WO2022176853A1 - 印刷配線板 - Google Patents

印刷配線板 Download PDF

Info

Publication number
WO2022176853A1
WO2022176853A1 PCT/JP2022/005952 JP2022005952W WO2022176853A1 WO 2022176853 A1 WO2022176853 A1 WO 2022176853A1 JP 2022005952 W JP2022005952 W JP 2022005952W WO 2022176853 A1 WO2022176853 A1 WO 2022176853A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
hole
wiring board
printed wiring
insulating layer
Prior art date
Application number
PCT/JP2022/005952
Other languages
English (en)
French (fr)
Inventor
智哉 長瀬
信宏 島田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to KR1020237028246A priority Critical patent/KR20230132838A/ko
Priority to JP2023500854A priority patent/JPWO2022176853A1/ja
Priority to CN202280015889.3A priority patent/CN116868697A/zh
Priority to EP22756171.9A priority patent/EP4297180A1/en
Publication of WO2022176853A1 publication Critical patent/WO2022176853A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/121Hollow waveguides integrated in a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/028Transitions between lines of the same kind and shape, but with different dimensions between strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/0959Plated through-holes or plated blind vias filled with insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09827Tapered, e.g. tapered hole, via or groove
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09854Hole or via having special cross-section, e.g. elliptical

Definitions

  • the present disclosure relates to printed wiring boards.
  • a conventional waveguide has no change in diameter at each position in the thickness direction of the printed wiring board.
  • a printed wiring board includes a first insulating layer and through-hole conductors.
  • the first insulating layer has a through hole penetrating from the first surface of the first insulating layer to the second surface opposite to the first surface.
  • the through-hole conductor has a portion positioned on the inner wall of the through-hole and having an opening area in a cross section parallel to the second surface that increases from the first surface side toward the second surface side.
  • FIG. 1A and 1B are a plan view and a cross-sectional view of a printed wiring board according to a first embodiment
  • FIG. FIG. 10 is a plan view of a printed wiring board according to Modification 1
  • 10 is a plan view of another printed wiring board according to Modification 1
  • FIG. 10 is a plan view of another printed wiring board according to Modification 1
  • FIG. 10 is a plan view of another printed wiring board according to Modification 1
  • FIG. 10 is a plan view of another printed wiring board according to Modification 1
  • FIG. 10 is a plan view of another printed wiring board according to Modification 1
  • FIG. FIG. 11 is a cross-sectional view of a printed wiring board according to Modification 2
  • FIG. 11 is a cross-sectional view of another printed wiring board according to modification 2;
  • FIG. 5 is a cross-sectional view of a printed wiring board according to a second embodiment
  • 8A and 8B are a plan view and a cross-sectional view of a printed wiring board according to a third embodiment
  • FIG. FIG. 11 is a cross-sectional view of a printed wiring board according to a fourth embodiment
  • FIG. 11 is a cross-sectional view of a printed wiring board according to a fifth embodiment
  • FIG. 11 is a cross-sectional view of a printed wiring board according to a sixth embodiment
  • It is sectional drawing explaining the manufacturing method of a printed wiring board. It is sectional drawing explaining the manufacturing method of a printed wiring board. It is sectional drawing explaining the manufacturing method of a printed wiring board. It is sectional drawing explaining the manufacturing method of a printed wiring board. It is sectional drawing explaining the manufacturing method of a printed wiring board.
  • each drawing referred to below shows only the main members necessary for explaining the embodiment in a simplified manner. Accordingly, the printed wiring board 1 of the present disclosure may include any components not shown in the referenced figures. Also, the dimensions of the members in each drawing do not faithfully represent the actual dimensions and dimensional ratios of the constituent members.
  • the printed wiring board 1 As shown in FIG. 1 , the printed wiring board 1 according to the first embodiment includes a first insulating layer 11 and through-hole conductors 20 .
  • the orientation of each part of the printed wiring board 1 will be described using an XYZ orthogonal coordinate system in which the thickness direction of the printed wiring board 1 is the Z direction.
  • the surface facing the +Z direction of each layer constituting the printed wiring board 1 is also referred to as the "upper surface”
  • the surface facing the -Z direction is also referred to as the "lower surface”.
  • viewing from the Z direction is referred to as “planar view”.
  • the first insulating layer 11 is a plate member made of an insulating material.
  • the lower surface of the first insulating layer 11 will be referred to as the first surface S1
  • the upper surface (the surface opposite to the first surface S1) will be referred to as the second surface S2.
  • the first surface S1 and the second surface S2 are parallel to the XY plane.
  • a section parallel to the second surface S2 is referred to as a "transverse section”
  • a section perpendicular to the second surface S2 is referred to as a "longitudinal section”.
  • the material of the first insulating layer 11 is not particularly limited as long as it has insulating properties.
  • Materials for the first insulating layer 11 include, for example, epoxy resin, bismaleimide-triazine resin, polyimide resin, polyphenylene ether (PPE) resin, phenol resin, polytetrafluoroethylene (PTFE) resin, silicone resin, polybutadiene resin, and polyester. resins, melamine resins, urea resins, polyphenylene sulfide (PPS) resins, polyphenylene oxide (PPO) resins, and the like. Two or more of these resins may be mixed.
  • the first insulating layer 11 may contain a fibrous base material such as glass cloth.
  • Inorganic fillers such as aluminum hydroxide, silica, or barium sulfate, or organic fillers such as phenolic resins or methacrylic resins, may be added to the first insulating layer 11 .
  • the first insulating layer 11 has a through hole 111 penetrating from the first surface S1 to the second surface S2.
  • An inner wall 112 of the through hole 111 has a truncated cone side shape. Therefore, the shape of the opening on the first surface S1 of the through-hole 111, the opening on the second surface S2, and the opening on any cross section are all circular. Also, the radius of the circle formed by these openings increases from the first surface S1 toward the second surface S2.
  • the through-hole conductor 20 is positioned on the inner wall 112 of the through-hole 111 and extends along the inner wall 112 from the first surface S1 to the second surface S2.
  • Through-hole conductor 20 has a substantially uniform thickness. Therefore, the inner wall 203 of the through-hole conductor 20 has a truncated conical side surface like the inner wall 112 of the through-hole 111 .
  • the first surface side opening 201 on the first surface S1 and the second surface side opening 202 on the second surface S2 are not blocked by other conductors.
  • the first surface side opening 201 and the second surface side opening 202 of the through-hole conductor 20 and the shape of the opening in any cross section are all circular.
  • the through-hole conductor 20 has an opening area in the cross section that increases from the first surface S1 to the second surface S2 toward the second surface S2.
  • the through-hole conductor 20 has an opening width in a direction parallel to the second surface S2 (opening width in the X direction in FIG. 1) in an arbitrary longitudinal section passing through the central axis of the through-hole 111. to the second surface S2, increasing (diameter-expanding) toward the second surface S2.
  • through-hole conductor 20 has a portion that is inclined with respect to the direction (Z direction) perpendicular to second surface S2 in any vertical cross section passing through the central axis of through hole 111 . More specifically, the through-hole conductor 20 has a portion where the inner wall 203 is inclined with respect to the direction perpendicular to the second surface S2 in the longitudinal section. From another point of view, the through-hole conductor 20 has a portion in which the area of the opening in the cross section increases from the first surface S1 side toward the second surface S2 side.
  • the through-hole conductor 20 may be a metal (plated layer) such as copper, nickel and/or gold formed on the inner wall 112 of the through-hole 111 by plating, for example.
  • the through-hole conductor 20 functions as a waveguide for propagating electromagnetic waves from the first surface side opening 201 to the second surface side opening 202 as indicated by the white arrows in FIG.
  • the through-hole conductor 20 as a waveguide has ⁇ /2 ⁇ D1 ⁇ and ⁇ /2 ⁇ where D1 is the diameter of the opening 201 on the first surface side and D2 is the diameter of the opening 202 on the second surface side.
  • An electromagnetic wave with a wavelength ⁇ that satisfies both D2 ⁇ is propagated.
  • electromagnetic waves can be transmitted from the second surface side opening 202 of the printed wiring board 1 in the +Z direction.
  • an output terminal of an MMIC that outputs electromagnetic waves such as microwaves, or a connection pad electrically connected to the output terminal, is arranged near the first surface side opening 201 . Then, the electromagnetic wave output from the electrode can be guided to the second surface S2 side by the through-hole conductor 20 and transmitted from the second surface side opening 202 in the +Z direction.
  • MMIC monolithic microwave integrated circuit
  • an electromagnetic wave incident on the second surface side opening 202 from above the printed wiring board 1 is guided to the first surface S1 side by the through-hole conductor 20, and is incident on the above electrodes from the first surface side opening 201 to be received.
  • the electromagnetic waves open in the propagation direction.
  • a waveguide of increasing diameter feed horn waveguide
  • the electromagnetic wave becomes closer to a plane wave as it approaches the second surface S2.
  • the opening diameter of the through-hole conductor 20 increases as the electromagnetic wave travels toward the second-surface-side opening 202
  • the electromagnetic wave inside the through-hole conductor 20 does not reach the inside of the through-hole conductor 20 as compared with a waveguide having a constant opening diameter. Reflection is difficult to occur.
  • the signal transmission gain is improved compared to conventional waveguides having a constant aperture diameter.
  • the efficiency of convergence of electromagnetic waves incident on the through-hole conductor 20 from the second surface side opening 202 can be enhanced.
  • the printed wiring board 1 of this embodiment is a first insulating layer, a through-hole conductor and a through-hole;
  • the first insulating layer has a first surface and a second surface opposite to the first surface;
  • the through-hole conductor is located from the first surface to the second surface, and a portion surrounded by the through-hole conductor is a through hole;
  • the through hole has a portion whose opening area in a cross section parallel to the second surface increases from the first surface toward the second surface.
  • Modification 1 Next, Modification 1 of the first embodiment will be described.
  • the printed wiring board 1 according to Modification 1 is different from the above-described embodiment in that the aspect ratio of the opening in the cross section of the through-hole conductor 20 exceeds one.
  • differences from the first embodiment will be described, and descriptions of common points will be omitted.
  • Modification 1 may be combined with second to sixth embodiments described later.
  • the through-hole conductor 20 of the printed wiring board 1 according to Modification 1 has a first-surface side opening 201, a second-surface side opening 202, and opening shapes similar to each other in arbitrary cross sections. Rectangular. These rectangles increase in area from the first surface S1 toward the second surface S2.
  • the inner wall 203 is inclined with respect to the direction (Z direction) perpendicular to the second surface S2 in any longitudinal section passing through the central axis of the through hole 111 .
  • the central axis of the through-hole 111 can be an axis passing through the center of gravity of the opening shape in the cross section, for example (FIGS.
  • the portion where the inner wall 203 is inclined with respect to the Z direction is in either the longitudinal direction (the inner wall parallel to the X direction) or the width direction (the inner wall parallel to the Y direction) of the through-hole conductor 20. may In particular, it may be on the inner longitudinal wall.
  • the length of the long side (major diameter) of the first surface side opening 201 is a1, and the length of the short side (minor diameter) is b1.
  • the length of the long side of the second surface side opening 202 is a2, and the length of the short side is b2.
  • the through-hole conductor 20 of FIG. 2 propagates an electromagnetic wave with a wavelength ⁇ that satisfies both ⁇ /2 ⁇ a1 ⁇ and ⁇ /2 ⁇ a2 ⁇ .
  • the length of the through-hole conductor 20 is larger than the width of the through-hole conductor 20, the range of wavelengths of electromagnetic waves that can pass through can be widened.
  • the short diameter is relatively small, the electromagnetic field of the plane wave propagating through the waveguide is easily oriented in the long diameter (X direction in FIG. 2), and the propagation efficiency can be improved.
  • the through-hole conductor 20 may have a rectangular opening in cross section with curved corners 204 . That is, the corner portion 204 of the inner wall of the through-hole conductor 20 may be curved concave. According to this configuration, the magnetic field (magnetic lines of force) circulating around the current propagating in the Z direction in the through-hole conductor 20 is less likely to be reflected by the inner wall near the corner 204 during signal transmission and reception. Therefore, the signal transmission gain can be improved.
  • the shape of the opening in the cross section of through-hole conductor 20 is not limited to the rectangular shape shown in FIGS.
  • the through-hole conductor 20 may have a racetrack shape (elliptical shape extending in the X direction) in cross section.
  • the through-hole conductor 20 may have a dumbbell-shaped opening in the cross section.
  • the dumbbell shape has circular ends on one side and the other side in the X direction, and the central part excluding these ends is belt-shaped.
  • the dumbbell shape is a shape in which two circular ends are connected by a band-shaped central portion narrower than the diameter of the circular shape.
  • the through-hole conductor 20 may have a bowtie-shaped opening in the cross section.
  • the bowtie type has trapezoidal ends on one side and the other side in the X direction, and a central portion excluding the ends is belt-shaped.
  • the trapezoidal shape of each end is a shape in which the width in the Y direction increases toward the end in the X direction.
  • racetrack-shaped, dumbbell-shaped, and bowtie-shaped through-hole conductors 20 also have the same effect as the rectangular through-hole conductors 20 .
  • Modification 2 Next, Modification 2 of the first embodiment will be described.
  • the printed wiring board 1 according to Modification 2 differs from the above-described embodiment in the shape of the vertical cross section of through-hole conductors 20 .
  • differences from the first embodiment will be described, and descriptions of common points will be omitted.
  • Modification 2 may be combined with Modification 1.
  • Modification 2 may be combined with second to sixth embodiments described later.
  • the through-hole conductor 20 of the printed wiring board 1 according to Modification 2 has a portion p1 where the opening area in the cross section increases toward the second surface S2 and a portion p2 where the opening area is constant. and A portion p1 is a portion of the through-hole conductor 20 within a predetermined distance range from the first surface S1, and a portion p2 is a portion of the through-hole conductor 20 excluding the portion p1.
  • the opening width in the direction parallel to the second surface S2 increases toward the second surface S2 in the portion p1.
  • the opening width in the direction parallel to the second surface S2 is constant in the portion p2.
  • inner wall 203 is inclined with respect to the direction (Z direction) perpendicular to second surface S2.
  • the inner wall surface of the portion p2 is parallel to the Z direction.
  • the configuration may be such that the portion p2 having a constant opening area is on the first surface S1 side, and the portion p1 having an increased opening area is on the second surface S2 side.
  • the through-hole conductor 20 may have a portion in which the area of the opening in the cross section increases from the side of the first surface S1 toward the side of the second surface S2. It suffices if it becomes monotonically non-decreasing toward the second surface S2.
  • the through-hole conductor 20 of the printed wiring board 1 according to Modification 2 has a portion p3 in which the cross-sectional opening area decreases toward the second surface S2 and a cross-sectional opening area of and a portion p1 that increases toward the second surface S2.
  • a portion p3 is a portion of the through-hole conductor 20 within a predetermined distance range from the first surface S1
  • a portion p1 is a portion of the through-hole conductor 20 excluding the portion p3.
  • a printed wiring board 1 according to the second embodiment differs from the first embodiment in that it has a first conductor layer 21 .
  • differences from the first embodiment will be described, and descriptions of common points will be omitted.
  • the printed wiring board 1 has the first conductor layer 21 on the second surface S2 of the first insulating layer 11 .
  • the first conductor layer 21 is electrically connected to the through-hole conductors 20 .
  • the first conductor layer 21 is arranged to maintain the size of the second surface side opening 202 of the through-hole conductor 20 . That is, the first conductor layer 21 is arranged so as not to block the second surface side opening 202 .
  • the first conductor layer 21 may be provided only on a portion of the second surface S ⁇ b>2 , for example, around the connection portion with the through-hole conductor 20 .
  • the first conductor layer 21 may be, for example, a plated layer (copper, nickel, gold, or the like) formed by plating, a metal foil such as copper foil, an evaporated film, a sputtered film, or the like. Among these, from the viewpoint of cost and mass productivity, it is preferable to use a copper plating layer and/or a copper foil.
  • Printed wiring board 1 may have first conductor layer 21 electrically connected to through-hole conductor 20 also on second surface S2. As the first insulating layer 11 having the first conductor layer 21, a single-sided or double-sided copper foil printed board may be used.
  • a printed wiring board 1 according to the third embodiment differs from the second embodiment in that it has an organic resin 40 , a second insulating layer 12 and a plurality of first via conductors 31 .
  • differences from the second embodiment will be described, and descriptions of common points will be omitted.
  • the printed wiring board 1 includes an organic resin 40 (resin) filling the space surrounded by the through-hole conductors 20, and an organic resin 40 (resin) provided on the first conductor layer 21. and a plurality of via conductors 31 penetrating through the second insulating layer 12 .
  • the space surrounded by the through-hole conductor 20 means the space surrounded by the inner wall of the through-hole conductor 20, the plane formed by the first surface side opening 201, and the plane formed by the second surface side opening 202.
  • a plurality of via conductors 31 are electrically connected to the first conductor layer 21 .
  • the plurality of via conductors 31 are arranged outside the second surface side opening 202 so as to surround the second surface side opening 202 in plan view toward the second surface S2. In FIG. 10, six via conductors 31 are provided to surround the second surface side opening 202 at equal intervals.
  • the material of the via conductors 31 may be any one of the plurality of materials exemplified as the material of the first conductor layer 21 above, or may be the same as the material of the first conductor layer 21 .
  • organic resin 40 filled in the through hole 111 (through-hole conductor 20) epoxy resin (relative dielectric constant ⁇ : 2.5 to 6.0), polyimide resin (relative dielectric constant ⁇ : 4.8 to 4.9 ), polyamide resin (relative dielectric constant ⁇ : 3.8 to 4.1), polyphenylene ether resin (relative dielectric constant ⁇ : 2.8 to 2.9), and the like.
  • An inorganic filler may be mixed in the organic resin 40 .
  • the second insulating layer 12 liquid crystal polymer (relative permittivity ⁇ : 3.5 to 3.6), PTFE (polytetrafluoroethylene, relative permittivity ⁇ : 2.1), cyclic olefin copolymer (relative permittivity: 2.7) and so on.
  • the second insulating layer 12 preferably has a dielectric constant lower than that of the organic resin 40 .
  • the dielectric constant of the second insulating layer 12 and/or the organic resin 40 can be adjusted. good.
  • an epoxy resin may be used for the organic resin 40 and a liquid crystal polymer may be used for the second insulating layer 12 .
  • the same material as the organic resin 40 may be used for the second insulating layer 12 .
  • the via conductors 31 suppress the spread of the electromagnetic wave as a plane wave after reaching the first conductor layer 21 from the through-hole conductor 20 at the time of transmission. while improving directivity. Also, during reception, the convergence efficiency of plane waves can be enhanced.
  • the dielectric constant of the second insulating layer 12 is lower than the dielectric constant of the organic resin 40, the electromagnetic waves emitted from the through-hole conductor 20 toward the first conductor layer 21 are cut off during transmission. Since the off-frequency can be increased, higher-order mode electromagnetic waves can be more attenuated. In addition, in the second insulating layer 12 having a low relative permittivity, the wavelength of the electromagnetic wave at the time of emission can be widened.
  • a printed wiring board 1 according to the fourth embodiment differs from the third embodiment in that it has a second conductor layer 22 .
  • differences from the third embodiment will be described, and descriptions of common points will be omitted.
  • the printed wiring board 1 has a second conductor layer 22 on the second insulating layer 12 .
  • the second conductor layer 22 is electrically connected to multiple via conductors 31 .
  • the second conductor layer 22 has an opening 221 having a smaller area than the second surface side opening 202 at a position surrounding the central axis 111a of the through hole 111 in plan view.
  • the shape of the opening 221 may be circular, for example. Also, the shape of the opening 221 may be similar to the shape of the second surface side opening 202 .
  • the material of the second conductor layer 22 may be any one of the plurality of materials exemplified as the material of the first conductor layer 21 above, or may be the same as the material of the first conductor layer 21 . Also, the second conductor layer 22 and the via conductors 31 may be integrated by being formed in a common process such as plating.
  • the directivity of electromagnetic waves radiated in the +Z direction through the openings 221 from the through-hole conductors 20 is enhanced by the via conductors 31 and the openings 221 of the second conductor layer 22. Convergence efficiency can be improved.
  • the side lobe portion of the electromagnetic wave can be reduced by passing through the opening 221 of the second conductor layer 22 during reception, the main lobe of the electromagnetic wave can be introduced into the through-hole conductor 20 with high efficiency. can.
  • the plane wave tends to be directed in a direction perpendicular to the traveling direction of the electromagnetic wave (a direction parallel to the second surface S2).
  • electromagnetic waves in higher-order modes can be attenuated.
  • the printed wiring board 1 according to the fifth embodiment corresponds to the printed wiring board 1 according to the fourth embodiment in which components are added to the top surface and the bottom surface, respectively.
  • differences from the fourth embodiment will be described, and descriptions of common points will be omitted.
  • the printed wiring board 1 has first conductors electrically connected to the through-hole conductors 20 on the first surface S1 (lower surface) of the first insulating layer 11 as well. It has layer 21 .
  • a third insulating layer 13 covering the first surface side openings 201 of the through-hole conductors 20 is provided on the lower surface of the first conductor layer 21 on the first surface S1.
  • a third conductor layer 23 is provided on the third insulating layer 13 (lower surface).
  • the third conductor layer 23 has a plurality of connection pads 231 and 232 (connections) electrically connected to terminals of the MMIC 50 as an electronic component.
  • connection pad 231 is positioned so as to overlap the central axis 111a of the through-hole 111 in plan view toward the first surface S1. That is, the connection pads 231 are positioned so as to overlap the central axis 111a. Also, the connection pads 232 are electrically connected to the first conductor layer 21 on the first surface S1 by via conductors 32 penetrating the third insulating layer 13 . A fourth insulating layer 14 is provided on the lower surfaces of the third insulating layer 13 and the third conductor layer 23 .
  • the material of the third insulating layer 13 and the fourth insulating layer 14 may be any one of the plurality of materials exemplified above as the material of the second insulating layer 12, and is the same as the material of the second insulating layer 12.
  • the material of the via conductors 32 and the third conductor layer 23 may be any one of the plurality of materials exemplified as the material of the first conductor layer 21 above, and may be the same as the material of the first conductor layer 21.
  • the via conductors 32 and the third conductor layer 23 may be integrated by being formed in a common process such as plating.
  • a fifth insulating layer 15 covering the openings 221 of the second conductor layer 22 is provided on the upper surface of the second conductor layer 22 .
  • a fourth conductor layer 24 is provided on the upper surface of the fifth insulating layer 15 in a range covering the opening 221 in plan view.
  • the fourth conductor layer 24 functions as a patch antenna.
  • the material of the fifth insulating layer 15 may be any one of the plurality of materials exemplified as the material of the second insulating layer 12 above, or may be the same as the material of the second insulating layer 12 .
  • the dielectric constant of the second insulating layer 12 is lower than the dielectric constant of the organic resin 40
  • the dielectric constant of the fifth insulating layer 15 is lower than the dielectric constant of the second insulating layer 12.
  • a low configuration is preferred.
  • epoxy resin may be used for the organic resin 40
  • liquid crystal polymer may be used for the second insulating layer 12
  • PTFE may be used for the fifth insulating layer 15 .
  • the material of the fourth conductor layer 24 may be any one of the plurality of materials exemplified as the material of the first conductor layer 21 above, or may be the same as the material of the first conductor layer 21 .
  • an electromagnetic wave (high frequency signal) emitted from the terminal of the MMIC 50 can be guided from the connection pad 231 to the through-hole conductor 20 and transmitted from the fourth conductor layer 24 in the +Z direction.
  • the connection pad 231 is located on the center axis 111a of the through hole 111, the electromagnetic wave emitted from the terminal of the MMIC 50 can be linearly propagated to the narrow through hole conductor 20. FIG. Therefore, the transmission loss of the electromagnetic wave when entering the through-hole conductor 20 from the MMIC 50 can be reduced. Further, at the time of reception, the electromagnetic wave passing through the through-hole conductor 20 from the fourth conductor layer 24 as a patch antenna can be transmitted to the MMIC 50 with a high convergence rate.
  • a printed wiring board 1 according to the sixth embodiment differs from the first embodiment in that an inner layer conductor 25 is provided inside a first insulating layer 11 .
  • differences from the first embodiment will be described, and descriptions of common points will be omitted.
  • the printed wiring board 1 has inner layer conductors 25 inside the first insulating layer 11 .
  • the inner layer conductor 25 is electrically connected to the through-hole conductor 20 .
  • the inner layer conductor 25 is a plate-shaped conductor parallel to the second surface S2.
  • the first insulating layer 11 may have a structure in which a plurality of insulators are laminated in the Z direction, and the inner layer conductor 25 may be formed at any interface of these insulators.
  • the inner layer conductor 25 may be provided in multiple layers.
  • the sixth embodiment may be combined with the second to fifth embodiments. That is, the printed wiring board 1 of the second to fifth embodiments may have the inner layer conductor 25 inside the first insulating layer 11 .
  • deformation of the waveguide including the through-hole conductor 20 can be reduced when the first insulating layer 11 receives a load that may cause bending or the like. can be done.
  • the disturbance of the propagating electromagnetic wave can be reduced, so that a stable transmission gain (transmission efficiency) can be obtained.
  • the first insulating layer 11 is, for example, glass cloth impregnated with epoxy resin (relative permittivity ⁇ : 4.6), and the first conductor layer 21 is copper foil.
  • a through-hole 111 is formed in the printed board using a reamer-type drill whose tip is smaller in diameter than its rear end.
  • a small-diameter drill is also used for shapes with corners such as rectangles.
  • electroless copper plating and electrolytic copper plating are performed to form through-hole conductors 20 on inner walls 112 of through-holes 111 .
  • the first conductor layer 21 may also be formed in this step.
  • the space surrounded by the through-hole conductors 20 is filled with an organic resin 40 of epoxy resin (relative permittivity ⁇ : 4.3). Further, a liquid crystal polymer (relative dielectric constant ⁇ : 3.5 to 3.6) is laid up on the first surface S1 side and the second surface S2 side of the structure filled with the organic resin 40, and the structure in this state is The body is heated and pressed in the Z direction (eg, 200° C., 2 hours). As a result, the liquid crystal polymer is once melted and then cured to form the second insulating layer 12 on the second surface S2 side and the third insulating layer 13 on the first surface S1 side, as shown in FIG. be.
  • a second conductor layer 22, a fifth insulating layer 15, and a fourth conductor layer 24 are formed on the second surface S2 side, and on the first surface S1 side.
  • Via conductors 32, third conductor layer 23, fourth insulating layer 14, and MMIC 50 are formed to complete printed wiring board 1 shown in FIG.
  • the present disclosure can be used for printed wiring boards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

印刷配線板は、第1絶縁層およびスルーホール導体を備える。第1絶縁層は、該第1絶縁層の第1面から、該第1面とは反対側の第2面まで貫通する貫通孔を有する。スルーホール導体は、貫通孔の内壁に位置し、かつ、第2面に平行な断面における開口面積が第1面側から第2面側に向かうに従って増大する部分を有する。

Description

印刷配線板
 本開示は、印刷配線板に関する。
 従来、印刷配線板の一方の面から他方の面への信号の伝送に、印刷配線板の厚み方向に延在する導波管を用いる技術が知られている(例えば、特開2015-139042号公報)。従来の導波管は、印刷配線板の厚み方向の各位置で径の変化が無いものであった。
 本開示の一態様に係る印刷配線板は、第1絶縁層およびスルーホール導体を備える。前記第1絶縁層は、該第1絶縁層の第1面から、該第1面とは反対側の第2面まで貫通する貫通孔を有する。前記スルーホール導体は、前記貫通孔の内壁に位置し、かつ、前記第2面に平行な断面における開口面積が前記第1面側から前記第2面側に向かうに従って増大する部分を有する。
第1の実施形態に係る印刷配線板の平面図および断面図である。 変形例1に係る印刷配線板の平面図である。 変形例1に係る他の印刷配線板の平面図である。 変形例1に係る他の印刷配線板の平面図である。 変形例1に係る他の印刷配線板の平面図である。 変形例1に係る他の印刷配線板の平面図である。 変形例2に係る印刷配線板の断面図である。 変形例2に係る他の印刷配線板の断面図である。 第2の実施形態に係る印刷配線板の断面図である。 第3の実施形態に係る印刷配線板の平面図および断面図である。 第4の実施形態に係る印刷配線板の断面図である。 第5の実施形態に係る印刷配線板の断面図である。 第6の実施形態に係る印刷配線板の断面図である。 印刷配線板の製造方法を説明する断面図である。 印刷配線板の製造方法を説明する断面図である。 印刷配線板の製造方法を説明する断面図である。
 以下、実施の形態を図面に基づいて説明する。ただし、以下で参照する各図は、説明の便宜上、実施形態を説明する上で必要な主要部材のみを簡略化して示したものである。したがって、本開示の印刷配線板1は、参照する各図に示されていない任意の構成部材を備え得る。また、各図中の部材の寸法は、実際の構成部材の寸法および寸法比率などを忠実に表したものではない。
〔第1の実施形態〕
 図1に示すように、第1の実施形態に係る印刷配線板1は、第1絶縁層11およびスルーホール導体20を備えている。以下では、印刷配線板1の厚さ方向をZ方向とするXYZ直交座標系により印刷配線板1の各部の向きを説明する。また、印刷配線板1を構成する各層の+Z方向を向く面を「上面」とも記し、-Z方向を向く面を「下面」とも記す。また、Z方向から見ることを「平面視」と記す。
 第1絶縁層11は、絶縁性を有する材質の板状部材である。以下、第1絶縁層11の下面を第1面S1と記し、上面(第1面S1とは反対側の面)を第2面S2と記す。第1面S1および第2面S2はXY平面と平行である。以下では、第2面S2に平行な断面を「横断面」と記し、第2面S2に垂直な断面を「縦断面」と記す。
 第1絶縁層11の材質は、絶縁性を有しているものであれば特に限定されない。第1絶縁層11の材質としては、例えば、エポキシ樹脂、ビスマレイミド-トリアジン樹脂、ポリイミド樹脂、ポリフェニレンエーテル(PPE)樹脂、フェノール樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ケイ素樹脂、ポリブタジエン樹脂、ポリエステル樹脂、メラミン樹脂、ユリア樹脂、ポリフェニレンサルファイド(PPS)樹脂、ポリフェニレンオキシド(PPO)樹脂などが挙げられる。これらの樹脂は2種以上を混合してもよい。また、印刷配線板1の強度を高められるという点から、第1絶縁層11には、ガラスクロスなどの繊維質基材が配合されていてもよい。また、第1絶縁層11には、水酸化アルミニウム、シリカまたは硫酸バリウムなどの無機充填剤、もしくはフェノール樹脂またはメタクリル樹脂などの有機充填材が配合されていてもよい。
 第1絶縁層11は、第1面S1から第2面S2まで貫通する貫通孔111を有する。貫通孔111の内壁112は、円錐台の側面の形状を有している。よって、貫通孔111の第1面S1における開口、第2面S2における開口、および任意の横断面における開口の形状は、いずれも円形である。また、これらの開口がなす円の半径は、第1面S1から第2面S2に向かうに従って増大している。
 スルーホール導体20は、貫通孔111の内壁112に位置しており、内壁112に沿って第1面S1から第2面S2まで延在している。スルーホール導体20は、厚さがほぼ均一である。よって、スルーホール導体20の内壁203は、貫通孔111の内壁112と同様、円錐台の側面の形状を有している。スルーホール導体20は、第1面S1における第1面側開口201、および第2面S2における第2面側開口202が他の導体で塞がっていない。スルーホール導体20の第1面側開口201、第2面側開口202、および任意の横断面における開口の形状は、いずれも円形である。これらの開口がなす円の半径は、第1面S1から第2面S2まで、該第2面S2に向かうに従って増大している。よって、スルーホール導体20は、第1面S1から第2面S2まで、該第2面S2に向かうに従って横断面における開口面積が増大している。また、スルーホール導体20は、貫通孔111の中心軸を通る任意の縦断面において、第2面S2に平行な方向についての開口幅(図1におけるX方向についての開口幅)が第1面S1から第2面S2まで、該第2面S2に向かうに従って増大している(拡径している)。また、スルーホール導体20は、貫通孔111の中心軸を通る任意の縦断面において、第2面S2に垂直な方向(Z方向)に対して傾斜している部分を有する。より詳しくは、スルーホール導体20は、上記縦断面において、第2面S2に垂直な方向に対して内壁203が傾斜している部分を有する。別の観点では、スルーホール導体20は、横断面における開口の面積が第1面S1側から第2面S2側に向かうに従って増大する部分を有する。スルーホール導体20は、例えば、めっき処理により貫通孔111の内壁112に形成された銅、ニッケルおよび/または金などの金属(めっき層)であってもよい。
 スルーホール導体20は、図1の白抜きの矢印で示すように第1面側開口201から第2面側開口202に電磁波を伝播させる導波管として機能する。導波管としてのスルーホール導体20は、第1面側開口201の直径をD1、第2面側開口202の直径をD2とした場合に、λ/2≦D1≦λ、およびλ/2≦D2≦λをいずれも満たす波長λの電磁波を伝播させる。この導波管を用いることで、印刷配線板1の第2面側開口202から+Z方向に電磁波を送信することができる。具体的には、第1面側開口201の近傍に、マイクロ波などの電磁波を出力するMMIC(モノリシックマイクロ波集積回路)の出力端子、または該出力端子と電気的に接続された接続パッドを配置すると、該電極から出力された電磁波をスルーホール導体20によって第2面S2側に導いて、第2面側開口202から+Z方向に送信することができる。
 また、印刷配線板1の上方から第2面側開口202に入射した電磁波をスルーホール導体20によって第1面S1側に導いて、第1面側開口201から上記の電極に入射させて受信することもできる。
 このように、第2面S2側に向かうに従ってスルーホール導体20の横断面の開口面積が増大する構成によれば、第2面S2側から電磁波を放射する場合に電磁波が伝搬方向に進むほど開口径が大きくなる導波管(フィードホーン型導波管)が得られる。よって、スルーホール導体20の内部において、電磁波が第2面S2に近付くに従って平面波に近付くため、第2面側開口202から外部に放射される電磁波の、平面波への変化が緩やかになる。また、電磁波が第2面側開口202に向かって進むほどスルーホール導体20の開口径が大きくなるため、開口径が一定である導波管と比較して、スルーホール導体20の内部における電磁波の反射が起きにくい。これらにより、開口径が一定である従来の導波管と比較して信号の伝送利得が向上する。
 また、受信時において、第2面側開口202からスルーホール導体20に入射する電磁波の収束効率を高めることができる。
 また、スルーホール導体20の内壁203がZ方向に対して傾斜している構成により、送信時において、第1面S1側から第2面S2側に向かう電磁波が次第に広がっていく領域が形成される。これにより、スルーホール導体20の内部において反射がより起きにくくなり、信号の伝送利得がさらに向上する。
 また、受信時において、第2面側開口202からスルーホール導体20に入射する電磁波の収束効率をさらに高めることができる。
 言い換えると、本実施形態の印刷配線板1は、
 第1絶縁層、スルーホール導体および貫通孔を備え、
 前記第1絶縁層は、第1面と、該第1面とは反対に位置する第2面と、を有し、
 前記スルーホール導体は、前記第1面から前記第2面にわたって位置しており、前記スルーホール導体に囲まれた部分が貫通孔であり、
 該貫通孔は、前記第2面に平行な断面における開口面積が前記第1面から前記第2面に向かうに従って増大する部分を有する。
〔変形例1〕
 次に、第1の実施形態の変形例1について説明する。変形例1に係る印刷配線板1は、スルーホール導体20の横断面における開口のアスペクト比が1を超える形状である点で上記実施形態と異なる。以下では、第1の実施形態と相違する点について説明し、共通する点については説明を省略する。変形例1は、後述する第2~第6の実施形態と組み合わせてもよい。
 図2に示すように、変形例1に係る印刷配線板1のスルーホール導体20は、第1面側開口201、第2面側開口202、および任意の横断面における開口の形状が互いに相似な長方形である。これらの長方形は、第1面S1から第2面S2に向かうに従って面積が増大している。また、貫通孔111の中心軸を通る任意の縦断面において、第2面S2に垂直な方向(Z方向)に対して内壁203が傾斜している。ここで、スルーホール導体20の開口が円形以外の形状である場合には、貫通孔111の中心軸は、例えば横断面における開口形状の重心を通る軸とすることができる(以下の図3~図6についても同様である)。
 なお、内壁203がZ方向に対して傾斜している部分は、スルーホール導体20の長手方向(X方向に平行な内壁)、短手方向(Y方向に平行な内壁)のいずれか一方にあってもよい。特に、長手方向の内壁にあるのがよい。
 第1面側開口201の長辺(長径)の長さはa1、短辺(短径)の長さはb1である。第2面側開口202の長辺の長さはa2、短辺の長さはb2である。図2のスルーホール導体20は、λ/2≦a1≦λ、およびλ/2≦a2≦λをいずれも満たす波長λの電磁波を伝播する。
 このような構成によれば、スルーホール導体20の長径が短径より大きくなっている分、通過できる電磁波の波長の範囲を広くすることができる。また、相対的に短径が小さいことで、導波管を伝搬する平面波の電磁界が長径(図2のX方向)に向きやすくなり、伝搬効率を高めることができる。
 図3に示すように、スルーホール導体20は、横断面における開口の形状が、湾曲した角部204を有する長方形であってもよい。すなわち、スルーホール導体20の内壁の角部204が湾曲した凹状となっていてもよい。
 この構成によれば、信号の送信時および受信時において、スルーホール導体20をZ方向に伝播する電流の周りを周回する磁界(磁力線)が、角部204付近の内壁で反射しにくくなる。よって、信号の伝送利得を向上することができる。
 スルーホール導体20の横断面における開口の形状は、図2および図3に示した長方形に限らず、アスペクト比が1を超える任意の形状とすることができる。
 例えば、図4に示すように、スルーホール導体20は、横断面における開口の形状がレーストラック型(X方向に延びる長円型)であってもよい。
 また、図5に示すように、スルーホール導体20は、横断面における開口の形状がダンベル型であってもよい。ここで、ダンベル型は、X方向についての一方側および他方側の端部がいずれも円形であり、これらの端部を除いた中央部が帯状となっている形状である。言い換えると、ダンベル型は、円形の2つの端部を、該円形の直径より幅の狭い帯状の中央部で繋いだ形状である。
 また、図6に示すように、スルーホール導体20は、横断面における開口の形状がボウタイ型であってもよい。ここで、ボウタイ型は、X方向についての一方側および他方側の端部がいずれも台形状であり、端部を除いた中央部が帯状である。各端部の台形状は、X方向についての端に近いほどY方向の幅が広い形状である。
 これらのレーストラック型、ダンベル型およびボウタイ型のスルーホール導体20も、長方形のスルーホール導体20と同様の効果を奏する。
〔変形例2〕
 次に、第1の実施形態の変形例2について説明する。変形例2に係る印刷配線板1は、スルーホール導体20の縦断面の形状が上記実施形態と異なる。以下では、第1の実施形態と相違する点について説明し、共通する点については説明を省略する。変形例2は、変形例1と組み合わせてもよい。また、変形例2は、後述する第2~第6の実施形態と組み合わせてもよい。
 図7に示すように、変形例2に係る印刷配線板1のスルーホール導体20は、横断面の開口面積が第2面S2に向かって増大する部分p1と、開口面積が一定である部分p2とを有する。部分p1は、スルーホール導体20のうち第1面S1から所定距離範囲内の部分であり、部分p2は、スルーホール導体20のうち部分p1を除いた部分である。
 別の観点では、貫通孔111の中心軸を通る任意の縦断面において、部分p1では、第2面S2に平行な方向についての開口幅が第2面S2に向かうに従って増大している。一方、任意の縦断面において、部分p2では、第2面S2に平行な方向についての開口幅が一定である。
 別の観点では、貫通孔111の中心軸を通る任意の縦断面において、部分p1では、第2面S2に垂直な方向(Z方向)に対して内壁203が傾斜している。一方、任意の断面において、部分p2では、内壁面がZ方向に平行である。
 なお、開口面積が一定の部分p2が第1面S1側にあり、面積が増大する部分p1が第2面S2側にある構成であってもよい。
 このように、スルーホール導体20は、横断面における開口の面積が第1面S1側から第2面S2側に向かうに従って増大する部分を有していればよく、横断面における開口面積は、第2面S2に向かうに従って単調非減少となっていればよい。
 また、図8に示すように、変形例2に係る印刷配線板1のスルーホール導体20は、横断面の開口面積が第2面S2に向かって減少する部分p3と、横断面の開口面積が第2面S2に向かって増大する部分p1とを有していてもよい。部分p3は、スルーホール導体20のうち第1面S1から所定距離範囲内の部分であり、部分p1は、スルーホール導体20のうち部分p3を除いた部分である。
 図8の構成によれば、送信時および受信時の反射、収束を平均的なものにできるため、送受信時の信号の伝搬効率の差を小さくできる。
〔第2の実施形態〕
 次に、第2の実施形態について説明する。第2の実施形態に係る印刷配線板1は、第1導体層21を有している点で第1の実施形態と異なる。以下では、第1の実施形態と相違する点について説明し、共通する点については説明を省略する。
 図9に示すように、第2の実施形態に係る印刷配線板1は、第1絶縁層11の第2面S2に第1導体層21を有する。第1導体層21は、スルーホール導体20と電気的に接続されている。第1導体層21は、スルーホール導体20の第2面側開口202の大きさを維持する配置となっている。すなわち、第1導体層21は、第2面側開口202を塞がない配置となっている。第1導体層21は、第2面S2のうち一部、例えばスルーホール導体20との接続部の周囲のみに設けられていてもよい。
 第1導体層21は、例えば、めっき処理により形成されためっき層(銅、ニッケルまたは金等)、銅箔等の金属箔、蒸着膜、スパッタ膜などであってもよい。これらのうち、コストおよび量産性の観点からは、銅のめっき層および/または銅箔を用いるのがよい。
 なお、印刷配線板1は、第2面S2にもスルーホール導体20と電気的に接続された第1導体層21を有していてもよい。第1導体層21を有する第1絶縁層11として、片面銅箔または両面銅箔のプリント板を用いてもよい。
 このように、第2面S2に第1導体層21を有する構成によれば、送信時においては、電磁波がスルーホール導体20を通じて第2面S2側から放射される場合に、図9において破線で示すように、電磁波(電磁界)が第2面S2上に設けられた第1導体層21に沿うように広がる。これにより、スルーホール導体20を通じて第2面S2側から放射される電磁界をより広く安定した平面波へ変化させることができる。よって、電磁波の空間への放出効率を高めることができる。
 また、受信時においては、受信する平面波の収束効率を高めることができる。
〔第3の実施形態〕
 次に、第3の実施形態について説明する。第3の実施形態に係る印刷配線板1は、有機樹脂40、第2絶縁層12および複数の第1ビア導体31を有している点で第2の実施形態と異なる。以下では、第2の実施形態と相違する点について説明し、共通する点については説明を省略する。
 図10に示すように、第3の実施形態に係る印刷配線板1は、スルーホール導体20に囲まれた空間を埋めている有機樹脂40(樹脂)と、第1導体層21上に設けられている第2絶縁層12と、第2絶縁層12を貫通する複数のビア導体31と、を備える。ここで、スルーホール導体20に囲まれた空間とは、スルーホール導体20の内壁、第1面側開口201がなす面、および第2面側開口202がなす面に囲まれた空間をいう。複数のビア導体31は、第1導体層21と電気的に接続されている。また、複数のビア導体31は、第2面S2に向かう平面視で、第2面側開口202を囲むように第2面側開口202の外側に配置されている。図10では、第2面側開口202の周囲を等間隔に囲む6つのビア導体31が設けられている。ビア導体31の材質は、上記で第1導体層21の材質として例示した複数の材質のうちのいずれかであってもよく、第1導体層21の材質と同一であってもよい。
 貫通孔111(スルーホール導体20)に充填する有機樹脂40としては、エポキシ樹脂(比誘電率ε:2.5~6.0)、ポリイミド樹脂(比誘電率ε:4.8~4.9)、ポリアミド樹脂(比誘電率ε:3.8~4.1)、ポリフェニレンエーテル樹脂(比誘電率ε:2.8~2.9)などから選ばれる少なくとも一種がよい。有機樹脂40には無機フィラーを混合してもよい。
 第2絶縁層12としては、液晶ポリマー(比誘電率ε:3.5~3.6)、PTFE(ポリテトラフルオロエチレン、比誘電率ε:2.1)、環状オレフィンコポリマー(比誘電率:2.7)などがよい。特に、第2絶縁層12としては、有機樹脂40よりも比誘電率が低いものがよい。第2絶縁層12および/または有機樹脂40の空隙率を変えたり、無機フィラーの含有量を変えたりすることで、第2絶縁層12および/または有機樹脂40の比誘電率を調整してもよい。特に、有機樹脂40にエポキシ樹脂を用い、第2絶縁層12に液晶ポリマーを用いてもよい。なお、第2絶縁層12として有機樹脂40と同一の材質を用いてもよい。
 このように、複数のビア導体31を有する構成によれば、送信時においては、電磁波がスルーホール導体20から第1導体層21に達した後に、その平面波としての広がりをビア導体31によって抑制しつつ、指向性を高めることができる。また、受信時においては、平面波の収束効率を高めることができる。
 また、第2絶縁層12の比誘電率が有機樹脂40の比誘電率よりも低い構成とすることで、スルーホール導体20から第1導体層21に向けて電磁波が放射される送信時においてカットオフ周波数を高くできるため、高次モードの電磁波をより減衰させることができる。また、比誘電率が低い第2絶縁層12において、出射時の電磁波の波長を広くとることができる。
〔第4の実施形態〕
 次に、第4の実施形態について説明する。第4の実施形態に係る印刷配線板1は、第2導体層22を有している点で第3の実施形態と異なる。以下では、第3の実施形態と相違する点について説明し、共通する点については説明を省略する。
 図11に示すように、第4の実施形態に係る印刷配線板1は、第2絶縁層12上に第2導体層22を備える。第2導体層22は、複数のビア導体31と電気的に接続されている。また、第2導体層22は、平面視で貫通孔111の中心軸111aを囲む位置に、第2面側開口202よりも面積が小さい開口221を有する。開口221の形状は、例えば円形であってもよい。また、開口221の形状は、第2面側開口202の形状の相似形であってもよい。第2導体層22の材質は、上記で第1導体層21の材質として例示した複数の材質のうちのいずれかであってもよく、第1導体層21の材質と同一であってもよい。また、第2導体層22およびビア導体31は、めっき処理などの共通の工程で形成されることで、一体的となっていてもよい。
 このような構成によれば、送信時においては、スルーホール導体20から開口221を通って+Z方向に放射される電磁波の指向性をビア導体31および第2導体層22の開口221によって高めつつ、収束効率を高めることができる。また、受信時においては、第2導体層22の開口221を通すことで電磁波のサイドローブの部分を低減することができるため、電磁波のメインローブを高い効率でスルーホール導体20に導入させることができる。この場合、スルーホール導体20の内部においては、平面波が電磁波の進行方向に対して垂直な方向(第2面S2に平行な方向)に向きやすくなる。また、高次モードの電磁波を減衰させることができる。
〔第5の実施形態〕
 次に、第5の実施形態について説明する。第5の実施形態に係る印刷配線板1は、第4の実施形態の印刷配線板1の上面および下面にそれぞれ構成要素を追加したものに相当する。以下では、第4の実施形態と相違する点について説明し、共通する点については説明を省略する。
 図12に示すように、第5の実施形態に係る印刷配線板1は、第1絶縁層11の第1面S1(下面)にも、スルーホール導体20と電気的に接続された第1導体層21を有する。この第1面S1の第1導体層21の下面には、スルーホール導体20の第1面側開口201を覆う第3絶縁層13が設けられている。第3絶縁層13上(下面)には、第3導体層23が設けられている。第3導体層23は、電子部品としてのMMIC50の端子と電気的に接続される複数の接続パッド231、232(接続部)を有する。このうち接続パッド231は、第1面S1に向かう平面視で貫通孔111の中心軸111aと重なる位置にある。すなわち、接続パッド231の位置は、中心軸111aと重なる位置である。また、接続パッド232は、第3絶縁層13を貫通するビア導体32によって、第1面S1上の第1導体層21と電気的に接続されている。第3絶縁層13および第3導体層23の下面には、第4絶縁層14が設けられている。
 第3絶縁層13および第4絶縁層14の材質は、上記で第2絶縁層12の材質として例示した複数の材質のうちのいずれかであってもよく、第2絶縁層12の材質と同一であってもよい。ビア導体32および第3導体層23の材質は、上記で第1導体層21の材質として例示した複数の材質のうちのいずれかであってもよく、第1導体層21の材質と同一であってもよい。また、ビア導体32および第3導体層23は、めっき処理などの共通の工程で形成されることで、一体的となっていてもよい。
 また、第2導体層22の上面には、第2導体層22の開口221を覆う第5絶縁層15が設けられている。第5絶縁層15の上面には、平面視で開口221を覆う範囲に第4導体層24が設けられている。第4導体層24は、パッチアンテナとして機能する。
 第5絶縁層15の材質は、上記で第2絶縁層12の材質として例示した複数の材質のうちのいずれかであってもよく、第2絶縁層12の材質と同一であってもよい。ただし、有機樹脂40の比誘電率よりも第2絶縁層12の比誘電率の方が低く、かつ、第2絶縁層12の比誘電率よりも第5絶縁層15の比誘電率の方が低い構成とするのがよい。特に、有機樹脂40にエポキシ樹脂を用い、第2絶縁層12に液晶ポリマーを用い、第5絶縁層15にPTFEを用いてもよい。
 第4導体層24の材質は、上記で第1導体層21の材質として例示した複数の材質のうちのいずれかであってもよく、第1導体層21の材質と同一であってもよい。
 このような構成によれば、MMIC50の端子から放射された電磁波(高周波信号)を、接続パッド231からスルーホール導体20に導き、第4導体層24から+Z方向に送信することができる。ここで、接続パッド231が貫通孔111の中心軸111a上にあることで、MMIC50の端子から放射された電磁波を狭いスルーホール導体20に直線的に伝搬させることができる。このため、MMIC50からスルーホール導体20へ入射するときの電磁波の伝送損失を小さくすることができる。
 また、受信時においては、パッチアンテナとしての第4導体層24からスルーホール導体20を通った電磁波を収束率の高い状態でMMIC50に伝送させることができる。
〔第6の実施形態〕
 次に、第6の実施形態について説明する。第6の実施形態に係る印刷配線板1は、第1絶縁層11の内部に内層導体25を有する点で第1の実施形態と異なる。以下では、第1の実施形態と相違する点について説明し、共通する点については説明を省略する。
 図13に示すように、第6の実施形態に係る印刷配線板1は、第1絶縁層11の内部に内層導体25を備える。内層導体25は、スルーホール導体20と電気的に接続されている。内層導体25は、第2面S2に平行な板状の導体である。第1絶縁層11は、複数の絶縁体をZ方向に積層させた構成であってもよく、内層導体25は、これらの複数の絶縁体のいずれかの界面に形成されていてもよい。また、内層導体25が複数層設けられていてもよい。
 第6の実施形態は、第2~第5の実施形態と組み合わせてもよい。すなわち、第2~第5の実施形態の印刷配線板1は、第1絶縁層11の内部に内層導体25を有していてもよい。
 このように内層導体25を有する構成によれば、第1絶縁層11が、曲げなどを生じさせ得るような負荷を受けたときに、スルーホール導体20を含む導波管の変形を低減することができる。これにより、伝搬する電磁波の乱れを小さくすることができるため、安定した伝送利得(伝送効率)を得ることができる。
〔印刷配線板の製造方法〕
 次に、図14~図16を参照して、印刷配線板1の製造方法の実施例について説明する。ここでは、図12に示す第5の実施形態に係る印刷配線板1を製造する場合を例に挙げて説明する。以下の製造方法で挙げている各部材の材質は一例であり、これらに限らない。
 まず、第1絶縁層11と、第1絶縁層11の第1面S1および第2面S2に形成された第1導体層21とを有するプリント板を用意する。第1絶縁層11は、例えば、エポキシ樹脂を含侵したガラスクロス(比誘電率ε:4.6)であり、第1導体層21は銅箔である。
 次に、図14に示すように、先端が後端よりも径の小さいリーマ型のドリルを用いてプリント板に貫通孔111を形成する。長方形などの角のある形状には、径の小さいドリルを併用する。リーマ型のドリルを用いることで、第2面S2に向かって開口面積が大きくなる貫通孔111を形成できる。
 次に、図15に示すように、無電解銅めっき処理および電解銅めっき処理を行って、貫通孔111の内壁112にスルーホール導体20を形成する。なお、この工程で併せて第1導体層21を形成してもよい。
 次に、図16に示すように、スルーホール導体20によって囲まれた空間にエポキシ樹脂(比誘電率ε:4.3)の有機樹脂40を充填する。また、有機樹脂40を充填した構造体の第1面S1側および第2面S2側にそれぞれ、液晶ポリマー(比誘電率ε:3.5~3.6)をレイアップし、この状態の構造体を加熱するとともにZ方向に加圧する(例えば、200℃、2時間)。これにより、液晶ポリマーが一旦溶融した後に硬化させて、図16に示すように、第2面S2側に第2絶縁層12が形成され、第1面S1側に第3絶縁層13が形成される。この後、公知の成膜技術等を用いて、第2面S2側にビア導体31、第2導体層22、第5絶縁層15、第4導体層24を形成し、第1面S1側にビア導体32、第3導体層23、第4絶縁層14、MMIC50を形成して、図12に示す印刷配線板1が完成する。
 なお、上記実施の形態で示した構成、構造、位置関係および形状などの具体的な細部は、本開示の趣旨を逸脱しない範囲において適宜変更可能である。また、本開示の趣旨を逸脱しない範囲において、上記実施の形態で示した構成、構造、位置関係および形状を適宜組み合わせ可能である。
 本開示は、印刷配線板に利用することができる。
1 印刷配線板
10 絶縁層
11 第1絶縁層
111 貫通孔
111a 中心軸
112 内壁
12 第2絶縁層
13 第3絶縁層
14 第4絶縁層
15 第5絶縁層
20 スルーホール導体
201 第1面側開口
202 第2面側開口
203 内壁
204 角部
21 第1導体層
22 第2導体層
221 開口
23 第3導体層
231、232 接続パッド(接続部)
24 第4導体層
25 内層導体
31、32 ビア導体
40 有機樹脂(樹脂)
50 MMIC(電子部品)
S1 第1面
S2 第2面

Claims (13)

  1.  第1絶縁層およびスルーホール導体を備え、
     前記第1絶縁層は、該第1絶縁層の第1面から、該第1面とは反対側の第2面まで貫通する貫通孔を有し、
     前記スルーホール導体は、前記貫通孔の内壁に位置し、かつ、前記第2面に平行な断面における開口面積が前記第1面側から前記第2面側に向かうに従って増大する部分を有する、印刷配線板。
  2.  前記スルーホール導体は、前記第1面から前記第2面まで、該第2面に向かうに従って前記開口面積が増大している、請求項1に記載の印刷配線板。
  3.  前記スルーホール導体は、前記貫通孔の中心軸を通り前記第2面に垂直な任意の断面において、前記第2面に平行な方向についての開口幅が、前記第1面から前記第2面まで、該第2面に向かうに従って増大している、請求項1に記載の印刷配線板。
  4.  前記スルーホール導体は、前記貫通孔の中心軸を通り前記第2面に垂直な任意の断面において、前記第2面に垂直な方向に対して傾斜している部分を有する、請求項1~請求項3のいずれか1つに記載の印刷配線板。
  5.  前記スルーホール導体は、前記第2面に平行な断面における開口のアスペクト比が1を超える形状である、請求項1~請求項4のいずれか1つに記載の印刷配線板。
  6.  前記スルーホール導体は、前記第2面に平行な断面における開口の形状が長方形、レーストラック型、ダンベル型またはボウタイ型である、請求項5に記載の印刷配線板。
  7.  前記スルーホール導体は、前記第2面に平行な断面における開口の形状が、湾曲した角部を有する長方形である、請求項5に記載の印刷配線板。
  8.  前記第1絶縁層の前記第2面に、前記スルーホール導体と電気的に接続された第1導体層を有する、請求項1~請求項7のいずれか1つに記載の印刷配線板。
  9.  前記スルーホール導体に囲まれた空間を埋めている樹脂と、
     前記第1導体層上に設けられている第2絶縁層と、
     前記第2絶縁層を貫通する複数のビア導体と、
    を備え、
     前記複数のビア導体は、前記第1導体層と電気的に接続されており、かつ、前記第2面に向かう平面視で、前記スルーホール導体の前記第2面における第2面側開口を囲むように配置されている、請求項8に記載の印刷配線板。
  10.  前記第2絶縁層の比誘電率が前記樹脂の比誘電率よりも低い、請求項9に記載の印刷配線板。
  11.  前記第2絶縁層上に第2導体層を備え、
     前記第2導体層は、前記複数のビア導体と電気的に接続されており
     前記第2導体層は、前記平面視で前記貫通孔の中心軸を囲む位置に、前記第2面側開口よりも面積が小さい開口を有する、請求項9または請求項10に記載の印刷配線板。
  12.  前記スルーホール導体の前記第1面における第1面側開口を覆う第3絶縁層と、
     前記第3絶縁層上に設けられた第3導体層と、
    を備え、
     前記第3導体層は、電子部品と電気的に接続される複数の接続部を有し、
     前記複数の接続部のうち少なくとも1つは、前記第1面に向かう平面視で前記貫通孔の中心軸と重なる位置である、請求項11に記載の印刷配線板。
  13.  前記第1絶縁層の内部に内層導体を備え、
     前記内層導体は、前記スルーホール導体と電気的に接続されている、請求項1~請求項12のいずれか1つに記載の印刷配線板。
PCT/JP2022/005952 2021-02-22 2022-02-15 印刷配線板 WO2022176853A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237028246A KR20230132838A (ko) 2021-02-22 2022-02-15 인쇄 배선판
JP2023500854A JPWO2022176853A1 (ja) 2021-02-22 2022-02-15
CN202280015889.3A CN116868697A (zh) 2021-02-22 2022-02-15 印刷布线板
EP22756171.9A EP4297180A1 (en) 2021-02-22 2022-02-15 Printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021025777 2021-02-22
JP2021-025777 2021-02-22

Publications (1)

Publication Number Publication Date
WO2022176853A1 true WO2022176853A1 (ja) 2022-08-25

Family

ID=82931778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005952 WO2022176853A1 (ja) 2021-02-22 2022-02-15 印刷配線板

Country Status (5)

Country Link
EP (1) EP4297180A1 (ja)
JP (1) JPWO2022176853A1 (ja)
KR (1) KR20230132838A (ja)
CN (1) CN116868697A (ja)
WO (1) WO2022176853A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041966A (ja) * 2004-07-28 2006-02-09 Kyocera Corp 高周波モジュール
JP2006279776A (ja) * 2005-03-30 2006-10-12 Denso Corp 電波送受信モジュールおよび、この電波送受信モジュールを用いたイメージングセンサ
JP2011211170A (ja) * 2010-03-09 2011-10-20 Hitachi Chem Co Ltd 電磁結合構造、多層伝送線路板、電磁結合構造の製造方法、及び多層伝送線路板の製造方法
JP2015139042A (ja) 2014-01-21 2015-07-30 株式会社デンソー 一括積層基板
WO2017170377A1 (en) * 2016-03-29 2017-10-05 Nidec Elesys Corporation Microwave ic waveguide device module
WO2019189622A1 (ja) * 2018-03-30 2019-10-03 株式会社デンソー 多層伝送線路
WO2021177391A1 (ja) * 2020-03-06 2021-09-10 株式会社デンソー 両面基板、レーダ装置、伝送部材、および伝送部材の製造方法
JP2022066837A (ja) * 2020-10-19 2022-05-02 株式会社デンソー アンテナ装置、およびレーダ装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041966A (ja) * 2004-07-28 2006-02-09 Kyocera Corp 高周波モジュール
JP2006279776A (ja) * 2005-03-30 2006-10-12 Denso Corp 電波送受信モジュールおよび、この電波送受信モジュールを用いたイメージングセンサ
JP2011211170A (ja) * 2010-03-09 2011-10-20 Hitachi Chem Co Ltd 電磁結合構造、多層伝送線路板、電磁結合構造の製造方法、及び多層伝送線路板の製造方法
JP2015139042A (ja) 2014-01-21 2015-07-30 株式会社デンソー 一括積層基板
WO2017170377A1 (en) * 2016-03-29 2017-10-05 Nidec Elesys Corporation Microwave ic waveguide device module
WO2019189622A1 (ja) * 2018-03-30 2019-10-03 株式会社デンソー 多層伝送線路
WO2021177391A1 (ja) * 2020-03-06 2021-09-10 株式会社デンソー 両面基板、レーダ装置、伝送部材、および伝送部材の製造方法
JP2022066837A (ja) * 2020-10-19 2022-05-02 株式会社デンソー アンテナ装置、およびレーダ装置

Also Published As

Publication number Publication date
EP4297180A1 (en) 2023-12-27
KR20230132838A (ko) 2023-09-18
JPWO2022176853A1 (ja) 2022-08-25
CN116868697A (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
JP7278034B2 (ja) アンテナ一体型プリント配線基板(“aipwb”)
US7852270B2 (en) Wireless communication device
US20200287291A1 (en) Phased array antenna
EP0883328B1 (en) Circuit board comprising a high frequency transmission line
US5675302A (en) Microwave compression interconnect using dielectric filled three-wire line with compressible conductors
US20190207286A1 (en) Printed circuit board with substrate-integrated waveguide transition
US6441471B1 (en) Wiring substrate for high frequency applications
US6185354B1 (en) Printed circuit board having integral waveguide
JP2004153367A (ja) 高周波モジュール、ならびにモード変換構造および方法
CN111524870A (zh) 具有雷达半导体芯片的半导体装置和相关的制造方法
JP3996879B2 (ja) 誘電体導波管とマイクロストリップ線路の結合構造およびこの結合構造を具備するフィルタ基板
KR20150125262A (ko) 다층 기판 및 다층 기판의 제조 방법
US20040217830A1 (en) RF multilayer circuit board
JPH1146114A (ja) 積層型開口面アンテナ及びそれを具備する多層配線基板
US10128557B2 (en) Chip-to-chip interface comprising a microstrip circuit to waveguide transition having an emitting patch
US9130254B1 (en) Printed waveguide transmission line having layers bonded by conducting and non-conducting adhesives
CA2172888C (en) Planar dielectric line and integrated circuit using same
JP4995174B2 (ja) 無線通信装置
US9142872B1 (en) Realization of three-dimensional components for signal interconnections of electromagnetic waves
JP2004153415A (ja) 高周波線路−導波管変換器
WO2022176853A1 (ja) 印刷配線板
US20220085478A1 (en) Waveguide Assembly, Waveguide Transition, and Use of a Waveguide Assembly
CN115275622B (zh) 一种开槽间隙波导天线及其制备方法
JPH11340701A (ja) 高周波伝送線路の接続構造
KR20100005616A (ko) 손실 개선을 위한 rf 전송 선로

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756171

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023500854

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280015889.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237028246

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237028246

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022756171

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022756171

Country of ref document: EP

Effective date: 20230922