膜の厚さが55nmであった。
 熱伝導シートサンプルは、ショアOO硬度が57、シートの初期厚みが1.991mm、圧縮応力が550Nであった。
 シート表面には微粘着性が発現した。
 また、実施例7に係る熱伝導シートサンプルは、熱抵抗が0.86[K・cm/W]、印加電圧100Vにおける体積抵抗率が6.7×10[Ω・cm]であった。
 [実施例8]
 実施例8では、炭素繊維として、製造例2で得られた被覆炭素繊維(平均繊維長150μm)を用いた他は、実施例4と同じ条件で、熱伝導シートサンプルを作成した。
 被覆炭素繊維は絶縁皮膜の厚さが55nmであった。
 熱伝導シートサンプルは、ショアOO硬度が50、シートの初期厚みが2.016mm、圧縮応力が350Nであった。
 シート表面には微粘着性が発現した。
 また、実施例8に係る熱伝導シートサンプルは、熱抵抗が0.88[K・cm/W]、印加電圧100Vにおける体積抵抗率が8.2×10[Ω・cm]であった。
 [実施例9]
 実施例9では、2液性の付加反応型液状シリコーン樹脂に、シランカップリング剤でカップリング処理したアルミナ粒子(熱伝導性粒子:電気化学工業株式会社製、平均粒径4μm)43vol%と、製造例3で得られた被覆炭素繊維(平均繊維長90μm、平均繊維径9μm)23vol%を分散させて、シリコーン樹脂組成物(熱伝導性樹脂組成物)を調製した。
 2液性の付加反応型液状シリコーン樹脂は、シリコーンA液50質量%、シリコーンB液50質量%の比率で混合したものである。
 得られたシリコーン樹脂組成物を、内壁に剥離処理したPETフィルムを貼った直方体状の中空金型(30mm×30mm)の中に押し出してシリコーン成型体を成型した。得られたシリコーン成型体をオーブンにて100℃で6時間硬化してシリコーン硬化物とした。得られたシリコーン硬化物を、超音波カッターで切断し、厚み約2mmの成型体シートを得た。超音波カッターのスライス速度は、毎秒50mmとした。また、超音波カッターに付与する超音波振動は、発振周波数を20.5kHzとし、振幅を60μmとした。
 得られた成型体シートを剥離処理をしたPETフィルムで挟んだ後、スペーサを入れてプレスすることにより、シート表面がバインダ樹脂の未硬化成分で覆われた熱伝導シートサンプルを得た。プレス条件は、80℃、1MPa設定で、3minとした。
 被覆炭素繊維は絶縁皮膜の厚さが95nmであった。
 熱伝導シートサンプルは、ショアOO硬度が59、シートの初期厚みが2.017mm、圧縮応力が900Nであった。
 シート表面には微粘着性が発現した。
 また、実施例9に係る熱伝導シートサンプルは、熱抵抗が1.89[K・cm/W]、印加電圧100Vにおける体積抵抗率が1.2×1010[Ω・cm]であった。
 [実施例10]
 実施例10では、2液性の付加反応型液状シリコーン樹脂として、シリコーンA液55質量%と、シリコーンB液45質量%とを混合したものを用いた他は、実施例9と同じ条件で、熱伝導シートサンプルを作成した。
 被覆炭素繊維は絶縁皮膜の厚さが95nmであった。
 熱伝導シートサンプルは、ショアOO硬度が53、シートの初期厚みが2.008mm、圧縮応力が800Nであった。
 シート表面には微粘着性が発現した。
 また、実施例10に係る熱伝導シートサンプルは、熱抵抗が1.83[K・cm/W]、印加電圧100Vにおける体積抵抗率が2.9×1010[Ω・cm]であった。
 [実施例11]
 実施例11では、2液性の付加反応型液状シリコーン樹脂として、シリコーンA液60質量%と、シリコーンB液40質量%とを混合したものを用いた他は、実施例9と同じ条件で、熱伝導シートサンプルを作成した。
 被覆炭素繊維は絶縁皮膜の厚さが95nmであった。
 熱伝導シートサンプルは、ショアOO硬度が51、シートの初期厚みが1.982mm、圧縮応力が500Nであった。
 シート表面には微粘着性が発現した。
 また、実施例11に係る熱伝導シートサンプルは、熱抵抗が1.79[K・cm/W]、印加電圧100Vにおける体積抵抗率が4.2×1010[Ω・cm]であった。
 [実施例12]
 実施例12では、2液性の付加反応型液状シリコーン樹脂として、シリコーンA液65質量%と、シリコーンB液35質量%とを混合したものを用いた他は、実施例9と同じ条件で、熱伝導シートサンプルを作成した。
 被覆炭素繊維は絶縁皮膜の厚さが95nmであった。
 熱伝導シートサンプルは、ショアOO硬度が45、シートの初期厚みが1.996mm、圧縮応力が250Nであった。
 シート表面には微粘着性が発現した。
 また、実施例12に係る熱伝導シートサンプルは、熱抵抗が1.85[K・cm/W]、印加電圧100Vにおける体積抵抗率が5.5×1010[Ω・cm]であった。
[実施例13]
 実施例13では、製造例4で得られた被覆炭素繊維(平均繊維長110μm)を用いた他は、実施例3と同じ条件で、成型体シートを作成した。
 得られた成型体シートを剥離処理をしたPETフィルムで挟んだ後、厚さ1.97mmのスペーサを入れてプレスすることにより、シート表面がバインダ樹脂の未硬化成分で覆われた熱伝導シートサンプルを得た。プレス条件は、100℃、1MPa設定で、30secとした。温度をより高温してプレス時間を短くしたことでシート表面は熱伝導フィラーの形状を反映しながら表面を反応に寄与しない成分で被覆されるようにした。
 被覆炭素繊維は絶縁皮膜の厚さが65nmであった。
 熱伝導シートサンプルは、ショアOO硬度が52、シートの初期厚みが2.011mm、圧縮応力が500Nであった。
 シート表面には微粘着性が発現した。
 また、実施例13に係る熱伝導シートサンプルは、熱抵抗が0.85[K・cm/W]、印加電圧100Vにおける体積抵抗率が8.9×10[Ω・cm]であった。
[実施例14]
 実施例14では、製造例4で得られた被覆炭素繊維(平均繊維長110μm)を用いた他は、実施例4と同じ条件で、成型体シートを作成した。
 得られた成型体シートを剥離処理をしたPETフィルムで挟んだ後、厚さ1.97mmのスペーサを入れてプレスすることにより、シート表面がバインダ樹脂の未硬化成分で覆われた熱伝導シートサンプルを得た。プレス条件は、100℃、1MPa設定で、30secとした。温度をより高温してプレス時間を短くしたことでシート表面は熱伝導フィラーの形状を反映しながら表面を反応に寄与しない成分で被覆されるようにした。
 被覆炭素繊維は絶縁皮膜の厚さが65nmであった。
 熱伝導シートサンプルは、ショアOO硬度が48、シートの初期厚みが1.978mm、圧縮応力が330Nであった。
 シート表面には微粘着性が発現した。
 また、実施例14に係る熱伝導シートサンプルは、熱抵抗が0.84[K・cm/W]、印加電圧100Vにおける体積抵抗率が8.3×10[Ω・cm]であった。
[実施例15]
 実施例15では、製造例4で得られた被覆炭素繊維(平均繊維長110μm)を用いた他は、実施例3と同じ条件で、成型体シートを作成した。
 得られた成型体シートを剥離処理をしたPETフィルムで挟んだ後、プレスを行わないで1日放置してシート表面がバインダ樹脂の未硬化成分で覆われた熱伝導シートサンプルを得た。シート表面は熱伝導フィラーの形状を反映しながら表面を反応に寄与しない成分で被覆されるようにした。
 被覆炭素繊維は絶縁皮膜の厚さが65nmであった。
 熱伝導シートサンプルは、ショアOO硬度が50、シートの初期厚みが2.023mm、圧縮応力が400Nであった。
 シート表面には微粘着性が発現した。
 また、実施例15に係る熱伝導シートサンプルは、熱抵抗が0.88[K・cm/W]、印加電圧100Vにおける体積抵抗率が9.4×10[Ω・cm]であった。
[実施例16]
 実施例16では、製造例4で得られた被覆炭素繊維(平均繊維長110μm)を用いた他は、実施例3と同じ条件で、成型体シートを作成した。
 得られた成型体シートを剥離処理をしたPETフィルムで挟んだ後、プレスを行わないで1週間放置してシート表面がバインダ樹脂の未硬化成分で覆われた熱伝導シートサンプルを得た。シート表面は熱伝導シート表面を反応に寄与しない成分で被覆されるようにした。
 被覆炭素繊維は絶縁皮膜の厚さが65nmであった。
 熱伝導シートサンプルは、ショアOO硬度が49、シートの初期厚みが2.001mm、圧縮応力が350Nであった。
 シート表面には微粘着性が発現した。
 また、実施例16に係る熱伝導シートサンプルは、熱抵抗が0.90[K・cm/W]、印加電圧100Vにおける体積抵抗率が1.2×1010[Ω・cm]であった。
 [比較例1]
 比較例1では、絶縁皮膜処理を行っていないピッチ系炭素繊維(熱伝導性繊維:日本グラファイトファイバー株式会社製、平均繊維長100μm、平均繊維径9μm)を用いた他は、実施例1と同じ条件で、熱伝導シートサンプルを作成した。
 比較例1に係る熱伝導シートサンプルは、ショアOO硬度が72、シートの初期厚みが2.010mm、圧縮応力が1000Nであった。
 シート表面には微粘着性が発現した。
 また、比較例1に係る熱伝導シートサンプルは、熱抵抗が0.88[K・cm/W]、印加電圧1Vにおける体積抵抗率が3.4×10[Ω・cm]であった。
 [比較例2]
 比較例2では、絶縁皮膜処理を行っていないピッチ系炭素繊維(熱伝導性繊維:日本グラファイトファイバー株式会社製、平均繊維長100μm、平均繊維径9μm)を用いた他は、実施例2と同じ条件で、熱伝導シートサンプルを作成した。
 比較例2に係る熱伝導シートサンプルは、ショアOO硬度が63、シートの初期厚みが1.99mm、圧縮応力が900Nであった。
 シート表面には微粘着性が発現した。
 また、比較例2に係る熱伝導シートサンプルは、熱抵抗が0.85[K・cm/W]、印加電圧1Vにおける体積抵抗率が3.6×10[Ω・cm]であった。
 [比較例3]
 比較例3では、絶縁皮膜処理を行っていないピッチ系炭素繊維(熱伝導性繊維:日本グラファイトファイバー株式会社製、平均繊維長100μm、平均繊維径9μm)を用いた他は、実施例3と同じ条件で、熱伝導シートサンプルを作成した。
 比較例3に係る熱伝導シートサンプルは、ショアOO硬度が59、シートの初期厚みが1.999mm、圧縮応力が450Nであった。
 シート表面には微粘着性が発現した。
 また、比較例3に係る熱伝導シートサンプルは、熱抵抗が0.84[K・cm/W]、印加電圧1Vにおける体積抵抗率が3.9×10[Ω・cm]であった。
 [比較例4]
 比較例4では、絶縁皮膜処理を行っていないピッチ系炭素繊維(熱伝導性繊維:日本グラファイトファイバー株式会社製、平均繊維長100μm、平均繊維径9μm)を用いた他は、実施例4と同じ条件で、熱伝導シートサンプルを作成した。
 比較例4に係る熱伝導シートサンプルは、ショアOO硬度が50、シートの初期厚みが2.005mm、圧縮応力が300Nであった。
 シート表面には微粘着性が発現した。
 また、比較例4に係る熱伝導シートサンプルは、熱抵抗が0.87[K・cm/W]、印加電圧1Vにおける体積抵抗率が4.7×10[Ω・cm]であった。
 [比較例5]
 比較例5では、比較例1で得られた熱伝導シートに2液性の付加反応型液状シリコーン樹脂として、シリコーンA液50質量%と、シリコーンB液50質量%とを混合したものを塗布して熱伝導シートサンプルを作成した。
 比較例5に係る熱伝導シートサンプルは、ショアOO硬度が75、シートの初期厚みが2.030mm、圧縮応力が1050Nであった。
 シート表面には微粘着性が発現した。
 また、比較例5に係る熱伝導シートサンプルは、熱抵抗が2.43[K・cm/W]、印加電圧100Vにおける体積抵抗率が1.0×1012[Ω・cm]であった。
 [比較例6]
 比較例6では、塗布する2液性の付加反応型液状シリコーン樹脂として、シリコーンA液45質量%と、シリコーンB液55質量%とを混合したものを用いた他は、比較例5と同じ条件で、熱伝導シートサンプルを作成した。
 比較例6に係る熱伝導シートサンプルは、ショアOO硬度が75、シートの初期厚みが2.015mm、圧縮応力が1200Nであった。
 シート表面には微粘着性が発現しなかった。
 また、比較例6に係る熱伝導シートサンプルは、熱抵抗が2.56[K・cm/W]、印加電圧100Vにおける体積抵抗率が8.1×1011[Ω・cm]であった。
 [微粘着性の評価]
 また、実施例1~16及び比較例1~6に係る各熱伝導シートサンプルについて、微粘着性の評価を行った。微粘着性の評価は、実施例1~16及び比較例1~6に係るシリコーン硬化物をスライスして得られた成型体シートを剥離処理していないPETフィルムで挟んだ後、厚さ1.97mmのスペーサを入れて80℃、2.45MPa設定で、3minプレスした後、常温まで冷却することにより、微粘着性評価用熱伝導シートサンプルを得た。
 この微粘着性評価用熱伝導シートサンプルのPETフィルムの端部を手で剥離し、試験機で当該端部を挟持した後、90°上方に50mm/mmの速度で引っ張り、荷重を測定し、剥離力(荷重)に応じて微粘着性(タック性)について評価した。各サンプルの剥離力は所定の幅を持って計測される。以下の評価基準で評価した。
〔評価基準〕
 ◎(最適):剥離力が0.05~0.25(N/cm)の範囲で振れた場合
 ○(良好):剥離力が0.02~0.05(N/cm)、0.20~0.30(N/cm)の範囲で振れた場合
 △(普通):剥離力が0~0.04(N/cm)の範囲で振れた場合
 ×(不良):シートの一部でも微粘着性が発現しない箇所が認められた場合
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~4に示すように、実施例1~16に係る熱伝導シートサンプルでは、熱抵抗が最大で1.89[K・cm/W]で、体積抵抗率が最小で3.6×10[Ω・cm]であり、概ね熱伝導性と絶縁性の両立が図られている。これは、熱伝導シートサンプルに含有されている炭素繊維が50nm以上、100nm未満の厚さで絶縁皮膜により被覆されていることから、所望の膜厚によって絶縁皮膜が形成され、良好な体積抵抗率を備えるとともに、シリカ微粒子の生成を抑制でき、熱伝導率の低下を防止することができたことによる。また、実施例1~16に係る熱伝導シートサンプルでは、シート表面に露出された炭素繊維はスライス時に絶縁皮膜が切断され炭素繊維が露出されているが、バインダ樹脂の未硬化成分によって被覆されていることから、熱伝導率を損なうことなく、周囲の部材に対する絶縁性を有することによる。
 なお、実施例1~12、16においては、図5に示すような、表面が平滑な熱伝導シートが得られた。実施例13~15では、図6に示すような、表面がシート本体の表面に露出した炭素繊維に由来する凸部を有する熱伝導シートが得られた。
 一方、比較例1~4に係る熱伝導シートサンプルでは、絶縁皮膜が形成されていない炭素繊維を用いているため、熱抵抗は低く抑えられたものの、体積抵抗率が低く、絶縁性が不十分となった。また、比較例5及び比較例6では、熱伝導シートサンプルにさらにバインダ樹脂を塗布することで体積抵抗率は高く絶縁性に優れるものの、炭素繊維がバインダ樹脂内に埋没されたことから熱抵抗が高くなった。
 なお、比較例6に係る熱伝導シートサンプルでは、塗布したシリコーン樹脂のシリコーンA液の構成比率が45%と低く、未硬化成分が十分に残っておらず、プレスすることによってもシートの全表面を被覆するに至らず、一部において微粘着性は発現しなかった。そのため、比較例6に係る熱伝導シートサンプルは、微粘着性が発現しない箇所においては、接続対象に対する仮固定は不可能で、作業性が悪い。また、比較例6に係る熱伝導シートサンプルは、柔軟性に欠けるとともに、接着対象への追従性、密着性が悪く、熱抵抗が上昇した。
 1  熱伝導シート
 2  ヒートスプレッダ
 2a 主面
 3  電子部品
 3a 上面
 4  放熱部材
 5  ヒートシンク
 6  配線基板
 7  シート本体
 8  未硬化成分
 9  樹脂成型体
 10 スペーサ
 11 炭素繊維
 12 絶縁皮膜
 13 スライス装置
 

Claims (13)

  1.  バインダ樹脂と、絶縁皮膜により被覆された炭素繊維とを含有する熱伝導性樹脂組成物が硬化されたシート本体を有し、
     前記シート本体の表面に露出した前記炭素繊維は、前記絶縁皮膜により被覆されておらず、且つ前記バインダ樹脂の成分によって被覆されている熱伝導シート。
  2.  表面が、前記シート本体の表面に露出した前記炭素繊維に由来する凸部を有する請求項1に記載の熱伝導シート。
  3.  前記炭素繊維を被覆する前記絶縁皮膜は、酸化ケイ素であり、
     断面TEM観察により観察される前記絶縁皮膜の平均厚さが50nm以上、100nm未満である請求項1又は2記載の熱伝導シート。
  4.  ASTM-D2240の測定方法によるショアOO硬度が70以下である請求項1~3のいずれか1項に記載の熱伝導シート。
  5.  前記シート本体が、熱伝導性フィラーを含有する請求項1~4のいずれか1項に記載の熱伝導シート。
  6.  前記シート本体の表面が前記バインダ樹脂の未硬化成分で被覆されている請求項1~5のいずれか1項に記載の熱伝導シート。
  7.  バインダ樹脂と、絶縁皮膜により被覆された炭素繊維とを含有する熱伝導性樹脂組成物を所定の形状に成型して硬化することにより、前記熱伝導性樹脂組成物の成型体を得る工程と、
     前記成型体をシート状に切断し、シート本体を得る工程と、
     前記シート本体の表面に露出した前記炭素繊維を、前記バインダ樹脂の成分で被覆する工程とを有し、
     前記シート本体を得る工程において、前記シート本体の表面に露出する前記炭素繊維を被覆する前記絶縁皮膜が除去される熱伝導シートの製造方法。
  8.  前記被覆する工程が、前記シート本体をプレスすることにより、前記シート本体より滲み出た前記バインダ樹脂の未硬化成分によって、前記シート本体の表面及び前記シート本体の表面より露出する前記炭素繊維を被覆する工程である請求項7記載の熱伝導シートの製造方法。
  9.  前記被覆する工程が、前記シート本体を放置することにより、前記シート本体より滲み出た前記バインダ樹脂の未硬化成分によって、前記シート本体の表面及び前記シート本体の表面より露出する前記炭素繊維を被覆する工程である請求項7記載の熱伝導シートの製造方法。
  10.  中空状の型内に、前記熱伝導性樹脂組成物を押し出して充填し、前記熱伝導性樹脂組成物を熱硬化することにより、前記炭素繊維が、押し出し方向に対してランダムに配向されている前記成型体を得る請求項7~9のいずれか1項に記載の熱伝導シートの製造方法。
  11.  電子部品の発する熱を放熱するヒートスプレッダと、
     前記ヒートスプレッダに配設され、前記ヒートスプレッダと前記電子部品との間に挟持される請求項1~6のいずれか1項に記載の熱伝導シートとを有する放熱部材。
  12.  半導体素子と、
     前記半導体素子の発する熱を放熱するヒートスプレッダと、
     前記ヒートスプレッダに配設され、前記ヒートスプレッダと前記半導体素子との間に挟持される請求項1~6のいずれか1項に記載の熱伝導シートとを有する半導体装置。
  13.  ヒートシンクを備え、
     前記ヒートスプレッダと前記ヒートシンクとの間に請求項1~6のいずれか1項に記載の熱伝導シートが挟持されている請求項12記載の半導体装置。
     
PCT/JP2015/080303 2014-10-31 2015-10-27 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置 WO2016068157A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580055236.8A CN106796926B (zh) 2014-10-31 2015-10-27 导热片、导热片的制造方法、放热部件和半导体装置
KR1020177006129A KR102011652B1 (ko) 2014-10-31 2015-10-27 열전도 시트, 열전도 시트의 제조 방법, 방열 부재 및 반도체 장치
US15/521,426 US9922901B2 (en) 2014-10-31 2015-10-27 Heat conduction sheet, heat conduction sheet manufacture method, heat radiation member, and semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-222723 2014-10-31
JP2014222723 2014-10-31
JP2015201410A JP6295238B2 (ja) 2014-10-31 2015-10-09 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置
JP2015-201410 2015-10-09

Publications (1)

Publication Number Publication Date
WO2016068157A1 true WO2016068157A1 (ja) 2016-05-06

Family

ID=55857492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080303 WO2016068157A1 (ja) 2014-10-31 2015-10-27 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置

Country Status (1)

Country Link
WO (1) WO2016068157A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235217A (ja) * 1992-02-20 1993-09-10 Kitagawa Ind Co Ltd 伝熱用材料
JPH08183875A (ja) * 1994-12-28 1996-07-16 Otsuka Chem Co Ltd 高熱伝導性複合充填材及び高熱伝導性樹脂組成物
JP2009215404A (ja) * 2008-03-10 2009-09-24 Teijin Ltd シート状熱伝導性成形体
JP2014031502A (ja) * 2012-07-07 2014-02-20 Dexerials Corp 熱伝導性シートの製造方法
US20140182823A1 (en) * 2009-09-29 2014-07-03 The Boeing Company Substantially aligned boron nitride nano-element arrays
JP2015029075A (ja) * 2013-07-01 2015-02-12 デクセリアルズ株式会社 熱伝導シートの製造方法、熱伝導シート、及び放熱部材
JP2015029076A (ja) * 2013-07-01 2015-02-12 デクセリアルズ株式会社 熱伝導シートの製造方法、熱伝導シート、及び放熱部材

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235217A (ja) * 1992-02-20 1993-09-10 Kitagawa Ind Co Ltd 伝熱用材料
JPH08183875A (ja) * 1994-12-28 1996-07-16 Otsuka Chem Co Ltd 高熱伝導性複合充填材及び高熱伝導性樹脂組成物
JP2009215404A (ja) * 2008-03-10 2009-09-24 Teijin Ltd シート状熱伝導性成形体
US20140182823A1 (en) * 2009-09-29 2014-07-03 The Boeing Company Substantially aligned boron nitride nano-element arrays
JP2014031502A (ja) * 2012-07-07 2014-02-20 Dexerials Corp 熱伝導性シートの製造方法
JP2015029075A (ja) * 2013-07-01 2015-02-12 デクセリアルズ株式会社 熱伝導シートの製造方法、熱伝導シート、及び放熱部材
JP2015029076A (ja) * 2013-07-01 2015-02-12 デクセリアルズ株式会社 熱伝導シートの製造方法、熱伝導シート、及び放熱部材

Similar Documents

Publication Publication Date Title
JP6302034B2 (ja) 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置
JP5752299B2 (ja) 熱伝導シートの製造方法、熱伝導シート、及び放熱部材
JP5766335B2 (ja) 熱伝導シートの製造方法、熱伝導シート、及び放熱部材
JP6178389B2 (ja) 熱伝導シートの製造方法、熱伝導シート、及び半導体装置
JP6301978B2 (ja) 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置
US11597196B2 (en) Method for producing thermally conductive sheet
JP6739478B2 (ja) 熱伝導性シートの製造方法
WO2020017350A1 (ja) 熱伝導性シート及びその製造方法、熱伝導性シートの実装方法
JP2017092345A (ja) 熱伝導シート、及びその製造方法、並びに半導体装置
KR20210084424A (ko) 열전도성 시트 및 그의 제조 방법, 열전도성 시트의 실장 방법
WO2016104169A1 (ja) 熱伝導シートの製造方法、熱伝導シート、及び半導体装置
JP6986648B2 (ja) 熱伝導シート及びその製造方法、並びに放熱構造体及び電子機器
WO2016068157A1 (ja) 熱伝導シート、熱伝導シートの製造方法、放熱部材及び半導体装置
JP6307288B2 (ja) 熱伝導性部材、及び半導体装置
JP2014216399A (ja) 熱伝導シート及び熱伝導シートの製造方法
JP2014216398A (ja) 熱伝導シートの製造方法、熱伝導シート
US20220089919A1 (en) Thermally conductive sheet and method for producing thermally conductive sheet
WO2021241249A1 (ja) 熱伝導シート及びその製造方法、並びに放熱構造体及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855497

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20177006129

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15521426

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855497

Country of ref document: EP

Kind code of ref document: A1