WO2022176599A1 - Method for manufacturing wiring board, and flexible printed wiring board - Google Patents

Method for manufacturing wiring board, and flexible printed wiring board Download PDF

Info

Publication number
WO2022176599A1
WO2022176599A1 PCT/JP2022/003790 JP2022003790W WO2022176599A1 WO 2022176599 A1 WO2022176599 A1 WO 2022176599A1 JP 2022003790 W JP2022003790 W JP 2022003790W WO 2022176599 A1 WO2022176599 A1 WO 2022176599A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
etching
wiring board
curved surface
flexible printed
Prior art date
Application number
PCT/JP2022/003790
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 荒井
有希 成田
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021022650A external-priority patent/JP2024054433A/en
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2022176599A1 publication Critical patent/WO2022176599A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process

Definitions

  • the present invention relates to a wiring board manufacturing method and a flexible printed wiring board.
  • a wiring board manufacturing method for designated countries where incorporation by reference of literature is permitted, the content described in Japanese Patent Application No. 2021-022650 filed in Japan on February 16, 2021 is incorporated herein by reference, and the description of this specification be part of
  • a method for manufacturing a circuit board which includes a step of etching the side of a copper plate on which a circuit pattern is not formed, separating circuit conductors constituting the circuit pattern, and forming a predetermined circuit pattern (for example, Patent Document 1).
  • a thick copper plate is used as a material for forming circuit patterns in wiring boards used in applications where large currents are supplied, such as coils for in-vehicle motors.
  • the thicker the copper plate the longer the processing time required for etching.
  • the thicker the copper plate the longer the processing time required for etching, which may reduce productivity.
  • the problem to be solved by the present invention is to provide a wiring board manufacturing method capable of improving productivity.
  • a wiring board manufacturing method is a wiring board comprising a base material, wiring arranged on the base material, and a coverlay laminated on the base material so as to cover the wiring.
  • the second step includes performing the half-etching on the entire surface of the first portion so that the first portion remains along the thickness direction of the wiring board. may contain.
  • the second step may be performed by adjusting the thickness of the half so that the thickness of the first portion is 5% to 15% of the thickness of the second portion other than the first portion. Etching may be included.
  • a flexible printed wiring board is a flexible printed wiring comprising a base material, wiring arranged on the base material, and a coverlay laminated on the base material so as to cover the wiring.
  • a plate, wherein the wiring has, in a cross section along the width direction of the wiring, a first surface and a second surface facing each other along the width direction of the wiring, and the first and second surfaces.
  • a flexible printed wiring board that includes and satisfies the following formula (1).
  • W1 is the width between the first end and the fourth end
  • W2 is the width between the second end and the fifth end
  • W3 is the width between the third end and the sixth end.
  • H 1 is the height from the third plane to the first virtual plane
  • H2 is the height from the first virtual plane to the fourth plane
  • the first virtual plane is a virtual plane passing through the second end and the fifth end.
  • wiring is formed by half-etching from both sides of the metal foil and then etching from one side of the metal foil. Therefore, in the present invention, the processing time required for etching can be reduced, and productivity can be improved.
  • FIG. 1 is a plan view showing a flexible printed wiring board according to an embodiment of the invention.
  • FIG. 2 is a cross-sectional view showing a flexible printed wiring board according to an embodiment of the present invention, taken along line II-II in FIG.
  • FIG. 3 is an enlarged cross-sectional view showing part III of FIG.
  • FIG. 4(a) is a sectional view showing a bent state of a flexible printed wiring board in a comparative example
  • FIG. 4(b) is a sectional view showing a bent state of a flexible printed wiring board in an embodiment of the present invention.
  • 5(a) to 5(h) are cross-sectional views showing a method for manufacturing a flexible printed wiring board according to an embodiment of the present invention.
  • FIG. 1 is a plan view showing a flexible printed wiring board according to this embodiment.
  • FIG. 2 is a cross-sectional view showing the flexible printed wiring board in this embodiment, taken along line II-II in FIG.
  • a flexible printed wiring board (FPC) 1 includes a base film (first coverlay) 10, a plurality of (four in this example) wirings 20, and a coverlay (second of the coverlay) 30 and.
  • the base film 10 in this embodiment corresponds to an example of the "base material" in this invention.
  • the base film 10 is a flexible and elongated strip-shaped film, and is made of an electrically insulating material such as a resin material.
  • This base film 10 has a first resin layer 11 and a first adhesive layer 12 .
  • the first resin layer 11 is a film made of a flexible resin material. As shown in FIG. 2, the first resin layer 11 faces a first curved surface 211 (described later) and a third curved surface 221 (described later) of the wiring 20, and is recessed toward the wiring 20. It has a recess 11a.
  • the material constituting the first resin layer 11 is not particularly limited, for example, polyimide (PI), liquid crystal polymer (LCP), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyetherimide (PEI), ), polyetheretherketone (PEEK), and aramid.
  • the first adhesive layer 12 bonds the first resin layer 11 and the wiring 20 together.
  • the first adhesive layer 12 is interposed between the first resin layer 11 and the wiring 20 and is also interposed between the wirings 20 .
  • Adhesives can be used as the material constituting the first adhesive layer 12, and are not particularly limited, but are polyamide-based hot-melt adhesives, polyurethane-based hot-melt adhesives, and polyester-based hot-melt adhesives. , an olefin-based hot-melt adhesive can be used.
  • the material constituting the first resin layer 11 and the first adhesive layer 12 of the base film 10 is not particularly limited to the above.
  • a prepreg may be used instead of the resin film described above for the first resin layer 11 .
  • it may be formed using a dry film made of a photosensitive coverlay material, or by applying a liquid photosensitive coverlay material on the first adhesive layer 12 and then exposing and developing the first adhesive layer 12 .
  • One resin layer 11 may be formed.
  • the first resin layer 11 may be formed by printing liquid cover lay ink on the first adhesive layer.
  • the first resin layer 11 may be composed of a so-called solder resist.
  • the first resin layer 11 may be formed using a dry film made of a photosensitive resist material.
  • the first resin layer 11 may be formed by applying a liquid photosensitive resist material on the first adhesive layer 12, followed by exposure and development.
  • the first resin layer 11 may be formed by printing liquid solder resist ink on the first adhesive layer 12 .
  • the first adhesive layer 12 may also be formed by exposing and developing a liquid photosensitive coverlay material instead of the above adhesive. Alternatively, the first adhesive layer 12 may be formed by printing liquid coverlay ink.
  • photosensitive coverlay materials and photosensitive resist materials include those using polyester, epoxy, acrylic, polyimide, polyurethane, and the like. Further, specific examples of the above cover lay ink and solder resist ink include those based on polyimide and epoxy.
  • a plurality of wirings 20 are formed on the base film 10 .
  • the wiring 20 is made of a conductive material such as metal. Examples of the metal forming the wiring 20 include copper, silver, and gold. In this embodiment, thick copper is used as the material forming the wiring 20 .
  • the thickness T 1 of the wiring 20 is 35 ⁇ m to 2 mm (35 ⁇ m ⁇ T 1 ⁇ 2 mm) in this embodiment. Also, the thickness T 1 of the wiring 20 may be 70 ⁇ m to 2 mm (70 ⁇ m ⁇ T 1 ⁇ 2 mm). Since the thickness T1 of the wiring is large in this way, the flexible printed wiring board 1 of the present embodiment can be suitably used for applications in which a large current is supplied.
  • a plurality of wirings 20 extend linearly along the X direction in the figure.
  • the plurality of wirings 20 are arranged parallel to each other at regular intervals.
  • the number, shape, arrangement, etc. of the wirings 20 are not particularly limited to this, and can be set arbitrarily. Also, the number of wirings 20 is not limited to plural, and may be one.
  • FIG. 3 is an enlarged cross-sectional view showing part III of FIG.
  • the wiring 20 includes a first surface 21, a second surface 22, a third surface 23, and a fourth surface 24.
  • the first surface 21 and the second surface 22 are both side surfaces of the wiring 20 and face each other.
  • the third surface 23 is the bottom surface of the wiring 20 and the fourth surface 24 is the top surface of the wiring 20 .
  • the third and fourth surfaces 23, 24 face each other and are interposed between the first surface 21 and the second surface 22 to connect the first and second surfaces 21, 22. ing.
  • the first surface 21 is composed of a first curved surface 211 and a second curved surface 212.
  • the first curved surface 211 is a curved surface that is recessed toward the inside of the wiring 20 (+Y direction in the drawing).
  • the first curved surface 211 is located on the base film 10 side with respect to the second curved surface 212 and is interposed between the third surface 23 and the second curved surface 212.
  • the first curved surface 211 is connected to the third surface 23 at the first end 213 and is connected to the second curved surface 212 at the second end 214 .
  • the second end 214 is located on the outermost side ( ⁇ Y direction in the drawing) of the wiring 20 in the width direction (Y direction in the drawing) of the wiring 20 . Therefore, the first curved surface 211 as a whole inclines toward the outside of the wiring 20 (-Y direction in the figure) as the distance from the base film 10 increases.
  • the second curved surface 212 is a curved surface that is concave toward the inside of the wiring 20 (+Y direction in the drawing).
  • the second curved surface 212 is located on the coverlay 30 side with respect to the first curved surface 211 and is interposed between the first curved surface 211 and the fourth surface 24.
  • the second curved surface 212 is connected to the fourth surface 24 at the third end 215 .
  • the height H2 of the second curved surface 212 is larger than the height H1 of the first curved surface 211 (H1 ⁇ H2).
  • the height H1 of the first curved surface 211 is the distance from the third surface 23 to the first virtual plane VP1
  • the height H2 of the second curved surface 212 is the distance from the virtual plane VP1. It is the distance from 1 to the fourth surface 24 .
  • a first virtual plane VP1 is a virtual plane that passes through the second end 214 and the fifth end 224 (described below) and is substantially parallel to the third and fourth faces 23,24. be.
  • the third end 215 is positioned inside the wiring 20 (in the +Y direction in the figure) from the second end 214 described above. Therefore, the second curved surface 212 as a whole inclines toward the inner side of the wiring (+Y direction in the figure) as the distance from the base film 10 increases.
  • the second surface 22 is substantially plane-symmetrical with the first surface 21 with respect to the second virtual plane VP2.
  • the second virtual plane VP2 extends in the thickness direction (the Z direction in the drawing) of the flexible printed wiring board 1 in a cross section along the width direction of the wiring 20, and substantially extends the wiring 20 in the width direction. is the plane that bisects .
  • This second surface 22 is composed of a third curved surface 221 and a fourth curved surface 222 .
  • the third curved surface 221 is substantially plane-symmetrical with the first curved surface 211 with respect to the second virtual plane VP2, and is recessed toward the inner side of the wiring 20 (-Y direction in the drawing). It is a curved surface.
  • the third curved surface 221 is located on the base film 10 side with respect to the fourth curved surface 222 and is interposed between the third surface 23 and the fourth curved surface 222. .
  • the third curved surface 221 is connected to the third surface 23 at the fourth end 223 and connected to the fourth curved surface 222 at the fifth end 224 .
  • the third curved surface 221 has the same height as the height H1 of the first curved surface.
  • the fifth end 224 is formed at a position substantially symmetrical to the second end 214 with respect to the second virtual plane VP2, and is arranged in the width direction of the wiring 20 (the Y direction in the drawing). , is positioned on the outermost side of the wiring 20 (+Y direction in the drawing). Therefore, the third curved surface 221 as a whole inclines toward the outside of the wiring 20 (+Y direction in the drawing) as the distance from the base film 10 increases.
  • the fourth curved surface 222 is substantially plane-symmetrical with the second curved surface 212 with respect to the second virtual plane VP2, and is recessed toward the inner side of the wiring 20 (-Y direction in the drawing). It is a curved surface.
  • the fourth curved surface 222 is located on the coverlay 30 side with respect to the third curved surface 221 and is interposed between the third curved surface 221 and the fourth surface 24. .
  • the fourth curved surface 222 is connected to the fourth surface 24 at the sixth end 225 .
  • the fourth curved surface 222 has the same height as the height H2 of the second curved surface 212 .
  • the sixth end 225 is positioned inside the wiring 20 (in the -Y direction in the figure) relative to the fifth end 224 . Therefore, the fourth curved surface 222 as a whole inclines toward the inner side of the wiring (-Y direction in the drawing) as the distance from the base film 10 increases.
  • the third and fourth surfaces 23 and 24 are planes substantially parallel to the horizontal direction (the XY plane direction in the drawing) in this embodiment.
  • the line width W of the wiring 20 on the third plane is 1 (the width between the first end 213 and the fourth end 223) is the line width W 2 (the width between the third end 215 and the sixth end 225) of the wiring 20 on the fourth surface ) (W 2 ⁇ W 1 ).
  • the line width W of the wiring 20 on the third surface is 1 is smaller than the line width W3 of the wiring 20 between the second and fifth ends 214, 224 ( W1 ⁇ W3).
  • the coverlay 30 is arranged on the base film 10 so as to cover the wiring 20 .
  • the terminal portion of the wiring 20 and the like may be exposed from the coverlay 30 .
  • the coverlay 30 has a second resin layer 31 for protecting the wiring 20 and a second adhesive layer 32 for bonding the second resin layer 31 to the base film 10 and the wiring 20.
  • the second resin layer 31 like the first resin layer 11, is made of a flexible resin material.
  • the second resin layer 31 also has a second concave portion 31 a that faces the second curved surface 212 and the fourth curved surface 222 of the wiring 20 and is recessed toward the wiring 20 .
  • the width W1 of the third surface 23 of the wiring 20 is larger than the width W2 of the fourth surface 24, the distance from the third end 215 to the sixth end 225 between the wirings 20 is is greater than the distance d 1 between the first end 213 and the fourth end 223 between the wirings 20 (d 1 ⁇ d 2 ). Therefore, the second recess 31a is recessed more than the first recess 11a of the base film 10, and the depth D2 of the second recess 31a is larger than the depth of the first recess 11a. (D 1 ⁇ D 2 ).
  • the material forming the second resin layer 31 the same material as the material forming the first resin layer 11 of the base film 10 can be used. In addition, the material which comprises the 1st resin layer 11 and the 2nd resin layer 31 may differ.
  • the material forming the second adhesive layer 32 the same material as the material forming the first adhesive layer 12 of the base film 10 can be used. Although not particularly limited, in the present embodiment, the second adhesive layer 32 and the first adhesive layer 12 are integrated. The materials forming the first adhesive layer 12 and the second adhesive layer 32 may be the same or different.
  • the second resin layer 31 may be formed using a dry film made of a photosensitive coverlay material instead of the resin film described above, or a liquid photosensitive coverlay material may be used as the second resin film.
  • the second resin layer 31 may be formed by coating the adhesive layer 32 and then exposing and developing.
  • the second resin layer 31 may be formed by printing liquid cover lay ink on the second adhesive layer 32 .
  • the second resin layer 31 may be composed of a so-called solder resist.
  • the second adhesive layer 32 may also be formed by exposing and developing a liquid photosensitive coverlay material instead of the above adhesive. Alternatively, the second adhesive layer 32 may be formed by printing liquid coverlay ink.
  • FIG. 4(a) is a sectional view showing a bent state of the flexible printed wiring board 1B in the comparative example
  • FIG. 4(b) is a sectional view showing a bent state of the flexible printed wiring board 1 in the present embodiment. is.
  • the width W1 between the first and fourth ends 213 and 223 is greater than the width W2 between the second and fifth ends 214 and 224.
  • the width W3 between the third and sixth ends 215, 225 is greater than the width W1 ( W2 ⁇ W1 ⁇ W3). Therefore, compared to the comparative example, the distance between the wirings 20 is large, and the flexible printed wiring board 1 is easy to bend because the range of motion during bending is large.
  • the distance d2 between the sixth end 225 and the third end 215 between the wirings 20 is larger than in the comparative example. Therefore, deterioration in insulation reliability between the wirings 20 can be suppressed.
  • FIG. 5(a) to 5(h) are cross-sectional views showing a method for manufacturing a flexible printed wiring board according to an embodiment of the present invention.
  • a metal foil 200 having a first main surface (lower surface) 201 and a second main surface (upper surface) 202 is prepared (first step).
  • thick copper is prepared as the metal foil 200 .
  • thick copper is a copper foil having a thickness T 1 of 35 ⁇ m to 2 mm (35 ⁇ m ⁇ T 1 ⁇ 2 mm).
  • the metal foil 200 for example, other than copper foil, silver foil, gold foil, or the like may be prepared.
  • an etching mask 401 is formed on the second portion 204 other than the first portion 203 of the metal foil 200 .
  • the etching mask 401 is formed in a shape corresponding to the shape of the pattern of the wiring 20, and has a linear pattern corresponding to the wiring 20 (see FIG. 1) in this embodiment.
  • the first portion 203 in this embodiment is a portion to be half-etched and etched in a post-process, and the second portion 204 is a portion not to be half-etched and etched.
  • the first portion 203 ends up being the space between wires 20 while the second portion 204 ends up being the wire 20 .
  • the etching mask 401 can be formed using a resist such as dry film resist.
  • the resist may be a positive resist that makes the portion irradiated with light soluble in the developer and leaves the portion not irradiated with light, or makes the portion irradiated with light insoluble in the developer. It may be a negative type resist that leaves the light-irradiated portion.
  • the first portion 203 of the metal foil 200 is subjected to half-etching simultaneously from the first and second main surfaces 201 and 202 to thin the first portion 203. (Second step). Since this half-etching is isotropic etching, the first portion 203 is dissolved radially from the first and second main surfaces 201 and 202 sides. Therefore, the surfaces 203a and 203b of the first portion 203 after half-etching are curved rather than flat. In this embodiment, the surfaces 203a, 203b have a semi-cylindrical shape.
  • the method for half-etching is not particularly limited, but a spray etching method in which etching is performed by spraying an etchant onto the metal foil from a spray nozzle (not shown) can be used.
  • etching liquid ferric-chloride aqueous solution, cupric-chloride aqueous solution, etc. can be used, for example.
  • the half-etching method is not limited to the spray etching method.
  • an immersion etching method in which a metal foil is immersed in an etchant may be used.
  • a dry etching method using an etching gas may be used instead of the wet etching method.
  • the entire surface of the first portion 203 is half-etched so that the first portion 203 remains along the thickness direction of the metal foil 200 (the Z direction in the drawing). Etching is preferred.
  • the second portions 204 are not separated from each other over the entire surface of the metal foil 200, and the post-process can be performed while the second portions 204 are connected to each other via the first portion 203.
  • the distance between the second portions 204, etc. can be maintained. Therefore, the positional accuracy of the circuit (wiring 20) of the flexible printed wiring board 1 can be improved.
  • half etching is preferably performed so that the thickness T 2 of the first portion 203 is 5% to 15% of the thickness T 1 of the second portion 204 (0 .05 ⁇ T 1 ⁇ T 2 ⁇ 0.15 ⁇ T 1 ).
  • half-etching is preferably performed so that the thickness T 2 of the first portion 203 is 7% to 13% of the thickness T 1 of the second portion 204 (0.07 ⁇ T 1 ⁇ T 2 ⁇ 0.13 x T 1 ).
  • the amount of etching of the first portion 203 by half-etching may vary within the plane of the metal foil 200, but the thickness T2 of the first portion 203 is equal to the thickness T1 of the second portion 204. If half-etching is performed so as to have a thickness of 5% or more, the first portion 203 can be left over the entire surface of the first portion 203 . As a result, the first portion 203 can be left between the second portions 204, so that the circuit position accuracy of the flexible printed wiring board 1 can be improved. On the other hand, half-etching is performed so that the thickness T2 of the first portion 203 is 15% or less of the thickness T1 of the second portion 204, thereby performing a single-sided etching step (fourth step) described later. processing time can be shortened.
  • the etching mask 401 is removed.
  • an alkaline aqueous solution such as sodium hydroxide can be used as a stripping solution.
  • the base film 10 is attached to the metal foil 200 from the first main surface 201 side (third step).
  • the base film 10 used is the same as the base film 10 described above.
  • the surface 203 b of the first portion 203 is covered with the first adhesive layer 12 of the base film 10 .
  • an etching mask 402 is formed on the second main surface 202 side of the second portion 204 .
  • This etching mask 402 can be formed by a method similar to that of the etching mask 401 described above.
  • the first portion 203 is etched from the second main surface 202 side to remove the first portion 203, thereby forming the wiring 20 (second main surface 202). 4 step).
  • Single-sided etching in the fourth step can be performed by the above-described spray etching method or the like. Since this single-sided etching is isotropic etching like half-etching, the first portion 203 is dissolved radially from the surface 203a.
  • the first main surface 201 of the metal foil 200 is only half-etched, while the second main surface 202 is half-etched and also single-sided etched. Therefore, the etching amount on the second main surface 202 side is larger than the etching amount on the first main surface 201 side. Therefore, as shown in FIG. 3, the height H2 of the second curved surface 212 of the wiring 20 is greater than the height H1 of the first curved surface 211 of the wiring 20 . Furthermore, the width W1 of the third surface is greater than the width W2 of the fourth surface. Since half etching is performed from both sides, the width W3 from the second end 214 to the fifth end 224 is the largest.
  • the etching mask 402 is removed.
  • the etching mask 402 can be peeled off by a method similar to that of the etching mask 401 .
  • the coverlay 30 is attached to the base film 10 so as to cover the wiring 20 from the second main surface 202 side.
  • This coverlay 30 is similar to the coverlay 30 described above.
  • the flexible printed wiring board 1 is manufactured.
  • the method for manufacturing the flexible printed wiring board 1 as in the present embodiment after the metal foil 200 is half-etched from both sides, single-sided etching is performed. Processing time required for processing can be reduced. In particular, when using thick copper as in this embodiment, the processing time required for the etching process can be effectively reduced.
  • a copper foil having a thickness of 500 ⁇ m was etched in two steps as follows, and the processing times were compared in Examples and Comparative Examples.
  • the etching rate of one main surface of the copper foil was set to 10 ⁇ m/min.
  • the copper foil was half-etched from both sides in the first etching, and etched from one side in the second etching.
  • the amount of etching in the first half-etching was 450 ⁇ m, leaving 10% (50 ⁇ m) of the thickness of the copper foil.
  • the processing time required at this time was 22.5 minutes, as shown in Table 1 below.
  • the etching amount in the second etching was 50 ⁇ m.
  • the processing time required at this time was 5 minutes, as shown in Table 2 below.
  • one side of the copper foil was half-etched from one side in the first etching, and one side was etched from the other side in the second etching.
  • the time required for the first etching and the time required for the second etching were 25 minutes, respectively, as shown in Tables 1 and 2 below.
  • the total processing time for etching a 500 ⁇ m copper foil was 27.5 minutes, while in the comparative example the total processing time was 50 minutes. Thus, it was confirmed that in the example, the processing time could be shortened by 45% compared to the comparative example.
  • the base film 10 is attached to the metal foil 200 after the metal foil 200 is half-etched and before the first portion 203 is removed by single-sided etching.
  • the first portion 203 can be removed while the position of the second portion 204 that becomes the wiring 20 is fixed on the base film 10.
  • the position of the portion 204 does not shift. Therefore, the positional accuracy of the circuit (wiring 20) of the flexible printed wiring board 1 can be improved.
  • the first to fourth curved surfaces 211, 212, 221, 222 of the wiring 20 are inclined away from each other as they approach the main surface of the flexible printed wiring board 1.

Abstract

A method for manufacturing a flexible printed wiring board 1 comprises: a first step for preparing a metal foil 200 having a first main surface 201 and a second main surface 202; a second step for performing half etching on a first portion 203 of the metal foil 200 from the first and second main surface 201, 202 sides simultaneously, to thin the first portion 203; a third step for affixing a base film 10 to the metal foil 200 from the first main surface 201 side; a fourth step for performing etching on the first portion 203 from the second main surface 202 side to remove the first portion 203, thereby forming wiring 20; and a fifth step for affixing a coverlay 30 to the base film 10 from the second main surface 202 side so as to cover the wiring 20.

Description

配線板の製造方法、及び、フレキシブルプリント配線板Wiring board manufacturing method and flexible printed wiring board
 本発明は、配線板の製造方法、及び、フレキシブルプリント配線板に関するものである。
 文献の参照による組み込みが認められる指定国については、2021年2月16日に日本国に出願された特願2021-022650に記載された内容を参照により本明細書に組み込み、本明細書の記載の一部とする。
The present invention relates to a wiring board manufacturing method and a flexible printed wiring board.
For designated countries where incorporation by reference of literature is permitted, the content described in Japanese Patent Application No. 2021-022650 filed in Japan on February 16, 2021 is incorporated herein by reference, and the description of this specification be part of
 銅板の一面に回路パターンを形成するエッチングを行う工程と、エッチング工程の後、銅板の回路パターン形成面側に基体を形成し、銅板を基体に固定、一体化する工程と、基体に固定された銅板の回路パターン非形成面側をエッチングし、回路パターンを構成する回路導体を分離し、所定の回路パターンを形成する工程と、を含む回路基板の製造方法が知られている(例えば、特許文献1参照)。 a step of etching to form a circuit pattern on one surface of the copper plate; after the etching step, forming a substrate on the side of the circuit pattern forming surface of the copper plate, fixing and integrating the copper plate to the substrate; A method for manufacturing a circuit board is known, which includes a step of etching the side of a copper plate on which a circuit pattern is not formed, separating circuit conductors constituting the circuit pattern, and forming a predetermined circuit pattern (for example, Patent Document 1).
特開2002-76571号公報JP-A-2002-76571
 車載モータ用のコイル等の大電流が供給されるような用途に使用される配線板では、回路パターンを形成するための材料として厚い銅板が使用される。この銅板が厚いほど、エッチングに要する処理時間も長くなる。上記従来技術のように、銅板の片側からのエッチングを2回実施する方法では、銅板が厚いほど、エッチングに要する処理時間も長くなり生産性が低下してしまうおそれがある、という問題がある。 A thick copper plate is used as a material for forming circuit patterns in wiring boards used in applications where large currents are supplied, such as coils for in-vehicle motors. The thicker the copper plate, the longer the processing time required for etching. In the method of performing etching from one side of the copper plate twice, as in the above-described prior art, there is a problem that the thicker the copper plate, the longer the processing time required for etching, which may reduce productivity.
 本発明が解決しようとする課題は、生産性向上を図ることができる配線板の製造方法を提供することである。 The problem to be solved by the present invention is to provide a wiring board manufacturing method capable of improving productivity.
 [1]本発明における配線板の製造方法は、基材と、前記基材上に配置された配線と、前記配線を覆うように前記基材に積層されたカバーレイと、を備えた配線板の製造方法であって、第1の主面及び第2の主面を有する金属箔を準備する第1の工程と、前記金属箔の第1の部分に、前記第1及び第2の主面側から同時にハーフエッチングを施すことで、前記第1の部分を薄くする第2の工程と、前記第1の主面側から前記金属箔に前記基材を貼り付ける第3の工程と、前記第2の主面側から前記第1の部分にエッチングを施して前記第1の部分を除去することで、前記配線を形成する第4の工程と、前記第2の主面側から前記配線を覆うように前記基材に前記カバーレイを貼り付ける第5の工程と、を備える。 [1] A wiring board manufacturing method according to the present invention is a wiring board comprising a base material, wiring arranged on the base material, and a coverlay laminated on the base material so as to cover the wiring. , wherein a first step of preparing a metal foil having a first main surface and a second main surface; and a first portion of the metal foil having the first and second main surfaces a second step of thinning the first portion by simultaneously performing half-etching from the side; a third step of attaching the base material to the metal foil from the first main surface side; a fourth step of forming the wiring by removing the first portion by etching the first portion from the main surface side of 2; and covering the wiring from the second main surface side. and a fifth step of attaching the coverlay to the base material.
 [2]上記発明において、前記第2の工程は、前記第1の部分の全面において、前記第1の部分が前記配線板の厚さ方向に沿って残存するように前記ハーフエッチングを施すことを含んでいてもよい。 [2] In the above invention, the second step includes performing the half-etching on the entire surface of the first portion so that the first portion remains along the thickness direction of the wiring board. may contain.
 [3]上記発明において、前記第2の工程は、前記第1の部分の厚さが、前記第1の部分以外の第2の部分の厚さの5%~15%となるように前記ハーフエッチングを施すことを含んでいてもよい。 [3] In the above invention, the second step may be performed by adjusting the thickness of the half so that the thickness of the first portion is 5% to 15% of the thickness of the second portion other than the first portion. Etching may be included.
 [4]本発明におけるフレキシブルプリント配線板は、基材と、前記基材上に配置された配線と、前記配線を覆うように前記基材に積層されたカバーレイと、を備えたフレキシブルプリント配線板であって、前記配線は、前記配線の幅方向に沿った断面において、前記配線の幅方向に沿って相互に対向する第1の面及び第2の面と、前記第1及び第2の面を接続し、前記配線板の厚さ方向に沿って相互に対向する第3の面及び第4の面と、を含み、前記第1の面は、前記配線の内側に凹むように湾曲し、前記第3の面と接続する第1の端を有する第1の曲面と、前記配線の内側に凹むように湾曲し、前記第1の曲線と接続する第2の端及び前記第4の面と接続する第3の端を有する第2の曲面と、を含み、前記第2の面は、前記配線の内側に凹むように湾曲し、前記第3の面と接続する第4の端を有する第3の曲面と、前記配線の内側に凹むように湾曲し、前記第3の曲線と接続する第5の端及び前記第4の面と接続する第6の端を有する第4の曲面と、を含み、下記(1)式を満たすフレキシブルプリント配線板。
 W<W<W ・・・ (1)
 但し、上記(1)式において、Wは前記第1の端と前記第4の端との間の幅であり、Wは前記第2の端と前記第5の端との間の幅であり、Wは前記第3の端と前記第6の端との間の幅である。
[4] A flexible printed wiring board according to the present invention is a flexible printed wiring comprising a base material, wiring arranged on the base material, and a coverlay laminated on the base material so as to cover the wiring. A plate, wherein the wiring has, in a cross section along the width direction of the wiring, a first surface and a second surface facing each other along the width direction of the wiring, and the first and second surfaces. a third surface and a fourth surface connecting the surfaces and facing each other along the thickness direction of the wiring board, the first surface being curved so as to be recessed inside the wiring; , a first curved surface having a first end connected to the third surface, a second end curved to be recessed inside the wiring and connected to the first curved surface, and the fourth surface a second curved surface having a third end connected to the second surface, the second surface curved to be recessed inside the wiring, and having a fourth end connected to the third surface a third curved surface, a fourth curved surface curved to be recessed inside the wiring, and having a fifth end connected to the third curve and a sixth end connected to the fourth surface; A flexible printed wiring board that includes and satisfies the following formula (1).
W 2 <W 1 <W 3 (1)
However, in the above formula ( 1 ), W1 is the width between the first end and the fourth end, and W2 is the width between the second end and the fifth end. and W3 is the width between the third end and the sixth end.
 [5]上記発明において、下記(2)式を満たすことが好ましい。
 H<H ・・・ (2)
 但し、Hは前記第3の面から第1の仮想平面までの高さであり、Hは前記第1の仮想平面から第4の面までの高さであり、前記第1の仮想平面は、前記第2の端と前記第5の端とを通る仮想上の平面である。
[5] In the above invention, it is preferable that the following formula (2) is satisfied.
H 1 <H 2 (2)
However, H1 is the height from the third plane to the first virtual plane, H2 is the height from the first virtual plane to the fourth plane, and the first virtual plane is a virtual plane passing through the second end and the fifth end.
 本発明では、金属箔の両面からハーフエッチングを施した後に、金属箔の片面からエッチングを施すことで配線を形成する。このため、本発明では、エッチングに要する処理時間を低減することができ、生産性の向上を図ることができる。 In the present invention, wiring is formed by half-etching from both sides of the metal foil and then etching from one side of the metal foil. Therefore, in the present invention, the processing time required for etching can be reduced, and productivity can be improved.
図1は、本発明の実施形態におけるフレキシブルプリント配線板を示す平面図である。FIG. 1 is a plan view showing a flexible printed wiring board according to an embodiment of the invention. 図2は、本発明の実施形態におけるフレキシブルプリント配線板を示す断面図であり、図1のII-II線に沿った図である。FIG. 2 is a cross-sectional view showing a flexible printed wiring board according to an embodiment of the present invention, taken along line II-II in FIG. 図3は、図2のIII部を示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view showing part III of FIG. 図4(a)は、比較例におけるフレキシブルプリント配線板を曲げた状態を示す断面図であり、図4(b)は、本発明の実施形態におけるフレキシブルプリント配線板を曲げた状態を示す断面図である。FIG. 4(a) is a sectional view showing a bent state of a flexible printed wiring board in a comparative example, and FIG. 4(b) is a sectional view showing a bent state of a flexible printed wiring board in an embodiment of the present invention. is. 図5(a)~図5(h)は、本発明の実施形態におけるフレキシブルプリント配線板の製造方法を示す断面図である。5(a) to 5(h) are cross-sectional views showing a method for manufacturing a flexible printed wiring board according to an embodiment of the present invention.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described based on the drawings.
 図1は、本実施形態におけるフレキシブルプリント配線板を示す平面図である。図2は、本実施形態におけるフレキシブルプリント配線板を示す断面図であり、図1のII-II線に沿った図である。 FIG. 1 is a plan view showing a flexible printed wiring board according to this embodiment. FIG. 2 is a cross-sectional view showing the flexible printed wiring board in this embodiment, taken along line II-II in FIG.
 図1及び図2に示すように、フレキシブルプリント配線板(FPC)1は、ベースフィルム(第1のカバーレイ)10と、複数(本例では4本)の配線20と、カバーレイ(第2のカバーレイ)30と、を備えている。本実施形態におけるベースフィルム10は、本発明における「基材」の一例に相当する。 As shown in FIGS. 1 and 2, a flexible printed wiring board (FPC) 1 includes a base film (first coverlay) 10, a plurality of (four in this example) wirings 20, and a coverlay (second of the coverlay) 30 and. The base film 10 in this embodiment corresponds to an example of the "base material" in this invention.
 ベースフィルム10は、可撓性を有すると共に長尺の帯形状を有するフィルムであり、樹脂材料等の電気絶縁性を有する材料から構成されている。このベースフィルム10は、第1の樹脂層11と第1の接着層12を有している。 The base film 10 is a flexible and elongated strip-shaped film, and is made of an electrically insulating material such as a resin material. This base film 10 has a first resin layer 11 and a first adhesive layer 12 .
 第1の樹脂層11は、可撓性を有する樹脂材料から構成されたフィルムである。図2に示すように、この第1の樹脂層11は、配線20の第1の曲面211(後述)及び第3の曲面221(後述)と対向すると共に、配線20に向かって凹む第1の凹部11aを有している。この第1の樹脂層11を構成する材料としては、特に限定されないが、例えば、ポリイミド(PI)、液晶ポリマ(LCP)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、及び、アラミド等を例示することができる。 The first resin layer 11 is a film made of a flexible resin material. As shown in FIG. 2, the first resin layer 11 faces a first curved surface 211 (described later) and a third curved surface 221 (described later) of the wiring 20, and is recessed toward the wiring 20. It has a recess 11a. Although the material constituting the first resin layer 11 is not particularly limited, for example, polyimide (PI), liquid crystal polymer (LCP), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyetherimide (PEI), ), polyetheretherketone (PEEK), and aramid.
 第1の接着層12は、第1の樹脂層11と配線20を接着している。この第1の接着層12は、第1の樹脂層11と配線20との間に介在していると共に、配線20同士の間にも介在している。第1の接着層12を構成する材料としては、接着剤を用いることができ、特に限定されないが、ポリアミド系の熱溶融型接着剤、ポリウレタン系熱溶融型接着剤、ポリエステル系熱溶融型接着剤、オレフィン系熱溶融型接着剤を用いることができる。 The first adhesive layer 12 bonds the first resin layer 11 and the wiring 20 together. The first adhesive layer 12 is interposed between the first resin layer 11 and the wiring 20 and is also interposed between the wirings 20 . Adhesives can be used as the material constituting the first adhesive layer 12, and are not particularly limited, but are polyamide-based hot-melt adhesives, polyurethane-based hot-melt adhesives, and polyester-based hot-melt adhesives. , an olefin-based hot-melt adhesive can be used.
 ベースフィルム10の第1の樹脂層11と第1の接着層12を構成する材料は、特に上記に限定されない。例えば、第1の樹脂層11を、上述の樹脂フィルムに代えて、プリプレグを用いてもよい。或いは、感光性カバーレイ材料からなるドライフィルムを用いて形成してもよいし、或いは、液状の感光性カバーレイ材料を第1の接着層12上に塗布した後に露光及び現像することで、第1の樹脂層11を形成してもよい。或いは、液状のカバーレイインクを第1の接着層上に印刷することで、第1の樹脂層11を形成してもよい。 The material constituting the first resin layer 11 and the first adhesive layer 12 of the base film 10 is not particularly limited to the above. For example, a prepreg may be used instead of the resin film described above for the first resin layer 11 . Alternatively, it may be formed using a dry film made of a photosensitive coverlay material, or by applying a liquid photosensitive coverlay material on the first adhesive layer 12 and then exposing and developing the first adhesive layer 12 . One resin layer 11 may be formed. Alternatively, the first resin layer 11 may be formed by printing liquid cover lay ink on the first adhesive layer.
 或いは、第1の樹脂層11を所謂ソルダレジストで構成してもよい。具体的には、感光性レジスト材料からなるドライフィルムを用いて第1の樹脂層11を形成してもよい。或いは、液状の感光性レジスト材料を第1の接着層12上に塗布した後に露光及び現像することで、第1の樹脂層11を形成してもよい。或いは、液状のソルダレジストインクを第1の接着層12上に印刷することで、第1の樹脂層11を形成してもよい。 Alternatively, the first resin layer 11 may be composed of a so-called solder resist. Specifically, the first resin layer 11 may be formed using a dry film made of a photosensitive resist material. Alternatively, the first resin layer 11 may be formed by applying a liquid photosensitive resist material on the first adhesive layer 12, followed by exposure and development. Alternatively, the first resin layer 11 may be formed by printing liquid solder resist ink on the first adhesive layer 12 .
 第1の接着層12も、上述の接着剤に代えて、液状の感光性カバーレイ材料を露光及び現像することで形成してもよい。或いは、液状のカバーレイインクを印刷することで、第1の接着層12を形成してもよい。 The first adhesive layer 12 may also be formed by exposing and developing a liquid photosensitive coverlay material instead of the above adhesive. Alternatively, the first adhesive layer 12 may be formed by printing liquid coverlay ink.
 上記の感光性カバーレイ材料や感光性レジスト材料の具体例としては、例えば、ポリエステル、エポキシ、アクリル、ポリイミド、ポリウレタン等を用いたものを例示することができる。また、上記のカバーレイインクやソルダレジストインクの具体例としては、ポリイミドやエポキシをベースとしたものを例示することができる。 Specific examples of the above photosensitive coverlay materials and photosensitive resist materials include those using polyester, epoxy, acrylic, polyimide, polyurethane, and the like. Further, specific examples of the above cover lay ink and solder resist ink include those based on polyimide and epoxy.
 ベースフィルム10上には、複数の配線20が形成されている。この配線20は、金属等の導電性材料から構成されている。この配線20を構成する金属としては、例えば、銅、銀、金を例示することができる。本実施形態では、配線20を構成する材料として厚銅が用いられている。特に限定されないが、本実施形態では、配線20の厚さTは35μm~2mm(35μm≦T≦2mm)である。また、配線20の厚さTは、70μm~2mm(70μm≦T≦2mm)としてもよい。このように、配線の厚さTが大きいことにより、本実施形態におけるフレキシブルプリント配線板1を、大電流が供給されるような用途に好適に使用することができる。 A plurality of wirings 20 are formed on the base film 10 . The wiring 20 is made of a conductive material such as metal. Examples of the metal forming the wiring 20 include copper, silver, and gold. In this embodiment, thick copper is used as the material forming the wiring 20 . Although not particularly limited, the thickness T 1 of the wiring 20 is 35 μm to 2 mm (35 μm≦T 1 ≦2 mm) in this embodiment. Also, the thickness T 1 of the wiring 20 may be 70 μm to 2 mm (70 μm≦T 1 ≦2 mm). Since the thickness T1 of the wiring is large in this way, the flexible printed wiring board 1 of the present embodiment can be suitably used for applications in which a large current is supplied.
 本実施形態では、複数の配線20が図中のX方向に沿って直線状に延在している。複数の配線20は、等間隔で相互に平行に配置されている。なお、配線20の数や形状、配置等は、特にこれに限定されず、任意に設定することができる。また、配線20の数は、複数に限られず、1つであってもよい。 In this embodiment, a plurality of wirings 20 extend linearly along the X direction in the figure. The plurality of wirings 20 are arranged parallel to each other at regular intervals. The number, shape, arrangement, etc. of the wirings 20 are not particularly limited to this, and can be set arbitrarily. Also, the number of wirings 20 is not limited to plural, and may be one.
 図3は、図2のIII部を示す拡大断面図であり、配線20の幅方向に沿った断面である。図3に示すように、配線20は、第1の面21と、第2の面22と、第3の面23と、第4の面24と、を含んでいる。本実施形態では、第1の面21と第2の面22は、いずれも配線20の側面であり、相互に対向している。一方で、本実施形態では、第3の面23は配線20の下面であり、第4の面24は配線20の上面である。第3及び第4の面23,24は、相互に対向していると共に、第1の面21と第2の面22の間に介在し、第1及び第2の面21,22を接続している。 FIG. 3 is an enlarged cross-sectional view showing part III of FIG. As shown in FIG. 3, the wiring 20 includes a first surface 21, a second surface 22, a third surface 23, and a fourth surface 24. As shown in FIG. In this embodiment, the first surface 21 and the second surface 22 are both side surfaces of the wiring 20 and face each other. On the other hand, in this embodiment, the third surface 23 is the bottom surface of the wiring 20 and the fourth surface 24 is the top surface of the wiring 20 . The third and fourth surfaces 23, 24 face each other and are interposed between the first surface 21 and the second surface 22 to connect the first and second surfaces 21, 22. ing.
 第1の面21は、第1の曲面211と、第2の曲面212と、から構成されている。第1の曲面211は、配線20の内側(図中の+Y方向)に向かって凹むように湾曲する曲面である。この第1の曲面211は、本実施形態では、第2の曲面212に対してベースフィルム10側に位置しており、第3の面23と第2の曲面212との間に介在している。また、第1の曲面211は、第1の端213において第3の面23と接続されていると共に、第2の端214において第2の曲面212と接続されている。 The first surface 21 is composed of a first curved surface 211 and a second curved surface 212. The first curved surface 211 is a curved surface that is recessed toward the inside of the wiring 20 (+Y direction in the drawing). In this embodiment, the first curved surface 211 is located on the base film 10 side with respect to the second curved surface 212 and is interposed between the third surface 23 and the second curved surface 212. . Also, the first curved surface 211 is connected to the third surface 23 at the first end 213 and is connected to the second curved surface 212 at the second end 214 .
 第2の端214は、配線20の幅方向(図中のY方向)において、配線20の最も外側(図中の-Y方向)に位置している。そのため、第1の曲面211は、全体的に、ベースフィルム10から離れるに従って、配線20の外側(図中の-Y方向)に向かうように傾斜している。 The second end 214 is located on the outermost side (−Y direction in the drawing) of the wiring 20 in the width direction (Y direction in the drawing) of the wiring 20 . Therefore, the first curved surface 211 as a whole inclines toward the outside of the wiring 20 (-Y direction in the figure) as the distance from the base film 10 increases.
 第2の曲面212は、第1の曲面211と同様に、配線20の内側(図中の+Y方向)に向かって凹むように湾曲する曲面である。この第2の曲面212は、本実施形態では、第1の曲面211に対してカバーレイ30側に位置しており、第1の曲面211と第4の面24との間に介在している。また、第2の曲面212は、第3の端215において第4の面24と接続されている。 The second curved surface 212, like the first curved surface 211, is a curved surface that is concave toward the inside of the wiring 20 (+Y direction in the drawing). In this embodiment, the second curved surface 212 is located on the coverlay 30 side with respect to the first curved surface 211 and is interposed between the first curved surface 211 and the fourth surface 24. . Also, the second curved surface 212 is connected to the fourth surface 24 at the third end 215 .
 また、この第2の曲面212の高さHは、第1の曲面211の高さHよりも大きくなっている(H<H)。なお、第1の曲面211の高さHとは、第3の面23から第1の仮想平面VPまでの距離であり、第2の曲面212の高さHとは、仮想平面VPから第4の面24までの距離である。第1の仮想平面VPは、第2の端214と第5の端224(後述)を通過するとともに、第3及び第4の面23,24と実質的に平行である仮想的な平面である。 Also, the height H2 of the second curved surface 212 is larger than the height H1 of the first curved surface 211 (H1<H2). The height H1 of the first curved surface 211 is the distance from the third surface 23 to the first virtual plane VP1, and the height H2 of the second curved surface 212 is the distance from the virtual plane VP1. It is the distance from 1 to the fourth surface 24 . A first virtual plane VP1 is a virtual plane that passes through the second end 214 and the fifth end 224 (described below) and is substantially parallel to the third and fourth faces 23,24. be.
 第3の端215は、上述の第2の端214よりも配線20の内側(図中の+Y方向)に位置している。そのため、第2の曲面212は、全体的に、ベースフィルム10から離れるに従って、配線の内側(図中の+Y方向)に向かって傾斜している。 The third end 215 is positioned inside the wiring 20 (in the +Y direction in the figure) from the second end 214 described above. Therefore, the second curved surface 212 as a whole inclines toward the inner side of the wiring (+Y direction in the figure) as the distance from the base film 10 increases.
 第2の面22は、第2の仮想平面VPに対して、第1の面21と実質的に面対称となっている。なお、第2の仮想平面VPは、配線20の幅方向に沿った断面において、フレキシブルプリント配線板1の厚み方向(図中Z方向)に延在すると共に、配線20を幅方向に実質的に二等分する平面である。この第2の面22は、第3の曲面221と、第4の曲面222とから構成されている。 The second surface 22 is substantially plane-symmetrical with the first surface 21 with respect to the second virtual plane VP2. The second virtual plane VP2 extends in the thickness direction (the Z direction in the drawing) of the flexible printed wiring board 1 in a cross section along the width direction of the wiring 20, and substantially extends the wiring 20 in the width direction. is the plane that bisects . This second surface 22 is composed of a third curved surface 221 and a fourth curved surface 222 .
 第3の曲面221は、第2の仮想平面VPに対して、第1の曲面211と実質的に面対称であり、配線20の内側(図中の-Y方向)に向かって凹むように湾曲する曲面である。この第3の曲面221は、本実施形態では、第4の曲面222に対してベースフィルム10側に位置しており、第3の面23と第4の曲面222との間に介在している。また、第3の曲面221は、第4の端223において第3の面23と接続されていると共に、第5の端224において第4の曲面222と接続されている。また、この第3の曲面221は、第1の曲面の高さHと同じ高さを有している。 The third curved surface 221 is substantially plane-symmetrical with the first curved surface 211 with respect to the second virtual plane VP2, and is recessed toward the inner side of the wiring 20 (-Y direction in the drawing). It is a curved surface. In this embodiment, the third curved surface 221 is located on the base film 10 side with respect to the fourth curved surface 222 and is interposed between the third surface 23 and the fourth curved surface 222. . The third curved surface 221 is connected to the third surface 23 at the fourth end 223 and connected to the fourth curved surface 222 at the fifth end 224 . Also, the third curved surface 221 has the same height as the height H1 of the first curved surface.
 第5の端224は、第2の仮想平面VPに対して、第2の端214と実質的に面対称となる位置に形成されており、配線20の幅方向(図中のY方向)において、配線20の最も外側(図中の+Y方向)に位置している。そのため、第3の曲面221は、全体的に、ベースフィルム10から離れるに従って、配線20の外側(図中の+Y方向)に向かうように傾斜している。 The fifth end 224 is formed at a position substantially symmetrical to the second end 214 with respect to the second virtual plane VP2, and is arranged in the width direction of the wiring 20 (the Y direction in the drawing). , is positioned on the outermost side of the wiring 20 (+Y direction in the drawing). Therefore, the third curved surface 221 as a whole inclines toward the outside of the wiring 20 (+Y direction in the drawing) as the distance from the base film 10 increases.
 第4の曲面222は、第2の仮想平面VPに対して、第2の曲面212と実質的に面対称であり、配線20の内側(図中の-Y方向)に向かって凹むように湾曲する曲面である。この第4の曲面222は、本実施形態では、第3の曲面221に対してカバーレイ30側に位置しており、第3の曲面221と第4の面24との間に介在している。また、第4の曲面222は、第6の端225において第4の面24と接続されている。また、この第4の曲面222は、第2の曲面212の高さHと同様の高さを有している。 The fourth curved surface 222 is substantially plane-symmetrical with the second curved surface 212 with respect to the second virtual plane VP2, and is recessed toward the inner side of the wiring 20 (-Y direction in the drawing). It is a curved surface. In this embodiment, the fourth curved surface 222 is located on the coverlay 30 side with respect to the third curved surface 221 and is interposed between the third curved surface 221 and the fourth surface 24. . Also, the fourth curved surface 222 is connected to the fourth surface 24 at the sixth end 225 . Also, the fourth curved surface 222 has the same height as the height H2 of the second curved surface 212 .
 第6の端225は、第5の端224よりも配線20の内側(図中の-Y方向)に位置している。そのため、第4の曲面222は、全体的に、ベースフィルム10から離れるに従って、配線の内側(図中の-Y方向)に向かって傾斜している。 The sixth end 225 is positioned inside the wiring 20 (in the -Y direction in the figure) relative to the fifth end 224 . Therefore, the fourth curved surface 222 as a whole inclines toward the inner side of the wiring (-Y direction in the drawing) as the distance from the base film 10 increases.
 第3及び第4の面23,24は、本実施形態において、水平方向(図中のXY平面方向)に実質的に平行な平面である。上述の通り、第1及び第4の端213,223が、第3及び第6の端215,225よりも配線20の外側に位置しているため、第3の面における配線20の線幅W(第1の端213と第4の端223との間の幅)は、第4の面における配線20の線幅W(第3の端215と第6の端225との間の幅)よりも大きくなっている(W<W)。一方で、第2及び第5の端214,224は、第1及び第4の端213,223よりも配線20の更に外側に位置しているため、第3の面における配線20の線幅Wは、第2及び第5の端214,224間における配線20の線幅Wよりも小さくなっている(W<W)。 The third and fourth surfaces 23 and 24 are planes substantially parallel to the horizontal direction (the XY plane direction in the drawing) in this embodiment. As described above, since the first and fourth ends 213 and 223 are positioned outside the wiring 20 relative to the third and sixth ends 215 and 225, the line width W of the wiring 20 on the third plane is 1 (the width between the first end 213 and the fourth end 223) is the line width W 2 (the width between the third end 215 and the sixth end 225) of the wiring 20 on the fourth surface ) (W 2 <W 1 ). On the other hand, since the second and fifth ends 214, 224 are located further outside the wiring 20 than the first and fourth ends 213, 223, the line width W of the wiring 20 on the third surface is 1 is smaller than the line width W3 of the wiring 20 between the second and fifth ends 214, 224 ( W1<W3).
 図2に示すように、カバーレイ30は、配線20を覆うようにベースフィルム10上に配置されている。なお、特に図示しないが、配線20の端子部分等がカバーレイ30から露出していてもよい。このカバーレイ30は、配線20を保護するための第2の樹脂層31と、この第2の樹脂層31をベースフィルム10及び配線20に接着する第2の接着層32と、を有している。 As shown in FIG. 2 , the coverlay 30 is arranged on the base film 10 so as to cover the wiring 20 . In addition, although not shown, the terminal portion of the wiring 20 and the like may be exposed from the coverlay 30 . The coverlay 30 has a second resin layer 31 for protecting the wiring 20 and a second adhesive layer 32 for bonding the second resin layer 31 to the base film 10 and the wiring 20. there is
 第2の樹脂層31は、第1の樹脂層11と同様に、可撓性を有する樹脂材料から構成されている。また、この第2の樹脂層31は、配線20の第2の曲面212及び第4の曲面222と対向すると共に、配線20に向かって凹む第2の凹部31aを有している。 The second resin layer 31, like the first resin layer 11, is made of a flexible resin material. The second resin layer 31 also has a second concave portion 31 a that faces the second curved surface 212 and the fourth curved surface 222 of the wiring 20 and is recessed toward the wiring 20 .
 本実施形態では、配線20の第3の面23の幅Wが第4の面24の幅Wよりも大きいため、配線20間における第3の端215から第6の端225までの間の距離dが、配線20間における第1の端213から第4の端223までの間の距離dよりも大きくなっている(d<d)。このため、第2の凹部31aは、ベースフィルム10の第1の凹部11aに比べて大きく凹んでおり、第2の凹部31aの深さDは、第1の凹部11aの深さより大きくなっている(D<D)。この第2の樹脂層31を構成する材料としては、ベースフィルム10の第1の樹脂層11を構成する材料と同様の材料を用いることができる。なお、第1の樹脂層11と第2の樹脂層31を構成する材料が相違していてもよい。 In this embodiment, since the width W1 of the third surface 23 of the wiring 20 is larger than the width W2 of the fourth surface 24, the distance from the third end 215 to the sixth end 225 between the wirings 20 is is greater than the distance d 1 between the first end 213 and the fourth end 223 between the wirings 20 (d 1 <d 2 ). Therefore, the second recess 31a is recessed more than the first recess 11a of the base film 10, and the depth D2 of the second recess 31a is larger than the depth of the first recess 11a. (D 1 <D 2 ). As the material forming the second resin layer 31, the same material as the material forming the first resin layer 11 of the base film 10 can be used. In addition, the material which comprises the 1st resin layer 11 and the 2nd resin layer 31 may differ.
 一方、第2の接着層32を構成する材料としては、ベースフィルム10の第1の接着層12を構成する材料と同様の材料を用いることができる。また、特に限定されないが、本実施形態では、第2の接着層32と第1の接着層12は、一体となっている。第1の接着層12と第2の接着層32を構成する材料は同一であってもよいし、相違していてもよい。 On the other hand, as the material forming the second adhesive layer 32, the same material as the material forming the first adhesive layer 12 of the base film 10 can be used. Although not particularly limited, in the present embodiment, the second adhesive layer 32 and the first adhesive layer 12 are integrated. The materials forming the first adhesive layer 12 and the second adhesive layer 32 may be the same or different.
 また、第2の樹脂層31を、上述の樹脂フィルムに代えて、感光性カバーレイ材料からなるドライフィルムを用いて形成してもよいし、或いは、液状の感光性カバーレイ材料を第2の接着層32上に塗布した後に露光及び現像することで、第2の樹脂層31を形成してもよい。或いは、液状のカバーレイインクを第2の接着層32上に印刷することで、第2の樹脂層31を形成してもよい。或いは、第2の樹脂層31を所謂ソルダレジストで構成してもよい。 Further, the second resin layer 31 may be formed using a dry film made of a photosensitive coverlay material instead of the resin film described above, or a liquid photosensitive coverlay material may be used as the second resin film. The second resin layer 31 may be formed by coating the adhesive layer 32 and then exposing and developing. Alternatively, the second resin layer 31 may be formed by printing liquid cover lay ink on the second adhesive layer 32 . Alternatively, the second resin layer 31 may be composed of a so-called solder resist.
 第2の接着層32も、上述の接着剤に代えて、液状の感光性カバーレイ材料を露光及び現像することで形成してもよい。或いは、液状のカバーレイインクを印刷することで、第2の接着層32を形成してもよい。 The second adhesive layer 32 may also be formed by exposing and developing a liquid photosensitive coverlay material instead of the above adhesive. Alternatively, the second adhesive layer 32 may be formed by printing liquid coverlay ink.
 図4(a)は、比較例におけるフレキシブルプリント配線板1Bを曲げた状態を示す断面図であり、図4(b)は、本実施形態におけるフレキシブルプリント配線板1を曲げた状態を示す断面図である。 FIG. 4(a) is a sectional view showing a bent state of the flexible printed wiring board 1B in the comparative example, and FIG. 4(b) is a sectional view showing a bent state of the flexible printed wiring board 1 in the present embodiment. is.
 図4(a)に示すように、比較例におけるフレキシブルプリント配線板1Bの配線20Bでは、第1及び第4の端213B,223B間の幅Wと、第2及び第5の端214B,224B間の幅Wと、第3及び第6の端215B,225B間の幅Wと、が全て等しくなっている(W=W=W)。このため、フレキシブルプリント配線板1Bでは、配線20B間の距離が小さく、曲げの際の可動域が狭くなってしまうため、フレキシブルプリント配線板1Bが曲げにくくなってしまう。また、フレキシブルプリント配線板1Bを曲げた場合、配線20B間における第6の端225Bと第3の端215Bとの間の距離dが小さくなってしまう。このように、配線20B同士が部分的に過度に接近してしまうため、配線20B間の絶縁信頼性が低下してしまう。 As shown in FIG. 4A, in the wiring 20B of the flexible printed wiring board 1B in the comparative example, the width W1 between the first and fourth ends 213B, 223B and the width W1 between the second and fifth ends 214B, 224B The width W 2 between the ends and the width W 3 between the third and sixth ends 215B and 225B are all equal (W 1 =W 2 =W 3 ). Therefore, in the flexible printed wiring board 1B, the distance between the wirings 20B is small, and the range of motion at the time of bending becomes narrow, making it difficult to bend the flexible printed wiring board 1B. Moreover, when the flexible printed wiring board 1B is bent, the distance d2 between the sixth end 225B and the third end 215B between the wirings 20B becomes small. As described above, the wirings 20B are partially too close to each other, so that the insulation reliability between the wirings 20B is lowered.
 これに対して、本実施形態におけるフレキシブルプリント配線板1であれば、第1及び第4の端213,223間の幅Wが第2及び第5の端214,224間の幅Wより大きく、第3及び第6の端215,225間の幅Wが幅Wより大きくなっている(W<W<W)。そのため、比較例に比べて、配線20間の距離が大きく、曲げの際の可動域が広いため、フレキシブルプリント配線板1が曲げ易くなっている。また、フレキシブルプリント配線板1を曲げた場合、配線20間における第6の端225と第3の端215との間の距離dが比較例に比べ大きい。よって、配線20間の絶縁信頼性の低下を抑制することができる。 In contrast, in the flexible printed wiring board 1 of this embodiment, the width W1 between the first and fourth ends 213 and 223 is greater than the width W2 between the second and fifth ends 214 and 224. Largely, the width W3 between the third and sixth ends 215, 225 is greater than the width W1 ( W2<W1<W3). Therefore, compared to the comparative example, the distance between the wirings 20 is large, and the flexible printed wiring board 1 is easy to bend because the range of motion during bending is large. Moreover, when the flexible printed wiring board 1 is bent, the distance d2 between the sixth end 225 and the third end 215 between the wirings 20 is larger than in the comparative example. Therefore, deterioration in insulation reliability between the wirings 20 can be suppressed.
 次に、本実施形態におけるフレキシブルプリント配線板1の製造方法を、図5を参照しながら説明する。図5(a)~図5(h)は、本発明の実施形態におけるフレキシブルプリント配線板の製造方法を示す断面図である。 Next, a method for manufacturing the flexible printed wiring board 1 according to this embodiment will be described with reference to FIG. 5(a) to 5(h) are cross-sectional views showing a method for manufacturing a flexible printed wiring board according to an embodiment of the present invention.
 図5(a)に示すように、まず、第1の主面(下面)201及び第2の主面(上面)202を有する金属箔200を準備する(第1の工程)。本実施形態では、特に限定されないが、金属箔200として厚銅を準備する。ここで、厚銅とは、厚さTが35μm~2mm(35μm≦T≦2mm)である銅箔である。なお、金属箔200としては、例えば、銅箔の他にも、銀箔、金箔等を準備してもよい。 As shown in FIG. 5A, first, a metal foil 200 having a first main surface (lower surface) 201 and a second main surface (upper surface) 202 is prepared (first step). In this embodiment, although not particularly limited, thick copper is prepared as the metal foil 200 . Here, thick copper is a copper foil having a thickness T 1 of 35 μm to 2 mm (35 μm≦T 1 ≦2 mm). As the metal foil 200, for example, other than copper foil, silver foil, gold foil, or the like may be prepared.
 次に、この金属箔200の第1の部分203以外の第2の部分204にエッチングマスク401を形成する。エッチングマスク401は、配線20のパターンの形状に対応する形状に形成されており、本実施形態では、配線20(図1参照)に対応した直線状のパターンを有している。本実施形態における第1の部分203は後工程におけるハーフエッチング及びエッチングが施される部分であり、第2の部分204はハーフエッチング及びエッチングが施されない部分である。第1の部分203は最終的に配線20間のスペースとなり、一方で、第2の部分204は最終的に配線20となる。 Next, an etching mask 401 is formed on the second portion 204 other than the first portion 203 of the metal foil 200 . The etching mask 401 is formed in a shape corresponding to the shape of the pattern of the wiring 20, and has a linear pattern corresponding to the wiring 20 (see FIG. 1) in this embodiment. The first portion 203 in this embodiment is a portion to be half-etched and etched in a post-process, and the second portion 204 is a portion not to be half-etched and etched. The first portion 203 ends up being the space between wires 20 while the second portion 204 ends up being the wire 20 .
 エッチングマスク401は、ドライフィルムレジスト等のレジストを使用して形成することができる。また、レジストは、光が照射された部分を現像液に可溶解化させ、光が照射されていない部分を残すポジ型レジストであってもよいし、光が照射された部分を現像液に不溶化させて、光が照射された部分を残すネガ型レジストであってもよい。 The etching mask 401 can be formed using a resist such as dry film resist. In addition, the resist may be a positive resist that makes the portion irradiated with light soluble in the developer and leaves the portion not irradiated with light, or makes the portion irradiated with light insoluble in the developer. It may be a negative type resist that leaves the light-irradiated portion.
 図5(b)に示すように、金属箔200の第1の部分203に、第1及び第2の主面201,202側から同時にハーフエッチングを施すことで、第1の部分203を薄くする(第2の工程)。このハーフエッチングは、等方性エッチングであるため、第1の部分203は第1及び第2の主面201,202側から放射状に溶解される。このため、ハーフエッチング後の第1の部分203の表面203a,203b平面ではなく曲面となる。本実施形態では、当該表面203a,203bは半円筒形状を有している。 As shown in FIG. 5B, the first portion 203 of the metal foil 200 is subjected to half-etching simultaneously from the first and second main surfaces 201 and 202 to thin the first portion 203. (Second step). Since this half-etching is isotropic etching, the first portion 203 is dissolved radially from the first and second main surfaces 201 and 202 sides. Therefore, the surfaces 203a and 203b of the first portion 203 after half-etching are curved rather than flat. In this embodiment, the surfaces 203a, 203b have a semi-cylindrical shape.
 ハーフエッチングを施す方法としては、特に限定されないが、スプレーノズル(不図示)からエッチング液を金属箔に噴霧してエッチングを行うスプレーエッチング法を用いることができる。また、エッチング液としては、例えば、塩化第二鉄水溶液、塩化第二銅水溶液等を使用することができる。なお、ハーフエッチングを施す方法としては、スプレーエッチング法のみに限定されず、例えば、エッチング液に金属箔を浸漬する浸漬エッチング法等を用いてもよい。また、ウェットエッチング法ではなく、エッチングガスを用いるドライエッチング法を用いてもよい。 The method for half-etching is not particularly limited, but a spray etching method in which etching is performed by spraying an etchant onto the metal foil from a spray nozzle (not shown) can be used. Moreover, as etching liquid, ferric-chloride aqueous solution, cupric-chloride aqueous solution, etc. can be used, for example. The half-etching method is not limited to the spray etching method. For example, an immersion etching method in which a metal foil is immersed in an etchant may be used. A dry etching method using an etching gas may be used instead of the wet etching method.
 また、このハーフエッチングを施す第2の工程では、第1の部分203の全面において、第1の部分203が金属箔200の厚さ方向(図中のZ方向)に沿って残存するようにハーフエッチングを施すことが好ましい。これにより、金属箔200の全面において、第2の部分204同士が分離することが無く、第2の部分204同士を第1の部分203を介して接続した状態で後工程の処理を行えるので、第2の部分204間の距離等を維持することができる。このため、フレキシブルプリント配線板1の回路(配線20)の位置精度を向上させることができる。 In the second step of half-etching, the entire surface of the first portion 203 is half-etched so that the first portion 203 remains along the thickness direction of the metal foil 200 (the Z direction in the drawing). Etching is preferred. As a result, the second portions 204 are not separated from each other over the entire surface of the metal foil 200, and the post-process can be performed while the second portions 204 are connected to each other via the first portion 203. The distance between the second portions 204, etc. can be maintained. Therefore, the positional accuracy of the circuit (wiring 20) of the flexible printed wiring board 1 can be improved.
 また、この第2の工程では、第1の部分203の厚さTが、第2の部分204の厚さTの5%~15%となるようにハーフエッチングを施すことが好ましい(0.05×T≦T≦0.15×T)。特に、第1の部分203の厚さTが、第2の部分204の厚さTの7%~13%となるようにハーフエッチングを施すことが好ましい(0.07×T≦T≦0.13×T)。 In the second step, half etching is preferably performed so that the thickness T 2 of the first portion 203 is 5% to 15% of the thickness T 1 of the second portion 204 (0 .05×T 1 ≦T 2 ≦0.15×T 1 ). In particular, half-etching is preferably performed so that the thickness T 2 of the first portion 203 is 7% to 13% of the thickness T 1 of the second portion 204 (0.07×T 1 ≦T 2 ≤ 0.13 x T 1 ).
 ハーフエッチングによる第1の部分203のエッチング量は、金属箔200の面内でばらつきが生じるおそれがあるが、第1の部分203の厚さTが第2の部分204の厚さTの5%以上となるようにハーフエッチングを施せば、第1の部分203の全面において第1の部分203を残存させることができる。これにより、第2の部分204間において、第1の部分203を残存させることができるため、フレキシブルプリント配線板1の回路の位置精度を向上させることができる。一方で、第1の部分203の厚さTが第2の部分204の厚さTの15%以下となるようにハーフエッチングを施すことで、後述の片面エッチング工程(第4の工程)における処理時間を短縮できる。 The amount of etching of the first portion 203 by half-etching may vary within the plane of the metal foil 200, but the thickness T2 of the first portion 203 is equal to the thickness T1 of the second portion 204. If half-etching is performed so as to have a thickness of 5% or more, the first portion 203 can be left over the entire surface of the first portion 203 . As a result, the first portion 203 can be left between the second portions 204, so that the circuit position accuracy of the flexible printed wiring board 1 can be improved. On the other hand, half-etching is performed so that the thickness T2 of the first portion 203 is 15% or less of the thickness T1 of the second portion 204, thereby performing a single-sided etching step (fourth step) described later. processing time can be shortened.
 次に、図5(c)に示すように、エッチングマスク401を剥離する。エッチングマスク401の剥離には、例えば、水酸化ナトリウム等のアルカリ水溶液を剥離液として使用することができる。 Next, as shown in FIG. 5(c), the etching mask 401 is removed. For stripping the etching mask 401, for example, an alkaline aqueous solution such as sodium hydroxide can be used as a stripping solution.
 次に、図5(d)に示すように、第1の主面201側から金属箔200にベースフィルム10を貼り付ける(第3の工程)。このベースフィルム10は、上記したベースフィルム10と同様のものを用いる。ベースフィルム10が金属箔200に貼り付けられることにより、第1の部分203の表面203bは、ベースフィルム10の第1の接着層12により覆われる。 Next, as shown in FIG. 5(d), the base film 10 is attached to the metal foil 200 from the first main surface 201 side (third step). The base film 10 used is the same as the base film 10 described above. By attaching the base film 10 to the metal foil 200 , the surface 203 b of the first portion 203 is covered with the first adhesive layer 12 of the base film 10 .
 次に、図5(e)に示すように、第2の部分204の第2の主面202側にエッチングマスク402を形成する。このエッチングマスク402は、上述のエッチングマスク401と同様の方法により形成できる。 Next, as shown in FIG. 5( e ), an etching mask 402 is formed on the second main surface 202 side of the second portion 204 . This etching mask 402 can be formed by a method similar to that of the etching mask 401 described above.
 次に、図5(f)に示すように、第2の主面202側から第1の部分203に片面エッチングを施して第1の部分203を除去することで、配線20を形成する(第4の工程)。この第4の工程における片面エッチングは、上述のスプレーエッチング法等により行うことができる。この片面エッチングは、ハーフエッチングと同様に、等方性エッチングであるため、第1の部分203は、表面203aから放射状に溶解されていく。 Next, as shown in FIG. 5F, the first portion 203 is etched from the second main surface 202 side to remove the first portion 203, thereby forming the wiring 20 (second main surface 202). 4 step). Single-sided etching in the fourth step can be performed by the above-described spray etching method or the like. Since this single-sided etching is isotropic etching like half-etching, the first portion 203 is dissolved radially from the surface 203a.
 金属箔200の第1の主面201はハーフエッチングのみを施されているのに対して、第2の主面202はハーフエッチングに加えて片面エッチングも施されている。このため、第1の主面201側のエッチング量に比べて第2の主面202側のエッチング量の方が多い。よって、図3に示すように、配線20の第2の曲面212の高さHは、第1の曲面211の高さHよりも大きくなる。さらに、第3の面の幅Wは、第4の面の幅Wよりも大きくなる。そして、両面からハーフエッチングを施しているため、第2の端214から第5の端224までの幅Wが最も大きくなる。 The first main surface 201 of the metal foil 200 is only half-etched, while the second main surface 202 is half-etched and also single-sided etched. Therefore, the etching amount on the second main surface 202 side is larger than the etching amount on the first main surface 201 side. Therefore, as shown in FIG. 3, the height H2 of the second curved surface 212 of the wiring 20 is greater than the height H1 of the first curved surface 211 of the wiring 20 . Furthermore, the width W1 of the third surface is greater than the width W2 of the fourth surface. Since half etching is performed from both sides, the width W3 from the second end 214 to the fifth end 224 is the largest.
 次に、図5(g)に示すように、エッチングマスク402を剥離する。エッチングマスク402は、エッチングマスク401と同様の方法で剥離できる。 Next, as shown in FIG. 5(g), the etching mask 402 is removed. The etching mask 402 can be peeled off by a method similar to that of the etching mask 401 .
 次に、図5(h)に示すように、第2の主面202側から配線20を覆うようにベースフィルム10にカバーレイ30を貼り付ける。このカバーレイ30は、上述したカバーレイ30と同様のものを用いる。以上のようにして、フレキシブルプリント配線板1が製造される。 Next, as shown in FIG. 5(h), the coverlay 30 is attached to the base film 10 so as to cover the wiring 20 from the second main surface 202 side. This coverlay 30 is similar to the coverlay 30 described above. As described above, the flexible printed wiring board 1 is manufactured.
 本実施形態のようなフレキシブルプリント配線板1の製造方法であれば、金属箔200を両面側からハーフエッチングした後に、片面エッチングを施すため、片面エッチングを2回施す製造方法と比較して、エッチング処理に要する処理時間を低減することができる。特に、本実施形態のような厚銅を用いる場合に、エッチング処理に要する処理時間を効果的に低減することができる。 In the method for manufacturing the flexible printed wiring board 1 as in the present embodiment, after the metal foil 200 is half-etched from both sides, single-sided etching is performed. Processing time required for processing can be reduced. In particular, when using thick copper as in this embodiment, the processing time required for the etching process can be effectively reduced.
 本実施形態による処理時間の低減効果を評価するため、実施例及び比較例において、500μmの厚さを有する銅箔を以下のように2回に分けてエッチングし、処理時間を比較した。なお、実施例及び比較例において、銅箔の一方の主面のエッチング速度は10μm/分とした。 In order to evaluate the effect of reducing the processing time according to this embodiment, a copper foil having a thickness of 500 μm was etched in two steps as follows, and the processing times were compared in Examples and Comparative Examples. In the examples and comparative examples, the etching rate of one main surface of the copper foil was set to 10 μm/min.
 まず、実施例では、1回目のエッチングにおいて、銅箔の両面側からハーフエッチングを施し、2回目のエッチングにおいて片面側からエッチングを施した。このとき、1回目のハーフエッチングにおけるエッチング量は450μmであり、銅箔の厚さの10%(50μm)を残存させた。この時に要した処理時間は、下記表1に示すように、22.5分であった。2回目のエッチングにおけるエッチング量は50μmであった。この時に要した処理時間は、下記表2に示すように、5分であった。 First, in the example, the copper foil was half-etched from both sides in the first etching, and etched from one side in the second etching. At this time, the amount of etching in the first half-etching was 450 μm, leaving 10% (50 μm) of the thickness of the copper foil. The processing time required at this time was 22.5 minutes, as shown in Table 1 below. The etching amount in the second etching was 50 μm. The processing time required at this time was 5 minutes, as shown in Table 2 below.
 一方で、比較例では、1回目のエッチングにおいて、銅箔の一方側から片面ハーフエッチングを施し、2回目のエッチングにおいて他方側から片面エッチングを施した。1回目のエッチングに要した時間及び2回目のエッチングに要した時間は、下記表1及び表2に示すように、それぞれ25分であった。 On the other hand, in the comparative example, one side of the copper foil was half-etched from one side in the first etching, and one side was etched from the other side in the second etching. The time required for the first etching and the time required for the second etching were 25 minutes, respectively, as shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例では、500μmの銅箔をエッチングする処理時間が、合計27.5分であったのに対して、比較例では当該処理時間は合計50分であった。このように、実施例では、比較例に対して処理時間を45%短縮できることが確認できた。 In the example, the total processing time for etching a 500 μm copper foil was 27.5 minutes, while in the comparative example the total processing time was 50 minutes. Thus, it was confirmed that in the example, the processing time could be shortened by 45% compared to the comparative example.
 また、本実施形態では、金属箔200にハーフエッチングを施した後であって、第1の部分203を片面エッチングにより除去する前に、金属箔200にベースフィルム10を貼り付ける。これにより、配線20となる第2の部分204の位置をベースフィルム10上に固定した状態で第1の部分203を除去することができるので、第1の部分203を除去したとしても第2の部分204の位置がずれることが無い。よって、フレキシブルプリント配線板1の回路(配線20)の位置精度を向上させることができる。 In addition, in this embodiment, the base film 10 is attached to the metal foil 200 after the metal foil 200 is half-etched and before the first portion 203 is removed by single-sided etching. As a result, the first portion 203 can be removed while the position of the second portion 204 that becomes the wiring 20 is fixed on the base film 10. The position of the portion 204 does not shift. Therefore, the positional accuracy of the circuit (wiring 20) of the flexible printed wiring board 1 can be improved.
 また、本実施形態では、配線20の第1~第4の曲面211,212,221,222が、フレキシブルプリント配線板1の主面に近づくに従って、相互に離れるよう傾斜している。つまり、配線間距離がベースフィルム10及びカバーレイ30に近づくに従って、大きくなっている。よって、ベースフィルム10及びカバーレイ30の貼り付け工程において、第1及び第2の接着層12,32が配線20間に充填されやすくなる。そのため、第1及び第2の樹脂層11,31と配線20間の距離を小さくすることができ、フレキシブルプリント配線板1を薄型化することができる。 Also, in this embodiment, the first to fourth curved surfaces 211, 212, 221, 222 of the wiring 20 are inclined away from each other as they approach the main surface of the flexible printed wiring board 1. FIG. That is, the distance between the wires increases as the distance between the wires approaches the base film 10 and the coverlay 30 . Therefore, in the step of attaching the base film 10 and the coverlay 30 , the spaces between the wirings 20 are easily filled with the first and second adhesive layers 12 , 32 . Therefore, the distance between the first and second resin layers 11 and 31 and the wiring 20 can be reduced, and the thickness of the flexible printed wiring board 1 can be reduced.
 なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 It should be noted that the embodiments described above are described to facilitate understanding of the present invention, and are not described to limit the present invention. Therefore, each element disclosed in the above embodiments is meant to include all design changes and equivalents that fall within the technical scope of the present invention.
1…フレキシブルプリント配線板
 10…ベースフィルム
  11…第1の樹脂層
  12…第1の接着層
 20…配線
  21…第1の面
   211…第1の曲面
   212…第2の曲面
   213…第1の端
   214…第2の端
   215…第3の端
  22…第2の面
   221…第3の曲面
   222…第4の曲面
   223…第4の端
   224…第5の端
   225…第6の端
  23…第3の面
  24…第4の面
 L…第1の仮想直線
 L…第2の仮想直線
 30…カバーレイ
  31…第2の樹脂層
  32…第2の接着層
 200…金属箔
  201…第1の主面
  202…第2の主面
  203…第1の部分
  204…第2の部分
 401,402…エッチングマスク
DESCRIPTION OF SYMBOLS 1... Flexible printed wiring board 10... Base film 11... 1st resin layer 12... 1st adhesive layer 20... Wiring 21... 1st surface 211... 1st curved surface 212... 2nd curved surface 213... 1st surface End 214 Second end 215 Third end 22 Second surface 221 Third curved surface 222 Fourth curved surface 223 Fourth end 224 Fifth end 225 Sixth end 23 3rd surface 24 4th surface L 1 1st imaginary straight line L 2 2nd imaginary straight line 30 Cover lay 31 2nd resin layer 32 2nd adhesion layer 200 Metal foil 201 1st main surface 202 2nd main surface 203 1st part 204 2nd part 401, 402 Etching mask

Claims (5)

  1.  基材と、前記基材上に配置された配線と、前記配線を覆うように前記基材に積層されたカバーレイと、を備えた配線板の製造方法であって、
     第1の主面及び第2の主面を有する金属箔を準備する第1の工程と、
     前記金属箔の第1の部分に、前記第1及び第2の主面側から同時にハーフエッチングを施すことで、前記第1の部分を薄くする第2の工程と、
     前記第1の主面側から前記金属箔に前記基材を貼り付ける第3の工程と、
     前記第2の主面側から前記第1の部分にエッチングを施して前記第1の部分を除去することで、前記配線を形成する第4の工程と、
     前記第2の主面側から前記配線を覆うように前記基材に前記カバーレイを貼り付ける第5の工程と、を備える配線板の製造方法。
    A method for manufacturing a wiring board comprising a base material, wiring arranged on the base material, and a coverlay laminated on the base material so as to cover the wiring, the method comprising:
    a first step of providing a metal foil having a first major surface and a second major surface;
    a second step of thinning the first portion of the metal foil by subjecting the first portion of the metal foil to half-etching simultaneously from the first and second main surface sides;
    a third step of attaching the base material to the metal foil from the first main surface side;
    a fourth step of forming the wiring by etching the first portion from the second main surface side to remove the first portion;
    and a fifth step of attaching the coverlay to the base material so as to cover the wiring from the second main surface side.
  2.  請求項1に記載の配線板の製造方法であって、
     前記第2の工程は、前記第1の部分の全面において、前記第1の部分が前記金属箔の厚さ方向に沿って残存するように前記ハーフエッチングを施すことを含む配線板の製造方法。
    A method for manufacturing a wiring board according to claim 1,
    The second step includes performing the half-etching on the entire surface of the first portion so that the first portion remains along the thickness direction of the metal foil.
  3.  請求項1又は2に記載の配線板の製造方法であって、
     前記第2の工程は、前記第1の部分の厚さが、前記第1の部分以外の前記ハーフエッチングが施されない第2の部分の厚さの5%~15%となるように前記ハーフエッチングを施すことを含む配線板の製造方法。
    A method for manufacturing a wiring board according to claim 1 or 2,
    In the second step, the half-etching is performed so that the thickness of the first portion is 5% to 15% of the thickness of the second portion other than the first portion, which is not subjected to the half-etching. A method of manufacturing a wiring board, comprising:
  4.  基材と、
     前記基材上に配置された配線と、
     前記配線を覆うように前記基材に積層されたカバーレイと、を備えたフレキシブルプリント配線板であって、
     前記配線は、
     前記配線の幅方向に沿って相互に対向する第1の面及び第2の面と、
     前記第1及び第2の面を接続し、前記配線の厚さ方向に沿って相互に対向する第3の面及び第4の面と、を含み、
     前記第1の面は、
     前記配線の内側に凹むように湾曲し、前記第3の面と接続する第1の端を有する第1の曲面と、
     前記配線の内側に凹むように湾曲し、前記第1の曲面と接続する第2の端及び前記第4の面と接続する第3の端を有する第2の曲面と、を含み、
     前記第2の面は、
     前記配線の内側に凹むように湾曲し、前記第3の面と接続する第4の端を有する第3の曲面と、
     前記配線の内側に凹むように湾曲し、前記第3の曲面と接続する第5の端及び前記第4の面と接続する第6の端を有する第4の曲面と、を含み、
     下記(1)式を満たすフレキシブルプリント配線板。
     W<W<W ・・・ (1)
     但し、上記(1)式において、Wは前記第1の端と前記第4の端との間の幅であり、Wは前記第2の端と前記第5の端との間の幅であり、Wは前記第3の端と前記第6の端との間の幅である。
    a substrate;
    wiring arranged on the base material;
    A flexible printed wiring board comprising a coverlay laminated on the base material so as to cover the wiring,
    The wiring is
    a first surface and a second surface facing each other along the width direction of the wiring;
    a third surface and a fourth surface that connect the first and second surfaces and face each other along the thickness direction of the wiring;
    The first surface is
    a first curved surface curved to be recessed inside the wiring and having a first end connected to the third surface;
    a second curved surface curved to be recessed inside the wiring and having a second end connected to the first curved surface and a third end connected to the fourth surface;
    The second surface is
    a third curved surface curved to be recessed inside the wiring and having a fourth end connected to the third surface;
    a fourth curved surface curved to be recessed inside the wiring and having a fifth end connected to the third curved surface and a sixth end connected to the fourth surface;
    A flexible printed wiring board that satisfies the following formula (1).
    W 2 <W 1 <W 3 (1)
    However, in the above formula ( 1 ), W1 is the width between the first end and the fourth end, and W2 is the width between the second end and the fifth end. and W3 is the width between the third end and the sixth end.
  5.  請求項4に記載のフレキシブルプリント配線板であって、
     下記(2)式を満たすフレキシブルプリント配線板。
     H<H ・・・ (2)
     但し、Hは前記第3の面から第1の仮想平面までの高さであり、Hは前記第1の仮想平面から第4の面までの高さであり、前記第1の仮想平面は、前記第2の端と前記第5の端とを通る仮想上の平面である。
    The flexible printed wiring board according to claim 4,
    A flexible printed wiring board that satisfies the following formula (2).
    H 1 <H 2 (2)
    However, H1 is the height from the third plane to the first virtual plane, H2 is the height from the first virtual plane to the fourth plane, and the first virtual plane is a virtual plane passing through the second end and the fifth end.
PCT/JP2022/003790 2021-02-16 2022-02-01 Method for manufacturing wiring board, and flexible printed wiring board WO2022176599A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-022650 2021-02-16
JP2021022650A JP2024054433A (en) 2021-02-16 Method for manufacturing wiring board and flexible printed wiring board

Publications (1)

Publication Number Publication Date
WO2022176599A1 true WO2022176599A1 (en) 2022-08-25

Family

ID=82932028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003790 WO2022176599A1 (en) 2021-02-16 2022-02-01 Method for manufacturing wiring board, and flexible printed wiring board

Country Status (1)

Country Link
WO (1) WO2022176599A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123197A (en) * 1984-11-20 1986-06-11 松下電器産業株式会社 Manufacture of printed wiring board
JPH05299816A (en) * 1992-04-23 1993-11-12 Hitachi Chem Co Ltd Manufacture of wiring board
JPH10229153A (en) * 1997-02-13 1998-08-25 Sumitomo Metal Mining Co Ltd Manufacturing method of lead frame
JP2003264360A (en) * 2002-03-07 2003-09-19 Fujikura Ltd Method of manufacturing printed wiring substrate
WO2005081311A1 (en) * 2004-02-24 2005-09-01 Sanyo Electric Co., Ltd. Circuit device and manufacturing method thereof
JP2007250698A (en) * 2006-03-14 2007-09-27 Furukawa Electric Co Ltd:The Method of manufacturing metal core printed wiring board
CN111405773A (en) * 2020-03-19 2020-07-10 盐城维信电子有限公司 Circuit board and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123197A (en) * 1984-11-20 1986-06-11 松下電器産業株式会社 Manufacture of printed wiring board
JPH05299816A (en) * 1992-04-23 1993-11-12 Hitachi Chem Co Ltd Manufacture of wiring board
JPH10229153A (en) * 1997-02-13 1998-08-25 Sumitomo Metal Mining Co Ltd Manufacturing method of lead frame
JP2003264360A (en) * 2002-03-07 2003-09-19 Fujikura Ltd Method of manufacturing printed wiring substrate
WO2005081311A1 (en) * 2004-02-24 2005-09-01 Sanyo Electric Co., Ltd. Circuit device and manufacturing method thereof
JP2007250698A (en) * 2006-03-14 2007-09-27 Furukawa Electric Co Ltd:The Method of manufacturing metal core printed wiring board
CN111405773A (en) * 2020-03-19 2020-07-10 盐城维信电子有限公司 Circuit board and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US9155209B2 (en) Flex-rigid printed wiring board and manufacturing method thereof
CN106605454B (en) Multi-layer flexible printed circuit board and its manufacturing method
US7649144B2 (en) Connection structure between wired circuit boards
US20090084583A1 (en) Multilayer printed wiring board and method for fabrication thereof
TW200522828A (en) Printed wiring board and semiconductor device
KR20090037333A (en) Cof board
JP2006269979A (en) Flexible rigid printed-wiring board and its manufacturing method
US8112880B2 (en) Method for manufacturing multilayer printed circuit boards
US7816609B2 (en) Wired circuit board
JP3895697B2 (en) Flexible printed circuit board
CN108024442B (en) Wired circuit board and method for manufacturing the same
US8067696B2 (en) Printed circuit board and method for manufacturing same
CN109429442B (en) Circuit board and manufacturing method thereof
WO2022176599A1 (en) Method for manufacturing wiring board, and flexible printed wiring board
JP2011003246A (en) Suspension substrate
US8426739B2 (en) Printed circuit board and method for manufacturing the same, and panel for manufacturing the printed circuit board
JP2013131642A (en) Planar coil and planar coil manufacturing method
JP2024054433A (en) Method for manufacturing wiring board and flexible printed wiring board
CN114554675A (en) Flexible printed circuit board and electronic device including the same
JP3997629B2 (en) TAB film carrier tape with reinforcing sheet
CN107197593B (en) A kind of flexible circuit board and preparation method thereof
JPH0673391B2 (en) Flexible double-sided circuit board manufacturing method
TWI420990B (en) Method for manufacturing printed circuit board
KR20120004088A (en) Manufacturing method for pcb
JP2005332906A (en) Flexible printed wiring board and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22755920

Country of ref document: EP

Kind code of ref document: A1