WO2022178769A1 - 偏振片及其制造方法、显示面板及显示装置 - Google Patents

偏振片及其制造方法、显示面板及显示装置 Download PDF

Info

Publication number
WO2022178769A1
WO2022178769A1 PCT/CN2021/077932 CN2021077932W WO2022178769A1 WO 2022178769 A1 WO2022178769 A1 WO 2022178769A1 CN 2021077932 W CN2021077932 W CN 2021077932W WO 2022178769 A1 WO2022178769 A1 WO 2022178769A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
support
polarizer
bars
grating
Prior art date
Application number
PCT/CN2021/077932
Other languages
English (en)
French (fr)
Inventor
李多辉
段正
张笑
宋梦亚
刘震
马勇
郭康
谷新
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/077932 priority Critical patent/WO2022178769A1/zh
Priority to US17/619,807 priority patent/US20240012189A1/en
Priority to CN202180000305.0A priority patent/CN115280196A/zh
Publication of WO2022178769A1 publication Critical patent/WO2022178769A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor

Definitions

  • the present application relates to the field of display technology, and in particular, to a polarizer and a manufacturing method thereof, a display panel and a display device.
  • the traditional iodine-based polarizer is one of the core components of the display part.
  • its incompatibility with many processes due to its inability to withstand high temperatures limits the development of display devices.
  • wire grid polarizers In order to reduce device cost and improve the durability of polarizers, more durable wire grid polarizers (WGPs) have replaced traditional iodine-based polarizers.
  • the wire grid polarizer is composed of a group of regularly arranged subwavelength metal wire grids - to a certain extent, the metalness in the direction perpendicular to the wire grid is destroyed; its optical properties are as follows: the linearly polarized light parallel to the wire grid can be reflected , while the linearly polarized light perpendicular to the direction of the metal grating can be transmitted.
  • Such nanoscale linear polarizers are usually fabricated from aluminum, which has high reflectivity and relatively low cost compared to other materials.
  • the linearly polarized light parallel to the wire grid will be reflected on the surface of the wire grid polarizer, and the light reflected from the wire grid polarizer will reduce the display quality of the image.
  • the present application provides a polarizer, a manufacturing method thereof, a display panel and a display device.
  • the reflectivity can be greatly reduced, the display quality of the image can be improved, and the structure of the polarizer can be more stable.
  • a polarizer comprises an antireflection layer, a first support layer and a grating layer stacked in sequence along the incident direction of the light;
  • the grating layer includes a plurality of first grid bars arranged along the first direction, and the plurality of first grid bars are arranged at intervals from each other;
  • the first support layer includes a plurality of first support bars arranged along the first direction and spaced apart from each other, and second support bars arranged along the second direction and located between two adjacent first support bars, the The second direction forms an included angle with the first direction, the included angle is greater than 0 degrees and less than 180 degrees, and the first support bars are arranged corresponding to the first grid bars;
  • the antireflection layer includes a plurality of second grid bars arranged along the first direction, the plurality of second grid bars are arranged at intervals from each other, and the positions of the second grid bars correspond to the positions of the first grid bars setting, a third gap is formed between two adjacent second grid bars;
  • the anti-reflection layer, the first support layer and the grating layer form an optical resonant cavity structure, or the anti-reflection layer is used for absorbing light reflected by the grating layer.
  • the second direction is perpendicular to the first direction; and/or,
  • the second support bars located between two different adjacent first support bars are at least partially located on the same straight line; and/or,
  • the second support bars located between two different adjacent first support bars are not located on the same straight line.
  • the duty cycle of the grating layer is 0.3 ⁇ 0.6; and/or,
  • the height of the grating layer is greater than the height of the first support layer, and the height of the first support layer is greater than the height of the anti-reflection layer; and/or,
  • the height of the grating layer is 100 nm to 250 nm
  • the height of the first support layer is 70 nm to 200 nm
  • the height of the antireflection layer is 5 nm to 100 nm.
  • the orthographic projection of the first support bar along the light incident direction and the orthographic projection of the corresponding first grid bar at least partially overlap, and the orthographic projection of the first support bar along the light incident direction and the corresponding orthographic projection of the first grid bar.
  • the orthographic projections of the first grid lines are at least partially coincident;
  • the distance between the orthographic projection of the side edge of the first support bar along the light incident direction and the orthographic projection of the side edge of the first grid bar corresponding thereto is less than or equal to 40 nm, and the side edge of the second grid bar is less than or equal to 40 nm.
  • the distance between the orthographic projection of and the orthographic projection of the corresponding side of the first grid strip is less than or equal to 20 nm.
  • the material of the grating layer is a metal material; the material of the first support layer is a transparent material.
  • the polarizer includes a second support layer, the second support layer is located on the side of the antireflection layer away from the first support layer, and the second support layer includes a plurality of strips along the first direction.
  • the third support bars are arranged and spaced apart from each other, and the fourth support bars are arranged along the second direction and located between two adjacent third support bars, and the positions of the third support bars correspond to the first support bars.
  • the fourth support bar is arranged corresponding to the second support bar; and/or,
  • the material of the second support layer is a transparent material.
  • the polarizer further includes a substrate, and the substrate is located on a side of the grating layer away from the first support layer; or, the substrate is located at a side of the antireflection layer away from the first support layer side.
  • a method for manufacturing a polarizer for preparing the above-mentioned polarizer, and the method for manufacturing a polarizer includes:
  • the antireflection layer is formed on the first support layer.
  • the fourth support bar is arranged corresponding to the second support bar; and/or,
  • the material of the second support layer is a transparent material.
  • a method for manufacturing a polarizer for preparing the above-mentioned polarizer includes:
  • the grating layer is formed on the first support layer.
  • the method before forming the antireflection layer on the transparent substrate, the method further includes: forming a second support layer on the substrate, the second support layer comprising a plurality of third A support bar, and a fourth support bar disposed along the second direction and located between two adjacent third support bars, and the position of the third support bar is set corresponding to the position of the first grid bar ;and / or,
  • the fourth support bar is arranged corresponding to the second support bar; and/or,
  • the material of the second support layer is a transparent material.
  • a display panel is provided, and the display panel includes the above-mentioned polarizer.
  • a display device including the above-mentioned display panel.
  • the polarizing plate and its manufacturing method, display panel and display device of the present application can greatly reduce the reflectivity by setting the specific structure of the polarizing plate, improve the display quality of the image, and at the same time make the structure of the polarizing plate more stable.
  • the polarizer of the present application can achieve the effect of reducing the reflectivity in two ways. That is, the reflectivity of the polarizer to ambient light is reduced, so as to prevent the reflected ambient light from affecting the display quality of the image.
  • the polarizer of the present application includes an antireflection layer, a first support layer and a grating layer stacked in sequence along the light incident direction, where the light refers to ambient light.
  • the optical resonant cavity structure is formed by the antireflection layer, the first support layer and the grating layer.
  • white light enters the polarizer from the incident direction, passes through the anti-reflection layer and the first support layer, is reflected on the surface of the grating layer, and exits from the anti-reflection layer away from the first support layer, thereby becoming a certain color light reflection, thereby reducing the overall reflectivity of the polarizer.
  • the first support layer located between the antireflection layer and the grating layer is a dielectric layer, which acts as a matching layer to induce the maximum reflectivity of the film system near a specific wavelength.
  • the first support layer is not only a part of the optical resonant cavity structure, but at the same time, by setting the specific structure of the first support layer, that is, including a plurality of first support layers spaced from each other along the first direction
  • the support bar and the second support bar disposed along the second direction and located between the two adjacent first support bars can play a good supporting role and make the overall structure of the polarizer more firm.
  • the antireflection layer can directly absorb the light reflected by the grating layer, so as to achieve the effect of reducing the reflectivity.
  • the first support layer can not only play a good supporting role, but also make the overall structure of the polarizer firmer; at the same time, since the first support layer is located between the antireflection layer and the grating layer , the absorption layer and the grating layer can be separated to avoid the mutual influence between the absorption effect of the antireflection layer and the polarization effect of the grating layer.
  • FIG. 1 is a schematic plan view of the structure of the polarizer of Example 1 of the present application.
  • FIG. 2 is a schematic cross-sectional structure diagram along the A-A direction in FIG. 1 .
  • FIG. 3 is a schematic cross-sectional structure diagram along the B-B direction in FIG. 1 .
  • FIG. 4 is a schematic cross-sectional structure diagram along the C-C direction in FIG. 1 .
  • FIG. 5 is a schematic plan view of the structure of the grating layer of the polarizing plate according to Example 1 of the present application.
  • FIG. 6 is a schematic plan view of the structure of the first support layer of the polarizer of Example 1 of the present application.
  • Example 7 is a schematic plan view of the structure of another embodiment of the first support layer of the polarizer of Example 1 of the present application.
  • Example 8 to 11 are schematic structural diagrams in which the layers of the polarizer of Example 1 of the present application are stacked in sequence.
  • Example 12 is a schematic cross-sectional structural diagram of another embodiment of the polarizing plate of Example 1 of the present application.
  • FIG. 23 is a schematic cross-sectional structure diagram of the polarizer of Example 2 of the present application.
  • Example 24 is a schematic cross-sectional structural diagram of another embodiment of the polarizing plate of Example 2 of the present application.
  • the polarizer 1 includes an antireflection layer 10 , a first support layer 20 , a grating layer 30 and a substrate 40 that are stacked in sequence along the light incident direction F. That is, the substrate 40 is located on the side of the grating layer 30 away from the first support layer 20 .
  • the substrate 40 is a transparent substrate, and the material of the substrate 40 may be glass, quartz stone, PI, PET, etc., which is not specifically limited herein.
  • the grating layer 30 includes first grid bars 31 arranged along the first direction L, and a plurality of first grid bars 31 are arranged at intervals from each other. That is, the plurality of first grid bars 31 are all arranged along the first direction L, and the plurality of first grid bars 31 are arranged at intervals from each other.
  • the first support layer 20 includes a plurality of first support bars 21 arranged along the first direction L and spaced apart from each other (that is, the plurality of first support bars 21 are all arranged along the first direction L, and the plurality of first support bars 21 are mutually spaced), and a second support bar 22 located between two adjacent first support bars 21 arranged along the second direction W, where the second direction W and the first direction L form an included angle (that is, the second direction W is not parallel to the first direction L), that is, the first support bar 21 and the second support bar 22 form an included angle ⁇ , the included angle ⁇ is greater than 0 degrees and less than 180 degrees, and the position of the first support bar 21 corresponds to the first The position of the grid bars 31 is set.
  • the first support layer 20 is integrally formed, that is, the first support bar 21 and the second support bar 22 are integrally formed.
  • the antireflection layer 10 includes a plurality of second grid bars 11 arranged along the first direction L, the plurality of second grid bars 11 are spaced apart from each other, and the positions of the second grid bars 11 correspond to the positions of the first grid bars 31 . That is, the plurality of second grid bars 11 are all arranged along the first direction L, and the plurality of second grid bars 11 are arranged at intervals from each other.
  • the included angle ⁇ formed by the second direction W and the first direction L is equal to 90 degrees, that is, the second direction W (the setting direction of the second support bars 22 ) is perpendicular to the first direction L (the first support bar 22 )
  • the arrangement direction of the bar 21); that is, the second support bar 22 is perpendicular to the first support bar 21 to facilitate the manufacturing process.
  • the width w2 of the second support bar 22 is 20 nm ⁇ 200 nm.
  • the second support bars 22 located between two different adjacent first support bars 21 may be located on the same straight line.
  • the second support bars 22 located between two different adjacent first support bars 21 may also be a part of the second support bars 22 located on the same straight line and another part of the second support bars 22 are located on another straight line. In other embodiments, it can also be said that the second support bars 22 located between two different adjacent first support bars 21 are not located on the same straight line.
  • the number of second support bars 22 between two adjacent first support bars 21 may be multiple, so as to better support.
  • a plurality of second support bars 22 between two adjacent first support bars 21 are arranged at intervals to better support.
  • the period p of the grating layer 30 is 100 nm-140 nm, preferably, 100 nm, 120 nm and 140 nm.
  • the duty ratio of the grating layer 30 is 0.3 ⁇ 0.6, wherein the duty ratio is the proportion of the first grating strips 31 in the period p of the grating layer 30 , that is, the width w of the first grating layer 31 and the period of one grating layer 30
  • the height h1 of the grating layer is greater than the height h2 of the first support layer, and the height h2 of the first support layer is greater than the height h3 of the antireflection layer.
  • the height h1 of the grating layer is 100 nm to 250 nm, the height h2 of the first support layer is 10 nm to 200 nm, and the height h3 of the antireflection layer is 5 nm to 100 nm.
  • the orthographic projection of the first support bar 21 along the light incident direction F completely coincides with the orthographic projection of the corresponding first grid bar 31, and the orthographic projection of the second grid bar 11 along the light incident direction F and its corresponding The orthographic projections of the first grid bars 31 are completely coincident, so that the polarization effect of the polarizer 1 itself can be avoided to the greatest extent.
  • the orthographic projection of the first support bar 21 along the light incident direction F and the orthographic projection of the corresponding first grid bar 31 may at least partially overlap, and the orthographic projection of the second grid bar 11 along the light incident direction F and at least partially coincide with the orthographic projection of the corresponding first grid bar 31 .
  • the distance between the orthographic projection of the side of the first support bar 21 and the orthographic projection of the side of the first grid bar 31 corresponding thereto is less than or equal to 40 nm
  • the side of the second grid bar 11 is less than or equal to 40 nm.
  • the distance between the orthographic projection of the side and the orthographic projection of the side of the corresponding first grid bar 31 is less than or equal to 20 nm. That is, the first support bar 21 is slightly offset from the first grid bar 31 , and the second grid bar 11 is slightly offset from the first grid bar 31 .
  • the anti-reflection layer 10 , the first support layer 20 and the grating layer 30 form an optical resonant cavity structure, or the anti-reflection layer 10 is used to absorb the light reflected by the grating layer 30 .
  • the polarizing plate 1 of this embodiment can achieve the effect of reducing the reflectivity in two different ways. That is, the reflectivity of the polarizer 1 to ambient light is reduced, so as to avoid the influence of ambient light on the display quality of the image.
  • the polarizing plate 1 of this embodiment includes an antireflection layer 10 , a first support layer 20 and a grating layer 30 stacked in sequence along the light incident direction F, where the light refers to ambient light.
  • the optical resonant cavity structure D is formed by the antireflection layer 10 , the first support layer 20 and the grating layer 30 .
  • the white light enters the polarizer 1 along the arrow direction E (light incident direction), passes through the antireflection layer 10 and the first supporting layer 20 , and passes through the grating layer 30
  • the surface of the polarizer is reflected, and exits from the side of the antireflection layer 10 away from the first support layer 20 along the arrow direction E′, so as to reflect light of a certain color, thereby reducing the overall reflectivity of the polarizer 1 .
  • the first support layer 20 located between the anti-reflection layer 10 and the grating layer 30 is a dielectric layer, which acts as a matching layer and functions to induce the reflectivity of the film system near a specific wavelength to the maximum. Since the optical properties of the structure are sensitive to the thickness of the first support layer 20 , different colors can be induced to reflect by simply changing the thickness of the first support layer 20 .
  • the first support layer 20 not only acts as a part of the optical resonant cavity structure, but at the same time, by setting the specific structure of the first support layer 20, that is, including a plurality of strips spaced from each other along the first direction
  • the first support bar 21 and the second support bar 22 disposed along the second direction and located between the two adjacent first support bars 21 can play a good supporting role and make the overall structure of the polarizer 1 more efficient. for firmness.
  • the material of the grating layer 30 is a metal material, such as aluminum, silver, platinum, gold or a metal compound.
  • the material of the first support layer 20 is a transparent material, such as silicon oxide.
  • the reflectivity of the grating layer 30 is greater than the reflectivity of the anti-reflection layer 10 , and the light transmittance of the grating layer 30 is smaller than that of the anti-reflection layer 10 .
  • the material of the antireflection layer 10 can be a metal material, such as chromium, titanium or molybdenum; it can also be a non-metallic material, such as a ceramic material, that is, a composite material in which nano-scale metal particles are mixed with silicon oxide.
  • the anti-reflection layer 10 can directly absorb the light reflected by the grating layer 30, so as to achieve the effect of reducing the reflectivity.
  • the first support layer 20 can not only play a good supporting role, but also make the overall structure of the polarizer 1 firmer; at the same time, since the first support layer 20 is located between the antireflection layer 10 and the Between the grating layers 30 , the absorption layer and the grating layer 30 can be separated to avoid the mutual influence between the absorption effect of the antireflection layer 10 and the polarization effect of the grating layer 30 .
  • the materials of the grating layer 30 and the first support layer 20 are the same as in the first method, and the material of the anti-reflection layer 10 having the function of absorbing the light reflected by the grating layer 30 is metal oxide, such as copper oxide or chromium oxide.
  • the polarizer 1 of this embodiment is a wire grid polarizer (WGP)
  • the supporting function of the first supporting layer 20 is particularly significant. This is because, in the wire grid polarizers (WGP), the metal grating (the first grid bar 31 of the grating layer 30) is a nanoscale wire grid structure, and adding a structure to the metal grating is prone to overturning. problems, thereby making the overall structure unstable.
  • the polarizer 1 further includes a second support layer 50 , and the second support layer 50 is located on the side of the antireflection layer 10 away from the first support layer 20 .
  • the second support layer 50 includes a plurality of third support bars 51 arranged along the first direction L and spaced apart from each other, and fourth support bars arranged along the second direction W and located between two adjacent third support bars 51 52.
  • the positions of the third support bars 51 are set corresponding to the positions of the first grid bars 31 .
  • the fourth support bar 52 is disposed corresponding to the second support bar 22 .
  • the second support layer 50 is integrally formed, that is, the third support bar 51 and the fourth support bar 52 are integrally formed.
  • the second support layer 50 by arranging the second support layer 50 , the support effect can be further improved, and the stability of the overall structure can be enhanced.
  • the second support layer 50 is located on the side of the anti-reflection layer 10 away from the first support layer 20 , that is to say, the light is incident from the second support layer 50 to the anti-reflection layer 10 , the matching of blocking can be achieved, allowing more Light enters the antireflection layer 10 .
  • the second support layer 50, the antireflection layer 10, the first support layer 20 and the grating layer 30 form an optical resonant cavity structure D, which can reduce the reflection of incident light, thereby greatly reducing the reflectivity and improving the image quality. Display quality.
  • the orthographic projection of the fourth support bar 52 along the incident direction completely overlaps with the orthographic projection of the corresponding second support bar 22 to avoid affecting the polarization effect of the polarizer 1 itself. But not limited to this, the orthographic projection of the fourth support bar 52 and the orthographic projection of the corresponding second support bar 22 may also partially overlap.
  • the width of the fourth support bar 52 is 20 nm ⁇ 200 nm.
  • the material of the second support layer 50 is a transparent material.
  • the materials of the second support layer 50 and the first support layer 20 are the same or different. In this embodiment, the materials of the second support layer 50 and the first support layer 20 are both silicon oxide.
  • FIG. 8 to FIG. 11 are schematic diagrams of the layers stacked in sequence.
  • the second support layer 50 may not be included.
  • the reflectivity can be greatly reduced, the display quality of the image can be improved, and the structure of the polarizer can be more stable. It is proved by experiments that the polarization degree of the polarizer 1 in this embodiment can be 99.9-99.999%, the transmittance will decrease by 5%-10%, and the reflectivity will decrease from more than 40% to less than 10%.
  • This embodiment also provides a method for manufacturing a polarizer, which is used for preparing the above-mentioned polarizer 1 .
  • the manufacturing method of the polarizer comprises the following steps:
  • Step 100 forming a grating layer on the substrate
  • Step 200 forming a first support layer on the grating layer
  • Step 300 forming an antireflection layer on the first support layer
  • Step 400 forming a second support layer on the anti-reflection layer.
  • the manufacturing method of the polarizer 1 in this embodiment includes:
  • step 100 forming the grating layer 30 on the substrate 40 includes: as shown in FIG. 13 , depositing a grating material layer 30 ′ on one side surface of the transparent substrate 40 ; then, as shown in FIG. 14 , in A layer of photoresist layer 71 is formed on the grating material layer 30 ′; then, as shown in FIG. 15 , the photoresist layer 71 is patterned to form a photoresist grating 72 ; then, as shown in FIG.
  • the grating material layer 30 ′ not covered by the photoresist grating 72 is etched to form the first grid bars 31 of the grating layer 30 , and a first gap is formed between two adjacent first grid bars 31 33; Finally, the photoresist grating 72 is washed away by a stripping solution.
  • the photoresist layer 71 may be patterned by a photolithography apparatus, and further, the photoresist layer 71 may be patterned by a dry etching technique (eg, Inductively Coupled Plasma Etching (ICP)).
  • ICP Inductively Coupled Plasma Etching
  • nano-imprinting can also be used instead of photoresist, and nano-imprinting can be used to form patterning. Both the photoresist and the nano-imprint glue in this embodiment are commercially available products.
  • step 200 forming the first support layer 20 on the grating layer 30 includes: as shown in FIG. Filling the photoresist material 73 (that is, filling the photoresist material 73 in the first gap 33 formed between the two adjacent first grid bars 31), and curing the photoresist material 73, Make the upper surface of the photoresist material 73 and the upper surface of the first grid bar 31 at the same level; then, as shown in FIG. 18 , on the upper surface of the first grid bar 31 and the A first support material layer is formed on the upper surface of the adhesive material 73 , and the first support material layer is patterned to form the first support layer 20 .
  • the photoresist material 73 may be filled between the two adjacent first grating bars 31 of the grating layer 30 by coating or printing.
  • step 300 forming the antireflection layer 10 on the first support layer 20 includes: filling light between two adjacent first support bars 21 of the first support layer 20
  • the photoresist material 73 that is, the photoresist material 73 is filled in the second gap (not shown in the figure) formed between the two adjacent first support bars 21 ), and the photoresist material 73 is cured , so that the upper surface of the photoresist material 73 and the upper surface of the first support bar 21 are at the same level; then, as shown in FIG.
  • An absorbing material layer 10 ′ is formed on the upper surface of the resist material 73 ; then, as shown in FIG. 20 , the absorbing material layer 10 ′ is patterned to form the second grid bars 11 of the anti-reflection layer 10 .
  • a third gap 13 is formed between two adjacent second grid bars 11 .
  • step 400 forming the second support layer 50 on the anti-reflection layer 10 includes: as shown in FIG. 21 , between two adjacent second grid bars 11 of the anti-reflection layer 10 Filling the photoresist material 73 (that is, filling the photoresist material 73 in the third gap 13 formed between the two adjacent second grid bars 11 ), and curing the photoresist material 73 , so that the upper surface of the photoresist material 73 and the upper surface of the second grid bar 11 are located on the same level; A second support material layer is formed on the upper surface of the resist material 73 , and the second support material layer is patterned to form the second support layer 50 .
  • the photoresist material 73 filled in each gap (the first gap 33, the second gap and the third gap 13) is washed away with a stripping liquid, and the photoresist material 73 as shown in FIG. 2 is formed. structure.
  • This embodiment also provides a display panel, which includes the above-mentioned polarizer.
  • This embodiment also provides a display device, which includes the above-mentioned display panel.
  • the overall structure of the polarizer 1 in this embodiment is basically the same as that in Embodiment 1, and the difference lies in that the polarizer 1 includes substrates 40, The antireflection layer 10 , the first support layer 20 and the grating layer 30 . That is, the substrate 40 is located on the side of the antireflection layer 10 away from the first support layer 20 .
  • the antireflection layer 10 in the first way to reduce the reflectivity, the antireflection layer 10 , the first support layer 20 and the grating layer 30 are used to form the optical resonant cavity structure.
  • the anti-reflection layer 10 can directly absorb the light reflected by the grating layer 30, so as to achieve the effect of reducing the reflectivity.
  • the specific position of the second support layer 50 is slightly different from that in Embodiment 1.
  • the second support layer 50 is located on the side of the antireflection layer 10 away from the first support layer 20 , and located between the substrate 40 and the antireflection layer 10 .
  • the function played by the second support layer 50 in this embodiment is the same as that in Embodiment 1, and will not be repeated here.
  • the second support layer 50 may not be included.
  • This embodiment also provides a method for manufacturing a polarizer, which is used for preparing the above-mentioned polarizer 1 .
  • the manufacturing method of the polarizer comprises the following steps:
  • Step 100' forming a second support layer on the substrate
  • Step 200' forming an antireflection layer on the substrate
  • Step 300' forming a first support layer on the antireflection layer
  • Step 400' forming a grating layer on the first support layer.
  • step 100' is omitted, and the antireflection layer 10 is directly formed on the substrate 40, and the subsequent steps remain unchanged.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

一种偏振片及其制造方法、显示面板及显示装置,通过设置偏振片的具体结构,能够大大地降低反射率,提高图像显示质量的同时,使偏振片的结构更为稳定。偏振片沿光线入射方向包括依次叠设的减反层(10)、第一支撑层(20)和光栅层(30);光栅层(30)包括多条相互间隔设置的第一栅条(31);第一支撑层(20)包括多条相互间隔设置的第一支撑条(21)、以及位于相邻的两个第一支撑条(21)之间的第二支撑条(22),第一支撑条(21)对应于第一栅条(31)的设置;减反层(10)包括多条相互间隔设置的第二栅条(11),第二栅条(11)对应于第一栅条(31)设置;减反层(10)、第一支撑层(20)和光栅层(30)形成光学谐振腔结构,或者,减反层(10)用于吸收光栅层(30)反射的光线。显示面板包括偏振片,显示装置包括显示面板。

Description

偏振片及其制造方法、显示面板及显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种偏振片及其制造方法、显示面板及显示装置。
背景技术
现有技术中,传统的碘系偏振片是显示部分的核心器件之一。但是,其不耐高温的特性导致与很多工艺不能兼容,这限制了显示器件的发展。
为了降低器件成本,提高偏振片的耐久性,更耐用的线栅偏振片(wire grid polarizers,WGP)代替了传统的碘系偏振片。该线栅偏振片由一组规则排列的亚波长金属线栅构成—一定程度上破坏了垂直线栅方向上的金属性;其光学特性如下:对平行于金属线栅的线偏振光可以实现反射,而垂直于金属光栅方向的线偏振光可以实现透过。这种纳米级线偏振片通常用铝来制备,与其它材料相比,铝具有较高的反射率和相对较低的成本。
但是,平行于金属线栅的线偏振光在金属线栅偏振片的表面会发生反射,从线栅偏振片反射的光会降低图像的显示质量。
发明内容
本申请提供一种偏振片及其制造方法、显示面板及显示装置,通过设置偏振片的具体结构,能够大大地降低反射率,提高图像的显示质量的同时,使偏振片的结构更为稳定。
根据本申请实施例的第一方面,提供一种偏振片。所述偏振片沿光 线入射方向包括依次叠设的减反层、第一支撑层和光栅层;
所述光栅层包括多条沿第一方向设置的第一栅条,多条所述第一栅条相互间隔设置;
所述第一支撑层包括多条沿第一方向设置且相互间隔的第一支撑条、以及沿第二方向设置的位于相邻的两个第一支撑条之间的第二支撑条,所述第二方向与所述第一方向形成有夹角,所述夹角大于0度且小于180度,所述第一支撑条的对应于所述第一栅条的设置;
所述减反层包括多条沿第一方向设置的第二栅条,多条所述第二栅条相互间隔设置,且所述第二栅条的位置对应于所述第一栅条的位置设置,相邻的两个所述第二栅条之间形成有第三间隙;
所述减反层、所述第一支撑层和所述光栅层形成光学谐振腔结构,或者,所述减反层用于吸收所述光栅层反射的光线。
可选的,所述第二方向垂直于所述第一方向;和/或,
位于不同的两个相邻的所述第一支撑条之间的所述第二支撑条至少部分位于同一直线上;和/或,
位于不同的两个相邻的所述第一支撑条之间的所述第二支撑条不位于同一直线上。
可选的,所述光栅层的占空比为0.3~0.6;和/或,
所述光栅层的高度大于所述第一支撑层的高度,所述第一支撑层的高度大于所述减反层的高度;和/或,
所述光栅层的高度为100nm~250nm,所述第一支撑层的高度为的70nm~200nm,所述减反层的高度为的5nm~100nm。
可选的,沿光线入射方向所述第一支撑条的正投影和与其对应的所述第一栅条的正投影至少部分重合,沿光线入射方向所述第一支撑条的正 投影和与其对应的所述第一栅条的正投影至少部分重合;
沿光线入射方向所述第一支撑条的侧边的正投影和与其对应的所述第一栅条的侧边的正投影之间的距离小于或等于40nm,所述第二栅条的侧边的正投影和与其对应的所述第一栅条的侧边的正投影之间的距离小于或等于20nm。
可选的,所述光栅层的材料为金属材料;所述第一支撑层的材料为透明材料。
可选的,所述偏振片包括第二支撑层,所述第二支撑层位于所述减反层远离所述第一支撑层的一侧,所述第二支撑层包括多条沿第一方向设置且相互间隔的第三支撑条、以及沿所述第二方向设置的位于相邻的两个第三支撑条之间的第四支撑条,所述第三支撑条的位置对应于所述第一栅条的位置设置;和/或,
所述第四支撑条对应于所述第二支撑条设置;和/或,
所述第二支撑层的材料为透明材料。
可选的,所述偏振片还包括基板,所述基板位于所述光栅层远离所述第一支撑层的一侧;或者,所述基板位于所述减反层远离所述第一支撑层的一侧。
根据本申请实施例的第二方面,提供一种偏振片制造方法,用于制备上述的偏振片,所述偏振片制造方法包括:
在基板上形成所述光栅层;
在所述光栅层上形成所述第一支撑层;
在所述第一支撑层上形成所述减反层。
可选的,在所述第一支撑层上形成所述减反层之后,还包括:在所述减反层上形成第二支撑层,所述第二支撑层包括多条沿第一方向设置且 相互间隔的第三支撑条、以及沿所述第二方向设置的位于相邻的两个第三支撑条之间的第四支撑条,且所述第三支撑条的位置对应于所述第一栅条的位置设置;和/或,
所述第四支撑条对应于所述第二支撑条设置;和/或,
所述第二支撑层的材料为透明材料。
根据本申请实施例的第三方面,提供一种偏振片制造方法,用于制备上所述的偏振片,所述偏振片制造方法包括:
在基板上形成所述减反层;
在所述减反层上形成所述第一支撑层;
在所述第一支撑层上形成所述光栅层。
可选的,在透明基板上形成所述减反层之前,还包括:在所述基板上形成第二支撑层,所述第二支撑层包括多条沿第一方向设置且相互间隔的第三支撑条、以及沿所述第二方向设置的位于相邻的两个第三支撑条之间的第四支撑条,且所述第三支撑条的位置对应于所述第一栅条的位置设置;和/或,
所述第四支撑条对应于所述第二支撑条设置;和/或,
所述第二支撑层的材料为透明材料。
根据本申请实施例的第三方面,提供一种显示面板,所述显示面板包括上述所述的偏振片。
根据本申请实施例的第四方面,提供一种显示装置,该显示装置包括上述的显示面板。
本申请的偏振片及其制造方法、显示面板及显示装置,通过设置偏振片的具体结构,能够大大地降低反射率,提高图像的显示质量的同时,使偏振片的结构变得更为稳定。
其中,本申请的偏振片可以通过两种方式来实现降低反射率的效果。即,降低偏振片的对环境光的反射率,以避免反射后的环境光对图像的显示质量造成影响。本申请的偏振片沿光线入射方向包括依次层叠的减反层、第一支撑层和光栅层,其中,光线是指环境光。
在第一种方式中,通过减反层、第一支撑层和光栅层形成光学谐振腔结构。具体地,白光从入射方向进入偏振片,透过减反层和第一支撑层后,在光栅层的表面被反射,从减反层远离第一支撑层的一侧出射,从而成为某一颜色的光反射,从而减小了偏振片的整体反射率。位于减反层和光栅层之间的第一支撑层为介质层,其作为匹配层,作用是将膜系在特定波长附近的反射率诱导至最大。由于该结构的光学特性对第一支撑层的厚度敏感,因此只需改变第一支撑层的厚度就可以诱导反射出不同的颜色。需要说明的是,在该结构中,第一支撑层不仅作为光学谐振腔结构中的一部分,同时,通过设置第一支撑层的具体结构,即包括多条沿第一方向相互间隔设置的第一支撑条、以及沿第二方向设置的位于相邻的两个第一支撑条之间的第二支撑条,能够起到很好的支撑作用,使偏振片的整体结构更为牢固。
在第二种方式中,通过所述减反层直接能够吸收所述光栅层反射的光线,而能达到降低反射率的效果。需要说明的是,在该结构中,第一支撑层不仅能够起到很好的支撑作用,使偏振片的整体结构更为牢固;同时,由于第一支撑层位于减反层与光栅层之间,能够隔开吸收层和光栅层,避免减反层的吸收作用和光栅层的偏光作用之间的相互影响。
附图说明
图1是本申请的实施例1的偏振片的俯视结构示意图。
图2是图1中沿A-A方向的剖视结构示意图。
图3是图1中沿B-B方向的剖视结构示意图。
图4是图1中沿C-C方向的剖视结构示意图。
图5是本申请的实施例1的偏振片的光栅层的俯视结构示意图。
图6是本申请的实施例1的偏振片的第一支撑层的俯视结构示意图。
图7是本申请的实施例1的偏振片的第一支撑层的另一实施方式的俯视结构示意图。
图8-图11是本申请的实施例1的偏振片的各层结构依次层叠的结构示意图。
图12是本申请的实施例1的偏振片的另一实施方式的剖视结构示意图。
图13-图22本申请的实施例1的偏振片制造方法的工艺流程图。
图23是本申请的实施例2的偏振片的剖视结构示意图。
图24是本申请的实施例2的偏振片的另一实施方式的剖视结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。除非另作定义,本申请使用的技术术语或者科学术语应当为 本申请所属领域内具有一般技能的人士所理解的通常意义。本申请说明书以及权利要求书中使用的“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而且可以包括电性的连接,不管是直接的还是间接的。“多个”包括两个,相当于至少两个。在本申请说明书和所附权利要求书中所使用的单数形式的“一种”、“”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
实施例1
请结合图1至图7予以理解,本实施案例提供一种偏振片1。偏振片1沿光线入射方向F包括依次叠设的减反层10、第一支撑层20、光栅层30和基板40。即,基板40位于光栅层30远离第一支撑层20的一侧。基板40为透明基板,基板40的材料可以为玻璃、石英石、PI、PET等等,在此不做具体限定。
光栅层30包括沿第一方向L设置的第一栅条31,多条第一栅条31相互间隔设置。即,多条第一栅条31均沿第一方向L设置,且多条第一栅条31相互间隔设置。
第一支撑层20包括多条沿第一方向L设置且相互间隔的第一支撑条21(即,多条第一支撑条21均沿第一方向L设置,且多个第一支撑条21相互间隔设置)、以及沿第二方向W设置的位于相邻的两个第一支撑条21之间的第二支撑条22,第二方向W与第一方向L形成有夹角(即第二方向W与第一方向L不平行),即第一支撑条21与第二支撑条22形成有夹角α,夹角α大于0度且小于180度,第一支撑条21的位置对应于第一 栅条31的位置设置。第一支撑层20一体成型,即,第一支撑条21与第二支撑条22为一体成型结构。
减反层10包括多条沿第一方向L设置的第二栅条11,多条第二栅条11相互间隔设置,且第二栅条11的位置对应于第一栅条31的位置设置。即,多个第二栅条11均沿第一方向L设置,且多个第二栅条11相互间隔设置。
在本实施例中,第二方向W与第一方向L形成的夹角α等于90度,即,第二方向W(第二支撑条22的设置方向)垂直于第一方向L(第一支撑条21的设置方向);即,第二支撑条22垂直于第一支撑条21,以方便制作工艺。第二支撑条22的宽度w2为20nm~200nm。
如图6所示,位于不同的两个相邻的第一支撑条21之间的第二支撑条22可以位于同一直线上。如图7所示,在另一实施方式中,位于不同的两个相邻的第一支撑条21之间的第二支撑条22也可以是其中的一部分数量的第二支撑条22位于同一直线上,而另一部分数量的第二支撑条22位于另一直线上。在其他实施例中,也可以说是,位于不同的两个相邻的第一支撑条21之间的第二支撑条22均不位于同一直线上。
两个相邻的第一支撑条21之间的第二支撑条22的数量可以是多个,以更好地起到支撑作用。两个相邻的第一支撑条21之间的多个第二支撑条22间隔设置,以更好地起到支撑作用。
较佳地,光栅层30的周期p为100nm-140nm,优选地,为100nm、120nm和140nm。光栅层30的占空比为0.3~0.6,其中占空比为光栅层30的周期p内第一栅条31所占的比例,即第一栅条31的宽度w与一个光栅层30的周期p的长度的比例,第一栅条31的宽度w与光栅层30的周期p之比:w/p。
光栅层的高度h1大于第一支撑层的高度h2,第一支撑层的高度h2 大于减反层的高度h3。光栅层的高度h1为100nm~250nm,第一支撑层的高度h2为的10nm~200nm,减反层的高度h3为的5nm~100nm。
在本实施例中,沿光线入射方向F第一支撑条21的正投影和与其对应的第一栅条31的正投影完全重合,沿光线入射方向F第二栅条11的正投影和与其对应的第一栅条31的正投影完全重合,从而能够最大限度地避免影响偏振片1本身的偏振效果。
但不限于此,也可以是沿光线入射方向F第一支撑条21的正投影和与其对应的第一栅条31的正投影至少部分重合,沿光线入射方向F第二栅条11的正投影和与其对应的第一栅条31的正投影至少部分重合。具体地,沿光线入射方向F第一支撑条21的侧边的正投影和与其对应的第一栅条31的侧边的正投影之间的距离小于或等于40nm,第二栅条11的侧边的正投影和与其对应的第一栅条31的侧边的正投影之间的距离小于或等于20nm。即,第一支撑条21与第一栅条31有稍许偏移,第二栅条11与第一栅条31有稍许偏移。
在本实施例中,减反层10、第一支撑层20和光栅层30形成光学谐振腔结构,或者,减反层10用于吸收光栅层30反射的光线。
也就是说,本实施例的偏振片1可以通过两种不同的方式来实现降低反射率的效果。即,降低偏振片1的对环境光的反射率,以避免环境光对图像的显示质量造成影响。本实施例的偏振片1沿光线入射方向F包括依次层叠的减反层10、第一支撑层20和光栅层30,其中,光线是指环境光。
在第一种方式中,通过减反层10、第一支撑层20和光栅层30形成光学谐振腔结构D。具体地,如图4所示,其中箭头方向E为光路方向,白光沿箭头方向E(光线入射方向)进入偏振片1,透过减反层10和第一支撑层20后,在光栅层30的表面被反射,沿箭头方向E’从减反层10远 离第一支撑层20的一侧出射,从而成为某一颜色的光反射,从而减小了偏振片1的整体反射率。位于减反层10和光栅层30之间的第一支撑层20为介质层,其作为匹配层,作用是将膜系在特定波长附近的反射率诱导至最大。由于该结构的光学特性对第一支撑层20的厚度敏感,因此只需改变第一支撑层20的厚度就可以诱导反射出不同的颜色。需要说明的是,在该结构中,第一支撑层20不仅作为光学谐振腔结构中的一部分,同时,通过设置第一支撑层20的具体结构,即包括多条沿第一方向相互间隔设置的第一支撑条21、以及沿第二方向设置的位于相邻的两个第一支撑条21之间的第二支撑条22,能够起到很好的支撑作用,使偏振片1的整体结构更为牢固。光栅层30的材料为金属材料,如铝、银、铂、金或金属化合物。第一支撑层20的材料为透明材料,如氧化硅。光栅层30的反射率大于减反层10的反射率,光栅层30的透光率小于减反层10的透光率。减反层10的材料可以为金属材料,如铬、钛或钼;也可以为非金属材料,如陶瓷材料,即,氧化硅中混合有纳米级金属颗粒的复合材料等。
在第二种方式中,通过减反层10直接能够吸收光栅层30反射的光线,而能达到降低反射率的效果。需要说明的是,在该结构中,第一支撑层20不仅能够起到很好的支撑作用,使偏振片1的整体结构更为牢固;同时,由于第一支撑层20位于减反层10与光栅层30之间,能够隔开吸收层和光栅层30,避免减反层10的吸收作用和光栅层30的偏光作用之间的相互影响。光栅层30和第一支撑层20的材料于第一种方式中的相同,而具有吸收光栅层30反射的光线功能的减反层10的材料为金属氧化物,如氧化铜或氧化铬。
还需说明的是,当本实施例的偏振片1为线栅偏振片(wire grid polarizers,WGP)时,第一支撑层20的支撑作用尤为显著。这是由于,在线栅偏振片(wire grid polarizers,WGP)中,其金属光栅(光栅层30的第一栅条31)为纳米级线栅的结构,在金属光栅上添加结构,容易产生 倾倒的问题,从而使整体结构不稳定性。
在本实施例中,偏振片1还包括第二支撑层50,第二支撑层50位于减反层10远离第一支撑层20的一侧。第二支撑层50包括多条沿第一方向L设置且相互间隔的第三支撑条51、以及沿第二方向W设置的位于相邻的两个第三支撑条51之间的第四支撑条52。第三支撑条51的位置对应于第一栅条31的位置设置。第四支撑条52对应于第二支撑条22设置。第二支撑层50一体成型,即,第三支撑条51与第四支撑条52为一体成型结构。
这样,通过设置第二支撑层50,能够进一步提高支撑效果,加强整体结构的稳定性。并且,由于第二支撑层50位于减反层10远离第一支撑层20的一侧,也就是说光线由第二支撑层50入射至减反层10,能够实现阻挡的匹配,让更多的光进入减反层10。第二支撑层50、减反层10、第一支撑层20以及光栅层30形成光学谐振腔结构D,能够对入射的光起到降低反射的作用,从而能够大大地降低反射率,提高图像的显示质量。
沿入射方向第四支撑条52的正投影与对应的第二支撑条22的正投影完全重叠,以避免影响偏振片1本身的偏振效果。但不限于此,第四支撑条52的正投影与对应的第二支撑条22的正投影也可以部分重叠。第四支撑条52的宽度为20nm~200nm。
第二支撑层50的材料为透明材料。第二支撑层50与第一支撑层20的材料相同,也可以不同,在本实施例中,第二支撑层50与第一支撑层20的材料均为氧化硅。
为了更好地展示本实施例中的偏振片1的各层的结构,请参阅图8至图11中,各层结构依次层叠的结构示意图。
如图12所示,在本实施例的另一实施方式中,也可以不包括第二支撑层50。
在本实施例中,通过设置偏振片1的具体结构,能够大大地降低反射率,提高图像的显示质量的同时,使偏振片的结构更为稳定。通过实验证明,本实施例的偏振片1的偏振度可以在99.9~99.999%,透过率会下降5%~10%,反射率从原先的大于40%下降到小于10%。
本实施例还提供一种偏振片制造方法,用于制备上述偏振片1。所述偏振片制造方法包括以下步骤:
步骤100:在基板上形成光栅层;
步骤200:在光栅层上形成第一支撑层;
步骤300:在第一支撑层上形成减反层;
步骤400:在减反层上形成第二支撑层。
具体地,如图13-图22所示,本实施例的偏振片1制造方法包括:
在步骤100中,在基板40上形成所述光栅层30中,包括:如图13所示,在透明基板40的一侧表面上沉积光栅材料层30’;接续,如图14所示,在所述光栅材料层30’上形成一层光刻胶层71;接续,如图15所示,对光刻胶层71进行图案化,形成光刻胶光栅72;接续,如图16所示,对光刻胶光栅72未覆盖的光栅材料层30’进行刻蚀,形成所述光栅层30的第一栅条31,在相邻的两个所述第一栅条31之间形成第一间隙33;最后,将光刻胶光栅72通过剥离液洗去。具体地,可以通过光刻设备使光刻胶层71图案化,进一步,可以通过干法刻蚀技术(如,感应耦合等离子体刻蚀技术(ICP))使光刻胶层71形成图案化。
但不限于此,也可以使用纳米压印胶替代光刻胶,使用纳米压印形成图案化。本实施例中的光刻胶和纳米压印胶均为市售产品。
在步骤200中,在所述光栅层30上形成所述第一支撑层20中,包括:如图17所示,在所述光栅层30的相邻的两个所述第一栅条31之间填充光刻胶材73(即,在相邻的两个所述第一栅条31之间所形成的第一间 隙33中填充光刻胶材73),并使光刻胶材73固化,使所述光刻胶材73的上表面与所述第一栅条31的上表面位于同一水平面;接续,如图18所示,在所述第一栅条31的上表面与所述光刻胶材73的上表面上形成第一支撑材料层,对所述第一支撑材料层图案化,形成所述第一支撑层20。需要说明的是,可以通过涂敷或打印的方式在所述光栅层30的相邻的两个所述第一栅条31之间填充光刻胶材73。
在步骤300中,在所述第一支撑层20上形成所述减反层10中,包括:在所述第一支撑层20的相邻的两个所述第一支撑条21之间填充光刻胶材73(即,在相邻的两个所述第一支撑条21之间形成的第二间隙(图中未标示)中填充光刻胶材73),并使光刻胶材73固化,使所述光刻胶材73的上表面与所述第一支撑条21的上表面位于同一水平面;接续,如图19所示,在所述第一支撑条21的上表面与所述光刻胶材73的上表面上形成吸收材料层10’;接续,如图20所示,对所述吸收材料层10’图案化,形成所述减反层10的第二栅条11,在相邻的两个所述第二栅条11之间形成第三间隙13。
在步骤400中,在所述减反层10上形成第二支撑层50中,包括:如图21所示,在所述减反层10的相邻的两个所述第二栅条11之间填充光刻胶材73(即,在相邻的两个所述第二栅条11之间形成的所述第三间隙13中填充光刻胶材73),并使光刻胶材73固化,使所述光刻胶材73的上表面与所述第二栅条11的上表面位于同一水平面;接续,如图22所示,在所述第二栅条11的上表面与所述光刻胶材73的上表面上形成第二支撑材料层,对所述第二支撑材料层图案化,形成所述第二支撑层50。
在上述步骤全部完成后,使用剥离液将填充在各间隙(第一间隙33、第二间隙以及第三间隙13)中的光刻胶材73洗去后,即形成如图2中所示的结构。
需要说明的是,在制备不包括所述第二支撑层50的偏振片1的结构 时,只需在完成步骤300后,使用剥离液将填充在各间隙(第一间隙、第二间隙以及第三间隙)中的光刻胶材73洗去,以形成最终的偏振片1的结构。
本实施例还提供一种显示面板,所述显示面板包括上述的偏振片。
本实施例还提供一种显示装置,该显示装置包括上述的显示面板。
实施例2
如图23所示,本实施例的偏振片1的整体结构基本和实施例1中的结构相同,其不同的之处在于,所述偏振片1沿光线入射方向包括依次叠设的基板40、减反层10、第一支撑层20和光栅层30。即,所述基板40位于所述减反层10远离所述第一支撑层20的一侧。
这样,与实施例1中情况相同,在实现降低反射率的第一种方式中,还是通过减反层10、第一支撑层20和光栅层30形成光学谐振腔结构。在第二种方式中,通过所述减反层10直接能够吸收所述光栅层30反射的光线,而能达到降低反射率的效果。
在本实施例中,所述第二支撑层50的具体位置与实施例1中略有不同,所述第二支撑层50位于所述减反层10远离所述第一支撑层20的一侧,并位于基板40和减反层10之间。本实施例中的第二支撑层50所起到的作用与实施例1中的相同,在此不再累述。
如图24所示,在本实施例中的另一实施方式中,也可以不包括第二支撑层50。
本实施例还提供一种偏振片制造方法,用于制备上述偏振片1。所述偏振片制造方法包括以下步骤:
步骤100’:在基板上形成第二支撑层;
步骤200’:在基板上形成减反层;
步骤300’:在减反层上形成第一支撑层;
步骤400’:在第一支撑层上形成光栅层。
上述各步骤的具体工艺与实施例1中的相同,在此不再累述。
当本实施例中的偏振片1不包括第二支撑层50时,省略步骤100’,直接在基板40上形成减反层10,后续步骤不变。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (13)

  1. 一种偏振片,其特征在于,所述偏振片沿光线入射方向包括依次叠设的减反层、第一支撑层和光栅层;
    所述光栅层包括多条沿第一方向设置的第一栅条,多条所述第一栅条相互间隔设置;
    所述第一支撑层包括多条沿第一方向设置且相互间隔的第一支撑条、以及沿第二方向设置的位于相邻的两个第一支撑条之间的第二支撑条,所述第二方向与所述第一方向形成有夹角,所述夹角大于0度且小于180度,所述第一支撑条的对应于所述第一栅条的设置;
    所述减反层包括多条沿第一方向设置的第二栅条,多条所述第二栅条相互间隔设置,且所述第二栅条的位置对应于所述第一栅条的位置设置;
    所述减反层、所述第一支撑层和所述光栅层形成光学谐振腔结构,或者,所述减反层用于吸收所述光栅层反射的光线。
  2. 如权利要求1所述的偏振片,其特征在于,所述第二方向垂直于所述第一方向;和/或,
    位于不同的两个相邻的所述第一支撑条之间的所述第二支撑条至少部分位于同一直线上;和/或,
    位于不同的两个相邻的所述第一支撑条之间的所述第二支撑条不位于同一直线上。
  3. 如权利要求1所述的偏振片,其特征在于,所述光栅层的占空比为0.3~0.6;和/或,
    所述光栅层的高度大于所述第一支撑层的高度,所述第一支撑层的高度大于所述减反层的高度;和/或,
    所述光栅层的高度为100nm~250nm,所述第一支撑层的高度为的70nm~200nm,所述减反层的高度为的5nm~100nm。
  4. 如权利要求1所述的偏振片,其特征在于,沿光线入射方向所述第 一支撑条的正投影和与其对应的所述第一栅条的正投影至少部分重合,沿光线入射方向所述第一支撑条的正投影和与其对应的所述第一栅条的正投影至少部分重合;
    沿光线入射方向所述第一支撑条的侧边的正投影和与其对应的所述第一栅条的侧边的正投影之间的距离小于或等于40nm,所述第二栅条的侧边的正投影和与其对应的所述第一栅条的侧边的正投影之间的距离小于或等于20nm。
  5. 如权利要求1所述的偏振片,其特征在于,所述光栅层的材料为金属材料;所述第一支撑层的材料为透明材料。
  6. 如权利要求1-5中任意一项所述的偏振片,其特征在于,所述偏振片包括第二支撑层,所述第二支撑层位于所述减反层远离所述第一支撑层的一侧,所述第二支撑层包括多条沿第一方向设置且相互间隔的第三支撑条、以及沿所述第二方向设置的位于相邻的两个第三支撑条之间的第四支撑条,所述第三支撑条的位置对应于所述第一栅条的位置设置;和/或,
    所述第四支撑条对应于所述第二支撑条设置;和/或,
    所述第二支撑层的材料为透明材料。
  7. 如权利要求1-5中任意一项所述的偏振片,其特征在于,所述偏振片还包括基板,所述基板位于所述光栅层远离所述第一支撑层的一侧;或者,所述基板位于所述减反层远离所述第一支撑层的一侧。
  8. 一种偏振片制造方法,用于制备权利要求1-5任一项所述的偏振片,其特征在于,所述偏振片制造方法包括:
    在基板上形成所述光栅层;
    在所述光栅层上形成所述第一支撑层;
    在所述第一支撑层上形成所述减反层。
  9. 根据权利要求8所述的偏振片制造方法,其特征在于,在所述第一支撑层上形成所述减反层之后,还包括:在所述减反层上形成第二支撑层,所述第二支撑层包括多条沿第一方向设置且相互间隔的第三支撑条、以及 沿所述第二方向设置的位于相邻的两个第三支撑条之间的第四支撑条,且所述第三支撑条的位置对应于所述第一栅条的位置设置;和/或,
    所述第四支撑条对应于所述第二支撑条设置;和/或,
    所述第二支撑层的材料为透明材料。
  10. 一种偏振片制造方法,用于制备权利要求1-5任一项所述的偏振片,其特征在于,所述偏振片制造方法包括:
    在基板上形成所述减反层;
    在所述减反层上形成所述第一支撑层;
    在所述第一支撑层上形成所述光栅层。
  11. 根据权利要求10所述的偏振片制造方法,其特征在于,在透明基板上形成所述减反层之前,还包括:在所述基板上形成第二支撑层,所述第二支撑层包括多条沿第一方向设置且相互间隔的第三支撑条、以及沿所述第二方向设置的位于相邻的两个第三支撑条之间的第四支撑条,且所述第三支撑条的位置对应于所述第一栅条的位置设置;和/或,
    所述第四支撑条对应于所述第二支撑条设置;和/或,
    所述第二支撑层的材料为透明材料。
  12. 一种显示面板,其特征在于,所述显示面板包括权利要求1-7中任意一项所述的偏振片。
  13. 一种显示装置,其特征在于,所述显示装置包括权利要求12所述的显示面板。
PCT/CN2021/077932 2021-02-25 2021-02-25 偏振片及其制造方法、显示面板及显示装置 WO2022178769A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/077932 WO2022178769A1 (zh) 2021-02-25 2021-02-25 偏振片及其制造方法、显示面板及显示装置
US17/619,807 US20240012189A1 (en) 2021-02-25 2021-02-25 Polarizer and manufacturing method thereof, display panel and display apparatus
CN202180000305.0A CN115280196A (zh) 2021-02-25 2021-02-25 偏振片及其制造方法、显示面板及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/077932 WO2022178769A1 (zh) 2021-02-25 2021-02-25 偏振片及其制造方法、显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2022178769A1 true WO2022178769A1 (zh) 2022-09-01

Family

ID=83047668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077932 WO2022178769A1 (zh) 2021-02-25 2021-02-25 偏振片及其制造方法、显示面板及显示装置

Country Status (3)

Country Link
US (1) US20240012189A1 (zh)
CN (1) CN115280196A (zh)
WO (1) WO2022178769A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101055329A (zh) * 2006-04-13 2007-10-17 E.I.内穆尔杜邦公司 线栅起偏器、其制造方法以及在透射显示器中的用途
JP2010066571A (ja) * 2008-09-11 2010-03-25 Sony Corp 偏光素子及びその製造方法、並びに液晶プロジェクタ
CN101688938A (zh) * 2007-06-22 2010-03-31 莫克斯泰克公司 选择性吸收的线栅偏振器
CN103197368A (zh) * 2013-04-28 2013-07-10 南京大学 一种三明治结构线栅宽带偏振器及其制备方法
CN109814298A (zh) * 2019-03-27 2019-05-28 京东方科技集团股份有限公司 液晶显示面板及其制造方法、液晶显示装置
CN110824602A (zh) * 2018-08-14 2020-02-21 群创光电股份有限公司 电子装置
CN111562643A (zh) * 2020-06-15 2020-08-21 京东方科技集团股份有限公司 金属线栅偏光片及其制作方法和显示装置
CN111679356A (zh) * 2020-06-22 2020-09-18 京东方科技集团股份有限公司 偏振片及制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140060058A (ko) * 2012-11-09 2014-05-19 삼성디스플레이 주식회사 편광판, 편광판의 제조방법 및 이를 포함하는 표시장치
CN105467499A (zh) * 2016-01-15 2016-04-06 京东方科技集团股份有限公司 一种金属线栅偏振片及其制造方法、显示面板及显示装置
CN108680982B (zh) * 2018-05-18 2020-04-17 京东方科技集团股份有限公司 一种偏光器件及其制备方法、显示基板和显示装置
CN110307905B (zh) * 2019-07-15 2021-03-30 电子科技大学 一种红外焦平面阵列及基于该红外焦平面阵列的红外热成像系统
CN111580302B (zh) * 2020-06-16 2023-01-10 京东方科技集团股份有限公司 反射式液晶显示板及显示装置
CN111896122B (zh) * 2020-08-11 2021-11-16 烟台睿创微纳技术股份有限公司 一种偏振非制冷红外探测器及其制备方法
CN111947789B (zh) * 2020-08-11 2021-12-21 烟台睿创微纳技术股份有限公司 一种双色偏振非制冷红外探测器及其制作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101055329A (zh) * 2006-04-13 2007-10-17 E.I.内穆尔杜邦公司 线栅起偏器、其制造方法以及在透射显示器中的用途
CN101688938A (zh) * 2007-06-22 2010-03-31 莫克斯泰克公司 选择性吸收的线栅偏振器
JP2010066571A (ja) * 2008-09-11 2010-03-25 Sony Corp 偏光素子及びその製造方法、並びに液晶プロジェクタ
CN103197368A (zh) * 2013-04-28 2013-07-10 南京大学 一种三明治结构线栅宽带偏振器及其制备方法
CN110824602A (zh) * 2018-08-14 2020-02-21 群创光电股份有限公司 电子装置
CN109814298A (zh) * 2019-03-27 2019-05-28 京东方科技集团股份有限公司 液晶显示面板及其制造方法、液晶显示装置
CN111562643A (zh) * 2020-06-15 2020-08-21 京东方科技集团股份有限公司 金属线栅偏光片及其制作方法和显示装置
CN111679356A (zh) * 2020-06-22 2020-09-18 京东方科技集团股份有限公司 偏振片及制备方法

Also Published As

Publication number Publication date
US20240012189A1 (en) 2024-01-11
CN115280196A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
JP6446497B2 (ja) ワイヤグリッド偏光板、投影型映像表示機器、及びワイヤグリッド偏光板の製造方法
US10114161B2 (en) Multi-layer absorptive wire grid polarizer
JP6056903B2 (ja) 偏光素子、及び透過型液晶プロジェクター
US9988724B2 (en) Inorganic polarizing plate having trapezoid shaped metal layers and production method thereof
JP4275692B2 (ja) ワイヤグリッド偏光板及びそれを用いた液晶表示装置
KR100623026B1 (ko) 선 격자 편광자 및 그 제조방법
JP2007025692A (ja) 偏光子、その製造方法、及びこれを有する表示装置
JP2012103468A (ja) 光学素子および投射型液晶表示装置
JP2010085990A (ja) ワイヤグリッド偏光板
JP5206029B2 (ja) 液晶表示装置
CN103197368A (zh) 一种三明治结构线栅宽带偏振器及其制备方法
JP5069037B2 (ja) 積層ワイヤグリッド偏光板
CN108761616A (zh) 多波段高反射柔性波片及其制备方法
KR20130126391A (ko) 와이어 그리드 편광자 제조방법 및 그 제조방법을 이용한 와이어 그리드 편광자
WO2022178769A1 (zh) 偏振片及其制造方法、显示面板及显示装置
JP2018036670A (ja) 偏光板、及び偏光板の製造方法
JP2014194452A (ja) 光学素子および光学装置
CN108627900A (zh) 光学相位差构件、偏光变换元件、模板及光学相位差构件的制造方法
JP2010250289A (ja) ワイヤグリッド偏光板およびその製造方法並びに液晶表示装置
JP2012103469A (ja) 光学素子および投射型液晶表示装置
CN216956423U (zh) 偏振片、显示模组及电子设备
CN220232008U (zh) 衍射元件和ar显示结构
US20220308275A1 (en) Polarizer, Electronic Device and Method of Preparing Polarizer
KR101584944B1 (ko) 와이어 그리드 편광자 제조방법 및 그 제조방법을 이용한 와이어 그리드 편광자
JP2019120825A (ja) ワイヤグリッド偏光板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17619807

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.01.2024)