WO2022177362A1 - 이차 전지, 및 이를 포함하는 배터리 팩 및 자동차 - Google Patents

이차 전지, 및 이를 포함하는 배터리 팩 및 자동차 Download PDF

Info

Publication number
WO2022177362A1
WO2022177362A1 PCT/KR2022/002446 KR2022002446W WO2022177362A1 WO 2022177362 A1 WO2022177362 A1 WO 2022177362A1 KR 2022002446 W KR2022002446 W KR 2022002446W WO 2022177362 A1 WO2022177362 A1 WO 2022177362A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
current collector
battery
collector plate
welding
Prior art date
Application number
PCT/KR2022/002446
Other languages
English (en)
French (fr)
Inventor
최수지
황보광수
민건우
조민기
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US18/035,537 priority Critical patent/US20230411805A1/en
Priority to EP22756560.3A priority patent/EP4297172A1/en
Priority to JP2023527446A priority patent/JP2023549142A/ja
Priority to CN202280007902.0A priority patent/CN116569407A/zh
Publication of WO2022177362A1 publication Critical patent/WO2022177362A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/567Terminals characterised by their manufacturing process by fixing means, e.g. screws, rivets or bolts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/04Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of riveting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery, a battery pack, and a vehicle.
  • Secondary batteries that are easy to apply according to product groups and have electrical characteristics such as high energy density are not only portable devices, but also electric vehicles (EVs) and hybrid vehicles (HEVs) driven by an electric drive source. It is universally applied.
  • EVs electric vehicles
  • HEVs hybrid vehicles
  • the types of secondary batteries currently widely used include a lithium ion battery, a lithium polymer battery, a nickel cadmium battery, a nickel hydrogen battery, a nickel zinc battery, and the like.
  • the operating voltage of such a unit secondary battery cell is about 2.5V to 4.5V. Accordingly, when a higher output voltage is required, a plurality of batteries are connected in series to form a battery pack. In addition, a plurality of batteries may be connected in parallel to form a battery pack according to the charge/discharge capacity required for the battery pack. Accordingly, the number of batteries included in the battery pack and the type of electrical connection may be variously set according to a required output voltage and/or charge/discharge capacity.
  • cylindrical, prismatic, and pouch-type batteries are known as types of secondary battery cells.
  • a separator which is an insulator, is interposed between the positive electrode and the negative electrode and wound to form an electrode assembly in the form of a jelly roll, which is inserted into the battery can together with the electrolyte to constitute the battery.
  • the positive electrode terminal is a cap of a sealing body sealing the opening of the battery can
  • the negative electrode terminal is the battery can.
  • An object of the present invention is to secure welding efficiency and structural rigidity in a welding process between a current collector and an electrode structure by making a thickness of a portion to be welded of a current collector relatively thin.
  • the present specification relates to an electrode assembly in which a first electrode and a second electrode and a separator provided therebetween are wound.
  • an electrode assembly including an uncoated region of the first electrode; and a current collector plate provided at one end of the electrode assembly to which the uncoated portion of the first electrode is exposed, the current collector plate including a central portion corresponding to a winding core of the electrode assembly, wherein the central portion is the remaining thickness of the current collector plate It provides a secondary battery that includes a thinner first weld.
  • the current collector plate further includes two or more legs having one end connected to the central portion and extending in an outer direction of the electrode assembly from the central portion, and the legs are the first of the current collector plate. It may include a second welding portion thinner than the remaining thickness except for the welding portion.
  • the first welding part may have a structure in which the thickness of the first welding part becomes thinner from the outside to the inside.
  • a ratio of the average thickness of the first welded portion to the thickness of the current collector excluding the first welded portion may be 0.4:1 to 0.9:1.
  • the average thickness of the first weld portion may be 0.05 cm or more and 0.5 cm or less.
  • a ratio of the average thickness of the second weld portion to the thickness of the current collector plate excluding the first weld portion and the second weld portion may be 0.4:1 to 0.9:1.
  • the average thickness of the second weld portion may be 0.05 cm or more and 0.5 cm or less.
  • the area of the second welding portion included in each of the two or more legs may be the same as each other.
  • the current collector plate further includes four legs having one end connected to the central portion and extending in an outer direction of the electrode assembly from the central portion, and the four legs are of the electrode assembly. It may be positioned spaced apart in the winding direction.
  • the first welding portion may be positioned spaced apart from the outer line of the central portion.
  • the second welding portion may be positioned spaced apart from the outline of the leg.
  • first welding portion and the second welding portion may be positioned to be spaced apart.
  • the secondary battery includes: a battery can accommodating the electrode assembly and including an opening; a cap plate configured to close the opening of the battery can; and an electrode terminal that is welded to and coupled to the first welding part of the current collector plate and riveted to the battery can.
  • 7 shows an internal structure of a secondary battery including a battery can, a cap plate, and an electrode terminal.
  • the present specification provides an electrode assembly configured by stacking and winding a first electrode, a separator, and a second electrode, wherein the first electrode includes a first electrode current collector and an electrode active material layer provided on the first electrode current collector, an electrode assembly having a long side end along a winding direction of the current collector including an uncoated portion of the first electrode not provided with the electrode active material layer; a battery can accommodating the electrode assembly and including an opening; a cap plate configured to close the opening of the battery can; and a current collector plate applied to a secondary battery including an electrode terminal riveted to the battery can, provided at one end of the electrode assembly in which the uncoated portion of the first electrode is exposed, and a central portion corresponding to the winding core of the electrode assembly Including, wherein the central portion provides a current collector plate that includes a first welding portion thinner than the remaining thickness of the current collector plate.
  • the present specification provides a battery pack including a plurality of the aforementioned secondary batteries.
  • the present specification provides a vehicle including at least one of the above-described battery packs.
  • the current collector plate according to an exemplary embodiment of the present invention is applied to the manufacture of a secondary battery, excellent welding efficiency and structural rigidity can be secured in a welding process between the current collector and the electrode structure.
  • FIG. 1 is a plan view showing the structure of a plate-shaped electrode before winding according to an embodiment of the present specification.
  • FIG. 2 is a view illustrating a winding process of an electrode assembly according to an exemplary embodiment of the present specification.
  • FIG. 3 is an assembly view illustrating a process in which current collector plates are provided at both ends of the uncoated region after the electrode assembly of FIG. 2 is wound.
  • FIG 4 is a cross-sectional view taken along the longitudinal direction (Y) of the secondary battery according to an exemplary embodiment of the present specification.
  • FIG. 5 is a cross-sectional view showing a riveting structure of an electrode terminal according to another embodiment of the present specification.
  • FIG. 6 is a cross-sectional view of a portion indicated by a dotted line circle B in FIG. 5 .
  • FIG. 7 is a cross-sectional view taken along the longitudinal direction (Y) of a secondary battery according to another exemplary embodiment of the present specification.
  • FIG. 8 is a view showing a portion corresponding to a center portion, a leg, and a first welding portion in the current collector plate according to an exemplary embodiment of the present specification.
  • FIG. 9 is a plan view of a current collector plate of the prior art and a cross-sectional view taken along c-c'.
  • FIG. 10 is a view showing portions corresponding to a center portion, a leg, a first welding portion, and a second welding portion in a current collector plate according to another exemplary embodiment of the present specification.
  • FIG. 11 is a plan view exemplarily showing a plate-shaped electrode structure before winding according to another embodiment of the present specification.
  • FIG. 12 is a cross-sectional view taken along the longitudinal direction (Y) of an electrode assembly in which an uncoated segmental structure of an electrode is applied to a first electrode and a second electrode according to another exemplary embodiment of the present specification.
  • FIG. 13 is a cross-sectional view taken along the longitudinal direction (Y) of the electrode assembly in which the uncoated region is bent according to another exemplary embodiment of the present specification.
  • FIG. 14 is a diagram illustrating a schematic configuration of a battery pack including cylindrical battery cells according to an exemplary embodiment of the present specification.
  • 15 is a diagram illustrating a schematic configuration of a vehicle including a battery pack according to an exemplary embodiment of the present specification.
  • first electrode 10a uncoated region of the first electrode
  • electrode terminal 50a body part
  • R1 Radius from the center of the body to the edge of the outer flange
  • R2 Radius of the bottom of the battery can
  • R3 Radius from the center of the body part to the edge of the flat part
  • segment h height of segment
  • leg 431 second weld
  • substantially identical may include deviations considered low in the art, for example, deviations within 5%.
  • uniformity of a certain parameter in a predetermined region may mean uniformity in terms of an average.
  • phase does not mean only physically located on one layer, but means located on the position. That is, a layer located on one layer may have other layers in between.
  • the secondary batteries 40 and 70 according to the exemplary embodiment of the present specification include electrode assemblies 71 , A and 100 and a current collector 400 .
  • FIG. 9 shows a plan view of a conventionally used current collector and a cross-sectional view taken along c-c'.
  • a current collector plate having the same thickness and a thin thickness is used in all parts, that is, the welding part, in order to improve welding efficiency.
  • the current collector plate was deformed by the welding jig pressurization, and if the current collector plate was deformed, there was a risk of damaging the insulating parts inside the secondary battery.
  • a first welding portion 411 thinner than the remaining thickness h2 is included in the central portion 410 of the current collector plate 400 . It is welded without damage through the thinly provided first welding portion 411 , and strength can be secured through the remaining portion having a thickness h2 thicker than the thickness h1 of the first welding portion 411 .
  • the secondary batteries 40 and 70 include electrode assemblies 71, A, 100 in which the first electrode 10 and the second electrode 11 and the separator 12 provided therebetween are wound. ), each of the first electrode 10 and the second electrode 11 is not coated with an active material at the long side end, and the uncoated portion 10a of the first electrode 10 exposed to the outside of the separator 12 ) Electrode assembly comprising a (71, A, 100); and a current collector plate 400 provided at one end of the electrode assembly 71 , A, 100 to which the uncoated region 10a of the first electrode 10 is exposed, wherein the electrode assembly 71 , A, 100 is provided. and a current collector plate 400 including a central portion 410 corresponding to the winding core 340 of the first welding portion 411, wherein the central portion 410 is thinner than the remaining thickness h2 of the current collector plate 400 includes
  • Secondary batteries 40 and 70 are electrode assemblies 71, A, 100 in which a first electrode 10, a separator 12, and a second electrode 11 are stacked and wound.
  • the first electrode 10 includes a first electrode current collector (not shown) and an electrode active material layer (not shown) provided on the first electrode current collector (not shown), and the first electrode current collector Long side ends along the winding direction X of (not shown) are electrode assemblies 71 , A, 100 including the uncoated region 10a of the first electrode 10 not provided with the electrode active material layer (not shown).
  • the current collector plate 400 may include a central portion 410 including the first welding portion 411 and a divided peripheral portion 420, and the peripheral portion 420 may include The entire edge of the central portion 410 may extend in the outer direction Z of the electrode assemblies 71 , A, and 100 .
  • the current collector plate 400 having such a shape may have a disk shape or an elliptical shape.
  • a portion of the edge of the central portion 410 may include one or more legs 430 extending in the outer direction Z of the electrode assemblies 71 , A, and 100 .
  • the current collector plate 400 has one end connected to the central portion 410 and moves from the central portion 410 to the outer direction Z of the electrode assemblies 71 , A and 100 . It may further include two or more extended legs 430 . According to an exemplary embodiment of the present specification in FIG. 8 , the current collector plate 400 having the legs 430 in the central portion 410 and the peripheral portion 420 including the first welding portion 411 is illustrated in FIG. 8 .
  • the current collector plate 400 is to form a relatively thin thickness of the welding region to solve the problem that the current collector plate 400 is deformed by the welding jig pressurization. 8 shows that the thickness h1 of the first welding portion 411 to be welded on the current collector is relatively thin.
  • the current collector plate 400 includes three or more legs 430 having one end connected to the central portion 410 and extending from the central portion 410 in an outer direction of the electrode assembly. Further, the leg 430 may include a second welding portion 431 thinner than the remaining thickness h2 except for the first welding portion 411 of the current collector plate 400 .
  • the current collector plate 400 includes four or more legs 430 having one end connected to the central portion 410 and extending from the central portion 410 in an outer direction of the electrode assembly.
  • the leg 430 may include a second welding portion 431 thinner than the remaining thickness h2 except for the first welding portion 411 of the current collector plate 400 .
  • the legs 430 provided in the central portion 410 and the peripheral portion 420 including the first welding portion 411 are current collector plates including the second welding portion 431 . (400) is shown.
  • the current collector plate 400 has one end connected to the central portion 410 and moves from the central portion 410 to the outer direction Z of the electrode assemblies 71 , A and 100 . It may further include four extended legs 430 , wherein the four legs 430 are spaced apart from each other in the winding direction X of the electrode assemblies 71 , A and 100 .
  • the shape of the current collector plate 400 including four legs 430 is shown in FIGS. 8 and 10 .
  • a method of forming the first welding part 411 and the second welding part 431 on the current collector plate 400 may be using pressure.
  • the first welding part 411 and the second welding part 431 may be formed by a forging technique.
  • the forging technique refers to a method of deforming a material by applying an external force to a heated metal.
  • the first welding part 411 may have a structure in which the thickness of the first welding part 411 decreases from the outside to the inside.
  • the ratio of the average thickness h1 of the first weld portion 411 to the thickness h2 of the current collector plate 400 excluding the first weld portion 411 is 1: 1.2 to 1 :1.8.
  • the ratio of the average thickness h1 of the first weld portion 411 to the thickness h2 of the current collector plate excluding the first weld portion 411 is 0.4:1 to 0.9:1 days can
  • the ratio of the average thickness h1 of the first weld portion 411 to the thickness h2 of the current collector plate 400 excluding the first weld portion 411 is 0.4:1, 0.5:1, 0.6:1, 0.7: 1, 0.8:1 or 0.9:1.
  • the average thickness h1 of the first welding portion 411 is 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, or 90% or less, 89% or less, 87% or less, 86% or less, 85% or less, 84% or less, 83% or less, 82% or less, 81% may be below.
  • the thickness of the current collector plate 400 in the region having a relatively thick thickness may have an appropriate thickness to ensure rigidity, and thus the current collector plate 400 by pressing a welding jig. This deformation can be prevented, and the efficiency of welding can also be improved.
  • the average thickness h1 of the first weld portion 411 may be 0.05 cm or more and 0.5 cm or less, 0.08 cm or more and 0.45 cm or less, or 0.2 cm or more and 0.4 cm or less. When the thickness is satisfied, excellent welding efficiency may be obtained during a welding process between the electrode assemblies 71 , A and 100 and the current collector 400 .
  • the average thickness h3 of the second welding portion 431 and the thickness h2 of the current collector plate 400 excluding the first welding portion 411 and the second welding portion 431 are The ratio may be 1:1.2 to 1:1.8.
  • the average thickness h3 of the second welding portion 431 and the thickness h2 of the current collector plate 400 excluding the first welding portion 411 and the second welding portion 431 are The ratio may be from 0.4:1 to 0.9:1.
  • the ratio of the average thickness h3 of the second weld part 431 to the thickness h2 of the current collector plate 400 excluding the first weld part 411 and the second weld part 431 is 0.4:1, 0.5:1 , 0.6:1, 0.7:1, 0.8:1 or 0.9:1.
  • the average thickness h3 of the second welding portion 431 is 40% or more, 50% Can be greater than, greater than 60%, greater than 70%, greater than 80%, or less than 90%, less than 89%, less than 87%, less than 86%, less than 85%, less than 84%, less than 83%, less than 82%, less than 81% have.
  • the thickness of the current collector plate 400 in the region having a relatively thick thickness may have an appropriate thickness to ensure rigidity, and thus the current collector plate 400 by pressing a welding jig. This deformation can be prevented, and the efficiency of welding can also be improved.
  • the average thickness h3 of the second weld portion 431 may be 0.05 cm or more and 0.5 cm or less, 0.08 cm or more and 0.45 cm or less, and 0.2 cm or more and 0.4 cm or less. When the thickness is satisfied, excellent welding efficiency may be obtained during a welding process between the electrode assemblies 71 , A and 100 and the current collector 400 .
  • the area of the second welding portion 431 included in each of the two or more legs 430 may be the same as each other.
  • the first welding part 411 may be positioned to be spaced apart from the edge of the current collector plate.
  • the area of the first welding portion 411 may be smaller than the area of the central portion 410 of the current collector plate.
  • the second welding portion 431 may be positioned to be spaced apart from the edge of the current collector plate 400 .
  • the area of the second welding portion 431 may be smaller than the area of the leg 430 .
  • first welding portion 411 and the second welding portion 431 may be spaced apart from each other.
  • the second welding portion 431 means a portion to be welded to the uncoated portion 10a of the first electrode 10 .
  • the first welding portion 411 means a portion to be welded to the electrode terminal 50 to be described later.
  • the electrode assemblies 71 , A and 100 may have, for example, a jelly-roll structure.
  • the electrode assemblies 71 , A and 100 are formed by laminating at least once with the separator 12 interposed between the first electrode 10 and the second electrode 11 having a sheet shape. It can be manufactured by winding as shown in FIG. 2 based on the center. That is, the positive electrode and the negative electrode have a structure in which the sheet-shaped current collector 91 is coated with an active material and the active material layer 92 is provided, and the uncoated portion 93 is included on one long side along the winding direction.
  • an additional separator may be provided on the outer peripheral surface of the electrode assembly 71 to insulate it from the battery can 51 . If it is a jelly roll structure known in the art, it can be applied without limitation to the present invention.
  • FIG. 1 shows the structure of a current collector according to an exemplary embodiment of the present specification
  • FIG. 2 shows a winding process of the current collector according to an exemplary embodiment of the present specification
  • FIG. 3 is an uncoated part according to an exemplary embodiment of the present specification. A process in which the current collector plate is welded to the bent surface is shown.
  • the current collecting plate may further include an electrode tab.
  • the electrode tab When the electrode tab is provided, the electrode tab is bent and connected to fit the battery cell structure when assembling the battery cell.
  • FIG. 4 illustrates a structure in which a strip-shaped lead is used when a current collector plate and an electrode terminal are connected in a secondary battery.
  • the first electrode 10 and the second electrode 11 have a structure in which an active material 92 is coated on a sheet-shaped current collector 91, and one long side side along the winding direction. includes the uncoated region 93 .
  • the electrode assembly is manufactured by sequentially stacking the first electrode 10 and the second electrode 11 together with two separators 12 as shown in FIG. 2 , and then winding the first electrode 10 and the second electrode 11 in one direction (X).
  • the uncoated regions of the first electrode 10 and the second electrode 11 are disposed in opposite directions.
  • the uncoated area 10a of the first electrode 10 and the uncoated area 11a of the second electrode 11 are bent toward the core.
  • the current collector plates 30 and 31 are welded to the uncoated regions 10a and 11a, respectively, to be coupled thereto.
  • a separate electrode tab is not coupled to the first electrode uncoated region 10a and the second electrode uncoated region 11a, the current collector plates 30 and 31 are connected to an external electrode terminal, and a current path is connected to the electrode assembly ( Since it is formed with a large cross-sectional area along the winding axis direction of A) (refer to the arrow), there is an advantage in that the resistance of the battery cell can be lowered. This is because resistance is inversely proportional to the cross-sectional area of the path through which the current flows.
  • the secondary battery 42 includes a battery can 41 and a sealing body 42 as shown in FIG. 4 .
  • the sealing body 42 includes a cap plate 42a, a sealing gasket 42b, and a connecting plate 42c.
  • the sealing gasket 42b surrounds the edge of the cap plate 42a and is fixed by the crimping portion 43 .
  • the electrode assembly A is fixed in the battery can 41 by the beading portion 44 to prevent vertical flow.
  • the positive terminal is the cap plate 42a of the sealing body 42
  • the negative terminal is the battery can 41
  • the current collector plate 30 coupled to the uncoated region 10a of the first electrode 10 is electrically connected to the connection plate 42c attached to the cap plate 42a through the lead 45 in the form of a strip.
  • the current collector plate 31 coupled to the uncoated region 11a of the second electrode 11 is electrically connected to the bottom of the battery can 41 .
  • the insulator 46 covers the current collecting plate 30 to prevent the battery can 41 having different polarities and the uncoated region 10a of the first electrode 10 from contacting each other and causing a short circuit.
  • the lead 45 in the form of a strip is used.
  • the lead 45 is separately attached to the current collector plate 30 or is manufactured integrally with the current collector plate 30 .
  • the cross-sectional area is small, so that when a rapid charging current flows, a lot of heat is generated.
  • excessive heat generated from the lead 45 may be transferred to the electrode assembly A side and contract the separator (not shown), thereby causing an internal short circuit, which is a major cause of thermal runaway.
  • the lid 45 also takes up significant installation space within the battery can 41 . Therefore, the secondary battery 40 including the lead 45 has low space efficiency, so there is a limit in increasing the energy density.
  • the first electrode includes a current collector and an electrode active material layer provided on one or both surfaces of the current collector.
  • An uncoated region (hereinafter, referred to as a first uncoated region) of the first electrode without an electrode active material layer is present at the long side end along the winding direction of the current collector provided at one end of the winding shaft of the electrode assembly.
  • the first uncoated region is provided above the electrode assembly accommodated in the battery can in the height direction (parallel to the Z-axis). That is, the current collector includes an uncoated portion of the first electrode that is not coated with the electrode active material at the long side end and is exposed to the outside of the separator.
  • the second electrode includes a second electrode current collector and a second electrode active material layer provided on one or both surfaces of the second electrode current collector.
  • An uncoated region (hereinafter, referred to as a second uncoated region) of the second electrode not including the second electrode active material layer is provided at the other end of the second electrode current collector in the width direction (parallel to the Z-axis).
  • the uncoated portion of the second electrode is provided under the height direction (parallel to the Z-axis) of the electrode assembly accommodated in the battery can. That is, the second electrode current collector includes a second uncoated region that is not coated with an electrode active material layer on a long side end and is exposed to the outside of the separator, and at least a portion of the second uncoated region may be used as an electrode tab by itself. .
  • the second uncoated region may be, for example, a negative electrode tab.
  • the electrode assembly may include a welding target region, which is a region in which the number of overlapping layers of the fragments of the uncoated region of the second electrode is kept constant along the radial direction of the electrode assembly.
  • the first uncoated region and the second uncoated region extend in opposite directions along the height direction (parallel to the Z-axis) of the secondary battery.
  • the first uncoated portion extends toward the closed portion of the battery can, and the second uncoated portion extends toward the open portion of the battery can.
  • the first electrode may be a cathode
  • the second electrode may be an anode
  • the first electrode may be an anode
  • the second electrode may be a cathode
  • the positive active material coated on the positive electrode and the negative active material coated on the negative electrode may be used without limitation as long as the active material is known in the art.
  • the positive active material has the general formula A[A x M y ]O 2+z (A includes at least one element of Li, Na, and K; M is Ni, Co, Mn, Ca, Mg, Al, at least one element selected from Ti, Si, Fe, Mo, V, Zr, Zn, Cu, Al, Mo, Sc, Zr, Ru, and Cr; x ⁇ 0, 1 ⁇ x+y ⁇ 2, - 0.1 ⁇ z ⁇ 2; stoichiometric coefficients x, y and z are selected such that the compound remains electrically neutral).
  • the positive active material is an alkali metal compound xLiM 1 O 2 -(1-x)Li 2 M 2 O 3 (M 1 is at least one element having an average oxidation state 3) disclosed in US6,677,082, US6,680,143, etc. contains; M 2 contains at least one element having an average oxidation state 4; 0 ⁇ x ⁇ 1).
  • the positive active material has the general formula Li a M 1 x Fe 1-x M 2 y P 1-y M 3 z O 4-z
  • M 1 is Ti, Si, Mn, Co, Fe, V, At least one element selected from Cr, Mo, Ni, Nd, Al, Mg and Al
  • M 2 is Ti, Si, Mn, Co, Fe, V, Cr, Mo, Ni, Nd, Al, Mg, Al , As, Sb, Si, Ge, contains at least one element selected from V and S;
  • M 3 contains a halogen element optionally including F; 0 ⁇ a ⁇ 2, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1; stoichiometric coefficients a, x, y, and z are selected such that the compound remains electrically neutral), or Li 3 M 2 (PO 4 ) 3 [M is Ti, Si, Mn, Fe , Co, V, Cr, Mo, Ni, Al, including at least one element selected from
  • the positive electrode active material may include primary particles and/or secondary particles in which the primary particles are aggregated.
  • the negative active material may be a carbon material, lithium metal or a lithium metal compound, silicon or a silicon compound, tin or a tin compound.
  • a metal oxide having a potential of less than 2V, such as TiO 2 and SnO 2 may also be used as the negative electrode active material.
  • the carbon material both low-crystalline carbon and/or high-crystalline carbon may be used.
  • the separator is a porous polymer film, for example, an ethylene homopolymer, a propylene homopolymer, an ethylene/butene copolymer, an ethylene/hexene copolymer, an ethylene/methacrylate copolymer, or the like.
  • a porous polymer film made of a polymer may be used alone or by laminating them.
  • the separator may be a conventional porous nonwoven fabric, for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like.
  • At least one surface of the separator may include a coating layer of inorganic particles. It is also possible that the separation membrane itself is made of a coating layer of inorganic particles. Particles constituting the coating layer may have a structure combined with a binder so that an interstitial volume exists between adjacent particles.
  • the inorganic particles may be formed of an inorganic material having a dielectric constant of 5 or more.
  • the inorganic particles are Pb(Zr,Ti)O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT), PB(Mg 3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT), BaTiO 3 , hafnia(HfO 2 ), SrTiO 3 , TiO 2 , Al 2 O 3 , ZrO 2 , SnO 2 , CeO 2 , MgO, CaO, ZnO and Y 2 O 3 as It may include at least one material selected from the group consisting of.
  • the electrolyte may be a salt having a structure such as A + B ⁇ .
  • a + includes an ion composed of an alkali metal cation such as Li + , Na + , K + or a combination thereof.
  • B - is F - , Cl - , Br - , I - , NO 3 - , N(CN) 2 - , BF 4 - , ClO 4 - , AlO 4 - , AlCl 4 - , PF 6 - , SbF 6 - , AsF 6 - , BF 2 C 2 O 4 - , BC 4 O 8 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 -- , C 4 F 9 SO 3 - , CF 3
  • the electrolyte can also be used by dissolving it in an organic solvent.
  • organic solvent propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC) , dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (N-methyl- 2-pyrrolidone, NMP), ethyl methyl carbonate (EMC), gamma butyrolactone ( ⁇ -butyrolactone), or a mixture thereof may be used.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • DPC dipropyl carbonate
  • dimethyl sulfoxide acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofur
  • the secondary battery of the present specification includes: a battery can accommodating the electrode assembly and including an opening; a cap plate configured to close the opening of the battery can; and an electrode terminal that is welded to and coupled to the first welding part of the current collector plate and riveted to the battery can.
  • the secondary battery according to the exemplary embodiment of the present specification includes a cylindrical battery can 51 accommodating the electrode assembly 71 and electrically connected to the uncoated region 72 of the second electrode.
  • the battery can One side (lower part) of 51 is open.
  • the bottom 52 of the battery can 51 has a structure in which the electrode terminal 50 is riveted to the through hole 53 through a caulking process.
  • the secondary battery may include a gasket interposed between the electrode terminal and the through hole.
  • the secondary battery 70 may also include a sealing body 74 sealing the open end of the battery can 51 to be insulated from the battery can 51 .
  • the sealing body 74 may include a non-polar cap plate 74a and a sealing gasket 74b interposed between the edge of the cap plate 74a and the open end of the battery can 51 .
  • the cap plate 74a may be made of a conductive metal material such as aluminum, steel, or nickel.
  • the sealing gasket 74b may be made of insulating and elastic polypropylene, polybutylene terephthalate, polyethylene fluoride, or the like.
  • the present invention is not limited by the materials of the cap plate 74a and the sealing gasket 74b.
  • the cap plate 74a may include a vent notch 77 that is ruptured when the pressure inside the battery can 51 exceeds a threshold value.
  • the vent notch 77 may be formed on both surfaces of the cap plate 74a.
  • the vent notches 77 may form a continuous or discontinuous circular pattern, a straight pattern, or other patterns on the surface of the cap plate 74a.
  • the battery can 51 is extended and bent to the inside of the battery can 51 to fix the sealing body 74 , and the cap plate 74a together with the sealing gasket 74b. ) may include a crimping part 75 to wrap and fix the edge.
  • the battery can 51 may also include a beading portion 76 press-fitted into the battery can 51 in a region adjacent to the open end.
  • the beading portion 76 supports the edge of the sealing body 74, particularly the outer peripheral surface of the sealing gasket 74b, when the sealing body 74 is fixed by the crimping portion 75 .
  • the electrode terminal is made of a conductive metal material, and aluminum (Al) may be used.
  • the secondary battery may further include a second current collector plate 78 welded to the uncoated region 72 of the second electrode.
  • the second current collecting plate 78 is made of a conductive metal material such as aluminum, steel, or nickel.
  • At least a portion 78a of an edge of the second current collecting plate 78 that does not come into contact with the uncoated portion 72 of the second electrode includes a beading portion 76 and a sealing gasket 74b. Interposed therebetween may be fixed by the crimping portion (75).
  • At least a portion 78a of the edge of the second current collecting plate 78 may be fixed to the inner circumferential surface 76a of the beading portion 76 adjacent to the crimping portion 75 by welding.
  • the insulator may be provided between the current collector plate and the inner surface of the battery can.
  • the insulator prevents contact between the current collector plate and the battery can.
  • the insulator may also be interposed between the upper end of the outer peripheral surface of the electrode assembly and the inner surface of the battery can. That is, the insulator may also be interposed between the uncoated portion of the first electrode and the inner surface of the sidewall portion of the battery can. This is to prevent contact between the uncoated portion of the formulation 1 electrode extending toward the closing portion of the battery can and the inner peripheral surface of the battery can.
  • the uncoated regions 72 and 73 of the first electrode and/or the second electrode are bent from the outer periphery side of the electrode assembly 71 to the core side, thereby forming the upper and lower portions of the electrode assembly 71 .
  • a curved surface can be formed on the
  • the second current collector plate 78 is welded to the curved surface formed while the uncoated portion 72 of the second electrode is bent, and the first collector plate 79 is formed while the uncoated portion 73 of the first electrode is bent. It can be welded to the bent surface.
  • the first electrode and/or the second electrode may have an improved structure different from that of the electrode of FIG. 1 .
  • 11 is a plan view illustrating an electrode 90 structure according to a preferred embodiment of the present invention.
  • the electrode 90 includes a sheet-shaped current collector 91 made of a foil of a conductive material, an active material layer 92 formed on at least one surface of the current collector 91 , and the current collector 91 .
  • An uncoated region 93 on which an active material is not coated is included at the long side end.
  • the uncoated region 93 may include a plurality of notched segments 93a.
  • the plurality of segment pieces 93a form a plurality of groups, and the segment segments 93a belonging to each group may have the same height (length in the Y direction) and/or width (length in the Z direction) and/or the spacing pitch.
  • the number of segments 93a belonging to each group may be increased or decreased than illustrated.
  • the segment 93a may have a trapezoidal shape, and may be deformed into a quadrangle, a flat quadrilateral, a semicircle, or a semiellipse.
  • the height of the segment 93a may be increased step by step from the core side to the outer circumferential side.
  • the core-side uncoated region 93 ′ adjacent to the core may not include the segment 93a , and the height of the core-side uncoated region 93 ′ may be smaller than that of other uncoated regions.
  • the electrode 90 may include an insulating coating layer 94 covering the boundary between the active material layer 92 and the uncoated region 93 .
  • the insulating coating layer 94 includes an insulating polymer resin, and may optionally further include an inorganic filler.
  • the insulating coating layer 94 prevents the end of the active material layer 92 from coming into contact with the opposite polarity active material layer through the separator, and serves to structurally support the bending of the fragment 93a.
  • at least a portion of the insulating coating layer 94 is preferably exposed to the outside from the separator.
  • FIG. 12 is a cross-sectional view taken along the longitudinal direction Y of the electrode assembly 100 in which the uncoated segmental structure of the electrode 90 according to an embodiment of the present invention is applied to the first electrode and the second electrode.
  • the electrode assembly 100 may be manufactured by the winding method described with reference to FIG. 2 .
  • the protrusion structure of the uncoated regions 72 and 73 extending out of the separator is illustrated in detail, and the illustration of the winding structure of the first electrode, the second electrode, and the separator is omitted.
  • a pattern in which the height of the uncoated regions 72 and 73 changes is schematically illustrated.
  • the heights of the uncoated regions 72 and 73 may vary irregularly depending on the position at which the cross-section is cut. For example, when the side portion of the trapezoidal segment 93a is cut, the height of the uncoated region in the cross section is lower than the height of the segment 93a. Therefore, it should be understood that the heights of the uncoated areas 72 and 73 shown in the drawing showing the cross-section of the electrode assembly 100 correspond to the average of the heights of the uncoated areas included in each winding turn.
  • the uncoated regions 72 and 73 may be bent from the outer periphery side of the electrode assembly 100 to the core side as shown in FIG. 12 .
  • the bent portion 101 is indicated by a dotted line box.
  • the curved surfaces 102 are formed on the upper and lower portions of the electrode assembly 100 while radially adjacent segments overlap each other in multiple layers.
  • the core-side uncoated region 93 ′ in FIG. 11 is not bent due to its low height, and the height h of the innermost bent segment is formed by the core-side uncoated region 93 ′ having no segment structure. less than or equal to the radial length r of the winding area. Accordingly, the cavity 80 in the core of the electrode assembly 100 is not closed by the bent fragments. If the cavity 80 is not closed, there is no difficulty in the electrolyte injection process, and the electrolyte injection efficiency is improved.
  • the cap plate 74a of the sealing body 74 has no polarity.
  • the second current collector plate 78 is connected to the sidewall of the battery can 51 so that the outer surface 52a of the bottom 52 of the battery can 51 has a polarity opposite to that of the electrode terminal 50 . Therefore, when a plurality of cells are to be connected in series and/or in parallel, a bus bar is placed on the upper part of the secondary battery 70 using the outer surface 52a of the bottom 52 of the battery can 51 and the electrode terminal 50 . Wiring such as connection can be performed. Through this, the energy density can be improved by increasing the number of cells that can be mounted in the same space.
  • the secondary battery may include electrode terminals riveted to the bottom of the battery can.
  • FIG. 5 is a cross-sectional view illustrating a riveting structure of the electrode terminal 50 according to an embodiment of the present invention
  • FIG. 6 is an enlarged cross-sectional view of a portion indicated by a dotted circle.
  • the riveting structure of the electrode terminal 50 includes a cylindrical battery can 51 with one side open and a through hole formed in the bottom 52 of the battery can 51 . It may include an electrode terminal 50 riveted through the hole 53 , and a rivet gasket 54 interposed between the electrode terminal 50 and the through hole 53 .
  • the battery can 51 is made of a conductive metal material.
  • the battery can 51 may be made of a steel material, but the present invention is not limited thereto.
  • the electrode terminal 50 is made of a conductive metal material.
  • the electrode terminal 50 may be made of aluminum, but the present invention is not limited thereto.
  • the rivet gasket 54 may be made of a polymer resin having insulation and elasticity.
  • the rivet gasket 54 may be made of polypropylene, polybutylene terephthalate, polyethylene fluoride, or the like, but the present invention is not limited thereto.
  • the electrode terminal 50 is exposed through the body portion 50a inserted into the through hole 53 and the outer surface 52a of the bottom 52 of the battery can 51 .
  • the outer flange portion 50b extending along the outer surface 52a from the circumference of one side of the body portion 50a, the body portion 50a exposed through the inner surface 52b of the bottom 52 of the battery can 51 It may include an inner flange portion 50c extending from the periphery of the other side toward the inner surface 52b, and a flat portion 50d provided on the inner side of the inner flange portion 50c.
  • the flat portion 50d and the inner surface 52b of the bottom 52 of the battery can 51 may be parallel to each other.
  • 'parallel' means substantially parallel when observed with the naked eye.
  • the angle ⁇ between the inner flange portion 50c and the inner surface 52b of the bottom 52 of the battery can 51 may be 0 degrees to 60 degrees or less.
  • the size of the angle is determined by the caulking strength when the electrode terminal 50 is installed in the through hole 53 of the battery can 51 by the caulking method. In one example, as the caulking strength increases, the angle ⁇ may decrease to 0 degrees. If the angle exceeds 60 degrees, the sealing effect of the rivet gasket 54 may be reduced.
  • a recess portion 55 may be provided between the inner flange portion 50c and the flat portion 50d.
  • the recessed portion 55 may have a cross-sectional structure of an asymmetric groove.
  • the asymmetric groove may be approximately V-shaped.
  • the asymmetric groove may include a sidewall 55a of the flat portion 50d and an inclined surface 55b of the inner flange portion 50c connected to an end of the sidewall 55a.
  • the sidewall 55a may be substantially perpendicular to the inner surface 52b of the bottom 52 of the battery can 51 .
  • the term 'vertical' means a case that is substantially vertical when observed with the naked eye.
  • the recess portion 55 is formed by the shape of a caulking jig when the electrode terminal 50 is installed in the through hole 53 of the battery can 51 by a caulking method.
  • the thickness of the inner flange portion 50c may decrease as the distance from the body portion 50a of the electrode terminal 50 increases.
  • the rivet gasket 54 includes an outer gasket 54a interposed between the outer flange portion 50b and the outer surface 52a of the bottom 52 of the battery can 51, and the inner An inner gasket 54b interposed between the flange portion 50c and the inner surface 52b of the bottom 52 of the battery can 51 may be included.
  • the thickness of the outer gasket 54a and the inner gasket 54b may be different depending on the location. Preferably, it is interposed between the inner edge 56 of the through hole 53 connected to the inner surface 52b of the bottom 52 of the battery can 51 in the area of the inner gasket 54b and the inner flange portion 50c.
  • the thickness of the region may be relatively small. Preferably, there may be a minimum thickness point in the gasket region interposed between the inner edge 56 of the through hole 53 and the inner flange portion 50c.
  • the inner edge 56 of the through hole 53 may include an opposite surface 57 facing the inner flange portion 50c.
  • the upper end and lower end of the inner wall of the through hole 53 that is perpendicular to the bottom 52 of the battery can 51 are chamfered to form a surface tapered toward the electrode terminal 50 .
  • the upper end and/or lower end of the inner wall of the through hole 53 may be deformed into a smooth curved surface having a curvature. In this case, the stress applied to the gasket 54 near the upper end and/or lower end of the inner wall of the through hole 53 may be further alleviated.
  • the inner gasket 54b may extend longer than the inner flange portion 50c at an angle of 0 to 60 degrees with the inner surface 52b of the bottom 52 of the battery can 51 .
  • the height H1 of the flat portion 50d with respect to the inner surface 52b of the bottom 52 of the battery can 51 may be equal to or greater than the height H2 of the end portion of the inner gasket 54b. have.
  • the height H1 of the flat portion 50d with respect to the inner surface 52b of the bottom 52 of the battery can 51 may be equal to or greater than the height H3 of the end portion of the inner flange portion 50c.
  • the radius R1 from the center of the body portion 50a of the electrode terminal 50 to the edge of the outer flange portion 50b is the radius of the bottom 52 of the battery can 51 . It may be 10 to 60% based on (R2).
  • the radius R3 from the center of the body portion 50a of the electrode terminal 50 to the edge of the flat portion 50d is the radius of the bottom 52 of the battery can 51 ( It may be 4 to 30% based on R2).
  • R3 becomes small the welding space becomes insufficient when the current collector plate (refer to 79 of FIG. 7) is welded to the flat portion 50d of the electrode terminal 50, and the welding area of the electrode terminal 50 decreases, thereby increasing the contact resistance. can do.
  • R3 should be smaller than R1, and when R3 becomes larger, the thickness of the inner flange portion 50c becomes thinner, so that the force of the inner flange portion 50c to compress the rivet gasket 54 is weakened, and the sealing ability of the rivet gasket 54 is reduced.
  • the welding process can be easily performed by sufficiently securing a welding area between the flat portion 50d of the electrode terminal 50 and the current collector plate 79 in FIG. It is possible to reduce the contact resistance of the area and to prevent deterioration of the sealing ability of the rivet gasket 54 .
  • the flat portion 50d of the electrode terminal 50 may be electrically connected to the current collector plate.
  • the current collector plate and the flat portion 50d may be directly connected through a welding process or may be electrically connected using an electrode tab, a lead, or the like.
  • the welding process is not limited as long as it is a method commonly performed in the art.
  • the riveting structure of the electrode terminal 50 may be formed using a caulking jig that moves up and down.
  • a preform (not shown) of the electrode terminal 50 is inserted by interposing a rivet gasket 54 in the through hole 53 formed in the bottom 52 of the battery can 51 .
  • the preform refers to the electrode terminal before riveting.
  • the caulking jig is inserted into the inner space of the battery can 51 .
  • the caulking jig has grooves and protrusions corresponding to the final shape of the electrode terminal 50 on a surface opposite to the preform to form the electrode terminal 50 by riveting the preform.
  • the preform is transformed into the riveted electrode terminal 50 .
  • the outer gasket 54a interposed between the outer flange portion 50b and the outer surface 52a of the bottom 52 of the battery can 51 is elastically compressed and its thickness increases. decreases.
  • the inner gasket 54b interposed between the inner edge 56 of the through hole 53 and the preform is elastically compressed by the inner flange portion 50c, the thickness is further reduced than other regions.
  • a region in which the thickness of the inner gasket 54b is intensively reduced is indicated by a dotted circle in FIG. 6 . Accordingly, sealing properties and sealing properties between the riveted electrode terminal 50 and the battery can 51 are remarkably improved.
  • the rivet gasket 54 is compressed sufficiently to ensure a desired sealing strength without being physically damaged while the preform is riveted.
  • the rivet gasket 54 when the rivet gasket 54 is made of polybutylene terephthalate, the rivet gasket 54 preferably has a compression ratio of 50% or more at the point where it is compressed to a minimum thickness.
  • the compression ratio is the ratio of the thickness change before and after compression to the thickness before compression.
  • the rivet gasket 54 when the rivet gasket 54 is made of polyfluoroethylene, it is preferred that the rivet gasket 54 has a compression ratio of at least 60% at the point where it is compressed to a minimum thickness.
  • the rivet gasket 54 when the rivet gasket 54 is made of polypropylene, the rivet gasket 54 preferably has a compression ratio of 60% or more at the point where it is compressed to a minimum thickness.
  • the pressure forming of the upper part of the preform can be performed in stages. That is, the preform can be deformed several times by pressure forming step by step. At this time, the pressure applied to the caulking jig may be increased in stages. In this way, it is possible to prevent the rivet gasket 54 from being damaged during the caulking process by dispersing the stress applied to the preform several times. In particular, when the portion of the inner gasket 54b interposed between the inner edge 56 of the through hole 53 and the preform is intensively compressed by the inner flange portion 50c, damage to the gasket is minimized.
  • the caulking jig presses and forms the upper part of the preform through vertical movement inside the battery can 51 .
  • a rotary jig used in the prior art for pressure forming of a preform may be used.
  • the rotary rotary jig rotates in a state inclined at a predetermined angle with respect to the central axis of the battery can 51 . Therefore, the rotary jig having a large rotation radius may interfere with the inner wall of the battery can 51 . In addition, when the depth of the battery can 51 is large, the length of the rotary rotary jig is increased that much. In this case, as the rotation radius of the end of the rotary rotary jig increases, the pressure forming of the preform may not be properly performed.
  • pressure forming using a caulking jig is more effective than a method using a rotary rotary jig.
  • the riveting structure of the electrode terminal 50 according to the embodiment of the present invention described above is applicable to a cylindrical secondary battery.
  • the secondary battery is a cylindrical secondary battery having a form factor ratio (defined as a value obtained by dividing the diameter of a cylindrical battery by a height, that is, a ratio of a diameter ( ⁇ ) to a height (H)) greater than 0.4
  • the form factor means a value indicating the diameter and height of the cylindrical secondary battery.
  • batteries having a form factor ratio of about 0.4 or less have been used. That is, conventionally, for example, 18650 cells, 21700 cells, and the like have been used. For an 18650 cell, its diameter is approximately 18 mm, its height is approximately 65 mm, and the form factor ratio is approximately 0.277. For a 21700 cell, its diameter is approximately 21 mm, its height is approximately 70 mm, and the form factor ratio is approximately 0.300.
  • the cylindrical secondary battery according to an exemplary embodiment of the present specification may be a 46110 cell, a 48750 cell, a 48110 cell, a 48800 cell, or a 46800 cell.
  • the first two numbers indicate the diameter of the cell
  • the next two numbers indicate the height of the cell
  • the last number 0 indicates that the cell has a circular cross section.
  • the secondary battery according to an exemplary embodiment of the present specification may be a cylindrical secondary battery having a cylindrical cell shape, a diameter of 46 mm, a height of 110 mm, and a form factor ratio of 0.418.
  • the secondary battery according to the exemplary embodiment of the present specification may be a cylindrical secondary battery having a cylindrical cell shape, a diameter of 48 mm, a height of 75 mm, and a form factor ratio of 0.640.
  • the secondary battery according to an exemplary embodiment of the present specification may be a cylindrical secondary battery having a cylindrical cell shape, a diameter of 48 mm, a height of 110 mm, and a form factor ratio of 0.418.
  • the secondary battery according to an exemplary embodiment of the present specification may be a cylindrical secondary battery having a cylindrical cell shape, a diameter of 48 mm, a height of 80 mm, and a form factor ratio of 0.600.
  • the secondary battery according to the exemplary embodiment of the present specification may be a cylindrical secondary battery having a cylindrical cell shape, a diameter of 46 mm, a height of 80 mm, and a form factor ratio of 0.575.
  • the first electrode 10, the separator 12, and the second electrode 11 are stacked and wound as electrode assemblies 71, A, 100, wherein the first electrode 10 is a first electrode assembly.
  • the first electrode 10 is a first electrode assembly.
  • the electrode active material layer electrode assemblies 71 , A and 100 including the uncoated region 10a of the first electrode 10 that is not provided; battery cans 41 and 51 accommodating the electrode assemblies 71 , A and 100 and including openings; cap plates (41, 51) configured to close the openings of the battery cans (41, 51); and a collector plate 400 applied to secondary batteries 40 and 70 including electrode terminals 50 riveted to the battery cans 41 and 51 , and the uncoated portion 10a of the first electrode 10 .
  • the exposed electrode assemblies 71, A, 100 is provided at one end of the exposed electrode assemblies 71, A, 100, and includes a central portion 410 corresponding to the winding core 340 of the electrode assemblies 71, A, 100, and the central portion ( 410 provides a current collector plate 400 that includes a first welding portion 411 thinner than the remaining thickness of the current collector plate 400 .
  • the description of each component is the same as described above.
  • the secondary batteries 40 and 70 according to the exemplary embodiment of the present specification may be used to manufacture the battery pack 200 .
  • 14 is a diagram schematically illustrating a configuration of a battery pack 200 according to an embodiment of the present invention.
  • a battery pack 200 includes an assembly to which secondary battery cells 201 are electrically connected and a pack housing 202 accommodating the assembly.
  • the cylindrical secondary battery cell 201 is a battery cell according to the above-described embodiment.
  • parts such as a bus bar, a cooling unit, and an external terminal for electrical connection of the cylindrical secondary battery cells 201 are omitted for convenience of illustration.
  • the battery pack 200 may be mounted in a vehicle.
  • the vehicle may be, for example, an electric vehicle, a hybrid vehicle, or a plug-in hybrid vehicle.
  • the automobile includes a four-wheeled vehicle or a two-wheeled vehicle.
  • 15 is a view for explaining a vehicle including the battery pack 200 of FIG. 14 .
  • a vehicle V according to an exemplary embodiment of the present specification includes a battery pack 200 according to an exemplary embodiment of the present specification.
  • the vehicle V operates by receiving power from the battery pack 200 according to an embodiment of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 명세서는 제1 전극 및 제2 전극과 이들 사이에 구비된 분리막이 권취된 전극 조립체로서, 상기 제1 전극 및 제2 전극은 각각 장변 단부에 활물질이 코팅되어 있지 않으며 상기 분리막의 외부로 노출된 제1 전극의 무지부를 포함하는 전극 조립체; 및 상기 제1 전극의 무지부가 노출된 상기 전극 조립체의 일 단부에 구비된 집전판으로서, 상기 전극 조립체의 권심과 대응되는 중심부를 포함하는 집전판을 포함하며, 상기 중심부는 상기 집전판의 나머지 두께보다 얇은 제1 용접부를 포함하는 것인 이차 전지와, 이를 포함하는 배터리 팩 및 자동차를 제공한다.

Description

이차 전지, 및 이를 포함하는 배터리 팩 및 자동차
본 명세서는 2021년 02월 19일 한국특허청에 제출된 한국 특허 출원 제10-2021-0022869호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 발명은, 이차 전지, 배터리 팩 및 자동차에 관한 것이다.
제품 군에 따른 적용 용이성이 높고, 높은 에너지 밀도 등의 전기적 특성을 가지는 이차 전지는 휴대용 기기뿐만 아니라 전기적 구동원에 의하여 구동하는 전기 자동차(EV, Electric Vehicle), 하이브리드 자동차(HEV, Hybrid Electric Vehicle) 등에 보편적으로 응용되고 있다.
이러한 이차 전지는 화석 연료의 사용을 획기적으로 감소시킬 수 있다는 일차적인 장점뿐만 아니라 에너지의 사용에 따른 부산물이 전혀 발생되지 않는다는 장점 또한 갖기 때문에 친환경 및 에너지 효율성 제고를 위한 새로운 에너지원으로 주목 받고 있다.
현재 널리 사용되는 이차 전지의 종류에는 리튬 이온 전지, 리튬 폴리머 전지, 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 등이 있다. 이러한 단위 이차 전지 셀의 작동 전압은 약 2.5V ~ 4.5V이다. 따라서, 이보다 더 높은 출력 전압이 요구될 경우, 복수 개의 배터리를 직렬로 연결하여 배터리 팩을 구성한다. 또한, 배터리 팩에 요구되는 충방전 용량에 따라 다수의 배터리를 병렬 연결하여 배터리 팩을 구성하기도 한다. 따라서, 배터리 팩에 포함되는 배터리의 개수 및 전기적 연결 형태는 요구되는 출력 전압 및/또는 충방전 용량에 따라 다양하게 설정될 수 있다.
한편, 이차 전지 셀의 종류로서, 원통형, 각형 및 파우치형 배터리가 알려져 있다. 원통형 배터리의 경우, 양극과 음극 사이에 절연체인 분리막을 개재하고 이를 권취하여 젤리롤 형태의 전극 조립체를 형성하고, 이를 전해질과 함께 전지 캔 내부에 삽입하여 전지를 구성한다. 참고로, 양극 전극 단자는 전지 캔의 개방구를 밀봉하는 밀봉체의 캡이고, 음극 전극 단자는 전지 캔이다.
하지만, 전극 조립체와 집전판을 결합하기 위해 용접을 수행하는 경우, 용접 공정 수행 과정에서 용접 지그의 가압에 의한 집전판의 변형 및 조립 공정 시에 가해지는 외력에 의한 집전판의 변형 등으로 인한 불량이 발생할 수 있다.
이러한 휘어짐 불량이 발생되는 경우, 집전판 용접 영역에 손상 혹은 절연 부품에 손상을 일으킬 위험이 있고, 이는 전지 셀 자체의 불량의 리스크 증가 뿐만 아니라, 불필요한 전기적 접촉에 의한 안전성 저해의 문제까지도 야기할 수 있다.
본 발명은 집전판의 용접되는 부분의 두께를 상대적으로 얇게 하여, 집전체와 전극 구조체와의 용접 공정에서 용접 효율 및 구조적 강성을 확보하는 것을 목적으로 한다.
본 명세서는 제1 전극 및 제2 전극과 이들 사이에 구비된 분리막이 권취된 전극 조립체로서, 상기 제1 전극 및 제2 전극은 각각 장변 단부에 활물질이 코팅되어 있지 않으며 상기 분리막의 외부로 노출된 제1 전극의 무지부를 포함하는 전극 조립체; 및 상기 제1 전극의 무지부가 노출된 상기 전극 조립체의 일 단부에 구비된 집전판으로서, 상기 전극 조립체의 권심과 대응되는 중심부를 포함하는 집전판을 포함하며, 상기 중심부는 상기 집전판의 나머지 두께보다 얇은 제1 용접부를 포함하는 것인 이차 전지를 제공한다.
본 명세서의 일 실시상태에 있어서, 상기 집전판은 상기 중심부에 일 단부가 연결되고 상기 중심부로부터 상기 전극 조립체의 외곽 방향으로 연장된 2 이상의 레그를 더 포함하고, 상기 레그는 상기 집전판의 제1 용접부를 제외한 나머지 두께보다 얇은 제2 용접부를 포함하는 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 용접부는 상기 제1 용접부의 외측에서 내측으로 갈수록 두께가 점점 얇아지는 구조를 갖는 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 용접부의 평균두께와 상기 제1 용접부를 제외한 집전판의 두께의 비는 0.4:1 내지 0.9:1인 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 용접부의 평균두께는 0.05cm 이상 0.5cm 이하인 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제2 용접부의 평균두께와 상기 제1 용접부 및 제2 용접부를 제외한 집전판의 두께의 비는 0.4:1 내지 0.9:1인 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제2 용접부의 평균두께는 0.05cm 이상 0.5cm 이하인 것일 수있다.
본 명세서의 일 실시상태에 있어서, 상기 2 이상의 레그 각각에 포함되는 제2 용접부의 면적은 서로 동일한 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 집전판은 상기 중심부에 일 단부가 연결되고 상기 중심부로부터 상기 전극 조립체의 외곽 방향으로 연장된 4개의 레그를 더 포함하고, 상기 4개의 레그는 상기 전극 조립체의 권취 방향으로 이격되어 위치하는 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 용접부는 상기 중심부의 외곽선과 이격되어 위치하는 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제2 용접부는 상기 레그의 외곽선과 이격되어 위치하는 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 용접부와 제2 용접부는 이격되어 위치하는 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 이차 전지는 상기 전극 조립체를 수용하고 개구부를 포함하는 전지 캔; 상기 전지 캔의 개구부를 밀폐하도록 구성되는 캡 플레이트; 및 상기 집전판의 제1 용접부와 용접되어 결합하고 상기 전지 캔과 리벳팅되는 전극 단자를 더 포함하는 것일 수 있다. 도 7에 전지 캔, 캡 플레이트, 전극 단자가 포함된 이차 전지의 내부 구조를 나타내었다.
본 명세서는 제1 전극, 분리막 및 제2 전극이 적층되고 권취되어 구성된 전극 조립체로서, 상기 제1 전극은 제1 전극 집전체 및 상기 제1 전극 집전체 상에 구비된 전극 활물질층을 포함하고, 상기 집전체의 권취 방향에 따른 장변 단부는 상기 전극 활물질층이 구비되지 않은 제1 전극의 무지부를 포함하는 전극 조립체; 상기 전극 조립체를 수용하고 개구부를 포함하는 전지 캔; 상기 전지 캔의 개구부를 밀폐하도록 구성되는 캡 플레이트; 및 상기 전지 캔과 리벳팅되는 전극 단자를 포함하는 이차 전지에 적용되는 집전판으로써, 상기 제1 전극의 무지부가 노출된 상기 전극 조립체의 일 단부에 구비되고, 상기 전극 조립체의 권심과 대응되는 중심부를 포함하고, 상기 중심부는 상기 집전판의 나머지 두께보다 얇은 제1 용접부를 포함하는 것인 집전판을 제공한다.
본 명세서는 전술한 이차 전지를 복수개 포함하는 배터리 팩을 제공한다.
본 명세서는 전술한 배터리 팩을 적어도 하나 포함하는 자동차를 제공한다.
본 발명의 일 실시상태에 따른 집전판을 이차 전지 제조 시 적용한다면, 집전체와 전극 구조체와의 용접 공정에서 우수한 용접 효율 및 구조적 강성을 확보할 수 있다.
도 1은 본 명세서의 일 실시상태에 따른 권취 전 판형의 전극의 구조를 나타낸 평면도이다.
도 2는 본 명세서의 일 실시상태에 따른 전극 조립체의 권취 공정을 나타낸 도면이다.
도 3은 도 2의 전극 조립체가 권취 후 무지부의 양 단부에 집전판이 구비되는 공정을 나타낸 조립도이다.
도 4는 본 명세서의 일 실시상태에 따른 이차 전지를 길이 방향(Y)으로 자른 단면도이다.
도5 는 본 명세서의 또 다른 실시상태에 따른 전극 단자의 리벳팅 구조를 나타낸 단면도이다.
도 6은 도 5의 점선 원(B)으로 표시된 부분의 단면도이다.
도 7은 본 명세서의 또 다른 실시상태에 따른 이차 전지를 길이 방향(Y)을 따라 자른 단면도이다.
도 8은 본 명세서의 일 실시상태에 따른 집전판에 있어서, 중심부, 레그, 및 제1 용접부에 해당하는 부분을 표시한 도면이다.
도 9는 종래 기술의 집전판의 평면도 및 이를 c-c'로 자른 단면도를 나타낸 것이다.
도 10은 본 명세서의 또 다른 실시상태에 따른 집전판에 있어서, 중심부, 레그, 제1 용접부 및 제2 용접부에 해당하는 부분을 표시한 도면이다.
도 11은 본 명세서의 다른 실시상태에 따른 권취 전 판형의 전극 구조를 예시적으로 나타낸 평면도이다.
도 12는 본 명세서의 다른 실시상태에 따른 전극의 무지부 분절구조를 제1전극 및 제2전극에 적용한 전극 조립체를 길이 방향(Y)을 따라 자른 단면도이다.
도 13은 본 명세서의 다른 실시상태에 따라 무지부가 절곡된 전극 조립체를 길이 방향(Y)을 따라 자른 단면도이다.
도 14는 본 명세서의 일 실시상태에 원통형 배터리 셀들을 포함하는 배터리 팩의 개략적 구성을 나타낸 도면이다.
도 15는 본 명세서의 일 실시상태에 따른 배터리 팩을 포함하는 자동차의 개략적인 구성을 나타낸 도면이다.
[부호의 설명]
10: 제1 전극 10a: 제1 전극의 무지부
11: 제2 전극 11a: 제2 전극의 무지부
12: 분리막
30, 31: 집전판
71, A, 100: 전극 조립체
Y: 길이 방향
X: 권취 방향
Z: 외곽 방향
40, 70: 이차 전지
41, 51: 전지 캔
42, 74: 밀봉체
42a, 74a: 캡 플레이트
42b, 74b: 밀봉 가스켓
42c: 연결 플레이트
43, 75: 클림핑부
44, 76: 비딩부
45: 리드
46: 인슐레이터
50: 전극 단자 50a: 몸체부
50b: 외부 플랜지부 50c: 내부 플랜지부
50d: 평탄부
52: 전지 캔의 바닥
52a: 전지 캔 바닥의 외부면
52b: 전지 캔 바닥의 내부면
53: 관통 홀
54: 리벳 가스켓
54a: 외부 가스켓 54b: 내부 가스켓
55: 리세스부
55a: 평탄부의 측벽
55b: 내부 플랜지부의 경사면
56: 관통 홀의 내측 엣지
57: 내부 플랜지부와 마주보는 대향면
H1: 평탄부의 높이
H2: 내부 가스켓의 단부 높이
H3: 내부 플랜지부의 단부 높이
R1: 몸체부의 중심으로부터 외부 플랜지부의 가장자리까지의 반경
R2: 전지 캔 바닥의 반경
R3: 몸체부의 중심으로부터 평탄부의 가장자리까지의 반경
72: 제2 전극의 무지부
73: 제1 전극의 무지부
76a: 비딩부의 내주면
77: 벤트 노치
78: 제2 집전판
78a: 제2 전극의 무지부와 접촉하지 않는 가장자리의 적어도 일부
79: 제1 집전판
80: 공동
90: 전극
91: 집전체
92: 활물질층
93: 무지부 93': 코어측 무지부
93a: 분절편 h: 분절편의 높이
r: 코어측 무지부에 의해 형성된 권취 영역의 반경 방향 길이
94: 절연 코팅층
101: 절곡되는 부분
102: 절곡면
200: 배터리 팩
201: 원통형 배터리 셀
202: 팩 하우징
V: 자동차
340: 권심
400: 집전판
410: 중심부 411: 제1 용접부
420: 둘레부
430: 레그 431: 제2 용접부
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일부 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 발명의 이해를 돕기 위하여, 첨부된 도면은 실제 축척대로 도시된 것이 아니라 일부 구성요소의 치수가 과장되게 도시될 수 있다. 또한, 서로 다른 실시예에서 동일한 구성요소에 대해서는 동일한 참조번호가 부여될 수 있다.
2 개의 비교 대상이 동일하다는 언급은 '실질적으로 동일'한 것을 의미한다. 따라서 실질적 동일은 당업계에서 낮은 수준으로 간주되는 편차, 예를 들어 5% 이내의 편차를 가지는 경우를 포함할 수 있다. 또한, 소정의 영역에서 어떠한 파라미터가 균일하다는 것은 평균적 관점에서 균일하다는 것을 의미할 수 있다.
본 명세서에서, "상"은 하나의 층 위에 물리적으로 접하여 위치하는 것만을 의미하는 것이 아니라, 위치상 위에 위치하는 것을 의미한다. 즉, 어느 하나의 층 상에 위치하는 층은 사이에 다른 층이 있을 수도 있다.
본 명세서에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서의 일 실시상태에 따른 이차 전지(40, 70)는, 전극 조립체(71, A, 100) 및 집전판(400)을 포함한다.
도 9에 종래에 사용된 집전판의 평면도 및 이를 c-c'로 자른 단면도를 표시하였다. 도 9와 같이 종래에는 전극 조립체의 무지부와 집전판을 용접하는 과정에서, 용접효율 향상을 위해 모든 부분, 즉, 용접되는 부분에서도 두께가 동일하고 얇은 두께를 가지는 집전판을 사용하였다. 하지만, 이 경우, 용접 지그(jig) 가압에 의해 집전판이 변형되는 문제가 발생되었고, 집전판이 변형되면 이차 전지 내부 절연 부품에 손상을 일으킬 위험이 생기는 걸 확인하였다.
이와 같은 문제를 해결하기 위해, 집전판(400)의 중심부(410)에 나머지 두께(h2)보다 얇은 제1 용접부(411)를 포함한다. 얇게 구비된 제1 용접부(411)를 통해 손상없이 용접하고, 상기 제1 용접부(411)의 두께(h1)보다 두꺼운 두께(h2)를 갖는 나머지 부분을 통해 강도를 확보할 수 있다.
본 명세서의 일 실시상태에 따른 이차 전지(40, 70)는 제1 전극(10) 및 제2 전극(11)과 이들 사이에 구비된 분리막(12)이 권취된 전극 조립체(71, A, 100)로서, 상기 제1 전극(10) 및 제2 전극(11)은 각각 장변 단부에 활물질이 코팅되어 있지 않으며 상기 분리막(12)의 외부로 노출된 제1 전극(10)의 무지부(10a)를 포함하는 전극 조립체(71, A, 100); 및 상기 제1 전극(10)의 무지부(10a)가 노출된 상기 전극 조립체(71, A, 100)의 일 단부에 구비된 집전판(400)으로서, 상기 전극 조립체(71, A, 100)의 권심(340)과 대응되는 중심부(410)를 포함하는 집전판(400)을 포함하며, 상기 중심부(410)는 상기 집전판(400)의 나머지 두께(h2)보다 얇은 제1 용접부(411)를 포함한다.
본 명세서의 일 실시상태에 따른 이차 전지(40, 70)는 제1 전극(10), 분리막(12) 및 제2 전극(11)이 적층되고 권취되어 구성된 전극 조립체(71, A, 100)로서, 상기 제1 전극(10)은 제1 전극 집전체(미도시) 및 상기 제1 전극 집전체(미도시) 상에 구비된 전극 활물질층(미도시)을 포함하고, 상기 제1 전극 집전체(미도시)의 권취 방향(X)에 따른 장변 단부는 상기 전극 활물질층(미도시)이 구비되지 않은 제1 전극(10)의 무지부(10a)를 포함하는 전극 조립체(71, A, 100); 및 상기 제1 전극(10)의 무지부(10a)가 노출된 상기 전극 조립체(71, A, 100)의 일 단부에 구비된 집전판(400)으로서, 상기 전극 조립체(71, A, 100)의 권심(340)과 대응되는 중심부(410)를 포함하고, 상기 중심부(410)는 상기 집전판의 나머지 두께(h2)보다 얇은 제1 용접부(411)를 포함하는 집전판(400)을 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 집전판(400)은 제1 용접부(411)를 포함하는 중심부(410)와 구분된 둘레부(420)를 포함할 수 있으며, 상기 둘레부(420)는 중심부(410)의 가장자리 전체가 상기 전극 조립체(71, A, 100)의 외곽 방향(Z)으로 연장될 수 있다. 이와 같은 형태의 집전판(400)은 원판형 또는 타원형 등의 형태를 가질 수 있다.
본 명세서의 또 다른 실시상태에 있어서, 중심부(410)의 가장자리의 일부가 상기 전극 조립체(71, A, 100)의 외곽 방향(Z)으로 연장된 1 이상의 레그(430)를 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 집전판(400)은 상기 중심부(410)에 일 단부가 연결되고 상기 중심부(410)로부터 상기 전극 조립체(71, A, 100)의 외곽 방향(Z)으로 연장된 2 이상의 레그(430)를 더 포함할 수 있다. 도 8에 본 명세서의 일 실시상태에 따라, 제1 용접부(411)를 포함하는 중심부(410) 및 둘레부(420)에 레그(430)가 구비된 집전판(400)을 나타내었다.
즉, 본 명세서의 일 실시상태의 집전판(400)은 용접되는 영역의 두께를 상대적으로 얇게 형성하여 용접 지그 가압에 의해 집전판(400)이 변형되는 문제를 해결하고자 한다. 도 8에 집전판에서 용접되는 제1 용접부(411)의 두께(h1)를 상대적으로 얇게 형성하는 것을 나타내었다.
본 명세서의 또 다른 실시상태에 있어서, 상기 집전판(400)은 상기 중심부(410)에 일 단부가 연결되고 상기 중심부(410)로부터 상기 전극 조립체의 외곽 방향으로 연장된 3 이상의 레그(430)를 더 포함하고, 상기 레그(430)는 상기 집전판(400)의 제1 용접부(411)를 제외한 나머지 두께(h2)보다 얇은 제2 용접부(431)를 포함할 수 있다.
본 명세서의 또 다른 실시상태에 있어서, 상기 집전판(400)은 상기 중심부(410)에 일 단부가 연결되고 상기 중심부(410)로부터 상기 전극 조립체의 외곽 방향으로 연장된 4 이상의 레그(430)를 더 포함하고, 상기 레그(430)는 상기 집전판(400)의 제1 용접부(411)를 제외한 나머지 두께(h2)보다 얇은 제2 용접부(431)를 포함하는 것일 수 있다. 도 10에 본 명세서의 일 실시상태에 따라, 제1 용접부(411)를 포함하는 중심부(410) 및 둘레부(420)에 구비된 레그(430)가 제2 용접부(431)를 포함하는 집전판(400)을 나타내었다.
본 명세서의 일 실시상태에 있어서, 상기 집전판(400)은 상기 중심부(410)에 일 단부가 연결되고 상기 중심부(410)로부터 상기 전극 조립체(71, A, 100)의 외곽 방향(Z)으로 연장된 4개의 레그(430)를 더 포함하고, 상기 4개의 레그(430)는 상기 전극 조립체(71, A, 100)의 권취 방향(X)으로 이격되어 위치하는 것일 수 있다. 4개의 레그(430)를 포함하는 집전판(400)의 형상을 도 8 및 도 10에 나타내었다.
상기 제1 용접부(411)와 제2 용접부(431)를 집전판(400) 상에 형성하는 방법으로는 압력을 이용하는 것일 수 있다. 구체적으로, 상기 제1 용접부(411)와 제2 용접부(431)는 단조 기술에 의해 형성되는 것일 수 있다. 상기 단조 기술은 가열된 금속에 외력을 가해 재료를 변형시키는 방법을 의미한다.
본 명세서의 다른 실시 상태에 있어서, 상기 제1 용접부(411)는 상기 제1 용접부(411)의 외측에서 내측으로 갈수록 두께가 점점 얇아지는 구조를 갖는 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 용접부(411)의 평균두께(h1)와 상기 제1 용접부(411)를 제외한 집전판(400)의 두께(h2)의 비는 1: 1.2 내지 1:1.8인 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 용접부(411)의 평균두께(h1)와 상기 제1 용접부(411)를 제외한 집전판의 두께(h2)의 비는 0.4:1 내지 0.9:1일 수 있다. 상기 제1 용접부(411)의 평균두께(h1)와 상기 제1 용접부(411)를 제외한 집전판(400)의 두께(h2)의 비는 0.4:1, 0.5:1, 0.6:1, 0.7:1, 0.8:1 또는 0.9:1일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 용접부(411)를 제외한 집전판(400)의 두께(h2)를 기준으로, 상기 제1 용접부(411)의 평균두께(h1)는 40% 이상, 50% 이상, 60% 이상, 70% 이상, 80% 이상 또는 90% 이하, 89% 이하, 87% 이하, 86% 이하, 85% 이하, 84% 이하, 83% 이하, 82% 이하, 81% 이하일 수 있다.
상기 두께의 비를 만족하는 경우, 상대적으로 두꺼운 두께를 갖는 영역의 집전판(400) 두께는 강성이 확보될 수 있는 적절한 두께를 가질 수 있어, 용접 지그(jig) 가압에 의한 집전판(400)이 변형되는 것을 방지할 수 있고, 용접의 효율 또한 향상시킬 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 용접부(411)의 평균두께(h1)는 0.05cm 이상 0.5cm 이하, 0.08cm 이상 0.45cm 이하, 또는 0.2cm 이상 0.4cm 이하일 수 있다. 상기 두께를 만족하는 경우, 전극 조립체(71, A, 100)와 집전판(400)과의 용접공정 시, 우수한 용접 효율을 가질 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제2 용접부(431)의 평균두께(h3)와 상기 제1 용접부(411) 및 제2 용접부(431)를 제외한 집전판(400)의 두께(h2)의 비는 1: 1.2 내지 1:1.8인 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제2 용접부(431)의 평균두께(h3)와 상기 제1 용접부(411) 및 제2 용접부(431)를 제외한 집전판(400)의 두께(h2)의 비는 0.4:1 내지 0.9:1일 수 있다. 상기 제2 용접부(431)의 평균두께(h3)와 상기 제1 용접부(411) 및 제2 용접부(431)를 제외한 집전판(400)의 두께(h2)의 비는 0.4:1, 0.5:1, 0.6:1, 0.7:1, 0.8:1 또는 0.9:1일 수 있다.
상기 제1 용접부(411) 및 제2 용접부(431)를 제외한 집전판(400)의 두께(h2)를 기준으로, 상기 제2 용접부(431)의 평균두께(h3)는 40% 이상, 50% 이상, 60% 이상, 70% 이상, 80% 이상 또는 90% 이하, 89% 이하, 87% 이하, 86% 이하, 85% 이하, 84% 이하, 83% 이하, 82% 이하, 81% 이하일 수 있다.
상기 두께의 비를 만족하는 경우, 상대적으로 두꺼운 두께를 갖는 영역의 집전판(400) 두께는 강성이 확보될 수 있는 적절한 두께를 가질 수 있어, 용접 지그(jig) 가압에 의한 집전판(400)이 변형되는 것을 방지할 수 있고, 용접의 효율 또한 향상시킬 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제2 용접부(431)의 평균두께(h3)는 0.05cm 이상 0.5cm 이하, 0.08cm 이상 0.45cm 이하, 0.2cm 이상 0.4cm 이하인 것일 수 있다. 상기 두께를 만족하는 경우, 전극 조립체(71, A, 100)와 집전판(400)과의 용접공정 시, 우수한 용접 효율을 가질 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 2 이상의 레그(430) 각각에 포함되는 제2 용접부(431)의 면적은 서로 동일한 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 용접부(411)는 상기 집전판의 가장자리와 이격되어 위치하는 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 용접부(411)의 면적은 상기 집전판의 중심부(410)의 면적보다 적을 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제2 용접부(431)는 상기 집전판(400)의 가장자리와 이격되어 위치하는 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제2 용접부(431)의 면적은 상기 레그(430)의 면적보다 적을 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 용접부(411)와 제2 용접부(431)는 이격되어 위치하는 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제2 용접부(431)는 상기 제1 전극(10)의 무지부(10a)와 용접되는 부분을 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 제1 용접부(411)는 후술하는 전극 단자(50)와 용접되는 부분을 의미한다.
본 명세서의 일 실시상태에 따른 전극 조립체(71, A, 100)는 예를 들어 젤리-롤(jelly-roll) 구조를 가질 수 있다. 상기 전극 조립체(71, A, 100)는, 쉬트 형상을 가진 제1 전극(10) 및 제2 전극(11) 사이에 분리막(12)을 개재시킨 상태로 적어도 1회 적층하여 형성된 적층체를 권취 중심부를 기준으로 하여 도 2와 같이 권취시킴으로써 제조될 수 있다. 즉, 양극과 음극은 쉬트 모양의 집전체(91)에 활물질이 코팅되어 활물질층(92)이 구비된 구조를 가지며, 권취 방향을 따라 한쪽 장변 측에 무지부(93)를 포함한다. 이 경우, 상기 전극 조립체(71)의 외주면 상에는 전지 캔(51)과의 절연을 위해 추가적인 분리막이 구비될 수 있다. 당업계에서 알려진 젤리롤 구조라면 본 발명에 제한 없이 적용 가능하다.
도 1은 본 명세서의 일 실시상태에 따른 집전체의 구조를 나타내고, 도 2는 본 명세서의 일 실시상태에 따른 집전체의 권취 공정을 나타내고, 도 3은 본 명세서의 일 실시상태에 따른 무지부의 절곡면에 집전판이 용접되는 공정을 나타낸다.
본 명세서의 일 실시상태에 있어서, 상기 집전판은 전극탭을 더 포함하는 것일 수 있다. 상기 전극탭이 구비되는 경우, 전지 셀 조립시 전지 셀 구조에 맞도록 전극탭을 절곡하여 연결한다.
도 4는 이차 전지에 있어서, 집전판과 전극 단자가 연결될 때 스트립 형태의 리드가 사용되는 구조를 나타낸 것이다.
도 1 내지 도 4를 참조하면, 제1 전극(10)과 제2 전극(11)은 쉬트 모양의 집전체(91)에 활물질(92)이 코팅된 구조를 가지며, 권취 방향을 따라 한쪽 장변 측에 무지부(93)를 포함한다.
전극 조립체는 제1 전극(10)과 제2 전극(11)을 도 2에 도시된 것처럼 2장의 분리막(12)과 함께 순차적으로 적층시킨 후 일방향(X)으로 권취시켜 제작한다. 이때, 제1 전극(10)과 제2 전극(11)의 무지부는 서로 반대 방향으로 배치된다. 권취 공정 이후, 제1 전극(10)의 무지부(10a)와 제2 전극(11)의 무지부(11a)는 코어측으로 절곡된다. 그 이후에는, 무지부(10a, 11a)에 집전판(30, 31)을 각각 용접시켜 결합시킨다.
제1 전극 무지부(10a)와 제2 전극 무지부(11a)에는 별도의 전극 탭이 결합되어 있지 않으며, 집전판(30, 31)가 외부의 전극 단자와 연결되며, 전류 패스가 전극 조립체(A)의 권취 축 방향(화살표 참조)을 따라 큰 단면적으로 형성되므로 배터리 셀의 저항을 낮출 수 있는 장점이 있다. 저항은 전류가 흐르는 통로의 단면적에 반비례하기 때문이다.
본 명세서의 일 실시상태에 따른 이차 전지(42)는 도 4에 도시된 바와 같이 전지 캔(41)과 밀봉체(42)를 포함한다. 밀봉체(42)는 캡 플레이트(42a), 밀봉 가스켓(42b) 및 연결 플레이트(42c)를 포함한다. 밀봉 가스켓(42b)은 캡 플레이트(42a)의 가장자리를 감싸며 클림핑부(43)에 의해 고정된다. 또한, 전극 조립체(A)는 상하 유동을 방지하기 위해 비딩부(44)에 의해 전지 캔(41) 내에 고정된다.
통상적으로 양극 단자는 밀봉체(42)의 캡 플레이트(42a)이고 음극 단자는 전지 캔(41)이다. 따라서, 제1 전극(10)의 무지부(10a)에 결합된 집전판(30)는 스트립 형태의 리드(45)를 통해 캡 플레이트(42a)에 부착된 연결 플레이트(42c)에 전기적으로 연결된다. 또한, 제2 전극(11)의 무지부(11a)에 결합된 집전판(31)은 전지 캔(41)의 바닥에 전기적으로 연결된다. 인슐레이터(46)는 집전 판(30)을 커버하여 극성이 다른 전지 캔(41)과 제1 전극(10)의 무지부(10a)가 서로 접촉하여 단락을 일으키는 것을 방지한다.
도 4를 참고하면, 집전판(30, 31)이 연결 플레이트(42c)에 연결될 때에는 스트립 형태의 리드(45)가 사용된다. 리드(45)는 집전판(30)에 별도로 부착하거나, 집전판(30)과 일체로 제작된다. 그런데, 리드(45)는 두께가 얇은 스트립 형태이므로 단면적이 작아서 급속충전 전류가 흐를 경우 열이 많이 발생한다. 또한, 리드(45)에서 발생한 과도한 열은 전극 조립체(A) 측으로 전달되어 분리막(미도시)을 수축시킴으로써 열 폭주의 주요 원인인 내부 단락을 일으킬 수 있다. 리드(45)는 또한 전지 캔(41) 내에서 상당한 설치 공간을 차지한다. 따라서, 리드(45)가 포함된 이차 전지(40)는 공간 효율성이 낮아서 에너지 밀도를 증가시키는데 한계가 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극은, 집전체 및 상기 집전체의 일 면 또는 양 면 상에 구비된 전극 활물질층을 포함한다. 전극 조립체의 권취축의 일 단부에 구비된 상기 집전체의 권취 방향에 따른 장변 단부는 전극 활물질층이 구비되지 않은 제1 전극의 무지부(이하 제1 무지부)가 존재한다. 상기 제1 무지부는, 전지 캔 내에 수용된 전극 조립체의 높이 방향(Z축에 나란한 방향) 상부에 구비된다. 즉, 상기 집전체는, 장변 단부에 전극 활물질이 코팅되어 있지 않으며 분리막의 외부로 노출된 제1 전극의 무지부를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 제2 전극은, 제2 전극 집전체 및 상기 제2 전극 집전체의 일 면 또는 양 면 상에 구비된 제2 전극 활물질층을 포함한다. 상기 제2 전극 집전체의 폭 방향(Z축에 나란한 방향) 타 측 단부에는 제2 전극 활물질층이 포함되지 않은 제2 전극의 무지부(이하 제2 무지부)가 존재한다.
상기 제2 전극의 무지부는, 전지 캔 내에 수용된 전극 조립체의 높이 방향(Z축에 나란한 방향) 하부에 구비된다. 즉, 상기 제2 전극 집전체는, 장변 단부에 전극 활물질층이 코팅되어 있지 않으며 분리막의 외부로 노출된 제2 무지부를 포함하고, 제2 무지부의 적어도 일부는 그 자체로서 전극 탭으로서 사용될 수 있다. 상기 제2 무지부는, 예를 들어 음극 탭일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 전극 조립체는, 제2 전극의 무지부의 분절편의 중첩 레이어 수가 전극 조립체의 반경 방향을 따라 일정하게 유지되는 영역인 용접 타겟 영역을 구비할 수 있다.
이 영역에서는, 중첩 레이어 수가 최대로 유지되므로, 후술할 제2 집전판과 제2 전극의 무지부의 용접이 이 영역 내에서 이루어지는 것이 유리할 수 있다. 레이저 용접을 적용하는 경우에 있어서, 용접 품질의 향상을 위해 레이저의 출력을 높이는 경우 레이저 빔이 제2 전극의 무지부를 관통하여 전극 조립체를 손상시키는 것을 방지할 수 있다. 또한, 용접 스패터 등의 이물질이 전극 조립체의 내부로 유입되는 것을 효과적으로 방지할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 무지부 및 제2 무지부는, 이차 전지의 높이 방향(Z축에 나란한 방향)을 따라 서로 반대 방향으로 연장된다. 상기 제1 무지부는, 전지 캔의 폐쇄부를 향해 연장되며, 제2 무지부는 전지 캔의 개방부를 향해 연장된다.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극은 음극이고, 제2 전극은 양극일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극은 양극이고, 제2 전극은 음극일 수 있다.
본 명세서의 일 실시상태에 있어서, 양극에 코팅되는 양극 활물질과 음극에 코팅되는 음극 활물질은 당업계에 공지된 활물질이라면 제한없이 사용될 수 있다.
일 예에서, 양극 활물질은 일반 화학식 A[AxMy]O2+z(A는 Li, Na 및 K 중 적어도 하나 이상의 원소를 포함; M은 Ni, Co, Mn, Ca, Mg, Al, Ti, Si, Fe, Mo, V, Zr, Zn, Cu, Al, Mo, Sc, Zr, Ru, 및 Cr에서 선택된 적어도 하나 이상의 원소를 포함; x ≥ 0, 1 ≤ x+y ≤2, -0.1 ≤ z ≤ 2; 화학량론적 계수 x, y 및 z는 화합물이 전기적 중성을 유지하도록 선택됨)로 표시되는 알칼리 금속 화합물을 포함할 수 있다.
다른 예에서, 양극 활물질은 US6,677,082, US6,680,143 등에 개시된 알칼리 금속 화합물 xLiM1O2-(1-x)Li2M2O3(M1은 평균 산화 상태 3을 갖는 적어도 하나 이상의 원소를 포함; M2는 평균 산화 상태 4를 갖는 적어도 하나 이상의 원소를 포함; 0≤x≤1)일 수 있다.
또 다른 예에서, 양극 활물질은, 일반 화학식 LiaM1 xFe1-xM2 yP1-yM3 zO4-z(M1은 Ti, Si, Mn, Co, Fe, V, Cr, Mo, Ni, Nd, Al, Mg 및 Al에서 선택된 적어도 하나 이상의 원소를 포함; M2는 Ti, Si, Mn, Co, Fe, V, Cr, Mo, Ni, Nd, Al, Mg, Al, As, Sb, Si, Ge, V 및 S에서 선택된 적어도 하나 이상의 원소를 포함; M3는 F를 선택적으로 포함하는 할로겐족 원소를 포함; 0 < a ≤ 2, 0 ≤ x ≤ 1, 0 ≤ y < 1, 0 ≤ z < 1; 화학량론적 계수 a, x, y 및 z는 화합물이 전기적 중성을 유지하도록 선택됨), 또는 Li3M2(PO4)3[M은 Ti, Si, Mn, Fe, Co, V, Cr, Mo, Ni, Al, Mg 및 Al에서 선택된 적어도 하나의 원소를 포함]로 표시되는 리튬 금속 포스페이트일 수 있다.
바람직하게, 양극 활물질은 1차 입자 및/또는 1차 입자가 응집된 2차 입자를 포함할 수 있다.
일 예에서, 음극 활물질은 탄소재, 리튬금속 또는 리튬금속화합물, 규소 또는 규소화합물, 주석 또는 주석 화합물 등을 사용할 수 있다. 전위가 2V 미만인 TiO2, SnO2와 같은 금속 산화물도 음극 활물질로 사용 가능하다. 탄소재로는 저결정 탄소 및/또는 고결정성 탄소가 모두 사용될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 분리막은 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체, 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있다. 다른 예시로서, 분리막은 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있다.
분리막의 적어도 한 쪽 표면에는 무기물 입자의 코팅층을 포함할 수 있다. 또한 분리막 자체가 무기물 입자의 코팅층으로 이루어지는 것도 가능하다. 코팅층을 구성하는 입자들은 인접하는 입자 사이 사이에 인터스티셜 볼륨(interstitial volume)이 존재하도록 바인더와 결합된 구조를 가질 수 있다.
무기물 입자는 유전율이 5이상인 무기물로 이루어질 수 있다. 비제한적인 예시로서, 상기 무기물 입자는 Pb(Zr,Ti)O3(PZT), Pb1-xLaxZr1-yTiyO3(PLZT), PB(Mg3Nb2/3)O3-PbTiO3(PMN-PT), BaTiO3, hafnia(HfO2), SrTiO3, TiO2, Al2O3, ZrO2, SnO2, CeO2, MgO, CaO, ZnO 및 Y2O3로 이루어진 군에서 선택된 적어도 하나 이상의 물질을 포함할 수 있다.
전해질은 A+B-와 같은 구조를 갖는 염일 수 있다. 여기서, A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온이나 이들의 조합으로 이루어진 이온을 포함한다. 그리고 B-는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 --, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N- , CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나 이상의 음이온을 포함한다.
전해질은 또한 유기 용매에 용해시켜 사용할 수 있다. 유기 용매로는, 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylenecarbonate, EC), 디에틸카보네이트(diethyl carbonate, DEC), 디메틸카보네이트(dimethyl carbonate, DMC), 디프로필카보네이트(dipropyl carbonate, DPC), 디메틸설프옥사이드 (dimethyl sulfoxide), 아세토니트릴 (acetonitrile), 디메톡시에탄 (dimethoxyethane), 디에톡시에탄 (diethoxyethane), 테트라하이드로퓨란(tetrahydrofuran), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 에틸메틸카보네이트(ethyl methyl carbonate, EMC), 감마 부티로락톤(γ-butyrolactone) 또는 이들의 혼합물이 사용될 수 있다.
본 명세서의 상기 이차 전지는 상기 전극 조립체를 수용하고 개구부를 포함하는 전지 캔; 상기 전지 캔의 개구부를 밀폐하도록 구성되는 캡 플레이트; 및 상기 집전판의 제1 용접부와 용접되어 결합하고 상기 전지 캔과 리벳팅되는 전극 단자를 더 포함하는 것일 수 있다.
본 명세서의 일 실시상태에 따른 이차 전지에 있어서, 전극 조립체(71)를 수납하며 제2 전극의 무지부(72)와 전기적으로 연결된 원통형의 전지 캔(51)을 포함한다.바람직하게, 전지 캔(51)의 일 측(하부)은 개방되어 있다. 또한, 전지 캔(51)의 바닥(52)은 전극 단자(50)가 콜킹 공정을 통해 관통 홀(53)에 리벳팅된 구조를 가진다.
본 명세서의 일 실시상태에 있어서, 상기 이차 전지는 상기 전극 단자와 상기 관통 홀 사이에 개재된 가스켓을 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 이차 전지(70)는 또한 전지 캔(51)으로부터 절연 가능하도록 전지 캔(51)의 개방 단부를 밀봉하는 밀봉체(74)를 포함할 수 있다. 바람직하게, 밀봉체(74)는 극성이 없는 캡 플레이트(74a) 및 캡 플레이트(74a)의 가장자리와 전지 캔(51)의 개방단부 사이에 개재된 밀봉 가스켓(74b)을 포함할 수 있다.
본 명세서에 있어서, 상기 캡 플레이트(74a)는 알루미늄, 스틸, 니켈 등의 도전성 금속 재질로 이루어질 수 있다. 또한, 밀봉 가스켓(74b)은 절연성 및 탄성이 있는 폴리프로필렌, 폴리부틸렌테레프탈레이드, 폴리플루오르화에틸렌 등으로 이루어질 수 있다. 하지만, 본 발명이 캡 플레이트(74a)와 밀봉 가스켓(74b)의 소재에 의해 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 캡 플레이트(74a)는 전지 캔(51) 내부의 압력이 임계치를 초과했을 때 파열되는 벤트 노치(77)를 포함할 수 있다. 벤트 노치(77)는 캡 플레이트(74a)의 양면에 형성될 수 있다. 벤트 노치(77)는 캡 플레이트(74a)의 표면에서 연속적 또는 불연속적인 원형 패턴, 직선 패턴 또는 그 밖의 다른 패턴을 형성할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 전지 캔(51)은, 밀봉체(74)를 고정하기 위해, 전지 캔(51)의 내측으로 연장 및 절곡되어 밀봉 가스켓(74b)과 함께 캡 플레이트(74a)의 가장자리를 감싸서 고정하는 클림핑부(75)를 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 전지 캔(51)은 또한 개방 단부에 인접한 영역에 전지 캔(51)의 내측으로 압입된 비딩부(76)를 포함할 수 있다. 비딩부(76)는 밀봉체(74)가 클림핑부(75)에 의해 고정될 때, 밀봉체(74)의 가장자리, 특히 밀봉 가스켓(74b)의 외주 표면을 지지한다.
본 명세서의 일 실시상태에 있어서, 상기 전극 단자는 전도성을 갖는 금속 재질로 이루어지며, 알루미늄(Al)이 이용될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 이차 전지는 제2전극의 무지부(72)와 용접되는 제2 집전판(78)을 더 포함할 수 있다. 제2 집전판(78)은 알루미늄, 스틸, 니켈 등의 도전성 금속 재질로 이루어진다.
본 명세서의 일 실시상태에 있어서, 상기 제2 집전판(78)은 제2전극의 무지부(72)와 접촉하지 않는 가장자리의 적어도 일부(78a)가 비딩부(76)와 밀봉 가스켓(74b) 사이에 개재되어 클림핑부(75)에 의해 고정될 수 있다.
선택적으로, 제2 집전판(78)의 가장자리의 적어도 일부(78a)는 클림핑부(75)와 인접한 비딩부(76)의 내주면(76a)에 용접을 통해 고정될 수 있다.
본 명세서의 일 실시상태에 있어서, 인슐레이터는, 상기 집전판과 상기 전지 캔의 내측 면 사이에 구비될 수 있다. 상기 인슐레이터는, 상기 집전판과 전지 캔 사이의 접촉을 방지한다. 상기 인슐레이터는, 전극 조립체의 외주면의 상단과 전지 캔의 내측 면 사이에도 개재될 수 있다. 즉, 상기 인슐레이터는, 제1전극의 무지부와 전지 캔의 측벽부의 내측 면 사이에도 개재될 수 있다. 이는, 상기 전지 캔의 폐쇄부를 향해 연장된 제제1전극의 무지부와 전지 캔의 내주면 사이의 접촉을 방지하기 위함이다.
본 명세서의 일 실시상태에 있어서, 상기 제1전극 및/또는 제2전극의 무지부(72, 73)는 전극 조립체(71)의 외주측으로부터 코어측으로 절곡됨으로써 전극 조립체(71)의 상부 및 하부에 절곡면을 형성할 수 있다. 또한, 제2 집전판(78)은 제2 전극의 무지부(72)가 절곡되면서 형성된 절곡면에 용접되고, 제1 집전판(79)은 제1전극의 무지부(73)가 절곡되면서 형성된 절곡면에 용접될 수 있다.
상기 무지부(72, 73)가 절곡될 때 생기는 응력을 완화하기 위해 제1전극 및/또는 제2전극은 도 1에 따른 전극과 다른 개선된 구조를 가질 수 있다. 도 11은 본 발명의 바람직한 실시예에 따른 전극(90) 구조를 예시적으로 나타낸 평면도이다.
도11을 참조하면, 전극(90)은 도전성 재질의 포일로 이루어진 쉬트 형상의 집전체(91)와, 집전체(91)의 적어도 일면에 형성된 활물질층(92)과, 집전체(91)의 장변 단부에 활물질이 코팅되지 않은 무지부(93)를 포함한다.
바람직하게, 상기 무지부(93)는 노칭 가공된 복수의 분절편(93a)을 포함할 수 있다. 복수의 분절편(93a)은 복수의 그룹을 이루며, 각 그룹에 속한 분절편(93a)들은 높이(Y방향 길이) 및/또는 폭(Z 방향 길이) 및/또는 이격 피치가 동일할 수 있다. 각 그룹에 속한 분절편(93a)들의 수는 도시된 것보다 증가 또는 감소될 수 있다. 분절편(93a)은 사다리꼴 모양일 수 있는데, 사각형, 평형사변형, 반원형 또는 반타원형으로 변형될 수 있다. 바람직하게, 분절편(93a)의 높이는 코어측으로부터 외주측으로 가면서 단계적으로 증가할 수 있다. 또한, 코어측과 인접한 코어측 무지부(93')는 분절편(93a)을 포함하지 않을 수 있고, 코어측 무지부(93')의 높이는 다른 무지부 영역보다 작을 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 전극(90)은 활물질층(92)과 무지부(93) 사이의 경계를 덮는 절연 코팅층(94)을 포함할 수 있다. 절연 코팅층(94)은 절연성이 있는 고분자 수지를 포함하며, 무기물 필러를 선택적으로 더 포함할 수 있다. 절연 코팅층(94)은 활물질층(92)의 단부가 분리막을 통해 대향하고 있는 반대 극성의 활물질층과 접촉되는 것을 방지하고, 분절편(93a)의 절곡을 구조적으로 지지하는 역할을 한다. 이를위해, 전극(90)이 전극 조립체로 권취되었을 때, 절연 코팅층(94)은 적어도 일부가 분리막으로부터 외부로 노출되는 것이 바람직하다.
도 12는 본 발명의 실시예에 따른 전극(90)의 무지부 분절구조를 제1전극 및 제2전극에 적용한 전극 조립체(100)를 길이 방향(Y)을 따라 자른 단면도이다.
도 12를 참조하면, 전극 조립체(100)는 도 2를 통해 설명한 권취 공법으로 제조할 수 있다. 설명의 편의를 위해 분리막 밖으로 연장된 무지부(72, 73)의 돌출 구조를 상세하게 도시하고, 제1전극, 제2전극 및 분리막의 권취 구조에 대한 도시는 생략하였다. 하부로 돌출된 무지부(72)는 제1전극으로부터 연장된 것이고, 상부로 돌출된 무지부(73)는 제2전극으로부터 연장된 것이다. 상기 무지부(72, 73)의 높이가 변화하는 패턴은 개략적으로 도시하였다.
즉, 단면이 잘리는 위치에 따라서 무지부(72, 73)의 높이는 불규칙하게 변화할 수 있다. 일 예로, 사다리꼴 분절편(93a)의 사이드 부분이 잘리면 단면에서의 무지부 높이는 분절편(93a)의 높이보다 낮아진다. 따라서, 전극 조립체(100)의 단면을 나타낸 도면에 도시된 무지부(72, 73)의 높이는 각 권취 턴에 포함된 무지부 높이의 평균에 대응한다고 이해하여야 한다.
상기 무지부(72, 73)는 도 12에 도시된 것과 같이 전극 조립체(100)의 외주측으로부터 코어측으로 절곡될 수 있다. 도 12에서, 절곡되는 부분(101)은 점선 박스로 표시하였다. 무지부(72, 73)가 절곡될 때, 반경 반향으로 인접하고 있는 분절편들이 여러 겹으로 서로 중첩되면서 전극 조립체(100)의 상부와 하부에 절곡면(102)이 형성된다. 이 때, 코어측 무지부(도 11의 93')는 높이가 낮아서 절곡되지 않으며, 가장 안쪽에서 절곡되는 분절편의 높이(h)는 분절편 구조가 없는 코어측 무지부(93')에 의해 형성된 권취 영역의 반경 방향 길이(r) 보다 같거나 작다. 따라서, 전극 조립체(100)의 코어에 있는 공동(80)이 절곡된 분절편들에 의해 폐쇄되지 않는다. 공동(80)이 폐쇄되지 않으면, 전해질 주액 공정에 어려움이 없고, 전해액 주액 효율이 향상된다.
본 발명의 실시예에 따른 이차 전지(70)은 밀봉체(74)의 캡 플레이트(74a)가 극성을 갖지 않는다. 그 대신, 제2 집전판(78)이 전지 캔(51)의 측벽에 연결되어 있어서 전지 캔(51) 바닥(52)의 외부면(52a)이 전극 단자(50)와는 반대 극성을 가진다. 따라서, 복수의 셀들을 직렬 및/또는 병렬 연결하고자 할 때, 전지 캔(51) 바닥(52)의 외부면(52a)과 전극 단자(50)를 이용하여 이차 전지(70)의 상부에서 버스 바 연결 등의 배선을 수행할 수 있다. 이를 통해, 동일 공간에 탑재할 수 있는 셀들의 수를 증가시켜 에너지 밀도를 향상시킬 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 이차 전지는, 전지 캔의 바닥에 리벳팅된 전극 단자를 포함할 수 있다.
도 5는 본 발명의 실시예에 따른 전극 단자(50)의 리벳팅 구조를 나타낸 단면도이고, 도 6은 점선 원으로 표시된 부분의 확대 단면도이다.
도 5 및 도 6을 참조하면, 실시예에 따른 전극 단자(50)의 리벳팅 구조는, 일측이 개방된 원통형의 전지 캔(51)과, 전지 캔(51)의 바닥(52)에 형성된 관통 홀(53)을 통해 리벳팅된 전극 단자(50)와, 전극 단자(50)와 관통 홀(53) 사이에 개재된 리벳 가스켓(54)을 포함할 수 있다.
전지 캔(51)은 도전성 금속 재질로 이루어진다. 일 예에서, 전지 캔(51)은 스틸 재질로 이루어질 수 있는데, 본 발명이 이에 한정되는 것은 아니다.
전극 단자(50)는 도전성 금속 재질로 이루어진다. 일 예에서, 전극 단자(50)는 알루미늄으로 이루어질 수 있는데, 본 발명이 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 리벳 가스켓(54)은 절연성 및 탄성이 있는 고분자 수지로 이루어질 수 있다. 일 예에서, 리벳 가스켓(54)은 폴리프로필렌, 폴리부틸렌테레프탈레이드, 폴리플루오르화에틸렌 등으로 이루어질 수 있는데, 본 발명이 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 전극 단자(50)는, 관통 홀(53)에 삽입된 몸체부(50a), 전지캔(51) 바닥(52)의 외부면(52a)을 통해 노출된 몸체부(50a)의 일측 둘레로부터 외부면(52a)을 따라 연장된 외부 플랜지부(50b), 전지 캔(51) 바닥(52)의 내부면(52b)을 통해 노출된 몸체부(50a)의 타측 둘레로부터 내부면(52b)을 향해 연장된 내부 플랜지부(50c), 및 내부 플랜지부(50c)의 내측에 구비된 평탄부(50d)를 포함할 수 있다.
바람직하게, 평탄부(50d)와 전지 캔(51) 바닥(52)의 내부면(52b)은 서로 평 행할 수 있다. 여기서, '평행'이라 함은 육안으로 관찰했을 때 실질적으로 평행한 것을 의미한다.
일 측면에 따르면, 내부 플랜지부(50c)와 전지 캔(51) 바닥(52)의 내부면(52b) 사이의 각도(θ)는 0도 내지 60도 이하일 수 있다. 각도의 크기는 콜킹 공법으로 전극 단자(50)가 전지 캔(51)의 관통 홀(53)에 설치될 때 콜킹 강도에 의해 결정된다. 일 예에서, 콜킹 강도가 증가할수록 각도(θ)는 0도까지 감소할 수 있다. 각도가 60도를 초과하면 리벳 가스켓(54)의 실링 효과가 저하될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 내부 플랜지부(50c)와 평탄부(50d) 사이에 리세스부(55)가 구비될 수 있다. 리세스부(55)는 비대칭 홈의 단면 구조를 가질 수 있다. 일 예에서, 비대칭 홈은 대략 V자형일 수 있다. 비대칭 홈은 평탄부(50d)의 측벽(55a)과 상기 측벽(55a)의 단부와 연결된 내부 플랜지부(50c)의 경사면(55b)을 포함할 수 있다. 상기 측벽(55a)은 전지 캔(51) 바닥(52)의 내부면(52b)과 실질적으로 수직일 수 있다. '수직'이라 함은 육안상으로 관찰했을 때 실질적으로 수직인 경우를 의미한다. 리세스부(55)는 콜킹 공법으로 전극 단자(50)가 전지 캔(51)의 관통 홀(53)에 설치될 때 콜킹 지그의 형상에 의해 만들어진 것이다. 바람직하게, 내부 플랜지부(50c)의 두께는 전극 단자(50)의 몸체부(50a)로부터 멀어질수록 감소할 수 있다.
본 명세서의 일 실시상태에 있어서, 리벳 가스켓(54)은, 외부 플랜지부(50b)와 전지 캔(51) 바닥(52)의 외부면(52a) 사이에 개재된 외부 가스켓(54a)과, 내부 플랜지부(50c)와 전지 캔(51) 바닥(52)의 내부면(52b) 사이에 개재된 내부 가스켓(54b)을 포함할 수 있다.
상기 외부 가스켓(54a)과 내부 가스켓(54b)은 두께가 위치에 따라 다를 수 있다. 바람직하게, 내부 가스켓(54b)의 영역 중 전지 캔(51) 바닥(52)의 내부면(52b)과 연결된 관통 홀(53)의 내측 엣지(56)와 내부 플랜지부(50c) 사이에 개재된 영역의 두께가 상대적으로 작을 수 있다. 바람직하게, 관통 홀(53)의 내측 엣지(56)와 내부 플랜지부(50c) 사이에 개재된 가스켓 영역에서 최소 두께 지점이 존재할 수 있다. 또한, 관통 홀(53)의 내측 엣지(56)는 내부 플랜지부(50c)와 마주보는 대향면(57)을 포함할 수 있다.
한편, 전지 캔(51)의 바닥(52)과 수직을 이루는 관통 홀(53) 내벽의 상단과 하단은 전극 단자(50)를 향해 테이퍼진 표면을 형성하도록 모따기(corner cutting) 되어 있다. 하지만, 관통 홀(53) 내벽의 상단 및/또는 하단은 곡률을 가진 부드러운 곡면으로 변형될 수 있다. 이 경우, 관통 홀(53) 내벽의 상단 및/또는 하단 근처에서 가스켓(54)에 가해지는 스트레스를 보다 완화할 수 있다.
바람직하게, 내부 가스켓(54b)은 전지 캔(51) 바닥(52)의 내부면(52b)과 0도 내지 60도의 각도를 이루며 내부 플랜지부(50c)보다 길게 연장될 수 있다.
또 다른 측면에서, 전지 캔(51) 바닥(52)의 내부면(52b)을 기준으로 평탄부(50d)의 높이(H1)가 내부 가스켓(54b)의 단부 높이(H2)보다 같거나 클 수 있다.
또한, 전지 캔(51) 바닥(52)의 내부면(52b)을 기준으로 평탄부(50d)의 높이(H1)가 내부 플랜지부(50c)의 단부 높이(H3)보다 같거나 클 수 있다. 높이 파라미터인 H1, H2 및 H3가 상기 조건을 충족하면, 내부 플랜지부(50c)와 내부 가스켓(54b)이 다른 부품과 간섭을 일으키는 것을 방지할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 전극 단자(50)의 몸체부(50a)의 중심으로부터 외부 플랜지부(50b)의 가장자리까지의 반경(R1)은 전지 캔(51) 바닥(52)의 반경(R2)을 기준으로 10 내지 60%일 수 있다.
R1이 작아지면 전극 단자(50)에 전기 배선 부품(버스 바)을 용접할 때 용접 공간이 부족해 진다. 또한, R1이 커지면 전극 단자(50)를 제외한 전지 캔(51) 바닥(52)의 외부면(52a)에 전기 배선 부품(버스바)을 용접할 때 용접 공간이 감소한다. 비율 R1/R2를 10 내지 60% 사이에서 조절하면 전극 단자(50) 및 전지 캔(51) 바닥(52)의 외부면에 대한 용접 공간을 적절하게 확보할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 전극 단자(50)의 몸체부(50a)의 중심으로부터 평탄부(50d)의 가장자리까지의 반경(R3)은 전지 캔(51) 바닥(52)의 반경(R2)을 기준으로 4 내지 30%일 수 있다. R3이 작아지면 전극 단자(50)의 평탄부(50d)에 집전판(도 7의 79 참조)을 용접할 때 용접 공간이 부족해 지고, 전극 단자(50)의 용접 면적이 감소하여 컨택 저항이 증가할 수 있다. 또한, R3은 R1보다는 작아야 하고 R3이 커지면 내부 플랜지부(50c)의 두께가 얇아져서 내부 플랜지부(50c)가 리벳 가스켓(54)을 압착하는 힘이 약해져 리벳 가스켓(54)의 실링 능력이 저하될 수 있다.
R3/R2를 4 내지 30% 사이에서 조절하면 전극 단자(50)의 평탄부(50d)와 집전판(도 7의 79)의 용접 면적을 충분히 확보함으로써 용접 공정을 용이하게 진행할 수 있을 뿐만 아니라 용접 영역의 컨택 저항을 감소시킬 수 있고 리벳 가스켓(54)의 실링 능력 저하를 방지할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 전극 단자(50)의 평탄부(50d)와 상기 집전판은 전기적으로 연결될 수 있다. 구체적으로, 상기 집전판과 상기 평탄부(50d)는 용접공정을 통해 직접 연결되거나, 전극탭, 리드 등을 이용하여 전기적으로 연결될 수 있다. 이때 용접공정은 당업계에서 통상적으로 수행하는 방법이라면 제한하지 않는다.
본 발명의 실시예에 따르면, 전극 단자(50)의 리벳팅 구조는 상하 운동을 하는 콜킹 지그를 이용하여 형성할 수 있다. 먼저, 전지 캔(51)의 바닥(52)에 형성된 관통 홀(53)에 리벳 가스켓(54)을 개재시켜 전극 단자(50)의 프리폼(미도시)을 삽입한다. 프리폼은 리벳팅 되기 전의 전극 단자를 지칭한다.
다음으로, 콜킹 지그를 전지 캔(51)의 내측 공간으로 삽입한다. 콜킹 지그는 프리폼을 리벳팅하여 전극 단자(50)를 형성하기 위해 프리폼과 대향하는 면에 전극 단자(50)의 최종 형상에 대응되는 홈과 돌기를 가진다.
다음으로, 콜킹 지그를 하부로 이동시켜 프리폼의 상부를 가압 포밍하여 프리폼을 리벳팅된 전극 단자(50)로 변형시킨다.
콜킹 지그에 의해 프리폼이 가압되는 동안, 외부 플랜지부(50b)와 전지 캔(51) 바닥(52)의 외부면(52a) 사이에 개재된 외부 가스켓(54a)이 탄성적으로 압축되면서 그 두께가 감소한다. 또한, 관통 홀(53)의 내측 엣지(56)와 프리폼 사이에 개재된 내부 가스켓(54b) 부위가 내부 플랜지부(50c)에 의해 탄성적으로 압축되면서 다른 영역보다 두께가 더욱 감소한다. 특히, 내부 가스켓(54b)의 두께가 집중적으로 감소되는 영역은 도 6의 점선원으로 표시된 부분이다. 이에 따라, 리벳팅된 전극 단자(50)와 전지 캔(51) 사이의 실링성 및 밀폐성이 현저하게 향상된다.
바람직하게, 리벳 가스켓(54)은 프리폼이 리벳팅되는 과정에서 물리적으로 손상되지 않으면서 소망하는 실링 강도를 확보할 수 있도록 충분히 압축되는 것이 바람직하다.
일 예에서, 라벳 가스켓(54)이 폴리부틸렌테레프탈레이드로 이루어진 경우, 리벳 가스켓(54)은 그것이 최소 두께로 압축되는 지점에서 압축율이 50% 이상인 것이 바람직하다. 압축율은 압축전 두께에 대한 압축 전후의 두께 변화의 비율이다. 다른 예에서, 리벳 가스켓(54)이 폴리플루오르에틸렌으로 이루어진 경우, 리벳 가스켓(54)은 그것이 최소 두께로 압축되는 지점에서 압축율이 60% 이상인 것이 바람직하다.
또 다른 예에서, 리벳 가스켓(54)이 폴리플로필렌으로 이루어진 경우, 리벳 가스켓(54)은 그것이 최소 두께로 압축되는 지점에서 압축율이 60% 이상인 것이 바람직하다.
바람직하게, 콜킹 지그의 상하 이동을 적어도 2회 이상 실시하여 프리폼 상부의 가압 포밍을 단계적으로 진행할 수 있다. 즉, 프리폼을 단계적으로 가압 포밍하여 여러 번에 걸쳐 변형할 수 있다. 이 때, 콜킹 지그에 가해지는 압력을 단계적으로 증가시킬 수 있다. 이렇게 하면, 프리폼에 가해지는 응력을 여러 번으로 분산시킴으로써 콜킹 공정이 진행되는 동안 리벳 가스켓(54)이 손상되는 것을 방지할수 있다. 특히, 관통 홀(53)의 내측 엣지(56)와 프리폼 사이에 개재된 내부 가스켓(54b) 부위가 내부 플랜지부(50c)에 의해 집중적으로 압축될 때 가스켓의 손상이 최소화된다.
콜킹 지그를 이용한 프리폼의 가압 포밍이 완료된 후, 콜킹 지그를 전지 캔(51)으로부터 분리시키면, 도 6에 도시된 바와 같이 본 발명의 실시예에 따른 전극 단자(50)의 리벳팅 구조를 얻을 수 있다.
상술한 실시예에 따르면, 코킹 지그는 전지 캔(51)의 내부에서 상하 운동을 통해 프리폼의 상부를 가압 포밍한다. 경우에 따라, 프리폼의 가압 포밍을 위해 종래 기술에서 사용되는 로타리(rotary) 회전 지그가 사용될 수 있다.
다만, 로타리 회전 지그는 전지 캔(51)의 중심 축을 기준으로 소정 각도로 기울어진 상태에서 회전 운동을 한다. 따라서, 회전 반경이 큰 로타리 회전 지그는 전지 캔(51)의 내벽과 간섭을 일으킬 수 있다. 또한, 전지 캔(51)의 깊이가 큰 경우 로타리 회전 지그의 길이도 그만큼 길어진다. 이 경우, 로타리 회전 지그 단부의 회전반경이 커지면서 프리폼의 가압 포밍이 제대로 이루어지지 않을 수 있다.
따라서, 콜킹 지그를 이용한 가압 포밍이 로타리 회전 지그를 이용한 방식보다 더욱 효과적이다.
상술한 본 발명의 실시예에 따른 전극 단자(50)의 리벳팅 구조는 원통형 이차 전지에 적용이 가능하다.
본 명세서의 일 실시상태에 있어서, 이차 전지는 폼 팩터의 비(원통형 배터리의 직경을 높이로 나눈 값, 즉 높이(H) 대비 직경(Φ)의 비로 정의됨)가 0.4 보다 큰 원통형 이차 전지일 수 있다. 여기서, 폼 팩터란, 원통형 이차 전지의 직경 및 높이를 나타내는 값을 의미한다.
종래에는, 폼 팩터의 비가 대략 0.4 이하인 배터리들이 이용되었다. 즉, 종래에는, 예를 들어 18650 셀, 21700 셀 등이 이용되었다. 18650셀의 경우, 그 직경이 대략 18mm이고, 그 높이는 대략 65mm이고, 폼 팩터의 비는 대략 0.277이다. 21700 셀의 경우, 그 직경이 대략 21mm이고, 그 높이는 대략 70mm이고, 폼 팩터의 비는 대략 0.300이다.
본 명세서의 일 실시상태에 따른 원통형 이차 전지는, 46110 셀, 48750 셀, 48110 셀, 48800 셀, 46800 셀일 수 있다. 폼 팩터를 나타내는 수치에서, 앞의 숫자 2개는 셀의 직경을 나타내고, 그 다음 숫자 2개는 셀의 높이를 나타내고, 마지막 숫자 0은 셀의 단면이 원형임을 나타낸다.
본 명세서의 일 실시상태에 따른 이차 전지는, 원기둥 형태의 셀로서, 그 직경이 46mm이고, 그 높이는 110mm이고, 폼 팩터의 비는 0.418인 원통형 이차 전지일 수 있다.
본 명세서의 일 실시상태에 따른 이차 전지는, 원기둥 형태의 셀로서, 그 직경이 48mm이고, 그 높이는 75mm이고, 폼 팩터의 비는 0.640인 원통형 이차 전지일 수 있다.
본 명세서의 일 실시상태에 따른 이차 전지는, 원기둥 형태의 셀로서, 그 직경이 48mm이고, 그 높이는 110mm이고, 폼 팩터의 비는 0.418인 원통형 이차 전지일 수 있다.
본 명세서의 일 실시상태에 따른 이차 전지는, 원기둥 형태의 셀로서, 그 직경이 48mm이고, 그 높이는 80mm이고, 폼 팩터의 비는 0.600인 원통형 이차 전지일 수 있다.
본 명세서의 일 실시상태에 따른 이차 전지는, 원기둥 형태의 셀로서, 그 직경이 46mm이고, 그 높이는 80mm이고, 폼 팩터의 비는 0.575인 원통형 이차 전지일 수 있다.
본 명세서는 제1 전극(10), 분리막(12) 및 제2 전극(11)이 적층되고 권취되어 구성된 전극 조립체(71, A, 100)로서, 상기 제1 전극(10)은 제1 전극 집전체(미도시) 및 상기 제1 전극 집전체(미도시) 상에 구비된 전극 활물질층(미도시)을 포함하고, 상기 제1 전극 집전체의 권취 방향에 따른 장변 단부는 상기 전극 활물질층이 구비되지 않은 제1 전극(10)의 무지부(10a)를 포함하는 전극 조립체(71, A, 100); 상기 전극 조립체(71, A, 100)를 수용하고 개구부를 포함하는 전지 캔(41, 51); 상기 전지 캔(41, 51)의 개구부를 밀폐하도록 구성되는 캡 플레이트(41, 51); 및 상기 전지 캔(41, 51)과 리벳팅되는 전극 단자(50)를 포함하는 이차 전지(40, 70)에 적용되는 집전판(400)으로써, 상기 제1 전극(10)의 무지부(10a)가 노출된 상기 전극 조립체(71, A, 100)의 일 단부에 구비되고, 상기 전극 조립체(71, A, 100)의 권심(340)과 대응되는 중심부(410)를 포함하고, 상기 중심부(410)는 상기 집전판(400)의 나머지 두께보다 얇은 제1 용접부(411)를 포함하는 것인 집전판(400)을 제공한다. 상기 집전판(400)에 있어서, 각 구성요소들에 대한 설명은 전술한 바와 동일하다.
본 명세서의 일 실시상태에 따른 이차 전지(40, 70)는 배터리 팩(200)을 제조하는데 사용될 수 있다. 도 14는 본 발명의 실시예에 따른 배터리 팩(200)의 구성을 개략적으로 나타낸 도면이다.
도 14를 참조하면, 본 발명의 실시예에 따른 배터리 팩(200)은 이차 전지 셀(201)이 전기적으로 연결된 집합체 및 이를 수용하는 팩 하우징(202)을 포함한다. 원통형 이차전지 셀(201)은 상술한 실시예에 따른 배터리 셀이다. 도면에서는, 도면 도시의 편의상 원통형 이차전지 셀(201)들의 전기적 연결을 위한 버스바, 냉각 유닛, 외부 단자 등의 부품의 도시는 생략되었다.
상기 배터리 팩(200)은 자동차에 탑재될 수 있다. 자동차는 일 예로 전기 자동차, 하이브리드 자동차 또는 플러그인 하이브리드 자동차일 수 있다. 자동차는 4륜 자동차 또는 2륜 자동차를 포함한다. 도 15는 도 14의 배터리 팩(200)을 포함하는 자동차를 설명하기 위한 도면이다.
도 15를 참조하면, 본 명세서의 일 실시상태에 따른 자동차(V)는, 본 명세서의 일 실시상태에 따른 배터리 팩(200)을 포함한다. 자동차(V)는, 본 발명의 일 실시예에 따른 배터리 팩(200)으로부터 전력을 공급 받아 동작한다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (16)

  1. 제1 전극 및 제2 전극과 이들 사이에 구비된 분리막이 권취된 전극 조립체로서, 상기 제1 전극 및 제2 전극은 각각 장변 단부에 활물질이 코팅되어 있지 않으며 상기 분리막의 외부로 노출된 제1 전극의 무지부를 포함하는 전극 조립체; 및
    상기 제1 전극의 무지부가 노출된 상기 전극 조립체의 일 단부에 구비된 집전판으로서, 상기 전극 조립체의 권심과 대응되는 중심부를 포함하는 집전판을 포함하며,
    상기 중심부는 상기 집전판의 나머지 두께보다 얇은 제1 용접부를 포함하는 것인 이차 전지.
  2. 청구항 1에 있어서,
    상기 집전판은 상기 중심부에 일 단부가 연결되고 상기 중심부로부터 상기 전극 조립체의 외곽 방향으로 연장된 2 이상의 레그를 더 포함하고,
    상기 레그는 상기 집전판의 제1 용접부를 제외한 나머지 두께보다 얇은 제2 용접부를 포함하는 것인 이차 전지.
  3. 청구항 1에 있어서,
    상기 제1 용접부는 상기 제1 용접부의 외측에서 내측으로 갈수록 두께가 점점 얇아지는 구조를 갖는 것인 이차 전지.
  4. 청구항 1에 있어서,
    상기 제1 용접부의 평균두께와 상기 제1 용접부를 제외한 집전판의 두께의 비는 0.4:1 내지 0.9:1인 것인 이차 전지.
  5. 청구항 1에 있어서,
    상기 제1 용접부의 평균두께는 0.05cm 이상 0.5cm 이하인 것인 이차 전지.
  6. 청구항 2에 있어서,
    상기 제2 용접부의 평균두께와 상기 제1 용접부 및 제2 용접부를 제외한 집전판의 두께의 비는 0.4:1 내지 0.9:1인 것인 이차 전지.
  7. 청구항 2에 있어서,
    상기 제2 용접부의 평균두께는 0.05cm 이상 0.5cm 이하인 것인 이차 전지.
  8. 청구항 2에 있어서,
    상기 2 이상의 레그 각각에 포함되는 제2 용접부의 면적은 서로 동일한 것인 이차 전지.
  9. 청구항 1에 있어서,
    상기 집전판은 상기 중심부에 일 단부가 연결되고 상기 중심부로부터 상기 전극 조립체의 외곽 방향으로 연장된 4개의 레그를 더 포함하고, 상기 4개의 레그는 상기 전극 조립체의 권취 방향으로 이격되어 위치하는 것인 이차 전지.
  10. 청구항 1에 있어서,
    상기 제1 용접부는 상기 집전판의 가장자리와 이격되어 위치하는 것인 이차 전지.
  11. 청구항 2에 있어서,
    상기 제2 용접부는 상기 집전판의 가장자리와 이격되어 위치하는 것인 이차 전지.
  12. 청구항 2에 있어서,
    상기 제1 용접부와 제2 용접부는 이격되어 위치하는 것인 이차 전지.
  13. 청구항 1에 있어서,
    상기 이차 전지는 상기 전극 조립체를 수용하고 개구부를 포함하는 전지 캔; 상기 전지 캔의 개구부를 밀폐하도록 구성되는 캡 플레이트; 및 상기 집전판의 제1 용접부와 용접되어 결합하고 상기 전지 캔과 리벳팅되는 전극 단자를 더 포함하는 것인 이차 전지.
  14. 제1 전극, 분리막 및 제2 전극이 적층되고 권취되어 구성된 전극 조립체로서, 상기 제1 전극은 제1 전극 집전체 및 상기 제1 전극 집전체 상에 구비된 전극 활물질층을 포함하고, 상기 집전체의 권취 방향에 따른 장변 단부는 상기 전극 활물질층이 구비되지 않은 제1 전극의 무지부를 포함하는 전극 조립체;
    상기 전극 조립체를 수용하고 개구부를 포함하는 전지 캔;
    상기 전지 캔의 개구부를 밀폐하도록 구성되는 캡 플레이트; 및
    상기 전지 캔과 리벳팅되는 전극 단자를 포함하는 이차 전지에 적용되는 집전판으로써,
    상기 제1 전극의 무지부가 노출된 상기 전극 조립체의 일 단부에 구비되고, 상기 전극 조립체의 권심과 대응되는 중심부를 포함하고, 상기 중심부는 상기 집전판의 나머지 두께보다 얇은 제1 용접부를 포함하는 것인 집전판.
  15. 청구항 1 내지 13 중 어느 한 항에 따른 이차 전지를 복수개 포함하는 배터리 팩.
  16. 청구항 15에 따른 배터리 팩을 적어도 하나 포함하는 자동차.
PCT/KR2022/002446 2021-02-19 2022-02-18 이차 전지, 및 이를 포함하는 배터리 팩 및 자동차 WO2022177362A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/035,537 US20230411805A1 (en) 2021-02-19 2022-02-18 Secondary battery, and battery pack and vehicle comprising same
EP22756560.3A EP4297172A1 (en) 2021-02-19 2022-02-18 Secondary battery, and battery pack and vehicle comprising same
JP2023527446A JP2023549142A (ja) 2021-02-19 2022-02-18 二次電池、及びこれを含む電池パック及び自動車
CN202280007902.0A CN116569407A (zh) 2021-02-19 2022-02-18 二次电池以及包括所述二次电池的电池组和车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0022869 2021-02-19
KR20210022869 2021-02-19

Publications (1)

Publication Number Publication Date
WO2022177362A1 true WO2022177362A1 (ko) 2022-08-25

Family

ID=82931041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002446 WO2022177362A1 (ko) 2021-02-19 2022-02-18 이차 전지, 및 이를 포함하는 배터리 팩 및 자동차

Country Status (6)

Country Link
US (1) US20230411805A1 (ko)
EP (1) EP4297172A1 (ko)
JP (1) JP2023549142A (ko)
KR (1) KR20220118946A (ko)
CN (2) CN217788661U (ko)
WO (1) WO2022177362A1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285899A (ja) * 1999-03-31 2000-10-13 Hitachi Maxell Ltd 金属板集電体およびこれを用いた二次電池
US6677082B2 (en) 2000-06-22 2004-01-13 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
US6680143B2 (en) 2000-06-22 2004-01-20 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
KR20050121914A (ko) * 2004-06-23 2005-12-28 삼성에스디아이 주식회사 이차 전지와 이에 사용되는 전극 조립체
KR100786871B1 (ko) * 2006-07-27 2007-12-20 삼성에스디아이 주식회사 이차 전지
US20180182560A1 (en) * 2013-04-10 2018-06-28 Maxwell Technologies, Inc. Collector plate for energy storage device and methods of manufacturing
CN108461757A (zh) * 2018-03-13 2018-08-28 苏州安靠电源有限公司 圆柱形电池及其电极集流组件和制法
KR20210022869A (ko) 2019-08-21 2021-03-04 한양대학교 산학협력단 뉴런 하나당 다수의 시냅스들을 갖는 3차원 뉴로모픽 소자

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101629499B1 (ko) 2013-10-14 2016-06-10 주식회사 엘지화학 전극조립체 및 이를 포함하는 이차전지

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285899A (ja) * 1999-03-31 2000-10-13 Hitachi Maxell Ltd 金属板集電体およびこれを用いた二次電池
US6677082B2 (en) 2000-06-22 2004-01-13 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
US6680143B2 (en) 2000-06-22 2004-01-20 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
KR20050121914A (ko) * 2004-06-23 2005-12-28 삼성에스디아이 주식회사 이차 전지와 이에 사용되는 전극 조립체
KR100786871B1 (ko) * 2006-07-27 2007-12-20 삼성에스디아이 주식회사 이차 전지
US20180182560A1 (en) * 2013-04-10 2018-06-28 Maxwell Technologies, Inc. Collector plate for energy storage device and methods of manufacturing
CN108461757A (zh) * 2018-03-13 2018-08-28 苏州安靠电源有限公司 圆柱形电池及其电极集流组件和制法
KR20210022869A (ko) 2019-08-21 2021-03-04 한양대학교 산학협력단 뉴런 하나당 다수의 시냅스들을 갖는 3차원 뉴로모픽 소자

Also Published As

Publication number Publication date
CN217788661U (zh) 2022-11-11
KR20220118946A (ko) 2022-08-26
CN116569407A (zh) 2023-08-08
EP4297172A1 (en) 2023-12-27
JP2023549142A (ja) 2023-11-22
US20230411805A1 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
WO2022158858A2 (ko) 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2022177377A1 (ko) 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2022177378A1 (ko) 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2022139451A1 (ko) 전극 조립체 및 이를 포함하는 이차전지
WO2022216076A1 (ko) 전극 조립체, 배터리 셀, 배터리 셀 가공장치, 이를 포함하는 배터리 팩 및 차량
WO2022177360A1 (ko) 이차 전지 및 이를 포함하는 배터리 팩 및 자동차
WO2016093590A1 (ko) 개선된 출력 특성을 가진 이차 전지
WO2023013933A1 (ko) 전극 조립체, 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차
WO2023096062A1 (ko) 전극 단자의 리벳팅 구조 및 이를 포함하는 배터리 셀, 배터리 팩 및 자동차
WO2023063540A1 (ko) 배터리의 제조방법
WO2023075523A1 (ko) 원통형 배터리 셀, 이를 포함하는 배터리 및 자동차 및 집전판
WO2022177179A2 (ko) 전극 조립체 및 그 제조 방법, 전극 조립체를 포함하는 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차
WO2022177362A1 (ko) 이차 전지, 및 이를 포함하는 배터리 팩 및 자동차
WO2022216143A1 (ko) 전극 조립체, 배터리 셀, 배터리 셀 가공장치, 이를 포함하는 배터리 팩 및 차량
WO2022177356A1 (ko) 전극 단자의 리벳팅 구조 및 이를 포함하는 이차 전지, 배터리 팩 및 자동차
WO2024014939A1 (ko) 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차
WO2022177355A1 (ko) 이차 전지 및 이를 포함하는 배터리 팩 및 자동차
WO2022216092A1 (ko) 전극 조립체, 배터리 셀, 배터리 팩 및 자동차
WO2022177379A1 (ko) 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023096390A1 (ko) 전극 단자의 고정 구조 및 이를 포함하는 배터리, 배터리 팩 및 자동차
WO2023149688A1 (ko) 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023149689A1 (ko) 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2024019592A1 (ko) 전극 단자의 고정 구조 및 이를 포함하는 배터리, 배터리 팩 및 자동차
WO2023090937A1 (ko) 절연테이프, 젤리롤, 이차 전지, 배터리 팩 및 자동차
WO2022191674A1 (ko) 전해액 함침성이 우수한 전극 조립체 및 이를 포함하는 배터리, 배터리 팩 및 자동차

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756560

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18035537

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023527446

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280007902.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022756560

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022756560

Country of ref document: EP

Effective date: 20230919