WO2022179072A1 - 基于车载设备的时间分配方法、装置、设备及存储介质 - Google Patents

基于车载设备的时间分配方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022179072A1
WO2022179072A1 PCT/CN2021/115314 CN2021115314W WO2022179072A1 WO 2022179072 A1 WO2022179072 A1 WO 2022179072A1 CN 2021115314 W CN2021115314 W CN 2021115314W WO 2022179072 A1 WO2022179072 A1 WO 2022179072A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
time allocation
tested
information rate
vehicle device
Prior art date
Application number
PCT/CN2021/115314
Other languages
English (en)
French (fr)
Inventor
冯志勇
张奇勋
王欣娜
尉志青
黄赛
张轶凡
Original Assignee
北京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京邮电大学 filed Critical 北京邮电大学
Priority to US18/030,236 priority Critical patent/US20230370877A1/en
Publication of WO2022179072A1 publication Critical patent/WO2022179072A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present application relates to the technical field of intelligent transportation, and in particular, to a time allocation method, device, device and storage medium based on in-vehicle equipment.
  • the communication and interconnection between vehicles are established through in-vehicle equipment to realize the integration of perception and communication, so as to realize the sharing of perception information between vehicles and improve the over-the-horizon perception ability of vehicles.
  • the time allocation ratio T C / T D of each vehicle-mounted device is reasonably allocated (TC represents the detection time length of the vehicle-mounted device to detect the perception information, and T D represents the vehicle-mounted device from detecting the perception information to transmitting the perception information .
  • the overall duration of the information and to ensure that the amount of sensing information of each in-vehicle device can be completely transmitted within the communication duration of each in-vehicle device transmitting the sensing information and other information, which helps to balance the performance of the integration of perception and communication. Therefore, there is a need to provide a solution for rationally allocating the time allocation ratio of each in-vehicle device.
  • the purpose of the embodiments of the present application is to provide a time allocation method, device, device and storage medium based on in-vehicle devices, so as to provide a solution for rationally allocating the time allocation ratio of each in-vehicle device.
  • an embodiment of the present application provides a time allocation method based on an in-vehicle device, the method comprising:
  • each in-vehicle device includes an expression of the perceived total information rate of the multiple in-vehicle devices, a first constraint condition and a second constraint condition corresponding to the in-vehicle device;
  • the expression of the total information rate of perception includes an expression representing the time distribution ratio of each vehicle-mounted device to be tested;
  • the first constraint condition is that the communication information rate of the vehicle-mounted device is not less than the perception of the vehicle-mounted device.
  • the second constraint condition is that any time allocation ratio to be tested belongs to a preset value set, and the value set includes multiple time allocation ratios;
  • each vehicle-mounted device determines whether the objective function value of the vehicle-mounted device simultaneously satisfies the preset condition and the first constraint condition corresponding to the vehicle-mounted device;
  • the current time allocation ratio to be tested is determined as the time allocation result of the on-board device.
  • the preset conditions are:
  • the second constraint condition is:
  • ⁇ t represents the set of values
  • N s represents the number of subframes included in a communication frame
  • an represents the time allocation ratio to be tested determined for the nth time.
  • the objective function of each vehicle-mounted device is:
  • R rad represents the perceptual total information rate
  • a represents the time distribution ratio to be tested
  • a represents the perceptual information rate of the i-th in-vehicle device
  • an embodiment of the present application provides a time allocation device based on in-vehicle equipment, the device includes: a function construction module, a first determination module, an operation module, a judgment module, and a second determination module, wherein,
  • the function building module is used to construct the objective function of multiple on-board devices; wherein, the objective function of each on-board device includes the expression of the total perceived information rate of the multiple on-board devices, the first value corresponding to the on-board device. Constraints and second constraints; the expression of the perceived total information rate includes an expression representing the distribution ratio of the time to be tested for each on-board device; the first constraint is the communication information rate of the on-board device Not less than the perceptual information rate of the on-board equipment; the second constraint condition is that any time allocation ratio to be tested belongs to a preset value set, and the value set includes multiple time allocation ratios;
  • the first determination module is used to determine the time distribution ratio to be tested successively according to the order from small to large in the multiple time distribution ratios included in the value set;
  • the computing module is used for substituting the determined time distribution ratio to be tested into the objective functions of the multiple vehicle-mounted devices, to obtain the objective function value of each vehicle-mounted device;
  • the judging module is used to judge whether the objective function value of the on-board equipment satisfies the preset condition and the first constraint condition corresponding to the on-board equipment at the same time for the objective function value of each on-board equipment; if the judgment result If no, trigger the first determination module; if the judgment result is yes, trigger the second determination module;
  • the second determining module is configured to determine the current time distribution ratio to be tested as the time distribution result of the on-board device.
  • the preset conditions are:
  • the second constraint condition is:
  • ⁇ t represents the set of values
  • N s represents the number of subframes included in a communication frame
  • an represents the time allocation ratio to be tested determined for the nth time.
  • the objective function of each vehicle-mounted device is:
  • R rad represents the perceptual total information rate
  • a represents the time distribution ratio to be tested
  • a represents the perceptual information rate of the i-th in-vehicle device
  • an embodiment of the present application provides an electronic device, including a processor, a communication interface, a memory, and a communication bus, wherein the processor, the communication interface, and the memory communicate with each other through the communication bus;
  • the processor is configured to implement any one of the method steps described in the first aspect above when executing the program stored in the memory.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, any one of the above-mentioned first aspect is implemented. method steps.
  • an embodiment of the present application provides a computer program product, where the computer program product includes computer instructions, and the computer instructions are used to cause a computer to execute any of the methods described in the first aspect above.
  • the objective function of each in-vehicle device is limited by the first constraint corresponding to the in-vehicle device, that is, the determined time allocation ratio to be tested is substituted into each in-vehicle device.
  • the objective function of the in-vehicle device it is necessary to obtain the objective function value of each in-vehicle device when the communication information rate of the in-vehicle device is not less than the perception information rate of the in-vehicle device.
  • the objective function value of the in-vehicle device to determine whether the objective function value of the in-vehicle device satisfies the preset condition and the first constraint condition corresponding to the in-vehicle device at the same time, until the judgment result is yes, and then determine the current time-to-be-tested time allocation ratio
  • the amount of sensing information of each on-board device can be completely transmitted within the communication duration of each on-board device transmitting sensing information and other information
  • the embodiments of the present application provide a solution for rationally allocating the time distribution ratio of each vehicle-mounted device.
  • FIG. 1 is a schematic flowchart of a method for time allocation based on in-vehicle equipment provided by an embodiment of the present application;
  • FIG. 2 is a schematic diagram of analyzing possible interference provided by an embodiment of the present application.
  • FIG. 3 is another schematic diagram of analyzing possible interference provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a time allocation device based on in-vehicle equipment provided by an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the embodiments of the present application provide a method, device, device, and storage medium for time allocation based on in-vehicle devices.
  • the method and device can be applied to various electronic devices, which are not specifically limited.
  • An application scenario of the method for time allocation based on in-vehicle devices may be: multiple vehicles establish communication interconnection through multiple in-vehicle devices, wherein one vehicle may correspond to one in-vehicle device, or may correspond to Multiple in-vehicle devices.
  • Each in-vehicle device can be equipped with a perception device (such as radar or other sensors) and a communication device (such as a device with communication functions such as a car phone), and each in-vehicle device can include a transmitter and a receiver.
  • the transmitter includes a set of transmitting antennas shared by the sensing device and the communication device, which can be used to transmit sensing signals and communication signals;
  • the receiver includes a set of receiving antennas shared by the sensing device and the communication device, which can be used to receive the sensing signal. and communication signals.
  • the sensing signal may be a signal transmitted by the sensing device through the transmitting antenna. Based on the sensing signal, the surrounding environment of the vehicle may be detected to obtain sensing information (such as position information of obstacles around the vehicle).
  • the communication signal may be a signal transmitted by the communication device through the transmitting antenna. Based on the communication signal, perception information may be transmitted, and other information (such as communication information of a car phone) may also be transmitted.
  • the time allocation method based on the in-vehicle device will be introduced through specific embodiments below.
  • the steps in the following method embodiments may be executed in a logical order, and the step numbers or the sequence in which the steps are introduced do not limit the execution sequence of the steps.
  • FIG. 1 is a schematic flowchart of a method for time allocation based on in-vehicle equipment provided by an embodiment of the present application, and the method includes:
  • S110 constructing an objective function of multiple in-vehicle devices; wherein, the objective function of each in-vehicle device includes an expression of the perceived total information rate of multiple in-vehicle devices, a first constraint condition and a second constraint condition corresponding to the in-vehicle device;
  • the expression of the total perceptual information rate includes an expression representing the distribution ratio of the time to be tested for each on-board device;
  • the first constraint is that the communication information rate of the on-board device is not less than the perceptual information rate of the on-board device;
  • the second constraint The condition is that any time allocation ratio to be tested belongs to a preset value set, and the value set includes multiple time allocation ratios.
  • each in-vehicle device can be represented as the i-th in-vehicle device, i ⁇ [1,2,...,N], and the detection duration of the i-th in-vehicle device to detect the perception information can be expressed as is a i , then the detection duration sequence of N in-vehicle devices can be expressed as the first sequence: [a 1 , a 2 , . . . , a N ].
  • the time allocation ratio T C / T D of each in-vehicle device is also different. Indicates the time allocation index number corresponding to the i-th in-vehicle device. In this case, for each in-vehicle device under different time allocation, the possible interference of each in-vehicle device during the detection time of detecting the perception information and the communication duration of each in-vehicle device transmitting the perception information and other information shall be checked.
  • the sensing device mounted on each in-vehicle device can be a radar; the “radar duration” can be used to indicate the detection time of the radar to detect the perception information, and the “communication duration” can be used to indicate the time for the in-vehicle device to transmit the perception information and other information.
  • the i-th on-board equipment in its radar duration at Within the time range of , there are two types of interference: when the time allocation index number of other in-vehicle devices (j-th in-vehicle device) is less than n, it is the communication signal of the j-th in-vehicle device, and the communication duration of the j-th in-vehicle device Internal interference to the perception signal of the i-th in-vehicle device; when the time allocation index number of other in-vehicle devices (j-th in-vehicle device) is greater than n, it is the perception signal of the j-th in-vehicle device.
  • the maximum value of the communication information rate (the rate at which communication information is transmitted in the channel of the communication signal) can be expressed by Shannon's formula, which is shown in the following formula 1:
  • B com represents the frequency bandwidth occupied by the communication signal
  • SINR com represents the interference plus noise ratio (Signal to Interference plus Noise Ratio, SINR) of the communication signal with interference.
  • the perception signal can measure the detection target (such as obstacles around the vehicle), so as to obtain relevant information (such as position information) of the detection target, so as to reduce the prior uncertainty of the detection target.
  • the channel of the sensing signal can be regarded as a non-cooperative communication channel, then the sensing estimation rate of the sensing signal (by expressing the entropy of the random parameter and its uncertainty to estimate the transmission rate of the sensing information in the channel of the sensing signal)
  • the physical quantity can be expressed as the following formula 2:
  • I represents the amount of information between the detected target and the sensing signal received by the radar
  • X represents the signal transmitted by the transmitter
  • X+N represents the signal received by the receiver
  • N represents the noise
  • T pulse represents the pulse duration of the radar
  • represents the working coefficient of the radar
  • SNR represents the Signal-to-Noise Ratio (SNR) of the perceptual signal with interference.
  • SINR Signal-to-Noise Ratio
  • the estimated perceptual information rate (the rate at which the perceptual information is transmitted in the channel of the perceptual signal) can be expressed as the following formula 3:
  • B rad represents the frequency bandwidth occupied by the perceptual signal
  • SINR rad represents the interference plus noise ratio (Signal to Interference plus Noise Ratio, SINR) of the perceptual signal with interference.
  • millimeter-wave communication uses narrow beams, which can minimize cross-interference
  • millimeter-wave can be used to transmit sensing signals and communication signals.
  • millimeter waves have good beam directivity
  • the main lobe gain used by millimeter waves to realize the transmission of sensing signals and communication signals is mainly discussed (the antenna gains described below are all main lobe gains).
  • the path transmission gain corresponding to the sensing signal can be expressed as the following formula 4:
  • Equation 5 shows:
  • P j represents the transmit power of the communication signal of the j-th vehicle-mounted device; Represents the time allocation index number set corresponding to the on-board equipment whose time allocation index number is less than n; G t represents the transmit antenna gain; Represents the communication signal of the jth in-vehicle device, and transmits the path transmission fading gain to the i-th in-vehicle device during the communication duration of the jth in-vehicle device; G r represents the gain of the receiving antenna.
  • Equation 6 shows:
  • SINR rad represents the interference plus noise ratio (Signal to Interference plus Noise Ratio, SINR) of the perceptual signal with interference:
  • Equation 8 the perceived information rate of the i-th in-vehicle device can be expressed as the following Equation 8:
  • B rad represents the frequency bandwidth occupied by the sensing signal; Indicates the time allocation index number corresponding to the i-th in-vehicle device; represents the nth normalized value in the second sequence; represents the n-1th normalized value in the second sequence; Indicates that when the i-th in-vehicle device is in its radar duration, at SINR rad in the time range of , SINR rad represents the interference plus noise ratio (Signal to Interference plus Noise Ratio, SINR) of the perceptual signal with interference.
  • SINR Signal to Interference plus Noise Ratio
  • Equation 9 the corresponding total perceptual information rate in the case of N vehicle-mounted devices establishing communication interconnection
  • the i-th in-vehicle device when the i-th in-vehicle device is in its communication duration, when Within the time range of , there are two types of interference: when the time allocation index number of other in-vehicle devices (the k-th in-vehicle device) is less than n, it is the communication signal of the k-th in-vehicle device, and the communication duration of the i-th in-vehicle device Internal interference to the communication signal of the i-th in-vehicle equipment; when the time allocation index number of other in-vehicle equipment (k-th in-vehicle equipment) is greater than n, it is the perception signal of the k-th in-vehicle equipment, in the k-th in-vehicle equipment. The interference of the radar to the communication signal of the i-th on-board equipment for the duration of the radar.
  • Equation 10 shows:
  • P k represents the transmit power of the communication signal of the k-th vehicle-mounted device
  • G t represents the transmit antenna gain
  • G r represents the receive antenna gain
  • Equation 11 shows:
  • P k represents the transmit power of the communication signal of the k-th in-vehicle device
  • G t represents the transmit antenna gain
  • G r represents the receive antenna gain
  • d i,k represents the distance between the i-th in-vehicle device and the k-th in-vehicle device.
  • SINR com represents the interference plus noise ratio (Signal to Interference plus Noise Ratio, SINR) of the communication signal with interference:
  • P i represents the transmit power of the communication signal of the i-th vehicle-mounted device
  • G t represents the transmit antenna gain
  • G r represents the receive antenna gain
  • the time allocation index number of the k-th in-vehicle device is less than n
  • the communication signal of the k-th in-vehicle device interferes with the communication signal of the i-th in-vehicle device within the communication duration of the k-th in-vehicle device
  • Equation 13 the communication information rate of the i-th in-vehicle device
  • B com represents the frequency bandwidth occupied by the communication signal
  • N represents the total number of vehicle-mounted devices that have established communication interconnection
  • SINR an interference-plus-noise ratio
  • the objective function of each in-vehicle device can be constructed as: taking the maximization of the weighted average of the total perceptual information rate and the total communication information rate of multiple in-vehicle devices as the optimization goal, and for each in-vehicle device.
  • the communication information rate of the on-board equipment is not less than the perception information rate of the on-board equipment, as the first constraint condition corresponding to the on-board equipment; to restrict that any time allocation ratio to be tested belongs to the preset value set , as the second constraint condition corresponding to the in-vehicle device.
  • the preset set of values can be limited to Then the second constraint can be expressed as Wherein, N s represents the number of subframes included in one communication frame, and an represents the time allocation ratio to be tested determined for the nth time.
  • Equation 15 the objective function of each in-vehicle device.
  • the first constraint condition corresponding to the in-vehicle device included in the objective function of each in-vehicle device it means that after substituting the time allocation ratio to be tested into the objective function of each in-vehicle device, it is necessary to ensure the communication information rate of the in-vehicle device.
  • the obtained objective function value of each in-vehicle device is a valid value, so as to ensure that the amount of perceptual information of each in-vehicle device can be transmitted in each in-vehicle device.
  • Information and other information are transmitted in their entirety within the duration of the communication.
  • weighting factor of the sensing function and the weighting factor of the communication function can be adjusted adaptively according to different application scenarios and requirements, so as to realize the dynamic allocation driven by different tasks.
  • the construction of the objective function for each in-vehicle device can be simplified: the maximization of the perceptual total information rate of multiple in-vehicle devices is taken as the optimization goal, and for each in-vehicle device, the The communication information rate is not less than the perceived information rate of the on-board equipment, as the first constraint condition corresponding to the on-board equipment; to limit any time allocation ratio to be tested belongs to the preset value set, as the on-board equipment corresponds to the second constraint.
  • the minimum communication requirements of each vehicle-mounted device can be set so that the minimum requirements can be met for the duration of the communication. Since the first constraint corresponding to each in-vehicle device is: the communication information rate of the in-vehicle device is not less than the perception information rate of the in-vehicle device, it can be understood that the first constraint corresponding to each in-vehicle device has The communication information amount of the in-vehicle device is limited, that is, the communication information amount of each in-vehicle device is not less than the estimated perception information amount of each in-vehicle device.
  • the estimated perceptual information amount of each in-vehicle device the estimated perceptual information rate ⁇ the detection duration of each in-vehicle device to detect the perceptual information
  • the estimated perceptual information amount of each in-vehicle device can be calculated by combining Equation 3. The minimum value of the communication information volume of the in-vehicle device.
  • the preset value set may be limited to Then the second constraint can be expressed as Wherein, N s represents the number of subframes included in one communication frame, and an represents the time allocation ratio to be tested determined for the nth time.
  • Equation 16 the objective function of each in-vehicle device.
  • R rad represents the corresponding total perceptual information rate in the case of N vehicle-mounted devices establishing communication interconnection; Indicates the perceived information rate of the i-th in-vehicle device; Represents the communication information rate of the i-th vehicle-mounted device; a represents the time distribution ratio to be tested.
  • the amount of calculation for calculating the value of the objective function can be reduced; , so that the time allocation results of multiple on-board devices are finally determined, and the total amount of sensing information of multiple on-board devices can be maximized, thereby improving the vehicle's over-the-horizon perception capability.
  • S120 Determine the multiple time allocation ratios included in the value set in ascending order as the time allocation ratios to be tested.
  • the time distribution ratio to be tested determined for the first time should be The time distribution ratio to be tested determined for the second time should be By analogy, the time distribution ratio to be tested determined for the nth time should be
  • S130 Substitute the determined time distribution ratio to be tested into the objective functions of the plurality of in-vehicle devices, respectively, to obtain the objective function value of each in-vehicle device.
  • the time distribution ratio to be tested determined for the first time is If the objective function of each in-vehicle device is constructed as the formula 16 introduced in S110, you can refer to the relevant introduction in S110, and replace the values appearing in each formula introduced in S110 with a n Combined with formula 1-14, the time distribution ratio of each vehicle-mounted device is calculated as When , the objective function value D i of each vehicle-mounted device is shown in the following formula 17:
  • Brad represents the frequency bandwidth occupied by the sensing signal
  • B com represents the frequency bandwidth occupied by the communication signal
  • N represents the total number of on-board devices that have established communication interconnection
  • I i represents the time allocation index number corresponding to the i-th on-board device
  • a n represents the time distribution ratio to be tested determined for the nth time
  • a n-1 represents the time distribution ratio to be tested determined for the n-1th time
  • SINR com represents an interference-plus-noise ratio
  • the preset condition may be to achieve the optimization goal.
  • the maximization of the weighted average of the total perceptual information rate and the total communication information rate of multiple in-vehicle devices may be used as the optimization goal, and the preset condition may be to achieve multiple Maximization of the weighted average of the perceptual total information rate and the communication total information rate of the in-vehicle device.
  • the maximization of the total perceived information rate of the multiple in-vehicle devices may be taken as the optimization goal, and the preset condition may be to maximize the perceived total information rate of the multiple in-vehicle devices.
  • the time allocation result of the multiple in-vehicle devices is finally determined, which can realize the difference of the total amount of information perceived by the multiple in-vehicle devices. to maximize the vehicle's over-the-horizon perception capability.
  • the obtained on-board device under the condition that the communication information rate of the on-board device is not less than the perceptual information rate of the on-board device can be obtained.
  • the objective function value of each in-vehicle device is a valid value. Therefore, the objective function value of the in-vehicle device satisfies the first constraint, that is, it can ensure that the amount of perceptual information of each in-vehicle device can be completely transmitted within the communication duration for each in-vehicle device to transmit the perception information and other information.
  • the method embodiment of FIG. 1 in this embodiment of the present application may be set to be executed once at a preset time interval. Since the time allocation ratio of each in-vehicle device changes, the SINR parameters of the sensing device and communication device corresponding to each in-vehicle device will change. According to Equation 8 and Equation 13, the perceptual information rate and communication The information rate also changes, and in turn, the objective function for each build is different for each in-vehicle device. Therefore, through this implementation, it is possible to dynamically adjust the time allocation ratio of each in-vehicle device, so as to improve the utilization efficiency of time resources.
  • an embodiment of the present application further provides a time allocation apparatus based on in-vehicle equipment.
  • the apparatus includes: a function construction module 410 , a first determination module 420 , and an operation module 430 , a judgment module 440, and a second determination module 450, wherein,
  • the function building module 410 is used to construct the objective function of multiple in-vehicle devices; wherein, the objective function of each in-vehicle device includes the expression of the total perceptual information rate of the multiple in-vehicle devices, the first constraint corresponding to the in-vehicle device, and The second constraint condition; the expression of the total perceptual information rate includes an expression representing the distribution ratio of the time to be tested for each in-vehicle device; the first constraint condition is that the communication information rate of the in-vehicle device is not less than the perception information of the in-vehicle device The second constraint condition is that any time allocation ratio to be tested belongs to a preset value set, and the value set includes multiple time allocation ratios;
  • the first determining module 420 is configured to sequentially determine the multiple time allocation ratios included in the value set as the time allocation ratios to be tested in an order from small to large;
  • the arithmetic module 430 is used for substituting the determined time distribution ratio to be tested into the objective functions of multiple vehicle-mounted devices, respectively, to obtain the objective function value of each vehicle-mounted device;
  • the judgment module 440 is used to judge whether the objective function value of the on-board equipment meets the preset condition and the first constraint condition corresponding to the on-board equipment at the same time for the objective function value of each on-board equipment; if the judgment result is no, Trigger the first determination module 420; if the judgment result is yes, trigger the second determination module 450;
  • the second determination module 450 is configured to determine the current time distribution ratio to be tested as the time distribution result of the on-board device when the determination result output by the determination module is yes.
  • the preset condition may be: maximizing the perceived total information rate of multiple in-vehicle devices.
  • the time allocation result of the multiple in-vehicle devices is finally determined, which can maximize the total amount of sensing information of the multiple in-vehicle devices, thereby improving the vehicle's over-the-horizon perception capability. .
  • the second constraint may be: Among them, ⁇ t represents the value set of the time allocation ratio to be tested, N s represents the number of subframes included in a communication frame, and an represents the time allocation ratio to be tested determined for the nth time.
  • the preset condition is to maximize the perceived total information rate of multiple in-vehicle devices, and the second constraint is:
  • the objective function of each in-vehicle device can be:
  • R rad represents the perceived total information rate of multiple on-board devices
  • a represents the time distribution ratio to be tested
  • a represents the perceptual information rate of the i-th in-vehicle device
  • the amount of calculation for calculating the value of the objective function can be reduced, and on the other hand, by substituting the time distribution ratio to be tested for testing, the total perceived information rate of multiple in-vehicle devices can be maximized.
  • the time allocation result of multiple on-board devices is finally determined, and the total amount of sensing information of multiple on-board devices can be maximized, thereby improving the over-the-horizon perception capability of the vehicle.
  • the communication information rate of the on-board equipment is not less than the perception information rate of the on-board equipment, and the obtained objective function value of each on-board device is a valid value, so as to ensure that each on-board
  • the amount of perceptual information of the device can be completely transmitted within the communication duration for each in-vehicle device to transmit perceptual information and other information; for the objective function value of each in-vehicle device, determine whether the objective function value of the in-vehicle device simultaneously satisfies the expected value.
  • An embodiment of the present application further provides an electronic device, as shown in FIG. 5 , including a processor 501 , a communication interface 502 , a memory 503 and a communication bus 504 , wherein the processor 501 , the communication interface 502 , and the memory 503 pass through the communication bus 504 complete communication with each other,
  • the objective function of each in-vehicle device includes the expression of the total information rate of perception of multiple in-vehicle devices, the first constraint condition and the second constraint condition corresponding to the in-vehicle device;
  • the perception The expression of the total information rate includes an expression representing the distribution ratio of the time to be tested for each on-board device;
  • the first constraint is that the communication information rate of the on-board device is not less than the perception information rate of the on-board device;
  • the second The constraint condition is that any time allocation ratio to be tested belongs to a preset value set, and the value set includes multiple time allocation ratios;
  • the multiple time allocation ratios included in the value set are determined in order from small to large as the time allocation ratio to be tested;
  • each in-vehicle device determines whether the objective function value of the in-vehicle device simultaneously satisfies the preset condition and the first constraint condition corresponding to the in-vehicle device;
  • the current time allocation ratio to be tested is determined as the time allocation result of the on-board device.
  • the amount of sensing information of the in-vehicle device can be completely transmitted within the communication duration of each in-vehicle device transmitting the sensing information and other information; for the objective function value of each in-vehicle device, it is judged whether the objective function value of the in-vehicle device meets the requirements at the same time.
  • the preset condition and the first constraint condition corresponding to the on-board equipment until the judgment result is yes, and then determine the current time allocation ratio to be tested as the time allocation result of the on-board equipment, so as to ensure the performance of each on-board equipment.
  • the amount of perceptual information can be completely transmitted within the communication duration for each in-vehicle device to transmit perceptual information and other information, and the optimal time allocation ratio is determined for each in-vehicle device in an iterative manner to achieve better performance. Balance the performance of perception and communication integration.
  • the communication bus mentioned in the above electronic device may be a peripheral component interconnect standard (Peripheral Component Interconnect, PCI) bus or an Extended Industry Standard Architecture (Extended Industry Standard Architecture, EISA) bus or the like.
  • PCI peripheral component interconnect standard
  • EISA Extended Industry Standard Architecture
  • the communication bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.
  • the communication interface is used for communication between the above electronic device and other devices.
  • the memory may include random access memory (Random Access Memory, RAM), and may also include non-volatile memory (Non-Volatile Memory, NVM), such as at least one disk storage.
  • RAM Random Access Memory
  • NVM non-Volatile Memory
  • the memory may also be at least one storage device located remotely from the aforementioned processor.
  • the above-mentioned processor can be a general-purpose processor, including a central processing unit (Central Processing Unit, CPU), a network processor (Network Processor, NP), etc.; it can also be a digital signal processor (Digital Signal Processor, DSP), dedicated integrated Circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • CPU Central Processing Unit
  • NP Network Processor
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • a computer-readable storage medium is also provided, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the above-mentioned embodiment shown in FIG. 1 is implemented Steps in the method for time allocation based on in-vehicle equipment.
  • a computer program product in another embodiment provided by the present application, includes computer instructions, and the computer instructions are used to cause the computer to execute the time allocation based on the in-vehicle device in the embodiment shown in FIG. 1 above. method.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the usable media may be magnetic media, (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., DVDs), or semiconductor media (e.g., Solid State Disk (SSD)), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Traffic Control Systems (AREA)

Abstract

本申请实施例提供了一种基于车载设备的时间分配方法、装置、设备及存储介质,方法包括:构建多台车载设备的目标函数;将取值集合中包括的多个时间分配比按照从小到大的顺序,依次确定为待测试时间分配比;将所确定的待测试时间分配比分别代入多台车载设备的目标函数,得到每台车载设备的目标函数值,并判断该台车载设备的目标函数值是否同时满足预设条件、以及该台车载设备对应的第一约束条件;如果判断结果为否,返回执行将取值集合中包括的多个时间分配比按照从小到大的顺序,依次确定为待测试时间分配比的步骤;如果判断结果为是,将当前待测试时间分配比确定为该台车载设备的时间分配结果。

Description

基于车载设备的时间分配方法、装置、设备及存储介质
本申请要求于2021年2月26日提交中国专利局、申请号为202110218872.5、发明名称为“基于车载设备的时间分配方法、装置、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及智能交通技术领域,特别是涉及一种基于车载设备的时间分配方法、装置、设备及存储介质。
背景技术
随着智能交通的发展,各车辆之间通过车载设备建立通信互联,实现感知通信一体化,从而实现各车辆之间的感知信息共享,提高车辆的超视距感知能力。
在实现感知通信一体化的过程中,合理地分配各车载设备的时间分配比T C/T D(T C表示车载设备探测感知信息的探测时长,T D表示车载设备从探测感知信息到传输感知信息的整体时长),并保证各车载设备的感知信息量均能够在各车载设备传输感知信息及其他信息的通信持续时间内被完整传输,有助于平衡感知通信一体化的性能。因此,需要提供一种合理地分配各车载设备的时间分配比的方案。
发明内容
本申请实施例的目的在于提供一种基于车载设备的时间分配方法、装置、设备及存储介质,以提供一种合理地分配各车载设备的时间分配比的方案。
具体技术方案如下:
第一方面,本申请实施例提供了一种基于车载设备的时间分配方法,所述方法包括:
构建多台车载设备的目标函数;其中,每台车载设备的目标函数中包括所述多台车载设备的感知总信息率表达式、该台车载设备对应的第一约束条件和第二约束条件;所述感知总信息率表达式中包括表示所述每台车载设备的待测试时间分配比的表达式;所述第一约束条件为该台车载设备的通信信息率不小于该台车载设备的感知信息率;所述第二约束条件为任一待测试时间分配比均属于预设的取值集合,所述取值集合中包括多个时间分配比;
将所述取值集合中包括的多个时间分配比按照从小到大的顺序,依次确定为待测试时间分配比;
将所确定的待测试时间分配比分别代入所述多台车载设备的目标函数,得到每台车载设备的目标函数值;
针对所述每台车载设备的目标函数值,判断该台车载设备的目标函数值是否同时满足预设条件、以及该台车载设备对应的第一约束条件;
如果判断结果为否,返回执行所述将所述取值集合中包括的多个时间分配比按照从小到大的顺序,依次确定为待测试时间分配比的步骤;
如果判断结果为是,将当前待测试时间分配比确定为该台车载设备的时间分配结果。
在本申请的一些实施例中,所述预设条件为:
达到所述多台车载设备的感知总信息率的最大化。
在本申请的一些实施例中,所述第二约束条件为:
Figure PCTCN2021115314-appb-000001
其中,Ω t表示所述取值集合,N s表示一个通信帧包括的子帧数量,a n表示第n次确定的待测试时间分配比。
在本申请的一些实施例中,所述每台车载设备的目标函数为:
Figure PCTCN2021115314-appb-000002
s.t.C1:
Figure PCTCN2021115314-appb-000003
C2:
Figure PCTCN2021115314-appb-000004
其中,R rad表示所述感知总信息率,a表示所述待测试时间分配比,
Figure PCTCN2021115314-appb-000005
表示第i台车载设备的感知信息率,
Figure PCTCN2021115314-appb-000006
表示第i台车载设备的通信信息率,C1:
Figure PCTCN2021115314-appb-000007
表示所述第一约束条件,C2:
Figure PCTCN2021115314-appb-000008
表示所述第二约束条件。
第二方面,本申请实施例提供了一种基于车载设备的时间分配装置,所述装置包括:函数构建模块、第一确定模块、运算模块、判断模块、第二确定模块,其中,
所述函数构建模块,用于构建多台车载设备的目标函数;其中,每台车载设备的目标函数中包括所述多台车载设备的感知总信息率表达式、该台车载设备对应的第一约束条件和第二约束条件;所述感知总信息率表达式中包括表示所述每台车载设备的待测试时间分配比的表达式;所述第一约束条件为该台车载设备的通信信息率不小于该台车载设备的感知信息率;所述第二约束条件为任一待测试时间分配比均属于预设的取值集合,所述取值集合中包括多个时间分配比;
所述第一确定模块,用于将所述取值集合中包括的多个时间分配比按照从小到大的顺 序,依次确定为待测试时间分配比;
所述运算模块,用于将所确定的待测试时间分配比分别代入所述多台车载设备的目标函数,得到每台车载设备的目标函数值;
所述判断模块,用于针对所述每台车载设备的目标函数值,判断该台车载设备的目标函数值是否同时满足预设条件、以及该台车载设备对应的第一约束条件;如果判断结果为否,触发所述第一确定模块;如果判断结果为是,触发所述第二确定模块;
所述第二确定模块,用于将当前待测试时间分配比确定为该台车载设备的时间分配结果。
在本申请的一些实施例中,所述预设条件为:
达到所述多台车载设备的感知总信息率的最大化。
在本申请的一些实施例中,所述第二约束条件为:
Figure PCTCN2021115314-appb-000009
其中,Ω t表示所述取值集合,N s表示一个通信帧包括的子帧数量,a n表示第n次确定的待测试时间分配比。
在本申请的一些实施例中,所述每台车载设备的目标函数为:
Figure PCTCN2021115314-appb-000010
s.t.C1:
Figure PCTCN2021115314-appb-000011
C2:
Figure PCTCN2021115314-appb-000012
其中,R rad表示所述感知总信息率,a表示所述待测试时间分配比,
Figure PCTCN2021115314-appb-000013
表示第i台车载设备的感知信息率,
Figure PCTCN2021115314-appb-000014
表示第i台车载设备的通信信息率,C1:
Figure PCTCN2021115314-appb-000015
表示所述第一约束条件,C2:
Figure PCTCN2021115314-appb-000016
表示所述第二约束条件。
第三方面,本申请实施例提供了一种电子设备,包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;
存储器,用于存放计算机程序;
处理器,用于执行存储器上所存放的程序时,实现上述第一方面任一所述的方法步骤。
第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现上述第一方面任一所述的方法 步骤。
第五方面,本申请实施例提供了一种计算机程序产品,所述计算机程序产品包括计算机指令,所述计算机指令用于使计算机执行上述第一方面任一所述的方法。
本申请实施例提供的基于车载设备的时间分配方法中,每台车载设备的目标函数都受该台车载设备对应的第一约束条件的限制,也就是将所确定的待测试时间分配比代入每台车载设备的目标函数后,需要在该台车载设备的通信信息率不小于该台车载设备的感知信息率的情况下,得到的每台车载设备的目标函数值才是有效值;针对每台车载设备的目标函数值,判断该台车载设备的目标函数值是否同时满足预设条件、以及该台车载设备对应的第一约束条件,直至判断结果为是,再将当前待测试时间分配比确定为该台车载设备的时间分配结果;这样,可以在每台车载设备的感知信息量均能够在每台车载设备传输感知信息及其他信息的通信持续时间内被完整传输的情况下,通过迭代的方式优化每台车载设备的时间分配比,因此,本申请实施例提供了一种合理地分配各车载设备的时间分配比的方案。
当然,实施本申请的任一产品或方法并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的实施例。
图1为本申请实施例提供的基于车载设备的时间分配方法的一种流程示意图;
图2为本申请实施例提供的对可能存在的干扰进行分析的一种示意图;
图3为本申请实施例提供的对可能存在的干扰进行分析的另一种示意图;
图4为本申请实施例提供的一种基于车载设备的时间分配装置的结构示意图;
图5为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了达到上述目的,本申请实施例提供了一种基于车载设备的时间分配方法、装置、 设备及存储介质,该方法及装置可以应用于各种电子设备,具体不做限定。
本申请实施例提供的一种基于车载设备的时间分配方法的应用场景可以为:多部车辆之间通过多台车载设备建立通信互联,其中,一部车辆可以对应一台车载设备,也可以对应多台车载设备。
每台车载设备上可以搭载有感知设备(如雷达或其他传感器)和通信设备(如车载电话等具备通信功能的设备),每台车载设备中可以包括发送机和接收机。其中,发送机中包括一组感知设备和通信设备公用的发射天线,可以用于发射感知信号和通信信号;接收机中包括一组感知设备和通信设备公用的接收天线,可以用于接收感知信号和通信信号。
感知信号可以为感知设备通过该发射天线发射的信号,基于感知信号,可以对车辆周围环境进行探测,从而获得感知信息(如车辆周围的障碍物的位置信息)。通信信号可以为通信设备通过该发射天线发射的信号,基于通信信号,可以传输感知信息,也可以传输其他信息(如车载电话的通讯信息)。
下面再通过具体实施例对该基于车载设备的时间分配方法进行介绍。以下方法实施例中的各个步骤按照合乎逻辑的顺序执行即可,步骤标号或者对各步骤进行介绍的先后顺序,并不对各步骤的执行顺序构成限定。
参考图1所示,图1为本申请实施例提供的基于车载设备的时间分配方法的一种流程示意图,该方法包括:
S110:构建多台车载设备的目标函数;其中,每台车载设备的目标函数中包括多台车载设备的感知总信息率表达式、该台车载设备对应的第一约束条件和第二约束条件;感知总信息率表达式中包括表示每台车载设备的待测试时间分配比的表达式;第一约束条件为该台车载设备的通信信息率不小于该台车载设备的感知信息率;第二约束条件为任一待测试时间分配比均属于预设的取值集合,该取值集合中包括多个时间分配比。
举例来说,假设一共有N台车载设备建立通信互联,以支持各车辆之间共享感知信息。对这N台车载设备进行有序地编号,每台车载设备可以表示为第i台车载设备,i∈[1,2,…,N],第i台车载设备探测感知信息的探测时长可以表示为a i,则N台车载设备的探测时长序列可以表示为第一序列:[a 1,a 2,…,a N]。假设一个通信帧中有N s个子帧,可以对[a 1,a 2,…,a N]中每台车载设备的探测时长a i进行归一化处理,使任一a i归一化后得到的归一值
Figure PCTCN2021115314-appb-000017
均满足
Figure PCTCN2021115314-appb-000018
将每个
Figure PCTCN2021115314-appb-000019
按照从小到大的顺序排列,并重新编 号,得到第二序列:
Figure PCTCN2021115314-appb-000020
其中,
Figure PCTCN2021115314-appb-000021
为最小的探测时长,
Figure PCTCN2021115314-appb-000022
为最大的探测时长。同时,还可以再引入
Figure PCTCN2021115314-appb-000023
Figure PCTCN2021115314-appb-000024
作为两个附加的常量。设定
Figure PCTCN2021115314-appb-000025
对应的索引集合为I=[I 1,I 2,…,I N]。由于每台车载设备探测感知信息的探测时长与传输感知信息的传输时长不同,每台车载设备的时间分配比T C/T D也就不同,可以用
Figure PCTCN2021115314-appb-000026
表示第i台车载设备对应的时间分配索引号。在这种情况下,针对每台车载设备在不同时间分配下,对各车载设备在探测感知信息的探测时间内和各车载设备传输感知信息及其他信息的通信持续时间内,可能存在的干扰进行分析:
举例来说,各车载设备上搭载的感知设备可以为雷达;可以用“雷达持续时间”表示雷达探测感知信息的探测时长,用“通信持续时间”表示车载设备传输感知信息及其他信息的时间。参考图2所示,对于第i台车载设备处于其雷达持续时间时,在
Figure PCTCN2021115314-appb-000027
的时间范围内,存在两类干扰:当其他车载设备(第j台车载设备)的时间分配索引号小于n时,为第j台车载设备的通信信号,在第j台车载设备的通信持续时间内对第i台车载设备的感知信号的干扰;当其他车载设备(第j台车载设备)的时间分配索引号大于n时,为第j台车载设备的感知信号,在第i台车载设备的雷达持续时间内对第i台车载设备的感知信号的干扰。
通信信息率(通信信息在通信信号的信道中传输的速率)的最大值可以用香农公式表示,即如下公式1所示:
C com=B comlog 2(1+SINR com)        公式1
其中,B com表示通信信号所占据的频带宽度,SINR com表示存在干扰的通信信号的干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)。
感知信号可以对探测目标(如车辆周围的障碍物)进行测量,从而获取探测目标的相关信息(如位置信息),以减少探测目标的先验不确定性。一种情况下,可以把感知信号的信道当作非合作通信信道,则感知信号的感知估计率(通过表示随机参数的熵及其不确定性来估计感知信息在感知信号的信道中传输的速率的物理量)可以表示为如下公式2所示:
Figure PCTCN2021115314-appb-000028
其中,I表示探测目标和雷达接收的感知信号之间的信息量,X表示发送机发射的信 号,X+N表示接收机接收的信号,N表示噪声,T pri=T pulse/δ表示雷达的脉冲重复间隔,T pulse表示雷达的脉冲持续时间,δ表示雷达的工作系数,SNR表示存在干扰的感知信号的噪声比(Signal-to-Noise Ratio,SNR)。当感知信号存在除高斯白噪声外的干扰信号时,SNR可表示为SINR。
类比于通信信息率的表示方法,可以将估计的感知信息率(感知信息在感知信号的信道中传输的速率)表示为如下公式3所示:
C rad=B radlog 2(1+SINR rad)         公式3
其中,B rad表示感知信号所占据的频带宽度,SINR rad表示存在干扰的感知信号的干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)。
举例来说,由于毫米波通信采用的是窄波束,能够最大限度地减少交叉干扰,可以用毫米波来实现感知信号与通信信号的传递。考虑毫米波具有较好的波束指向性,在干扰分析中,主要讨论毫米波实现感知信号与通信信号的传递时采用的主瓣增益(下文所述的天线增益均为主瓣增益)。
感知信号对应的路径传输增益可以表示为如下公式4所示:
Figure PCTCN2021115314-appb-000029
其中,
Figure PCTCN2021115314-appb-000030
表示感知信号从第i台车载设备的发送机发射,到达探测目标后,再返回至第i台车载设备自身的接收机的路径传输增益;
Figure PCTCN2021115314-appb-000031
表示感知信号从第j台车载设备的发送机发射,到达探测目标后,再发送至第i台车载设备的接收机的路径传输增益;G t表示发射天线增益;G r表示接收天线增益;
Figure PCTCN2021115314-appb-000032
表示探测目标相对于雷达的有效截面(Radar Cross Section,RCS);
Figure PCTCN2021115314-appb-000033
表示从第j台车载设备到第i台车载设备的目标RCS;λ表示波长;R i表示从第i台车载设备到探测目标的距离;R j表示从第j台车载设备到探测目标的距离。
假设所有路径传输增益在当前观测时间内都是固定的。当第j台车载设备的时间分配索引号小于n时,第j台车载设备的通信信号在第j台车载设备的通信持续时间内对第i台车载设备的感知信号的干扰,可以表示为如下公式5所示:
Figure PCTCN2021115314-appb-000034
其中,P j表示第j台车载设备的通信信号的发射功率;
Figure PCTCN2021115314-appb-000035
表示时间分配索引号小于n的车载设备对应的时间分配索引号集合;G t表示发射天线增益;
Figure PCTCN2021115314-appb-000036
表示第j台车载设 备的通信信号,在第j台车载设备的通信持续时间内传递至第i台车载设备的路径传输衰落增益;G r表示接收天线增益。
当第j台车载设备的时间分配索引号大于n时,第j台车载设备的感知信号在第i台车载设备的雷达持续时间内对第i台车载设备的感知信号的干扰,可以表示为如下公式6所示:
Figure PCTCN2021115314-appb-000037
其中,
Figure PCTCN2021115314-appb-000038
表示感知信号从第j台车载设备的发送机发射,到达探测目标后,再发送至第i台车载设备的接收机的路径传输增益;P j表示第j台车载设备的感知信号的发射功率;
Figure PCTCN2021115314-appb-000039
表示时间分配索引号大于n的车载设备对应的时间分配索引号集合。
结合上述两类干扰,可以将第i台车载设备处于其雷达持续时间时,在
Figure PCTCN2021115314-appb-000040
的时间范围内的SINR rad表示为如下公式7所示,其中,SINR rad表示存在干扰的感知信号的干扰加噪声比(Signal to Interference plus Noise Ratio,SINR):
Figure PCTCN2021115314-appb-000041
其中,
Figure PCTCN2021115314-appb-000042
表示感知信号从第i台车载设备的发送机发射,到达探测目标后,再返回至第i台车载设备自身的接收机的路径传输增益;P i表示第i台车载设备的感知信号的发射功率;
Figure PCTCN2021115314-appb-000043
表示当第j台车载设备的时间分配索引号小于n时,第j台车载设备的通信信号在在第j台车载设备的通信持续时间内对第i台车载设备的感知信号的干扰;
Figure PCTCN2021115314-appb-000044
表示当第j台车载设备的时间分配索引号大于n时,第j台车载设备的感知信号在第i台车载设备的雷达持续时间内对第i台车载设备的感知信号的干扰;N 0表示背景噪声功率谱密度;B表示传递感知信号与通信信号的电磁波的总频带宽度。
根据公式7和公式3,可以将第i台车载设备的感知信息率表示为如下公式8所示:
Figure PCTCN2021115314-appb-000045
其中,B rad表示感知信号所占据的频带宽度;
Figure PCTCN2021115314-appb-000046
表示第i台车载设备对应的时间分配索引号;
Figure PCTCN2021115314-appb-000047
表示第二序列中的第n个归一值;
Figure PCTCN2021115314-appb-000048
表示第二序列中的第n-1个归一值;
Figure PCTCN2021115314-appb-000049
表示第i台车载设备处于其雷达持续时间时,在
Figure PCTCN2021115314-appb-000050
的时间范围内的SINR rad,SINR rad表示存在干扰的感知信号的干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)。
根据公式8,可以将N台车载设备建立通信互联的情况下对应的感知总信息率,表示为如下公式9所示:
Figure PCTCN2021115314-appb-000051
参考图3所示,对于第i台车载设备处于其通信持续时间时,在
Figure PCTCN2021115314-appb-000052
的时间范围内,存在两类干扰:当其他车载设备(第k台车载设备)的时间分配索引号小于n时,为第k台车载设备的通信信号,在第i台车载设备的通信持续时间内对第i台车载设备的通信信号的干扰;当其他车载设备(第k台车载设备)的时间分配索引号大于n时,为第k台车载设备的感知信号,在第k台车载设备的雷达持续时间内对第i台车载设备的通信信号的干扰。
当第k台车载设备的时间分配索引号小于n时,第k台车载设备的通信信号在第k台车载设备的通信持续时间内对第k台车载设备的通信信号的干扰,可以表示为如下公式10所示:
Figure PCTCN2021115314-appb-000053
其中,P k表示第k台车载设备的通信信号的发射功率;G t表示发射天线增益;G r表示接收天线增益;
Figure PCTCN2021115314-appb-000054
表示第k台车载设备的通信信号,在第i台车载设备的通信持续时间内传递至第i台车载设备的路径传输增益。
当第k台车载设备的时间分配索引号大于n时,第k台车载设备的感知信号在第k台车载设备的雷达持续时间内对第i台车载设备的通信信号的干扰,可以表示为如下公式11所示:
Figure PCTCN2021115314-appb-000055
其中,P k表示第k台车载设备的通信信号的发射功率;G t表示发射天线增益;G r表示接收天线增益;d i,k表示第i台车载设备与第k台车载设备的距离。
结合上述两类干扰,可以将第i台车载设备处于其通信持续时间时,在
Figure PCTCN2021115314-appb-000056
的时间范围内的SINR com表示为如下公式12所示,其中,SINR com表示存在干扰的通信信号的干扰加噪声比(Signal to Interference plus Noise Ratio,SINR):
Figure PCTCN2021115314-appb-000057
其中,P i表示第i台车载设备的通信信号的发射功率;G t表示发射天线增益;G r表示 接收天线增益;
Figure PCTCN2021115314-appb-000058
表示第k台车载设备的通信信号,在第i台车载设备的通信持续时间内传递至第i台车载设备的路径传输增益;
Figure PCTCN2021115314-appb-000059
表示第k台车载设备的时间分配索引号小于n时,第k台车载设备的通信信号在第k台车载设备的通信持续时间内对第i台车载设备的通信信号的干扰;
Figure PCTCN2021115314-appb-000060
表示当第k台车载设备的时间分配索引号大于n时,第k台车载设备的感知信号在第k台车载设备的雷达持续时间内对第i台车载设备的通信信号的干扰;N 0表示背景噪声功率谱密度;B表示传递感知信号与通信信号的电磁波的总频带宽度。
根据公式12和公式1,可以将第i台车载设备的通信信息率表示为如下公式13所示:
Figure PCTCN2021115314-appb-000061
其中,B com表示通信信号所占据的频带宽度;N表示已建立通信互联的车载设备总数量;
Figure PCTCN2021115314-appb-000062
表示第i台车载设备对应的时间分配索引号;
Figure PCTCN2021115314-appb-000063
表示第二序列中的第n个归一值;
Figure PCTCN2021115314-appb-000064
表示第二序列中的第n+1个归一值;
Figure PCTCN2021115314-appb-000065
表示第i台车载设备处于其通信持续时间时,在
Figure PCTCN2021115314-appb-000066
的时间范围内的SINR com,SINR com表示存在干扰的通信信号的干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)。
根据公式13,可以将N台车载设备建立通信互联的情况下对应的通信总信息率,表示为如下公式14所示:
Figure PCTCN2021115314-appb-000067
一种实施方式中,可以将每台车载设备的目标函数构建为:以多台车载设备的感知总信息率与通信总信息率的加权平均值的最大化作为优化目标,并针对每台车载设备,以该台车载设备的通信信息率不小于该台车载设备的感知信息率,作为该台车载设备对应的第一约束条件;以限制任一待测试时间分配比均属于预设的取值集合,作为该台车载设备对应的第二约束条件。
一种情况下,预设的取值集合可以被限制为
Figure PCTCN2021115314-appb-000068
则第二约束条件可以表示为
Figure PCTCN2021115314-appb-000069
其中,N s表示一个通信帧包括的子帧数量,a n表示第n次确定的待测试时间分配比。
这种情况下,每台车载设备的目标函数可以表示为如下公式15所示:
Figure PCTCN2021115314-appb-000070
其中,w R表示感知功能的权重因子,w R≥0;w C表示通信功能的权重因子,w C≥0;R rad表示N台车载设备建立通信互联的情况下对应的感知总信息率;R com表示N台车载设备建立通信互联的情况下对应的通信总信息率;
Figure PCTCN2021115314-appb-000071
表示第i台车载设备的感知信息率;
Figure PCTCN2021115314-appb-000072
表示第i台车载设备的通信信息率;a表示待测试时间分配比。
Figure PCTCN2021115314-appb-000073
作为每台车载设备的目标函数中包括的该台车载设备对应的第一约束条件,表示将待测试时间分配比代入每台车载设备的目标函数后,需要在保证该台车载设备的通信信息率不小于该台车载设备的感知信息率的情况下,得到的每台车载设备的目标函数值才是有效值,以此可以保证每台车载设备的感知信息量均能够在每台车载设备传输感知信息及其他信息的通信持续时间内被完整传输。
此外,感知功能的权重因子、通信功能的权重因子均可根据不同应用场景和需求自适应地调整,以实现不同任务驱动的动态分配。
另一种实施方式中,可以简化对每台车载设备的目标函数的构建:以多台车载设备的感知总信息率的最大化作为优化目标,并针对每台车载设备,以该台车载设备的通信信息率不小于该台车载设备的感知信息率,作为该台车载设备对应的第一约束条件;以限制任一待测试时间分配比均属于预设的取值集合,作为该台车载设备对应的第二约束条件。
在这种实施方式中,可以设定每台车载设备的最小化通信需求,使得通信持续时间内能够满足最低要求。由于每台车载设备对应的第一约束条件为:该台车载设备的通信信息率不小于该台车载设备的感知信息率,可以理解为,每台车载设备对应的第一约束条件已经对每台车载设备的通信信息量作出了限制,即:每台车载设备的通信信息量不小于每台车载设备的估计感知信息量。由于每台车载设备的估计感知信息量=估计的感知信息率×每台车载设备探测感知信息的探测时长,结合公式3可计算得到每台车载设备的估计感知信息量,由此可得每台车载设备的通信信息量的最小值。
另外,在这种实施方式中,一种情况下,预设的取值集合可以被限制为
Figure PCTCN2021115314-appb-000074
则第二约束条件可以表示为
Figure PCTCN2021115314-appb-000075
其中,N s表示一个通信帧包括的子帧数量,a n表示第n次确定的待测试时间分配比。
这种情况下,每台车载设备的目标函数可以表示为如下公式16所示:
Figure PCTCN2021115314-appb-000076
其中,R rad表示N台车载设备建立通信互联的情况下对应的感知总信息率;
Figure PCTCN2021115314-appb-000077
表示第i台车载设备的感知信息率;
Figure PCTCN2021115314-appb-000078
表示第i台车载设备的通信信息率;a表示待测试时间分配比。
采用这种实施方式中构建的目标函数,一方面,可以减小计算目标函数值的计算量,另一方面,通过代入待测试时间分配比进行测试,最大化多台车载设备的感知总信息率,使得最终确定多台车载设备的时间分配结果,能够实现多台车载设备的感知总信息量的最大化,从而提高车辆的超视距感知能力。
S120:将取值集合中包括的多个时间分配比按照从小到大的顺序,依次确定为待测试时间分配比。
举例来说,针对取值集合
Figure PCTCN2021115314-appb-000079
第1次确定的待测试时间分配比应为
Figure PCTCN2021115314-appb-000080
第2次确定的待测试时间分配比应为
Figure PCTCN2021115314-appb-000081
以此类推,第n次确定的待测试时间分配比应为
Figure PCTCN2021115314-appb-000082
S130:将所确定的待测试时间分配比分别代入多台车载设备的目标函数,得到每台车载设备的目标函数值。
举例来说,第1次确定的待测试时间分配比为
Figure PCTCN2021115314-appb-000083
如果每台车载设备的目标函数被构建为S110中介绍的公式16,可以参考S110中的相关介绍,用a n替换S110中介绍的各公式中出现的
Figure PCTCN2021115314-appb-000084
结合公式1-14,计算得到当每台车载设备的时间分配比为
Figure PCTCN2021115314-appb-000085
时,每台车载设备的目标函数值D i,具体参考如下公式17所示:
Figure PCTCN2021115314-appb-000086
其中,B rad表示感知信号所占据的频带宽度;B com表示通信信号所占据的频带宽度;N表示已建立通信互联的车载设备总数量;I i表示第i台车载设备对应的时间分配索引号;a n表示第n次确定的待测试时间分配比;a n-1表示第n-1次确定的待测试时间分配比;a 0为常量,a 0=0;
Figure PCTCN2021115314-appb-000087
表示第i台车载设备处于其雷达持续时间时,在
Figure PCTCN2021115314-appb-000088
的时间范围内的SINR rad,SINR rad表示存在干扰的感知信号的干扰加噪声比(Signal to Interference plus Noise Ratio,SINR);
Figure PCTCN2021115314-appb-000089
表示第i台车载设备处于其通信持续时间时,在
Figure PCTCN2021115314-appb-000090
的时间范围内的SINR com,SINR com表示存在干扰的通信信号的干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)。
S140:针对每台车载设备的目标函数值,判断该台车载设备的目标函数值是否同时满足预设条件、以及该台车载设备对应的第一约束条件;如果判断结果为否,返回执行S120;如果判断结果为是,执行S150:将当前待测试时间分配比确定为该台车载设备的时间分配结果。
举例来说,预设条件可以为达到优化目标。参考S110中的相关介绍,第一种实施方式中,可以以多台车载设备的感知总信息率与通信总信息率的加权平均值的最大化作为优化目标,则预设条件可以为达到多台车载设备的感知总信息率与通信总信息率的加权平均值的最大化。第二种实施方式中,可以以多台车载设备的感知总信息率的最大化作为优化目标,则预设条件可以为达到多台车载设备的感知总信息率的最大化。
采用第二种实施方式中的预设条件,当车载设备的目标函数值满足该预设条件时,最终确定的多台车载设备的时间分配结果,能够实现多台车载设备的感知总信息量的最大化,从而提高车辆的超视距感知能力。
由于每台车载设备的目标函数中包括的该台车载设备对应的第一约束条件限制了:在保证该台车载设备的通信信息率不小于该台车载设备的感知信息率的情况下,得到的每台车载设备的目标函数值才是有效值。因此,车载设备的目标函数值满足第一约束条件,即 可以保证每台车载设备的感知信息量均能够在每台车载设备传输感知信息及其他信息的通信持续时间内被完整传输。
可见,应用本申请实施例,可以在保证每台车载设备的感知信息量均能够在每台车载设备传输感知信息及其他信息的通信持续时间内被完整传输的情况下,通过迭代的方式为每台车载设备确定最优的时间分配比,以实现更好地平衡感知通信一体化的性能。
一种实施方式中,可以设定每隔一段预设时间执行一次本申请实施例中的图1方法实施例。由于每台车载设备的时间分配比发生变化后,每台车载设备对应的感知设备以及通信设备的SINR参数就会发生变化,根据公式8和公式13可知,每台车载设备的感知信息率和通信信息率也会发生变化,进而,针对每台车载设备,每次构建的目标函数都不同。因此,通过这种实施方式,可以实现对每台车载设备的时间分配比的动态调整,以提高时间资源利用效率。
与图1方法实施例相对应,本申请实施例还提供了一种基于车载设备的时间分配装置,如图4所示,该装置包括:函数构建模块410、第一确定模块420、运算模块430、判断模块440、第二确定模块450,其中,
函数构建模块410,用于构建多台车载设备的目标函数;其中,每台车载设备的目标函数中包括多台车载设备的感知总信息率表达式、该台车载设备对应的第一约束条件和第二约束条件;感知总信息率表达式中包括表示每台车载设备的待测试时间分配比的表达式;第一约束条件为该台车载设备的通信信息率不小于该台车载设备的感知信息率;第二约束条件为任一待测试时间分配比均属于预设的取值集合,该取值集合中包括多个时间分配比;
第一确定模块420,用于将取值集合中包括的多个时间分配比按照从小到大的顺序,依次确定为待测试时间分配比;
运算模块430,用于将所确定的待测试时间分配比分别代入多台车载设备的目标函数,得到每台车载设备的目标函数值;
判断模块440,用于针对每台车载设备的目标函数值,判断该台车载设备的目标函数值是否同时满足预设条件、以及该台车载设备对应的第一约束条件;如果判断结果为否,触发第一确定模块420;如果判断结果为是,触发第二确定模块450;
第二确定模块450,用于在判断模块输出的判断结果为是时,将当前待测试时间分配比确定为该台车载设备的时间分配结果。
一种实施方式中,预设条件可以为:达到多台车载设备的感知总信息率的最大化。
当车载设备的目标函数值满足该预设条件时,最终确定的多台车载设备的时间分配结 果,能够实现多台车载设备的感知总信息量的最大化,从而提高车辆的超视距感知能力。
一种实施方式中,第二约束条件可以为:
Figure PCTCN2021115314-appb-000091
其中,Ω t表示待测试时间分配比的取值集合,N s表示一个通信帧包括的子帧数量,a n表示第n次确定的待测试时间分配比。
在预设条件为达到多台车载设备的感知总信息率的最大化,且第二约束条件为:
Figure PCTCN2021115314-appb-000092
的情况下,每台车载设备的目标函数可以为:
Figure PCTCN2021115314-appb-000093
s.t.C1:
Figure PCTCN2021115314-appb-000094
C2:
Figure PCTCN2021115314-appb-000095
其中,R rad表示多台车载设备的感知总信息率,a表示待测试时间分配比,
Figure PCTCN2021115314-appb-000096
表示第i台车载设备的感知信息率,
Figure PCTCN2021115314-appb-000097
表示第i台车载设备的通信信息率,C1:
Figure PCTCN2021115314-appb-000098
表示第一约束条件,C2:
Figure PCTCN2021115314-appb-000099
表示第二约束条件。
采用这种情况下构建的目标函数,一方面,可以减小计算目标函数值的计算量,另一方面,通过代入待测试时间分配比进行测试,最大化多台车载设备的感知总信息率,使得最终确定多台车载设备的时间分配结果,能够实现多台车载设备的感知总信息量的最大化,从而提高车辆的超视距感知能力。
应用本申请实施例提供的装置,由于每台车载设备的目标函数都受该台车载设备对应的第一约束条件的限制,也就是将所确定的待测试时间分配比代入每台车载设备的目标函数后,需要在保证该台车载设备的通信信息率不小于该台车载设备的感知信息率的情况下,得到的每台车载设备的目标函数值才是有效值,以此可以保证每台车载设备的感知信息量均能够在每台车载设备传输感知信息及其他信息的通信持续时间内被完整传输;针对每台车载设备的目标函数值,判断该台车载设备的目标函数值是否同时满足预设条件、以及该台车载设备对应的第一约束条件,直至判断结果为是,再将当前待测试时间分配比确定为该台车载设备的时间分配结果,以此在保证每台车载设备的感知信息量均能够在每台车载设备传输感知信息及其他信息的通信持续时间内被完整传输的情况下,通过迭代的方 式为每台车载设备确定最优的时间分配比,以实现更好地平衡感知通信一体化的性能。
本申请实施例还提供了一种电子设备,如图5所示,包括处理器501、通信接口502、存储器503和通信总线504,其中,处理器501,通信接口502,存储器503通过通信总线504完成相互间的通信,
存储器503,用于存放计算机程序;
处理器501,用于执行存储器503上所存放的程序时,实现如下步骤:
构建多台车载设备的目标函数;其中,每台车载设备的目标函数中包括多台车载设备的感知总信息率表达式、该台车载设备对应的第一约束条件和第二约束条件;该感知总信息率表达式中包括表示每台车载设备的待测试时间分配比的表达式;该第一约束条件为该台车载设备的通信信息率不小于该台车载设备的感知信息率;该第二约束条件为任一待测试时间分配比均属于预设的取值集合,该取值集合中包括多个时间分配比;
将取值集合中包括的多个时间分配比按照从小到大的顺序,依次确定为待测试时间分配比;
将所确定的待测试时间分配比分别代入多台车载设备的目标函数,得到每台车载设备的目标函数值;
针对每台车载设备的目标函数值,判断该台车载设备的目标函数值是否同时满足预设条件、以及该台车载设备对应的第一约束条件;
如果判断结果为否,返回执行将取值集合中包括的多个时间分配比按照从小到大的顺序,依次确定为待测试时间分配比的步骤;
如果判断结果为是,将当前待测试时间分配比确定为该台车载设备的时间分配结果。
关于上述各个步骤的具体实现以及相关解释内容可以参考上面图1所示的方法实施例,在此不做赘述。
应用本申请实施例提供的电子设备,由于每台车载设备的目标函数都受该台车载设备对应的第一约束条件的限制,也就是将所确定的待测试时间分配比代入每台车载设备的目标函数后,需要在保证该台车载设备的通信信息率不小于该台车载设备的感知信息率的情况下,得到的每台车载设备的目标函数值才是有效值,以此可以保证每台车载设备的感知信息量均能够在每台车载设备传输感知信息及其他信息的通信持续时间内被完整传输;针对每台车载设备的目标函数值,判断该台车载设备的目标函数值是否同时满足预设条件、以及该台车载设备对应的第一约束条件,直至判断结果为是,再将当前待测试时间分配比确定为该台车载设备的时间分配结果,以此在保证每台车载设备的感知信息量均能够在每台车载设备传输感知信息及其他信息的通信持续时间内被完整传输的情况下,通过迭代的 方式为每台车载设备确定最优的时间分配比,以实现更好地平衡感知通信一体化的性能。
上述电子设备提到的通信总线可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信接口用于上述电子设备与其他设备之间的通信。
存储器可以包括随机存取存储器(Random Access Memory,RAM),也可以包括非易失性存储器(Non-Volatile Memory,NVM),例如至少一个磁盘存储器。在本申请的一些实施例中,存储器还可以是至少一个位于远离前述处理器的存储装置。
上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
在本申请提供的又一实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质内存储有计算机程序,该计算机程序被处理器执行时实现上述图1所示实施例中基于车载设备的时间分配方法的步骤。
在本申请提供的又一实施例中,还提供了一种计算机程序产品,该计算机程序产品包括计算机指令,该计算机指令用于使计算机执行上述图1所示实施例中基于车载设备的时间分配方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介 质(例如固态硬盘Solid State Disk(SSD))等。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置、电子设备、计算机可读存储介质而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的较佳实施例,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本申请的保护范围内。

Claims (11)

  1. 一种基于车载设备的时间分配方法,所述方法包括:
    构建多台车载设备的目标函数;其中,每台车载设备的目标函数中包括所述多台车载设备的感知总信息率表达式、该台车载设备对应的第一约束条件和第二约束条件;所述感知总信息率表达式中包括表示所述每台车载设备的待测试时间分配比的表达式;所述第一约束条件为该台车载设备的通信信息率不小于该台车载设备的感知信息率;所述第二约束条件为任一待测试时间分配比均属于预设的取值集合,所述取值集合中包括多个时间分配比;
    将所述取值集合中包括的多个时间分配比按照从小到大的顺序,依次确定为待测试时间分配比;
    将所确定的待测试时间分配比分别代入所述多台车载设备的目标函数,得到每台车载设备的目标函数值;
    针对所述每台车载设备的目标函数值,判断该台车载设备的目标函数值是否同时满足预设条件、以及该台车载设备对应的第一约束条件;
    如果判断结果为否,返回执行所述将所述取值集合中包括的多个时间分配比按照从小到大的顺序,依次确定为待测试时间分配比的步骤;
    如果判断结果为是,将当前待测试时间分配比确定为该台车载设备的时间分配结果。
  2. 根据权利要求1所述的方法,其中,所述预设条件为:
    达到所述多台车载设备的感知总信息率的最大化。
  3. 根据权利要求1所述的方法,其中,所述第二约束条件为:
    Figure PCTCN2021115314-appb-100001
    其中,Ω t表示所述取值集合,N s表示一个通信帧包括的子帧数量,a n表示第n次确定的待测试时间分配比。
  4. 根据权利要求2和3所述的方法,其中,所述每台车载设备的目标函数为:
    Figure PCTCN2021115314-appb-100002
    Figure PCTCN2021115314-appb-100003
    Figure PCTCN2021115314-appb-100004
    其中,R rad表示所述感知总信息率,a表示所述待测试时间分配比,
    Figure PCTCN2021115314-appb-100005
    表示第i台 车载设备的感知信息率,
    Figure PCTCN2021115314-appb-100006
    表示第i台车载设备的通信信息率,
    Figure PCTCN2021115314-appb-100007
    表示所述第一约束条件,
    Figure PCTCN2021115314-appb-100008
    表示所述第二约束条件。
  5. 一种基于车载设备的时间分配装置,所述装置包括:函数构建模块、第一确定模块、运算模块、判断模块、第二确定模块,其中,
    所述函数构建模块,用于构建多台车载设备的目标函数;其中,每台车载设备的目标函数中包括所述多台车载设备的感知总信息率表达式、该台车载设备对应的第一约束条件和第二约束条件;所述感知总信息率表达式中包括表示所述每台车载设备的待测试时间分配比的表达式;所述第一约束条件为该台车载设备的通信信息率不小于该台车载设备的感知信息率;所述第二约束条件为任一待测试时间分配比均属于预设的取值集合,所述取值集合中包括多个时间分配比;
    所述第一确定模块,用于将所述取值集合中包括的多个时间分配比按照从小到大的顺序,依次确定为待测试时间分配比;
    所述运算模块,用于将所确定的待测试时间分配比分别代入所述多台车载设备的目标函数,得到每台车载设备的目标函数值;
    所述判断模块,用于针对所述每台车载设备的目标函数值,判断该台车载设备的目标函数值是否同时满足预设条件、以及该台车载设备对应的第一约束条件;如果判断结果为否,触发所述第一确定模块;如果判断结果为是,触发所述第二确定模块;
    所述第二确定模块,用于将当前待测试时间分配比确定为该台车载设备的时间分配结果。
  6. 根据权利要求5所述的装置,其中,所述预设条件为:
    达到所述多台车载设备的感知总信息率的最大化。
  7. 根据权利要求5所述的装置,其中,所述第二约束条件为:
    Figure PCTCN2021115314-appb-100009
    其中,Ω t表示所述取值集合,N s表示一个通信帧包括的子帧数量,a n表示第n次确定的待测试时间分配比。
  8. 根据权利要求6和7所述的装置,其中,所述每台车载设备的目标函数为:
    Figure PCTCN2021115314-appb-100010
    Figure PCTCN2021115314-appb-100011
    Figure PCTCN2021115314-appb-100012
    其中,R rad表示所述感知总信息率,a表示所述待测试时间分配比,
    Figure PCTCN2021115314-appb-100013
    表示第i台车载设备的感知信息率,
    Figure PCTCN2021115314-appb-100014
    表示第i台车载设备的通信信息率,
    Figure PCTCN2021115314-appb-100015
    表示所述第一约束条件,
    Figure PCTCN2021115314-appb-100016
    表示所述第二约束条件。
  9. 一种电子设备,包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;
    存储器,用于存放计算机程序;
    处理器,用于执行存储器上所存放的程序时,实现权利要求1-4任一所述的方法步骤。
  10. 一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-4任一所述的方法步骤。
  11. 一种计算机程序产品,所述计算机程序产品包括计算机指令,所述计算机指令用于使计算机执行权利要求1-4任一所述的方法。
PCT/CN2021/115314 2021-02-26 2021-08-30 基于车载设备的时间分配方法、装置、设备及存储介质 WO2022179072A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/030,236 US20230370877A1 (en) 2021-02-26 2021-08-30 Time allocation method, equipment, device, and storage medium based on an on-board device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110218872.5A CN112929846B (zh) 2021-02-26 2021-02-26 基于车载设备的时间分配方法、装置、设备及存储介质
CN202110218872.5 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022179072A1 true WO2022179072A1 (zh) 2022-09-01

Family

ID=76172287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115314 WO2022179072A1 (zh) 2021-02-26 2021-08-30 基于车载设备的时间分配方法、装置、设备及存储介质

Country Status (3)

Country Link
US (1) US20230370877A1 (zh)
CN (1) CN112929846B (zh)
WO (1) WO2022179072A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111050391A (zh) * 2019-12-11 2020-04-21 北京邮电大学 基于cr-vanet的车载雷达通信一体化系统的时间和功率联合分配方法
CN112055335A (zh) * 2020-09-18 2020-12-08 深圳恩步通信技术有限公司 一种基于noma的上行车载通信资源分配方法及系统
CN112350789A (zh) * 2020-12-22 2021-02-09 南京航空航天大学 一种能效最大化的认知车联网协作频谱感知功率分配方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3227489B2 (ja) * 1998-04-23 2001-11-12 国土交通省土木研究所長 ダイナミックにチャネルを配分する車両通信システムおよび方法
EP2134034A1 (en) * 2008-06-10 2009-12-16 Fujitsu Limited Improvements in wireless sensor networks
CN105007590A (zh) * 2015-05-06 2015-10-28 长安大学 一种车联网车路WiFi无线网络性能测试设备及其测试方法
US10187711B2 (en) * 2015-08-07 2019-01-22 Comcast Cable Communications, Llc Time allocation for network transmission
CN105490715A (zh) * 2015-10-30 2016-04-13 青岛智能产业技术研究院 一种基于IEEE80211p标准的多天线车载网络通信方法
CN108289325B (zh) * 2017-01-09 2022-03-01 中兴通讯股份有限公司 上行和下行传输对齐的方法及装置
CN111741446B (zh) * 2020-06-16 2021-09-17 重庆大学 V2x通信与应用联合测试方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111050391A (zh) * 2019-12-11 2020-04-21 北京邮电大学 基于cr-vanet的车载雷达通信一体化系统的时间和功率联合分配方法
CN112055335A (zh) * 2020-09-18 2020-12-08 深圳恩步通信技术有限公司 一种基于noma的上行车载通信资源分配方法及系统
CN112350789A (zh) * 2020-12-22 2021-02-09 南京航空航天大学 一种能效最大化的认知车联网协作频谱感知功率分配方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUN, HUIQING: "Research on Time Resource Allocation Method and Reliable Communication Technology of the Sensing and Communication Integrated System", RESEARCH ON TIME RESOURCE ALLOCATION METHOD AND RELIABLE COMMUNICATION TECHNOLOGY OF THE SENSING AND COMMUNICATION INTEGRATED SYSTEM, 15 May 2021 (2021-05-15), XP055962500 *

Also Published As

Publication number Publication date
CN112929846B (zh) 2022-07-22
US20230370877A1 (en) 2023-11-16
CN112929846A (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2021012833A1 (zh) 基于波束功率分配的雷达通信一体化协同探测方法及装置
CN111800795B (zh) 一种认知无人机网络中非高斯噪声下频谱感知方法
CN108419240B (zh) 一种检测导频攻击的方法、装置、电子设备及存储介质
CN110611626A (zh) 信道估计方法、装置及设备
JP7282385B2 (ja) 電波監視装置および電波監視方法
CN110636516A (zh) 信号传播模型的确定方法及装置
CN113219466A (zh) 海面的风速确定方法、装置、电子设备及存储介质
CN111751811A (zh) 一种多基站雷达构型下的距离扩展目标检测方法
WO2022232265A1 (en) Apparatus, system, and method for adaptive beamforming in wireless networks
CN117527113B (zh) 一种基于ai模型的无线信道衰落的预估方法
CN109444571B (zh) 一种小卫星通信载荷电磁兼容预测方法
WO2022179072A1 (zh) 基于车载设备的时间分配方法、装置、设备及存储介质
CN112305514A (zh) 雷达嵌入式通信方法及系统
CN114280568A (zh) 墙体的轮廓识别方法及装置
Garnaev et al. A power control problem for a dual communication-radar system facing a jamming threat
CN114492530A (zh) 基于生成式对抗网络的主动声呐探测波形识别方法及装置
JP7169036B2 (ja) 後方散乱及び空中計算に基づく協調スペクトル検出方法
CN113406578A (zh) 分布式无人机载雷达目标检测方法、装置及存储介质
CN111263413B (zh) 一种cr-vanet系统的频谱切换方法、装置及电子设备
CN117041250B (zh) 一种智能化指挥控制的无线通信链路质量评估方法
Wang et al. LPI time‐based TMS against high‐sensitivity ESM
CN115622596B (zh) 一种基于多任务学习的快速波束对齐方法
Ruan et al. Designing the waveform bandwidth and time duration of radar oriented to collision warning performance for better resource efficiency
CN113037408B (zh) 空间到达角与频谱二维联合的信号感知方法及装置
Zhao et al. Multi‐path suppression algorithm for through‐the‐wall imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927499

Country of ref document: EP

Kind code of ref document: A1