WO2022179550A1 - 一种大型高g值离心机的高效节能控温方法和装置 - Google Patents

一种大型高g值离心机的高效节能控温方法和装置 Download PDF

Info

Publication number
WO2022179550A1
WO2022179550A1 PCT/CN2022/077625 CN2022077625W WO2022179550A1 WO 2022179550 A1 WO2022179550 A1 WO 2022179550A1 CN 2022077625 W CN2022077625 W CN 2022077625W WO 2022179550 A1 WO2022179550 A1 WO 2022179550A1
Authority
WO
WIPO (PCT)
Prior art keywords
centrifuge
heat exchange
chamber
centrifugal
exchange chamber
Prior art date
Application number
PCT/CN2022/077625
Other languages
English (en)
French (fr)
Inventor
楼韧
楼寿林
王雨瑶
许锦辉
姚泽龙
冯再南
Original Assignee
楼韧
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 楼韧 filed Critical 楼韧
Publication of WO2022179550A1 publication Critical patent/WO2022179550A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B13/00Control arrangements specially designed for centrifuges; Programme control of centrifuges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B15/00Other accessories for centrifuges
    • B04B15/02Other accessories for centrifuges for cooling, heating, or heat insulating

Definitions

  • the invention relates to the technical field of centrifuge equipment, in particular to a large-capacity and high-G-value simulation test centrifuge, which is related to simulation tests in national geotechnical, civil, aerospace, marine engineering projects and petrochemical engineering, supergravity separation, mass transfer and reaction.
  • Industrial applications such as strengthening technology and new material development, especially the steady-state acceleration simulation test equipment centrifuge, involve high efficiency, energy saving and temperature control in the centrifuge simulation test device, ensuring safety and correctness of test results.
  • the hypergravity centrifuge technology was developed in the 1970s. After cooperating with foreign countries to track and innovate, my country has built and put into operation several sets of large and medium-sized centrifuge simulation test devices.
  • the existing domestic and foreign centrifugal units remove wind resistance power to solve the over-temperature cooling of the centrifuge mainly by air cooling, which is successful and effective for small and medium-sized devices, and is the most commonly used method
  • the first is the forced air cooling method, that is, the air inlet and outlet are set in the centrifuge room, and the heat is taken out by the natural ventilation of the air, but it is a problem for larger centrifuges, because the ventilation ducts required for ventilation under normal pressure are large,
  • the Japanese PWR1 geotechnical machine needs 2 ventilation pipes with a diameter of 4.4M only for exhaust air, which not only requires a large investment in external equipment, but also causes large disturbances when the air enters and leaves the machine room, which affects the stability of the centrifuge at high speed.
  • the centrifuge cabin must first ensure that the structure of the centrifuge cabin is reasonable, the strength is safe and reliable, and the temperature is strictly controlled. If the over temperature will cause the failure of some key components of the acquisition and test system and the control system, this will affect the accuracy of the data of the test results, and the control system will cause the equipment to run out of control, with unimaginable consequences.
  • the Chinese Academy of Engineering Physics mentioned in the patent CN111389601 that "the existing centrifuge room has a single environmental temperature control method, and the heat generated by the friction between the rotor arm of the existing centrifuge and the air is usually natural ventilation.
  • the China Academy of Engineering Physics has done CFD simulations of the indoor static pressure cloud, velocity cloud, and temperature cloud for several centrifuges that have been built and are under construction in China.
  • the static pressure of the inner wall of the machine is as high as 106300Pa
  • the increment of the normal pressure value is as high as 4975Pa
  • the center of the machine room is -93310Pa (see Yin Yihui et al. "Analysis of the air pressure and natural exhaust in the rotary arm centrifuge room during stable operation" Mianyang Normal University Journal, November 2018, 1-6," article).
  • the present invention provides a large-scale hypergravity centrifuge that is efficient, energy-saving, safe, reliable, and economically feasible by utilizing the generated static pressure difference and adopting a high-efficiency heat exchanger according to the characteristics and laws of centrifuge operation.
  • Machine temperature control method and device
  • a high-efficiency and energy-saving temperature control method for a large-scale high-G-value centrifuge During the centrifuge simulation test, the high-speed rotation of the rotor arm and gondola in the centrifuge drives the friction between the air and the cabin wall to generate high heat and raise the temperature, causing the temperature exceeding the design temperature of the centrifuge test.
  • High temperature t H the present invention adopts the pressure difference generated by the gas in the closed centrifuge under the rotation of the centrifuge to carry out the method of internal circulation heat exchange and temperature control.
  • the centrifuge is divided into a centrifugal chamber and a heat exchange chamber, and the centrifugal There is a partition plate between the chamber and the heat exchange chamber, the position of the partition plate close to the chamber wall is provided with an air inlet hole for the gas to enter the heat exchange chamber from the centrifugal chamber, and the center of the partition plate has a supply hole for the gas to enter the heat exchange chamber.
  • the hot chamber is returned to the return air hole of the centrifugal chamber.
  • the direction of the oblique opening of the air inlet hole is consistent with the rotation direction of the rotating arm of the centrifuge.
  • the gas Under the pressure difference, the gas enters the heat exchange chamber, which is equipped with a heat exchanger.
  • the gas flows through the heat exchanger and is absorbed by the coolant in the heat exchange tube to reduce to a low temperature, and then returns to the centrifugal indoor test. After that, it goes to the heat exchange chamber again for circulating cooling to reach the control safe working temperature.
  • the refrigerant is refrigerant R507 or R134A.
  • the evaporation temperature of the refrigerant that vaporizes and absorbs heat is reduced by two-thirds compared to the cooling power consumption of -20°C ethylene glycol for the jacket of the centrifuge with the same cooling capacity.
  • the gas in the chamber is at a circumferential velocity, so the centrifuge chamber partition to the air inlet hole of the heat exchange chamber is an oblique opening, and the opening direction is in the same direction as the centrifuge rotates.
  • the gas velocity through the heat exchanger is 1-10 m/s ⁇ m 2 .
  • the high temperature gas near the bulkhead in the centrifugal chamber flows to the heat exchange chamber through the air inlet holes on the baffle plate near the side wall of the chamber, and is cooled by the refrigerant in the heat exchange tube from outside to inside through the micro-channel heat exchanger. After cooling down, it will return to the centrifuge chamber through the return air hole near the center of the rotating shaft, and repeat this cycle to meet the temperature requirements of the centrifuge simulation test design.
  • the heat exchanger is preferably a microchannel heat exchanger.
  • the invention also provides a large-scale high-G-value centrifuge device suitable for the above-mentioned temperature control method.
  • the centrifuge is provided with a central rotating shaft, a rotating arm, and a test basket or a balance piece suspended from the end of the rotating arm.
  • the centrifuge device includes a centrifugal chamber and a heat exchange chamber, the heat exchange chamber is located above or below the centrifugal chamber, and there is a return air hole and an air intake between the centrifugal chamber and the heat exchange chamber
  • the partition plate of the holes, the air inlet holes are located on the partition plate near the chamber wall, supplying gas from the centrifugal chamber into the heat exchange chamber, the air inlet holes are symmetrically arranged according to equal angles and even numbers;
  • the air return hole is located on the baffle plate near the center of the rotating shaft, and the gas is supplied from the heat exchange chamber back to the centrifugal chamber; when the heat exchange chamber is below the centrifugal chamber, the air return hole is an annular hole, and when the heat exchange chamber is below the centrifugal chamber, the air return hole is an annular hole.
  • the air return hole is a circular hole; one or more heat exchangers are arranged in the heat exchange chamber for cooling the hot air from the centrifug
  • the one or more heat exchangers are fin-type heat exchangers using microchannel flat tubes, referred to as microchannel heat exchangers for short.
  • the microchannel heat exchanger can be single-layer or multi-layer.
  • the plurality of micro-channel heat exchangers are arranged in one or more closed rings in the heat exchange chamber.
  • the plurality of microchannel heat exchangers are impeller-shaped microchannel heat exchangers with air baffle plates, and the refrigerant shunt pipe at the distal center end of the impeller-shaped microchannel heat exchanger is connected to the air baffle plate.
  • the plate is closed, and the opening between the refrigerant collecting pipe near the center end and the air baffle plate communicates with the air return hole on the baffle plate.
  • the hot air entering the heat exchange chamber passes through the tube surface of the impeller-shaped microchannel heat exchanger, and returns to the centrifugal chamber through the channel inlet and return air holes between the impeller-shaped microchannel heat exchanger and the baffle plate.
  • the multiple microchannel heat exchangers are bent into a U shape, they are divided into 4 or 8 or 16 according to the angle of 90 degrees or 45 degrees or 22.5 degrees on the circular section of the heat exchange chamber.
  • the equal-area areas are evenly arranged, and the U-shaped end of the microchannel heat exchanger communicates with the air return hole.
  • the microchannel heat exchanger is a plurality of S-shaped microchannel heat exchangers arranged in a closed wave circle in the heat exchange chamber.
  • the diameter of the heat exchange chamber ⁇ the diameter of the centrifugal chamber.
  • the centrifuge is used for closed operation, and the centrifugal force generated by the operation of the centrifuge is used.
  • the pressure difference near the bulkhead of the centrifuge is higher than the center of the centrifuge.
  • Heater using the refrigerant or the carrier refrigerant in the heat exchange tube of the high-efficiency heat exchanger to cool the gas medium between the tube walls and fins of the centrifuge, with the following good effects:
  • High efficiency heat exchanger high specific heat exchange surface M 2 /M 3 , high heat transfer efficiency kw/M 2 .°C, lightweight equipment.
  • the heat exchange unit is changed from the outside of the centrifuge to the inside, which saves investment. Due to the low air density under normal pressure, the external heat exchange pipeline equipment for the air inlet and outlet is large, and the equipment investment is greatly saved by changing it inside.
  • centrifugal static pressure difference is used to replace the fan, which saves power and energy consumption, and the normal pressure replaces the vacuum, avoiding the problem of sealing large containers with vacuum sealing.
  • Energy saving and consumption reduction the heat exchange in the centrifuge reduces the heat loss and transmission power of the gas outside the centrifuge.
  • micro-channel heat exchange is miniaturized, easy to inspect, easy to repair, safe and reliable. Compared with the double-layer plate heat exchange of the centrifuge wall, only the inner wall heat exchange, and the outer wall has no heat exchange effect, and the effect is doubled.
  • the evaporating temperature of the refrigerant in the refrigeration unit is between 5 and 10 degrees Celsius, the cooling efficiency coefficient cop is twice as high, and the power consumption is reduced by 66%.
  • Fig. 1 is a schematic diagram of a centrifuge device in which a plurality of microchannel heat exchangers are arranged in concentric circles in a heat exchange chamber.
  • FIG. 2 is a schematic cross-sectional view A-A of the heat exchange chamber in FIG. 1 .
  • Figure 3 is a schematic diagram of a centrifuge device using an impeller-shaped microchannel heat exchanger in a heat exchange chamber.
  • FIG. 4 is a schematic cross-sectional view of the heat exchange chamber in FIG. 3 .
  • Figure 5 is a schematic diagram of a centrifuge device using a plurality of U-bend microchannel heat exchangers in a heat exchange chamber.
  • FIG. 6 is a schematic cross-sectional view A-A of the heat exchange chamber in FIG. 5 .
  • Figure 7 is a schematic diagram of a centrifuge device using a plurality of wave-shaped microchannel heat exchangers in a heat exchange chamber.
  • FIG. 8 is a schematic cross-sectional view A-A of the heat exchange chamber in FIG. 7 .
  • Fig. 9 is a schematic diagram of a centrifuge device in which the diameter of the heat exchange chamber is smaller than that of the centrifugal chamber.
  • Example 1 Schematic diagram of cooling and temperature control of microchannel heat exchangers arranged in the inner circumference of the lower heat exchanger by the hot gas centripetal
  • FIG. 1 is a schematic diagram of the cooling and temperature control device of the large-scale high-G value centrifuge engine room of the present invention.
  • a nacelle composed of a cover plate 8 and a machine room wall 1.
  • the upper and lower parts of the nacelle are divided into a centrifugal chamber 7 and a heat exchange chamber 9.
  • a partition 2 is provided between the centrifugal chamber 7 and the heat exchange chamber 9.
  • the baffle 2 is provided with an air intake hole 10, the oblique opening direction of the air intake hole is consistent with the rotation direction of the centrifuge arm, and the center of the centrifuge chamber 7 is driven by the bottom motor.
  • the horizontal rotating arm 6 of the test gondola 5 is suspended at both ends.
  • the high-speed rotation of the horizontal rotating arm 6 and the frictional heat generated by the gas in the centrifuge chamber 7 generate wind resistance power, and a static pressure difference is generated between the engine room wall in the centrifuge cabin and the center of the engine room.
  • the wind resistance power increases with the cabin gas density ⁇ , gondola speed w, centrifugal acceleration g, and load capacity, and the static pressure difference between the engine room wall and the engine room center in the centrifuge cabin also increases.
  • the centrifuge has a diameter of 9 meters and a rotating speed of 668 rpm. It has been analyzed and calculated by CFD in a professional engineering physics research unit.
  • the static pressure is 35.8KPa
  • the center is -3.35KPa
  • the cross-sectional temperature cloud centrifuge chamber center is 258K (-15°C)
  • the inner wall is 358K (ie 85°C).
  • the wind resistance power is 5317KW under the normal pressure of 1500g, and it is cooled with -15°C/-10°C ethylene glycol under the double jacket heat exchange surface of the centrifuge chamber wall of 117M 2 , and the heat removal and freezing capacity is 2326KW, which cannot reach the control 40°C design. temperature.
  • a plurality of micro-channel heat exchangers as shown in Figure 1 and Figure 2 are connected to form a closed circular shape, which is used to separate the refrigerant of the refrigeration system R507A composed of the front and rear pipes of the refrigeration compressor and the heat exchange condenser. In parallel, it enters the shunt tubes of each micro-channel heat exchanger, and is further shunted to the horizontally arranged micro-channel heat exchange flat tubes.
  • Each hydraulic diameter is less than 3mm in the pores of the evaporative vaporization heat exchange, and then flows to the header and returns to the refrigerator.
  • the upper part in Figure 1 comes from The 40 °C hot air in the centrifugal chamber flows down into the heat exchange chamber 9 through the air inlet 10 on the partition plate 2 , and passes through the microchannel centripetally at a wind speed of 1.5M/s ⁇ m2 between the chamber wall and the heat exchanger for heat exchange.
  • the flat tubes and the fins between the tubes are vaporized and absorbed by the R507A refrigerant in the micro-channel heat exchange flat tubes at a pressure of 0.62MPa and a temperature of 1°C, and then cooled to a normal pressure cold air of 16°C.
  • the gas passes through the heat exchanger with a pressure drop of 51Pa. , the cold air cooled to 16°C is collected and returned to the centrifugal chamber through the annular return air hole 11 in the center of the partition plate 2 to continue the circulation.
  • the centrifuge in Figure 1 does not use the centrifugal chamber wall for cooling, so it is a single-layer cylinder.
  • the cylinder body is provided with a side door for installation of equipment and personnel access (not shown in the figure).
  • the vacuum pump in the figure is used to seal the cover after the equipment is completed. Carry out the air tightness test of the vacuuming equipment. When the relative humidity of the air is too high during the centrifugal simulation test, the air sent to the centrifuge must first pass through a dryer. For example, molecular sieves are used to absorb moisture in the air.
  • Example 2 Centrifuge temperature control device using impeller blade shape microchannel heat exchanger
  • Fig. 3 is the same as Fig. 1 is a centrifuge temperature control device with a micro-channel heat exchanger in the lower part of the centrifuge chamber partition, the upper centrifuge chamber 7, the partition 2 and the accessories are the same as in Fig. 1, but the figure is replaced with the middle and lower part of Fig. 1
  • the heat chamber uses multiple micro-channel heat exchangers connected back and forth to form a circular large heat exchange area heat exchanger. Instead, multiple impeller-shaped micro-channel heat exchangers arranged in equal fillets on the cross section are used, as shown in the figure.
  • the refrigerant shunt pipe 12 at the far center end of the impeller-shaped microchannel heat exchanger is closed with the baffle plate 14, and the opening between the refrigerant collecting pipe 13 at the near center end and the baffle plate 14 is connected to the baffle plate 14.
  • the refrigerant enters the refrigerant branch pipe 12 near the central section of the microchannel heat exchanger, and is branched into a plurality of holes with hydraulic diameter less than 3mm in each horizontal heat exchange flat tube, and flows to the refrigerant collecting pipe 13 near the central end.
  • the 40°C hot gas from the centrifugal chamber 7 enters the heat exchange chamber 9 through the air inlet 10 on the partition plate 2, and the circumferential diversion passes through the microchannel heat exchange tube surface in the horizontal direction at a wind speed of 2.5M/s m 2 , and the R507A refrigerant
  • the flow channel in the heat exchange flat tube is vaporized at a pressure of 0.626MPa and a temperature of 1 °C, absorbing the heat of the hot air outside the tube, and cooling the hot air from 40 °C to 19.8 °C together with the fins, and the air pressure drop through the heat exchanger is 110Pa, 19.8 °C
  • the cold air returns to the upper centrifuge chamber through the inlet and return air holes 11 of the passage between the refrigerant collecting pipe 13 and the end of the air baffle plate 14, and generates heat during the centrifugal rotation of the centrifuge gas.
  • the microchannel heat exchange surface is continuously arranged from the outside to the inside of the circular section of the heat exchange chamber, the area space of the heat exchange chamber is fully utilized, and the wind speed is increased, the heat exchange efficiency is improved by multiple factors, and the heat exchange power per unit area is increased to 58KW /m 2 , for example 1, the wind resistance power is 5317KW, and only 92M 2 heat exchange area can meet the temperature control requirement of 40°C under normal pressure.
  • Example 3 The upper part of the centrifuge is a heat exchange chamber, and a plurality of U-shaped micro-tube channel heat exchangers are installed
  • the heat exchange chambers in the above-mentioned embodiments 1 and 2 are all arranged under the centrifugal chamber, which are suitable for the case where the top of the centrifugal chamber has a hoisting port.
  • the heat exchange chamber 9 can also be set on the upper part of the centrifugal chamber 7, as shown in the figure. 5, the heat exchange chamber 9 is arranged above the centrifugal chamber 7.
  • the multiple micro-channel heat exchangers are respectively bent into a U-shape, and are evenly arranged in 16 equal-area areas on the circular section of the heat exchange chamber at an angle of 22.5 degrees.
  • the U-shaped end of the channel heat exchanger communicates with the air return hole 10, and the refrigerant distribution pipes 12 and the refrigerant collecting pipes 13 of two adjacent micro-channel heat exchangers are closed.
  • the 40°C hot air in the centrifugal chamber 7 flows upwards into the heat exchange chamber 9 through the air inlet 10 on the partition plate 2, and the circumferential diversion passes through the microchannel heat exchange tube surface in the horizontal direction at a wind speed of 3.0M/s ⁇ m 2 , and R134A is used for refrigeration.
  • the agent vaporizes at 0.4MPa pressure and 10°C temperature in the flow channel in the heat exchange flat tube, absorbs the heat of the hot air outside the tube, and cools the hot air from 40°C to 24°C together with the fin cooling, and the pressure drop of the gas through the heat exchanger is 120Pa, 24
  • the °C cold air flows down through the circular air return hole 11 and returns to the lower centrifuge chamber 7 to perform alternate heat exchange between the temperature of the centrifuge chamber and the temperature of the heat exchange chamber.
  • the U-shaped micro-tube channel heat exchanger is composed of a refrigerant shunt tube 12, a refrigerant collecting tube 13 and a plurality of finned tubes of micro-channel flat tubes, and the aluminum flat tubes are vertically inserted into the refrigerant shunt tube 12 and the cooling tube.
  • Microtube channel heat exchangers have a more compact structure and heat transfer coefficient than stainless steel microtubes. Therefore, the space occupied and the heat exchange surface can be smaller.
  • the patent application mainly uses the rotation of the centrifuge to generate the pressure difference near the chamber wall and the center of the chamber to form the wind force passing through the tubes and fins of the heat exchanger. Generally, no fan is required, but it is necessary. It can also be equipped with fans and fans to enhance the cooling effect.
  • Fig. 7 and Fig. 8 are the same as Fig. 1, which are the centrifuge device with the micro-channel heat exchanger in the lower part of the centrifuge chamber partition.
  • the heat chamber 9 adopts a plurality of S-shaped micro-channel heat exchangers arranged in a closed wavy circle.
  • the 40°C hot gas from the centrifugal chamber flows down into the heat exchange chamber 9 through the air inlet 10 on the partition plate 2, and flows from the chamber wall and the chamber wall.
  • the wind speed of 1.5M/s ⁇ m 2 passes through the microchannel heat exchange flat tubes and the inter-tube fins centripetally, and is vaporized and absorbed by the R507A refrigerant in the microchannel heat exchange flat tubes, and is cooled to atmospheric pressure.
  • the cold air is collected and returned to the centrifugal chamber through the annular return air hole 11 in the center of the partition plate 2 to continue to circulate.
  • the centrifuge device can also be designed such that the diameter of the heat exchange chamber ⁇ the diameter of the centrifugal chamber according to the situation.
  • the hot gas entering the microchannel heat exchanger is calculated at 40 °C. In the actual centrifugal simulation test, it can be adjusted to ⁇ 40 °C according to the ambient temperature at that time.
  • the heat exchanger in Example 1 can be a large annular ring for heat exchange.
  • the heat exchanger group can also be a plurality of concentric heat exchanger groups.

Landscapes

  • Centrifugal Separators (AREA)

Abstract

一种大型高G值离心机的高效节能控温方法,利用离心室内的气体在离心机转动时在机室壁产生高于机舱中心的压力差,在压力差下气体进入换热室,流经高效换热器被吸热降温,再回流到离心室循环降温实现控制安全工作温度,利用离心静压差代风机,节省功电能耗,、常压取代真空,免真空密封大容器密封难题。还包括适用于上述方法的大型高G值离心机装置,离心机装置内包括离心室和换热室,换热室内设置一台或多台对来自离心室的热气进行降温的换热器,采用微通道换热分散小型化,易检易修安全可靠,实现高效节能、安全可靠、经济可行的大型超重力离心机控温。

Description

一种大型高G值离心机的高效节能控温方法和装置 技术领域
本发明涉及离心机设备技术领域,特别是一种大容量高G值模拟试验离心机,有关国家岩土、土木、航天、海洋工程项目和石化工程中模拟试验,超重力分离、传质和反应强化技术及新材料开发等工业应用,尤其是稳态加速度模拟试验设备离心机,涉及离心机模拟试验装置中高效节能和控制温度,确保安全和试验结果正确性问题。
背景技术
超重力离心机技术发展于上世纪七十年代,我国先后经过与国外合作跟踪、创新并举,已建成投运多套大中型离心机模拟试验装置。
随着离心机容量的增加,这些巨大离心机在离心机腔体内高速运转产生很大的阻力和热量,为确保设备的安全运行和试验的正确,各国研究部门为此专门对超重力离心机温控系统技术研究,对超重力离心机同时进行CFD流场模拟计算和利用现有机组和设计制造模拟装置进行气冷和液冷冷却实践试验,取得了一系列成果,为更大容量超重力项目打下基础。国内外已建成投运200多套大中型装置,目前国家批准浙大建立国际上容量最大的超重力离心模拟与实验装置(1900g.T),离心加速度达1500g。
超重力离心机随着离心加速度和容重的提高,试验中所产生的风阻功率大幅增加,例如我国工程物理研究院认为风阻功率N w=ρc(1-α) 2ω 3ψ/2(式中ρ为空气密度,ω为吊篮转速)(郑传祥等,装备环境工程,第17卷第3期2020年3月),这与现有国内外各研究单位的意见风阻功率基本一致。由于试验要求须在基本为室温40℃下进行,现有国内外离心机组移去风阻功率解决离心机超温的移热冷却主要用空气冷却法,对于中小型装置这是成功有效的,最常用的为强制空气冷却方式,即在离心机室设置空气进出口,将热量由空气自然通风带出,但是对较大型离心机就成问题,由于采用常压下通风所需的通风管道很大,如日本PWR1土工机,仅排风就需2个直径4.4M通风管,不仅外部設备投资大,而且空气进出机室又会带来较大扰动,影响离心机高速运行的稳定性。由于随着离心机大型化高G值,使风阻功率加大,离心机舱在高速超重力加速实验下, 首先必须确保离心机舱结构合理,强度足够安全可靠,严格控制温度。如果超温会导致采集测试系统和控制系统部分关键元件失效,这将影响试验结果数据准确性,而控制系统将引发设备运行失控,后果不堪想象。中国工程物理研究院在专利CN111389601中提及“现有离心机室环境控温方式单一,现有离心机转臂与空气摩擦产生的热量,通常采用自然通风的方式,具体作法是在机室天花板或者地板上开设进风孔或者排风孔。该种方式对于低转速的土工离心机效果较为明显,但当土工离心机转速较高时,摩擦产生的热量会大幅提高,自然通风的方式往往难以控制机室内的温升。此外,空气进出机室会带来较大扰动,影响土工离心机转臂在高速运行时的稳定性。目前,已交付使用的土工离心的转速均较低,能提供的离心加速度值也较低,最大350g,缩尺效应不显著,随着社会的发展和技术进步,人类急需对污染物地下长历时迁移、油气成藏、地质构造演变、新材料高通量制备等诸多具有长时间跨度特征的重大问题开展研究。因此,迫切需要研制具有更高离心加速度的土工离心机,该专利提出达到2000g离心加速度目标”。对于我国快速发展民用经济和国防建设,以及和国际高科技竞争,需要我们面对这一高新技术领域的挑战和问题,增强信念,找出突破口,发明温控新方法,争取站在实现更高容量、更大离心力离心模拟技术的世界前沿。
中国工程物理研究院对国内多台已建成、在建的离心机作过离心机室内静压云、速度云、温度云CFD模拟,例如对TLT-1000G离心机CFD室内空气压力云分析文章中,机室内壁静压高达106300Pa,比常压值增量高达4975Pa,而机室中心为-93310Pa(见尹益辉等“稳定运行时转臂式离心机机室内的气压和自然排风分析”绵阳师范学院学报,2018年11月,1-6,”一文)。
发明内容
为解决现有技术不足,本发明提供了一种根据离心机运行的特征和规律,利用所产生的静压力差,采用高效换热器,实现高效节能、安全可靠、经济可行的大型超重力离心机控温方法和装置。
一种大型高G值离心机的高效节能控温方法,离心机模拟试验时,离心机内转臂带吊篮高速旋转带动空气与机舱壁摩擦产生高热升高温度,引起超过离心试验设计温度的高温t H,本发明采用密闭离心机内气体在离心机转动下产生的压力差进行内循环换热控温的方法,所述的离心机内分为离心室和换热室, 所述的离心室和换热室之间设有隔板,所述的隔板上靠室壁的位置设有供气体从离心室进换热室的进气孔,所述的隔板中心有供气体从换热室回离心室的回风孔,所述的进气孔的斜开孔方向与离心机转臂转动方向一致,离心室内的气体在离心机转动时在机室壁产生高于机舱中心的压力差,在压力差下气体进入换热室中,所述的换热室中设有换热器,气体流经换热器被换热管内冷却剂吸热降到低温,再回流到离心室内试验后,再次到换热室进行循环降温达到控制安全工作温度。所述的冷却剂为制冷剂R507或R134A,这种汽化吸热的制冷剂的蒸发温度比达到同样制冷量的离心机夹套用-20℃乙二醇冷却电耗减少三分之二。
在离心机稳定运行时机室内气体是环向速度,故离心室隔板到换热室进气孔为斜开孔,开孔方向按离心机旋转相同方向。
通过调节所述的进气孔和回风孔的数目、直径大小使通过换热器的气体速度为1~10m/s·m 2。离心室内靠舱壁的高温气体经隔板上靠近室侧壁的进气孔流到换热室,在换热室内由外到内向心经微通道换热器被换热管内的制冷剂吸热冷却降温到,再经靠近转轴中心的回风孔回到离心室,按此循环进行,达到离心机模拟试验设计的温度要求。所述的换热器优选为微通道换热器。
本发明还提供了一种适用于上述控温方法的大型高G值离心机装置,所述的离心机内设有中心转轴、转臂,以及转臂端部吊挂的试验吊篮或平衡件,所述的离心机装置内包括离心室和换热室,所述的换热室设于离心室上方或下方,所述的离心室和换热室之间设有带回风孔和进气孔的隔板,所述的进气孔位于隔板上靠近室壁处,供气体从离心室进换热室,所述的进气孔按等分夹角、偶数数量对称布置;所述的回风孔位于隔板上靠近转轴中心处,供气体从换热室回离心室;当所述的换热室在离心室下方时,所述的回风孔为环形孔,当所述的换热室在离心室上方时,所述的回风孔为圆孔;所述的换热室内设置一台或多台对来自离心室的热气进行降温的换热器。
作为一种优选,所述的一台或多台换热器为采用微通道扁管的翅片式热交换器,简称微通道换热器。所述的的微通道换热器可以是单层,也可以是多层。
作为一种优选,所述的多台微通道换热器在换热室内排列成一圈或多圈封闭圆环形。
作为一种优选,所述的多台微通道换热器为带隔气板的叶轮形微通道换热 器,所述的叶轮形微通道换热器的远中心端的制冷剂分流管与隔气板封闭,近中心端的制冷剂集流管与隔气板之间的开口连通隔板上的回风孔。进入换热室的热气穿过所述的叶轮形微通道换热器管面,经叶轮形微通道换热器与隔气板之间的通道进回风孔返回离心室。
作为一种优选,将所述的多台微通道换热器对弯成U形后在换热室圆截面上按90度或45度或22.5度夹角分为4个或8个或16个等面积区域均匀布置,所述的微通道换热器的U形端与所述的回风孔相通。
作为一种优选,所述的微通道换热器为多台S形微通道换热器在换热室内排列为封闭波浪圆形圈。
作为一种优选,所述的换热室的直径≦离心室的直径。
当换热室内换热面积少或换热室内另有设备占用时,换热器与其他设备必须单独分开隔离,使热气全部经换热器换热。
与现有技术比有益效果:
采用离心机密闭运行,用离心机运转产生的离心力,离心机近机舱壁高于离心机中心处的压力差,设计机舱内部换热单元的小管径翅片换热管,特别是微通道换热器,用高效换热器换热管内制冷剂或载冷剂以管壁和翅片冷却管间离心机气体介质,具有如下良好效果:
1、实现提高超重力,达到高倍比相似律模拟好水平。
2、高效换热器、高比换热面M 2/M 3、高传热效率kw/M 2.℃、设备轻量化.
3换热单元由离心机外部改在内部,节省投资,因常压下空气密度小,对开空气进出气外部换热管道设备大,改在内部大幅节省设备投资。
4、用离心静压差代风机,节省功电能耗,、常压取代真空,免真空密封大容器密封难题。节能降耗,离心机内换热降低气体在离心机外热量损失和输送功率。
5、微通道換热分散小型化,易检易修安全可靠,比离心机壁双层板式换热只有内壁换热,外壁不起换热作用,成倍提高效果.
6、制冷机组制冷剂蒸发温度在摄氏5到10℃,制冷效率系数cop高二倍,电耗降低66%。
附图说明
图1是换热室中按同心圆周布置多台微通道换热器的离心机装置示意图。
图2是图1中换热室的A-A横截面示意图。
图3是换热室中用叶轮形微通道换热器的离心机装置示意图。
图4是图3中换热室的横截面示意图。
图5是换热室中用多个有U形弯头微通道换热器的离心机装置示意图。
图6是图5中换热室的A-A横截面示意图。
图7是换热室中用多个波浪形微通道换热器的离心机装置示意图。
图8是图7中换热室的A-A横截面示意图。
图9是换热室直径小于离心室直径的离心机装置示意图。
附图标记说明
1-机室壁         2-隔板           3-换热器         4-转轴
5-吊篮           6-水平转臂       7-离心室         8-盖板
9-换热室         10-进气孔        11-回风孔        12-制冷剂分流管
13-制冷剂集流管  14-隔气板        15-制冷剂进口管  16-制冷剂回液管
17-真空泵        18-干燥器        19-风机
具体实施方式
以下结合附图及实施例,对本发明进行进一步详细说明,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,即所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的设备和管道可以以各种不同的配置来布置和设计。说明书附图1、附图2和附图3只是主要设备管线连接示意图。图中如温度、压力组成流量测量仪,在图上不一一表示,离心机筒体侧面不同高度,气体冷却换热器进出口、风机进出口等位置,根据需要设置相应仪表。
基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1 热气向心经下部换热器内圆周布置微通道换热器冷却控温示意图
图1为本发明的大型高G值离心机机舱冷却控温装置简图。图1中主要有盖板8和机室壁1构成的机舱,机舱内上下分为离心室7和换热室9,所述的离 心室7和换热室9之间设有隔板2,所述的隔板2上设有进气孔10,所述的进气孔的斜开孔方向与离心机转臂转动方向一致,所述的离心室7的中心有由底部电机带动上部装有二端悬挂试验吊篮5的水平转臂6,所述的水平转臂6高速旋转与离心室7中的气体摩擦发热产生风阻功率,离心机舱内机室壁和机舱中心之间产生静压差,风阻功率随机舱气体密度ρ、吊篮转速w、离心加速度g、负荷容量而加大,离心机舱内机室壁和机舱中心的静压差也加大,设置有实时监测离心试验中各气体组成、温度、压力、流量各参数的诸多电子电器仪表,当试验机舱温度超过设计工作温度时,模似试验安全性和正确精度则受到影响,难以成功完成试验。
现用一台拟建的高速超重力离心机为例说明,该离心机直径9米,转速668转/分,经专业工程物理研究单位CFD分析计算,在1500g重力加速度,常压下离心室内壁静压为35.8KPa,中心为-3.35Kpa,横截面温度云离心室中心为258K(-15℃),室内壁为358K(即85℃)。常压1500g下风阻功率5317KW,在采用离心机室壁双层夹套换热面117M 2下用-15℃/-10℃乙二醇冷却,移热冷冻量2326KW,达不到控制40℃设计温度。现采用如附图1和附图2所示的多台微通道换热器前后连接组成封闭型圆周形,用来自由制冷压缩机、换热冷凝器前后管道连通组成的制冷系统R507A制冷剂分流并联进入各台微通道换热器分流管,进一步分流到水平排列的微通道换热扁管各个水力直径小于3mm孔道内蒸发汽化换热后流到集流管返回制冷机,图1中上部来自离心室的40℃热气经隔板2上的进气孔10向下流入换热室9,从室壁和换热器之间以1.5M/s·m 2风速向心穿过微通道换热扁管和管间翅片,被微通道换热扁管内R507A制冷剂在0.62MPa压力、1℃温度下汽化吸热,被冷却成16℃的常压冷空气,气体经过换热器压降51Pa,降温到16℃的冷气汇集经隔板2中央环形的回风孔11返回离心室继续进行循环。
图1中离心机不采用离心室壁冷却,故为单层圆筒体,筒身上设置侧门用于安装设备和人员出入(图中未表示),图中真空泵用于设备完工后,密封盖板进行抽真空设备气密性试验,离心模拟试验时空气相对湿度过高时,试验开始送离心机空气需先经干燥器,例如用分子筛吸收空气中水分,本实施例空气相对湿度为10%。
实施例2 采用叶轮叶片形状微通道换热器的离心机温控装置
图3与图1一样是离心室隔板下部用微通道换热器的离心机温控装置,上部离心室7、隔板2及附件设备与图1一样,但图中与图1中下部换热室用多台微通道换热器前后相连构成圆周形大换热面积换热器不同,而是采用多台在横截面上按等分圆角布置的叶轮形微通道换热器,如图4所示,所述的叶轮形微通道换热器的远中心端的制冷剂分流管12与隔气板14封闭,近中心端的制冷剂集流管13与隔气板14之间的开口连通隔板2上的回风孔11。制冷制进入微通道换热器的近中心段的制冷剂分流管12,分流入各条水平换热扁管多个水力直径小于3mm孔道内流到近中心端的制冷剂集流管13中。由离心室7内经隔板2上的进气孔10进换热室9的40℃热气,周向分流以2.5M/s·m 2风速水平方向穿过微通道换热管面,R507A制冷剂在换热扁管中流道内在0.626MPa压力、1℃温度下汽化,吸收管外热空气热量,连同翅片冷却热空气由40℃冷却到19.8℃,空气经换热器压降110Pa,19.8℃冷空气经制冷剂集流管13和隔气板14末端间的通道进回风孔11返回上部离心室,进行离心机气体离心旋转时发热,热气经隔板2靠室壁进气孔10向下流入换热室9内,向心流入叶轮形微通道换热器降温交替循环进行。本实施例中微通道换热面从换热室圆截面由外到内连续布置,换热室面积空间利用充分,且风速提高,多因素提高了换热效率,单位面积换热功率提高到58KW/m 2,用于例1风阻功率5317KW,只需92M 2换热面积就能达到常压下温度控制40℃要求。
实施例3 离心机上部为换热室、装多台U形微管通道换热器
上述实施例1、2换热室均设置于离心室下面,适用于离心室顶部开吊装口情况,对顶部不设吊装口情况也可采用将换热室9设在离心室7上部,如图5所示,将换热室9设置于离心室7上面。如图6所示,将所述的多台微通道换热器分别对弯成U形、在换热室圆截面上按22.5度夹角分为16个等面积区域均匀布置,所述的微通道换热器的U形端与所述的回风孔10相通,相邻两台微通道换热器的制冷剂分流管12和制冷剂集流管13之间封闭。离心室7内的40℃热气通过隔板2上的进气孔10向上流入换热室9,周向分流以3.0M/s·m 2风速水平方向穿过微通道换热管面,R134A制冷剂在换热扁管中流道内在0.4MPa压力、10℃温度下汽化,吸收管外热空气热量,连同翅片冷却热空气由40℃冷却到 24℃,气体经换热器压降120Pa,24℃冷空气经圆形的回风孔11向下流返回下部离心室7,进行离心室升温、换热室降温交替循环换热。所述的U形微管通道换热器由制冷剂分流管12、制冷剂集流管13和多根微通道扁管的翅片管组成,铝材扁管垂直插入制冷剂分流管12和制冷剂集流管13内,并通过焊接固定,用于一台大型高G值离心机,内径19M,最高容量1900gt,换热冷量4500kw,用直膨式冷风机组,制冷剂R134a在10℃下蒸发,40℃冷凝制冷系数6.34仅需耗电710kw,而乙二醇在-20℃夹套电耗2210kw,节省电耗三分之二。
微管通道换热器比不锈钢微管具有更加紧凑的结构和换热系数。故所占空间和换热面可更小,本申请专利主要用离心机转动产生近室壁处和室中心压力差形成穿过换热器管朿和翅片的风力,一般无需配风机,但必要时也可配置风机、风扇吹风加强冷却效果。
实施例4 采用波浪形状微通道换热器的离心机装置
图7、图8与图1一样是离心室隔板下部用微通道换热器的离心机装置,上部离心室7、隔板2及附件设备与图1一样,如图8所示,下部换热室9采用多台S形微通道换热器排列为封闭波浪圆形圈,来自离心室的40℃热气经隔板2上的进气孔10向下流入换热室9,从室壁和换热器之间以1.5M/s·m 2风速向心穿过微通道换热扁管和管间翅片,被微通道换热扁管内R507A制冷剂汽化吸热,被冷却后的常压冷空气汇集经隔板2中央环形的回风孔11返回离心室继续进行循环。
如图9所示,所述的离心机装置也可以根据情况设计为换热室的直径≦离心室的直径。
以上实施例计算中均按进微通道换热器热气按40℃计算,实际离心模拟试验中可根据当时环境温度进行调整在<40℃,实施例1换热器可为一个大环形圈换热器组,也可以是多个同心圆换热器组。
据历年气象资料,如果离心机建设地春冬季气温多在5℃,若平均水温<5℃这种情况,微通道管内可直接用天然水或循环水。

Claims (13)

  1. 一种大型高G值离心机的高效节能控温方法,离心机模拟试验时,离心机内转臂带吊篮高速旋转带动空气与机舱壁摩擦产生高热升高温度,引起超过离心试验设计温度的高温,其特征在于:采用密闭离心机内气体在离心机转动下产生的压力差进行内循环换热控温的方法,所述的离心机内分为离心室和换热室,所述的离心室和换热室之间设有隔板,所述的隔板上靠室壁的位置设有供气体从离心室进换热室的进气孔,所述的隔板中心有供气体从换热室回离心室的回风孔,所述的进气孔的斜开孔方向与离心机转臂转动方向一致,离心室内的气体在离心机转动时在机室壁产生高于机舱中心的压力差,在压力差下气体进入换热室中,所述的换热室中设有换热器,气体流经换热器被换热管内冷却剂吸热降到低温,再回流到离心室内试验后,再次到换热室进行循环降温达到控制安全工作温度。
  2. 根据权利要求1所述的大型高G值离心机的高效节能控温方法,其特征在于:通过调节所述的进气孔和回风孔的数目、直径大小使通过换热器的气体速度为1~10m/s·m 2
  3. 根据权利要求1所述的大型高G值离心机的高效节能控温方法,其特征在于:所述的换热器为微通道换热器。
  4. 一种大型高G值离心机装置,所述的离心机内设有中心转轴、转臂,以及转臂端部吊挂的试验吊篮或平衡件,其特征在于:所述的离心机装置内包括离心室和换热室,所述的换热室设于离心室上方或下方,所述的离心室和换热室之间设有带回风孔和进气孔的隔板,所述的进气孔位于隔板上靠近室壁处,供气体从离心室进换热室,所述的进气孔按等分夹角、偶数数量对称布置;所述的回风孔位于隔板上靠近转轴中心处,供气体从换热室回离心室;当所述的换热室在离心室下方时,所述的回风孔为环形孔,当所述的换热室在离心室上方时,所述的回风孔为圆孔;所述的换热室内设置一台或多台对来自离心室的热气进行降温的换热器。
  5. 根据权利要求4所述的大型高G值离心机装置,其特征在于:所述的一台或多台换热器为采用微通道扁管的翅片式热交换器,简称微通道换热器。
  6. 根据权利要求5所述的大型高G值离心机装置,其特征在于:所述的多 台微通道换热器在换热室内排列成一圈或多圈封闭圆环形。
  7. 根据权利要求5所述的大型高G值离心机装置,其特征在于:所述的多台微通道换热器为带隔气板的叶轮形微通道换热器,所述的叶轮形微通道换热器的远中心端的制冷剂分流管与隔气板封闭,近中心端的制冷剂集流管与隔气板之间的开口连通隔板上的回风孔。
  8. 根据权利要求5所述的大型高G值离心机装置,其特征在于:将所述的多台微通道换热器对弯成U形后在换热室圆截面上按90度或45度或22.5度夹角分为4个或8个或16个等面积区域均匀布置,所述的微通道换热器的U形端与所述的回风孔相通。
  9. 根据权利要求5所述的大型高G值离心机装置,其特征在于:所述的多台S形微通道换热器排列为封闭波浪圆形圈。
  10. 根据权利要求5所述的大型高G值离心机装置,其特征在于:所述的换热室的直径≦离心室的直径。
  11. 根据权利要求5所述的大型高G值离心机装置,其特征在于:当换热室内换热面积少或换热室内另有设备占用时,换热器与其他设备必须单独分开隔离。
  12. 根据权利要求5所述的大型高G值离心机装置,其特征在于:离心室内产生的压差较小时所述的换热室内配置风机。
  13. 根据权利要求1所述的大型高G值离心机的高效节能控温方法,其特征在于:所述的冷却剂为制冷剂R507或R134A,所述的冷却剂的蒸发温度比使用载冷剂乙二醇的蒸发温度高15℃以上。
PCT/CN2022/077625 2021-02-25 2022-02-24 一种大型高g值离心机的高效节能控温方法和装置 WO2022179550A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110244217.7A CN112871475A (zh) 2021-02-25 2021-02-25 一种大型高g值离心机的高效节能控温方法和装置
CN202110244217.7 2021-02-25

Publications (1)

Publication Number Publication Date
WO2022179550A1 true WO2022179550A1 (zh) 2022-09-01

Family

ID=76055517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077625 WO2022179550A1 (zh) 2021-02-25 2022-02-24 一种大型高g值离心机的高效节能控温方法和装置

Country Status (2)

Country Link
CN (1) CN112871475A (zh)
WO (1) WO2022179550A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116155015A (zh) * 2023-04-21 2023-05-23 邢台职业技术学院 一种带余热回收模块的新能源汽车发电机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112871475A (zh) * 2021-02-25 2021-06-01 杭州林达化工技术工程有限公司 一种大型高g值离心机的高效节能控温方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289961A (ja) * 1988-09-22 1990-03-29 Hitachi Koki Co Ltd 冷却遠心機の温度制御機構
JP2008307219A (ja) * 2007-06-14 2008-12-25 Hitachi Koki Co Ltd 遠心分離機
CN108525868A (zh) * 2018-04-09 2018-09-14 浙江大学 超重力加速度高速土工离心机的集成散热装置
CN110302906A (zh) * 2019-07-19 2019-10-08 浙江大学 一种大型土工离心机降低风阻功率的装置及方法
CN210434694U (zh) * 2019-04-09 2020-05-01 河南省世纪奥科生物技术有限公司 一种高速冷冻离心机
CN210614035U (zh) * 2019-07-11 2020-05-26 中农华大(武汉)检测科技有限公司 一种动物检疫用便于固定试管的台式高速冷冻离心机
CN112871475A (zh) * 2021-02-25 2021-06-01 杭州林达化工技术工程有限公司 一种大型高g值离心机的高效节能控温方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289961A (ja) * 1988-09-22 1990-03-29 Hitachi Koki Co Ltd 冷却遠心機の温度制御機構
JP2008307219A (ja) * 2007-06-14 2008-12-25 Hitachi Koki Co Ltd 遠心分離機
CN108525868A (zh) * 2018-04-09 2018-09-14 浙江大学 超重力加速度高速土工离心机的集成散热装置
CN210434694U (zh) * 2019-04-09 2020-05-01 河南省世纪奥科生物技术有限公司 一种高速冷冻离心机
CN210614035U (zh) * 2019-07-11 2020-05-26 中农华大(武汉)检测科技有限公司 一种动物检疫用便于固定试管的台式高速冷冻离心机
CN110302906A (zh) * 2019-07-19 2019-10-08 浙江大学 一种大型土工离心机降低风阻功率的装置及方法
CN112871475A (zh) * 2021-02-25 2021-06-01 杭州林达化工技术工程有限公司 一种大型高g值离心机的高效节能控温方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116155015A (zh) * 2023-04-21 2023-05-23 邢台职业技术学院 一种带余热回收模块的新能源汽车发电机

Also Published As

Publication number Publication date
CN112871475A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2022179550A1 (zh) 一种大型高g值离心机的高效节能控温方法和装置
CN101169280A (zh) 无动力式空气热回收装置
US3791167A (en) Heating and cooling wheel with dual rotor
CN105115315B (zh) 一种节能闭式冷却塔
CN102980417A (zh) 塔式直接空冷凝汽器及其塔式直接干冷系统
CN107555756A (zh) 污泥干化系统
CN201885533U (zh) 热泵加热式通道型连续物料烘干槽
CN101776400A (zh) 强制通风直接水膜蒸发空冷凝汽系统
CN113587486B (zh) 一种吸收式制冷系统
CN105449309B (zh) 一种动力电池热管理系统
CN203011179U (zh) 塔式直接空冷凝汽器及其塔式直接干冷系统
CN104499533A (zh) 空气取水系统
CN216025580U (zh) 一种大型高g值离心机装置
CN102312688B (zh) 一种利用低温余热回收的发电装置
CN112797810B (zh) 一种发电厂凝结热回收系统
CN208174462U (zh) 高压电机用空冷装置
CN113916025A (zh) 一种降低尼龙氮气干燥能耗的除湿冷却室、其系统及工艺方法
CN207294570U (zh) 污泥干化系统
CN217692919U (zh) 一种改进型发电机空气冷却器
CN206545990U (zh) 一种在超重真空状态下的盐溶液再生器
CN207123034U (zh) 干燥空气幕帘阻隔蒸发器结霜冷库节能设施
CN208174463U (zh) 高压电机用水冷装置
CN103344136A (zh) 高炉塔冷却机构
CN110793802B (zh) 一种双闭式间冷压缩机实验系统
CN216245671U (zh) 一种降低尼龙氮气干燥能耗的除湿冷却室及其系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22758914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22758914

Country of ref document: EP

Kind code of ref document: A1