WO2022175011A1 - Elektrolysezelle - Google Patents

Elektrolysezelle Download PDF

Info

Publication number
WO2022175011A1
WO2022175011A1 PCT/EP2022/051176 EP2022051176W WO2022175011A1 WO 2022175011 A1 WO2022175011 A1 WO 2022175011A1 EP 2022051176 W EP2022051176 W EP 2022051176W WO 2022175011 A1 WO2022175011 A1 WO 2022175011A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
electrolytic
electrolysis
electrolytic cell
vacuum
Prior art date
Application number
PCT/EP2022/051176
Other languages
English (en)
French (fr)
Inventor
Wiebke Lüke
Original Assignee
WEW GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WEW GmbH filed Critical WEW GmbH
Priority to JP2023542491A priority Critical patent/JP2024506800A/ja
Priority to EP22702893.3A priority patent/EP4294966A1/de
Priority to CN202280015185.6A priority patent/CN116917548A/zh
Priority to KR1020237031680A priority patent/KR20230145190A/ko
Priority to CA3209497A priority patent/CA3209497A1/en
Priority to AU2022222172A priority patent/AU2022222172A1/en
Publication of WO2022175011A1 publication Critical patent/WO2022175011A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention is in the field of electrolysis technology and relates to novel term electrolysis cells, electrolysis stacks that contain these cells connected in series, a method for producing these stacks and the use of cells for producing the stacks.
  • An electrolytic cell is already known from US Pat. No. 5,599,430 B (DOW), which comprises a housing containing at least one pair of electrodes, namely a cathode and an anode, a current collector and a membrane. Also included is an electrically conductive, hydraulically permeable resilient mattress that is substantially coplanar with and contacts the current collector on one side and also coplanar with and contacts an electrode on the other side.
  • EP 1451389 B1 (UHDENORA) describes a current collector for electrochemical cells, consisting of a "sandwich" of compressible and elastic layers of metal wires, which imparts a predetermined mechanical load in a wide compression range.
  • EP 1766104 B1 (UHDENORA) relates to a conventional electrolytic cell with a sealing system consisting of individual elements, each containing two electrodes which are separated from one another by membranes and the proportion of the inactive membrane surface is minimized by a flange, see above that the ratio between the area of the flange of a half-shell and the active membrane area can be adjusted to less than 0.045.
  • EP 1882758 A1 the elastic pressure in an electrolysis cell is transmitted using coils or woven nickel mats or resistant nickel alloys Layers gradually from top to bottom, so that finally a pressure profile is established which is at least similar to the hydrostatic pressure on the anode side, which increases in the same direction.
  • EP 2356266 B1 (UHDENORA) describes an electrolysis cell provided with a separator, which has a flat, flexible cathode, which is held in contact with the separator by an elastic, conductive element pressed by a current distributor becomes.
  • the cell also contains an anode consisting of a stamped sheet metal or grid supporting the separator.
  • the cell can be used in a modular arrangement to form an electrolyser, the end cells of which are connected only to the electrical power supply.
  • the EP 2734658 B1 (NEW NEL HYDROGEN) comprises a module for an electrolyser from the filter press type, which comprises at least one closed frame, the at least defines a first opening, wherein the module presents a sealing and electrically insulating material, and this material at least partially covers the surface of the frame.
  • EP 2746429 A1 UHDENORA
  • an electrolytic cell which contains an anode space with an anode and a cathode gas space with a gas diffusion ka method, the two electrodes being separated from one another by an ion exchange membrane, and a metallic elastic element which is under compression is clamped between the rear wall of the cathode gas space and the gas diffusion cathode, said elastic element being clamped into the cathode gas space in such a way that the distance between the element and the rear wall increases in the direction of gravity.
  • EP 2872675 B1 proposes an insulating frame for electrolytic cells which has a geometric shape with corners, the frame being flat and having an anode side and a cathode side as well as an outer and an inner end face .
  • the insulating frame has an edge region directly adjoining the inner end face, which has recesses in the form of cutouts in the region of the corners.
  • An electrolytic cell consists schematically of an anode and a cathode chamber (AR, KR), each containing the anode (A) and the cathode (K).
  • the two electrodes are separated from one another by a diaphragm or separator membrane (S) and fixed in the corresponding housing parts (“half cells”) with the aid of an elastic or rigid spacer (XI, X2), as shown schematically can be seen in Figure 1.
  • the figure also shows a seal (D) that connects the two electrode spaces in the perimeter, but electrically insulates and seals to the outside.
  • the anode and cathode spaces must be electrically insulated from one another so that a short circuit does not occur.
  • the electrodes lie flat over their entire surface - ie without any gaps - on the separator membrane. This is realized by one or more elastic spacers (X1, X2) inside the cell.
  • the electrolytic cell is subjected to a slight overpressure atmosphere, which means the seal must be both chemical and pressure resistant.
  • electrolytic half-cells are made of metal sheets gefer taken that have a thickness of at least 0.5 mm to give the cells sufficient stability and to ensure that they are not during transport or installation in a electrolyzer or an electrolysis stack.
  • the disadvantage here is that the cells are very heavy and rigid, which causes problems during installation and of course also leads to a high material value.
  • the invention relates to an electrolytic cell comprising or consisting of
  • a slight negative pressure of, for example, 0.5 to 0.15 bar is applied to the electrolytic cells, so that the cells are present in a vacuum-stiffened state and in this way can be particularly easily and safely transported and then stacked.
  • the anode and cathode are preferably arranged in the cell as shown in FIG. 1, namely in such a way that the two electrodes are positioned flat and gap-free relative to one another over their entire surface, with only the separator membrane making direct contact.
  • the half-cells are preferably made of stainless steel, nickel or titanium and appropriate alloys, which may also contain other foreign metals such as vanadium.
  • the spacers can be resilient elements such as coils, rings, foams, mattresses or rigid structures, as discussed at the outset in the prior art appreciation. They can be static or elastic, it being preferable to equip at least one electrode space with elastic spacers to ensure that the electrodes will lie flat.
  • FIG. 2 schematically shows a cross-section of the perimeter (P) over which the sealant (D) is distributed; the separator membrane (S) can be seen in the middle, the ends of which are also enclosed by the sealing compound. In this way, the membrane is simultaneously fixed and stabilized in the cell.
  • the plastic mass can be introduced using the usual methods of plastics processing, ie for example by thermal direct joining, gluing, hot melt or lamination. Direct thermal joining is particularly preferred due to its technical undemanding fluidity. It works very similar to the injection molding process: the plastic is liquefied and injected into the sealing surface. There, the polymer returns to its solid state when it cools down and seals the two half-cells.
  • thermoplastics can be used as suitable electrically insulating plastics, with perfluoroalkoxy polymers (PFA) and polyphenylene sulfide (PPS) being preferred because of their high chemical resistance.
  • connections that are known from the food industry, such as the weld-in spouts made of injection-mouldable plastic, as shown in Figure 3, are particularly suitable here.
  • Corresponding connections or spouts are the subject of EP 2644530 A1 (POPPELMANN), whose teaching as far as the nature of the spout is concerned is included by reference.
  • connections or spouts have a neck (3) provided with a pouring channel (2) having a vertical longitudinal center axis (1) and two outer side surfaces connected thereto, preferably provided with welding lines (4), which are used for welding to the Sealing of the electrolytic cell are provided and on the inside of the associated side walls a plurality of stiffening webs are arranged.
  • the drains or spouts mentioned have a base, also known as a “boat”, the side walls of which have outer side surfaces which merge into one another in their end areas.
  • the side surfaces are connected, especially welded, to and between the two foil walls of a container.
  • a collar-like area is typically integrally formed on the boat or the side faces, which merges into a neck having a pouring channel having a vertical longitudinal center axis.
  • a sol cher is often provided with a thread on the outside to a filled foil bag to be secured with a closure before emptying through the pouring channel.
  • the neck can at least partially merge directly into the boat.
  • the side surfaces of the boat can be flat, roughened, with or without ribs and/or provided with welding lines.
  • the neck can have guide webs that can be used for guidance in a bottling or sealing system.
  • connections or spouts are connected to the seal, as a rule, by ultrasonic welding.
  • weld-in spouts are preferably incorporated directly into the joining process.
  • electrolysis cells can be combined into groups that are referred to as “electrolyzers" or “electrolysis stacks”.
  • electrolysis stacks Another subject of the invention therefore relates to an electrolysis stack, comprising or consisting of
  • the two pressure plates face each other and are spaced apart movably or rigidly by the at least two tie rods and preferably in the connection by the tie rods there is a high electrical resistance or insulation;
  • the at least two electrolytic cells are arranged or stacked between the two pressure plates in such a way that the cathodic rear wall of the first electrolytic cell is in contact with the anodic rear wall of the following electrolytic cell;
  • the pressure plates are spaced apart from one another in such a way that there is a firm connection with the at least two vacuum-reinforced electrolytic cells.
  • the stacks of the present invention preferably contain 3, 4, 5 or up to about 200 of said electrolytic cells. Preferably from about 40 to about 150 and more preferably from about 60 to about 120 are included.
  • FIG. 4 A typical electrolysis stack is shown in FIG. 4, with the electrolysis cells that can be seen therein each having the structure shown in FIG.
  • Also claimed is a method for producing an electrolysis stack, comprising or consisting of the following steps:
  • step (b) electrically connecting the vacuum-stiffened electrolytic cells from step (a) in series by arranging or stacking them with one another in such a way that the cathodic rear wall of the first is in contact with the anodic rear wall of the following electrolytic cell;
  • step (c) arranging the vacuum-reinforced electrolytic cells connected in series in accordance with step (b) with the aid of the at least two tie rods between the two pressure plates in such a way that a firm bond is formed, and
  • a conventional single cell design can now also be applied to cells with a small wall thickness.
  • these thin sheets or foils are used as a shell and are electrically separated from one another by the joint and the separator, with the internals being introduced in the manufacturing process.
  • a vacuum is applied to the cells, which causes the elastic element or the mattress inside to be precompressed.
  • the cells are vacuum-stiffened by this process, which offers the following advantages and has not yet corresponded to the state of the art in this technology:
  • the cells By prestressing the elements, the cells can be placed in a stack that does not have to be equipped with a clamping device, but which presses the elastic elements together and offers the possibility of compression, including displacement of the pressure plate.
  • the metallic pressure plates can easily be held together by tie rods and brought into simple contact with the vacuum-reinforced elements during initial assembly. By releasing the vacuum, the elastic elements are no longer stretched by the external pressure, but are now held in position by the pressure plates.
  • the resulting stacks can be used, for example, in chlor-alkali electrolysis, but the preferred application is the production of hydrogen by water electrolysis.
  • Another object of the invention relates to the use of the electrolysis cells according to the invention for the production of electrolysis stacks.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Mechanical Engineering (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Fuel Cell (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Inert Electrodes (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

Vorgeschlagen wird eine Elektrolysezelle umfassend oder bestehend aus (i) zwei metallischen Halbzellen, die den Anoden- und den Kathodenraum bilden, (ii) jeweils einer darin angeordneten Anode und einer Kathode, (iii) einer Separatormembran, die die beiden Elektroden voneinander trennt; (iv) jeweils mindestens einem Zu- und einem Ablauf für Edukt und Produkt; sowie (v) gegebenenfalls Abstandshaltern, die die beiden Elektroden in ihren jeweiligen Elektrodenräumen positionieren, wobei die beiden Halbzellen über ihren Perimeter verbunden, aber elektrisch isoliert sind und eine Wandstärke von 0,05 bis 0,15 mm aufweisen.

Description

Elektrolysezelle
GEBIET DER ERFINDUNG
[0001] Die Erfindung befindet sich auf dem Gebiet der Elektrolysetechnik und betrifft neuar tige Elektrolysezellen, Elektrolyse-Stacks, die diese Zellen in Serie geschaltet enthalten, ein Verfahren zur Herstellung dieser Stacks sowie die Verwendung der Zellen zur Herstellung der Stacks.
TECHNOLOGISCHER HINTERGRUND
[0002] Eine Wirtschaft ohne Treibhausgase innerhalb der nächsten 30 Jahre - das ist das er klärte Ziel Europas, um den Klimawandel aufzuhalten. Erneuerbare Energien sollen fossile Brennstoffe wie Öl, Kohle und Gas ablösen. Im Zuge der nachhaltigen Umgestaltung der Energieversorgung wird Wasserstoff dabei eine wichtige Rolle spielen.
[0003] Für saubere Mobilität, die effiziente Versorgung mit Strom und Wärme, als Speicher zum Ausgleich schwankender erneuerbarer Energien, als Grundlage für alternative Treibstoffe oder als Prozessgas in der Industrie - Wasserstoff ist als Energieträger sehr vielseitig, über die Sektorengrenzen hinweg einsetzbar, bietet große Synergiepotenziale und enthält massebe zogen eine dreimal so hohe Energiedichte wie Benzin.
[0004] Nachhaltig und wirtschaftlich erzeugter Wasserstoff ist deshalb ein zentraler Baustein, um den Ausstoß vor allem des schädlichen Treibhausgases CO2 in den Bereichen Energie, Verkehr und Industrie massiv zu senken und dadurch dem Klimawandel zu begegnen. Der Aufbau einer sektorenübergreifenden und möglichst globalen Wasserstoffwirtschaft eröffnet gleichzeitig enorme Chancen für neue Technologien und Geschäftsmodelle, denn die Ein satzmöglichkeiten für Wasserstoff sind vielfältig. Für die Industrie werden derzeit wasser stoffbetriebene Gasturbinen erforscht. In Brennstoffzellen ist er für Automobile oder Busse nutzbar. Mit Wasserstoff kann nicht nur emissionsfrei gefahren werden, sondern, im Gegen satz zu elektrisch betriebenen Fahrzeugen, auch lange Strecken zurücklegen und Fahrzeuge schnell betanken.
[0005] Unter Umweltgesichtspunkten ist die Herstellung von Wasserstoff durch Elektrolyse von Wasser von besonderem Interesse; man spricht daher in diesem Zusammenhang auch von „grünem Wasserstoff". Dabei wird das Verfahren in gekoppelten Elektrolysezellen, soge nannten Elektrolyseuren durchgeführt, wie sie auch aus der Chlor-Alkali-Elektrolyse bekannt sind. RELEVANTER STAND DER TECHNIK
[0006] Schon aus der US 5,599,430 B (DOW) ist eine Elektrolysezelle bekannt, die ein Ge häuse umfasst, das mindestens ein Paar Elektroden, nämlich eine Kathode und eine Anode, einen Stromkollektor und eine Membran enthält. Ferner ist eine elektrisch leitfähige, hydrau lisch durchlässige elastische Matratze enthalten, die im Wesentlichen koplanar zum Stromkol lektor angeordnet ist und ihn auf einer Seite berührt und ebenfalls koplanar mit einer Elekt rode verläuft und sie auf der anderen Seite berührt.
[0007] EP 1451389 B1 (UHDENORA) beschreibt einen Stromkollektor für elektrochemische Zellen, bestehend aus einem „Sandwich" aus kompressiblen und elastischen Lagen von Me talldrähten, der in einem weiten Kompressionsbereich eine vorgegebene mechanische Belas tung vermittelt.
[0008] Gegenstand der EP 1766104 B1 (UHDENORA) betrifft eine konventionelle Elektroly sezelle mit einem Dichtsystem bestehend aus Einzelelementen, die jeweils zwei Elektroden enthalten, die durch Membranen voneinander getrennt sind und wobei der Anteil der inakti ven Membranfläche durch einen Flansch minimiert wird, so dass das Verhältnis zwischen der Fläche des Flansches einer Halbschale und der aktiven Membranfläche auf weniger als 0,045 eingestellt werden kann.
[0009] Gemäß der EP 1882758 A1 (TOAGOSEI) wird der elastische Druck in einer Elektrolyse zelle mit Hilfe von Spulen oder gewebten Nickelmatten oder widerstandsfähigen Nickellegie rungen übertragen, bei den Spulen nimmt dabei die Anzahl der Windungen, bei den Matten die Anzahl der übereinander gelegten Lagen schrittweise von oben nach unten zu, so dass sich schließlich ein Druckprofil einstellt, das dem in gleicher Richtung ansteigenden hydrosta tischen Druck auf der Anodenseite zumindest ähnlich ist.
[0010] In der EP 2356266 B1 (UHDENORA) wird eine mit einem Separator versehene Elekt rolysezelle, beschrieben, die über eine ebene, flexible Kathode verfügt, welche durch ein von einem Stromverteiler gepresstes, elastisches, leitfähiges Element in Kontakt mit dem Separa tor gehalten wird. Ferner enthält die Zelle eine Anode, die aus einem den Separator tragen den, gestanzten Blech oder Gitter besteht Die Zelle kann in einer modularen Anordnung ver wendet werden, um einen Elektrolyseur zu bilden, dessen Endzeilen nur mit der elektrischen Stromversorgung verbunden sind. Die elektrische Kontinuität zwischen benachbarten Zellen wird durch leitende Kontaktstreifen sichergestellt, die an den äußeren anodischen Wänden der Schalen, die jede Zelle begrenzen, befestigt sind, wobei die Steifigkeit des Kathoden stromverteilers und der anodischen Struktur und die Elastizität des leitenden Elements Zusammenwirken, um einen gleichmäßigen Kathoden-zu-Separator-Kontakt mit einer homoge nen Druckverteilung aufrechtzuerhalten, während gleichzeitig eine geeignete mechanische Belastung der Kontaktstreifen sichergestellt wird. Durch die Verwendung des Elastikelemen tes wird also eine Beabstandung der Elektroden vermieden.
[0011] Die EP 2734658 B1 (NEW NEL HYDROGEN) umfasst ein Modul für einen Elektrolyseur vom Filterpressentyp, das mindestens einen geschlossenen Rahmen umfasst, der mindestens eine erste Öffnung definiert, wobei das Modul ein abdichtendes und elektrisch isolierendes Material darstellt, und dieses Material zumindest teilweise die Oberfläche des Rahmens be deckt.
[0012] In der EP 2746429 A1 (UHDENORA) wird eine Elektrolysezelle vorgeschlagen, die einen Anodenraum mit einer Anode und einen Kathodengasraum mit einer Gasdiffusionska thode enthält, wobei beide Elektroden durch eine lonenaustauschermembran voneinander getrennt sind, sowie ein metallisches elastisches Element, das unter Kompression zwischen der Rückwand des Kathodengasraums und der Gasdiffusionskathode eingeklemmt ist, wobei das genannte elastische Element so in den Kathodengasraum eingeklemmt ist, dass der Ab stand zwischen dem Element und der Rückwand in Richtung der Schwerkraft zunimmt.
[0013] In der EP 2872675 B1 (UHDENORA) wird ein Isolierrahmen für Elektrolysezellen vor geschlagen, der eine geometrische Form mit Ecken aufweist, wobei der Rahmen flach ausge bildet ist und eine Anoden- und eine Kathodenseite sowie eine äußere und eine innere Stirn fläche aufweist. Der Isolierrahmen weist einen unmittelbar an die innere Stirnfläche anschlie ßenden Randbereich auf, welcher im Bereich der Ecken Aussparungen in Form von Ausschnit ten aufweist.
[0014] Gemäß der JP 2003 041388 A1 (ASFPONC) wird die Stabilisierung der Zelle durch ein metallisches Zickzack-Profil erreicht, das in den Kathodengasraum eingebaut wird. Diese Aus führungsform der Elektrolysezelle bringt jedoch ein Problem mit sich: Eigentlich verlangt die Physik, dass der hydrostatische Druck im Anodenraum in Richtung der Schwerkraft nicht kon stant ist, sondern zunimmt. Daher wäre es wünschenswert und im Sinne des zu erreichenden Ziels völlig ausreichend, dass sich der von den elastischen Einbauten ausgeübte Druck dem hydrostatischen Druck anpasst, d.h. in Richtung der Schwerkraft zunimmt.
ZU LOSENDE AUFGABE
[0015] Eine Elektrolysezelle besteht schematisch aus einem Anoden- sowie einem Kathoden raum (AR, KR), die jeweils die Anode (A) und die Kathode (K) enthalten. Die beiden Elektroden werden zum einen durch ein Diaphragma bzw. eine Separatormembran (S) voneinander ge trennt und zum anderen jeweils mit Hilfe eines elastischen oder auch steifen Abstandshalters (XI , X2) in den entsprechenden Gehäuseteilen („Halbzellen") fixiert, wie dies schematisch Abbildung 1 entnommen werden kann. In der Abbildung ist zudem eine Dichtung (D) zu erken nen, die die beiden Elektrodenräume im Perimeter verbindet, aber elektrisch isoliert und nach außen abdichtet.
[0016] Anoden- und Kathodenraum müssen voneinander elektrisch isoliert werden, damit es nicht zu einem Kurzschluss kommt. Für eine optimale Leistungsfähigkeit ist es ferner erfor derlich, dass die Elektroden über ihre gesamte Fläche plan - d.h. spaltfrei - auf der Separa tormembran aufliegen. Dies wird durch ein oder mehrere elastische Abstandshalter (X1, X2) innerhalb der Zelle realisiert. Zusätzlich wird die Elektrolysezelle unter leichten Überdruck zur Atmosphäre gesetzt, was bedeutet, dass die Abdichtung sowohl chemische beständig als auch druckfest sein muss.
[0017] Gemäß dem Stand der Technik werden Elektrolysehalbzellen aus Metallblechen gefer tigt, die eine Stärke von mindestens 0,5 mm aufweisen, um den Zellen eine ausreichende Stabilität zu verleihen und um zu gewährleisten, dass diese nicht während des Transports oder des Einbaus in einen Elektrolyseur oder einen Elektrolyse-Stack Schaden erleiden. Nach teilig ist dabei jedoch, dass die Zellen sehr schwer und starr werden, was beim Einbau Prob leme bereitet und natürlich auch zu einem hohen Materialwert führt.
BESCHREIBUNG DER ERFINDUNG
[0018] In einer ersten Ausführungsform betrifft die Erfindung eine Elektrolysezelle umfassend oder bestehend aus
(i) zwei metallischen Halbzellen, die den Anoden- und den Kathodenraum bilden,
(ii) jeweils einer darin angeordneten Anode und einer Kathode,
(iii) einer Separatormembran, die die beiden Elektroden voneinander trennt;
(iv) jeweils mindestens einem Zu- und einem Ablauf für Edukt und Produkt; sowie
(v) gegebenenfalls Abstandshaltern, die die beiden Elektroden in ihren jeweiligen Elektro denräumen positionieren, wobei die beiden Halbzellen über ihren Perimeter verbunden, aber elektrisch isoliert sind und eine Wandstärke von 0,05 bis 0,15 mm und insbesondere von 0,070 bis 0,1 mm aufweisen.
[0019] Vorzugsweise wird auf die Elektrolysezellen ein leichter Unterdrück von beispielsweise 0, 5 bis 0,15 bar gezogen, so dass die Zellen vakuumversteift vorliegen und auf diese Weise besonders leicht und sicher transportiert und anschließend gestapelt werden können.
[0020] Überraschenderweise wurde gefunden, dass es entgegen der Lehrmeinung sehr wohl möglich ist, mit Hilfe von sehr dünnen Metallblechen, vorzugsweise Metallfolien Elektrolyse zellen herzustellen, die die eingangs genannten Anforderungen vollauf erfüllen.
Elektrolysezelle
[0021] Vorzugsweise sind Anode und Kathode in der Zelle wie in Abbildung 1 schematisch angeordnet, nämlich so, dass die beiden Elektroden über ihre ganze Fläche plan und spaltfrei zueinander positioniert sind, wobei nur die Separatormembran einen direkten Kontakt ver bindet.
[0022] Die Halbzellen bestehen vorzugsweise aus rostfreiem Stahl, Nickel oder Titan sowie entsprechenden Legierungen, die auch weitere Fremdmetalle wie beispielsweise Vanadium enthalten können. [0023] Bei den Abstandshaltern kann es sich um federnde Elemente wie beispielsweise Spu len, Ringe, Schäume, Matratzen oder starre Strukturen handeln, wie sie eingangs in der Wür digung des Stands der Technik abgehandelt sind. Sie können dabei statisch oder elastisch sein, wobei es bevorzugt ist, wenigstens einen Elektrodenraum mit elastischen Abstandshal tern auszurüsten, um zu gewährleisten, dass die Elektroden plan anliegen werden.
[0024] Die beiden Halbzellen müssen zwar über ihren Perimeter miteinander in Verbindung stehen, jedoch elektrisch voneinander isoliert sein. Dies kann vorzugsweise durch Einbringen einer Dichtmasse erfolgen. Abbildung 2 zeigt schematisch einen Querschnitt des Perimeters (P) über den sich die Dichtmasse (D) verteilt; in der Mitte ist die Separatormembran (S) zu erkennen, deren Enden ebenfalls von der Dichtmasse umschlossen werden. Auf diese Weise wird die Membran gleichzeitig in der Zelle fixiert und stabilisiert.
[0025] Das Einbringen der Kunststoffmasse kann nach den üblichen Methoden der Kunst stoffverarbeitung erfolgen, also beispielsweise durch thermisches Direktfügen, Kleben, Hot- melt oder Kaschieren. Das thermische Direktfügen ist wegen seiner technischen Anspruchslo sigkeit besonders bevorzugt. Es funktioniert ganz ähnlich dem Spritzgussverfahren: der Kunststoff wird verflüssigt und in die Dichtfläche eingespritzt. Dort geht das Polymer durch Abkühlung wieder in den festen Zustand über und dichtet die beiden Halbzellen ab. Als ge eignete elektrisch isolierende Kunststoffe kommen grundsätzlich Thermoplaste in Frage, wo bei Perfluoralkoxy-Polymere (PFA) und Polyphenylsulfide (PPS) wegen ihrer hohen chemi schen Beständigkeit bevorzugt sind.
[0026] In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung befinden sich Zu- und Abläufe für Produkt und Edukt in den Fügestellen zwischen den beiden Halbzel len. Dabei kommen insbesondere solche Anschlüsse in Betracht, die aus der Nahrungsmittel industrie bekannt sind, wie die Einschweißausgießer aus spritzgussfähigem Kunststoff wie sie in Abbildung 3 wiedergegeben sind. Entsprechende Anschlüsse bzw. Ausgießer sind Gegen stand der EP 2644530 A1 (POPPELMANN), deren Lehre soweit es die Natur der Ausgießer betrifft durch Bezugnahme eingeschlossen wird. Die Anschlüsse bzw. Ausgießer weisen dabei einen mit einem eine vertikale Längsmittelachse (1) aufweisenden Ausgießkanal (2) versehe nen Hals (3) auf sowie zwei hiermit verbundene, vorzugsweise mit Schweißlinien (4) versehe ne, äußere Seitenflächen, die zur Verschweißung mit der Dichtung der Elektrolysezelle vorge sehen sind und an deren zugehörigen Seitenwänden innenseitig eine Mehrzahl von Verstei fungsstegen angeordnet sind.
[0027] In der Regel weisen die genannten Abläufe bzw. Ausgießer eine auch "Schiffchen" genannte Basis auf, deren Seitenwände äußere Seitenflächen aufweisen, die in ihren Endbe reichen ineinander übergehen. Die Seitenflächen werden mit und zwischen den beiden Foli enwänden eines Behältnisses verbunden, insb. verschweißt. Typischerweise einstückig ist an das Schiffchen bzw. die Seitenflächen ein kragenartiger Bereich angeformt, der in einen eine vertikale Längsmittelachse aufweisenden Ausgießkanal aufweisenden Hals übergeht. Ein sol cher ist außenseitig oftmals mit einem Gewinde versehen, um einen befüllten Folienbeutel vor Entleerung durch den Ausgießkanal mit einem Verschluss zu sichern. Alternativ kann der Hals zumindest teilweise auch direkt in das Schiffchen übergehen. Die Seitenflächen des Schiffchens können plan, aufgeraut, mit oder ohne Rippen und/oder mit Schweißlinien verse hen sein. Darüber hinaus kann der Hals Führungsstege aufweisen, die für eine Führung in einer Abfüll- oder Siegelanlage verwendet werden können.
[0028] Das Verbinden der Anschlüsse bzw. Ausgießer mit der Dichtung erfolgt, nach der Leh re von EP 2644530 A1 in der Regel durch Ultraschall-Schweißen. In dieser Erfindung werden Einschweißausgießer vorzugsweise direkt in den Fügeprozess eingebracht.
Elektrolyse-Stack und Verfahren zu dessen Herstellung
[0029] Die einzelnen Elektrolysezellen können zu Gruppen zusammengeschlossen werden, die als „Elektrolyseure" oder „Elektrolyse-Stacks" bezeichnet werden. Ein weiterer Gegenstand der Erfindung betrifft daher einen Elektrolyse-Stack, umfassend oder bestehend aus
(i) mindestens zwei Elektrolysezellen wie eingangs beschrieben,
(ii) zwei (metallischen) Anpressplatten und
(iii) mindestens zwei Zugstangen, wobei
(a) die beiden Anpressplatten einander gegenüber stehen und durch die mindestens zwei Zugstangen beweglich oder starr beabstandet sind und vorzugsweise in der Verbin dung durch die Zugstangen ein hoher elektrischer Widerstand bzw. eine Isolierung vor liegt;
(b) die mindestens zwei Elektrolysezellen zwischen den beiden Anpressplatten so zueinan der angeordnet bzw. gestapelt sind, dass jeweils die kathodische Rückwand der ersten mit der anodischen Rückwand der folgenden Elektrolysezelle in Kontakt steht; und
(c) die Anpressplatten so zueinander beabstandet sind, dass zusammen mit den mindes tens zwei vakuumversteiften Elektrolysezellen ein fester Verbund besteht.
[0030] Die Stacks der vorliegenden Erfindung enthalten vorzugsweise 3, 4, 5 oder bis zu etwa 200 der genannten Elektrolysezellen. Vorzugsweise sind etwa 40 bis etwa 150 und insbeson dere etwa 60 bis etwa 120 enthalten.
[0031] Ein typischer Elektrolyse-Stack ist in Abbildung 4 wiedergegeben, wobei die darin zu erkennenden Elektrolysezellen jeweils den Aufbau gemäß Abbildung 1 zeigen.
[0032] Ebenfalls beansprucht wird ein Verfahren zur Herstellung eines Elektrolyse-Stack, um fassend oder bestehend aus den folgenden Schritten:
(i) Bereitstellen von mindestens zwei Elektrolysezellen gemäß Anspruch 1;
(ii) Bereitstellen von zwei Anpressplatten und (iii) Bereitstellen von mindestens zwei Zugstangen, wobei man
(a) die mindestens zwei Elektrolysezellen durch Anlegen eines Unterdrucks vakuumver steift;
(b) die vakuumversteiften Elektrolysezellen aus Schritt (a) elektrisch in Serie schaltet, indem man sie so zueinander anordnet bzw. stapelt, dass jeweils die kathodische Rückwand der ersten mit der anodischen Rückwand der folgenden Elektrolysezelle in Kontakt steht;
(c) die gemäß Schritt (b) so in Serie geschalteten vakuumversteiften Elektrolysezellen mit Hilfe der mindestens zwei Zugstangen so zwischen den beiden Anpressplatten anord net, dass ein fester Verbund entsteht, und
(d) das Vakuum auf den Elektrolysezellen im festen Verbund wieder löst.
[0033] Durch die erfindungsgemäße Ausgestaltung kann ein konventionelles Einzelzellen- Design nun auch auf Zellen mit einer geringen Wandstärke angewendet werden. Erfindungs gemäß werden diese dünnen Bleche oder Folien als Hülle verwendet und durch die Fügung und den Separator elektrisch voneinander getrennt, wobei die Einbauten im Fertigungspro zess eingebracht werden. Im Anschluss an den Fertigungsprozess wird auf die Zellen ein Un terdrück gezogen, der eine Vorpressung des elastischen Elementes oder der Matratze im In neren bewirkt. Gleichzeitig werden durch diesen Vorgang die Zellen vakuumversteift, was die folgenden Vorteile bietet und bisher in dieser Technologie nicht dem Stand der Technik ent spricht:
• Versteifung von biegeschlaffen Bauteilen,
• Erreichung einer Transportierbarkeit durch z. B. Saughebeanlagen oder mechanische Greifsysteme ohne zusätzliche Unterstützung,
• Prüfung auf Dichtigkeit,
• Erkennung von Beschädigungen durch den Transport und
• Vorspannung der elastischen Elemente des Systems.
[0034] Durch die Vorspannung der Elemente können die Zellen in einen Stack eingebracht werden, der nicht mit einer Spannvorrichtung ausgestattet sein muss, aber der die elastischen Elemente zusammendrückt und die Möglichkeit der Kompression inklusive einer Verschie bung der Anpressplatte bietet. Die metallischen Anpressplatten können einfach durch Zug stangen zusammengehalten werden und bei der Erstmontage in einen einfachen Kontakt mit den vakuumversteiften Elementen gebracht werden. Durch das Lösen des Vakuums werden die elastischen Elemente nicht mehr durch den Außendruck gespannt, sondern jetzt durch die Anpressplatten in Position gehalten. [0035] Die so resultierenden Stacks können beispielsweise in der Chlor-Alkali-Elektrolyse eingesetzt werden, der bevorzugte Einsatzzweck ist jedoch die Herstellung von Wasserstoff durch die Wasserelektrolyse. GEWERBLICHE ANWENDBARKEIT
[0036] Ein weiterer Gegenstand der Erfindung betrifft die Verwendung der erfindungsgemä ßen Elektrolysezellen zur Herstellung von Elektrolyse-Stacks.

Claims

PATENTANSPRÜCHE
1. Elektrolysezelle umfassend oder bestehend aus
(i) zwei metallischen Halbzellen, die den Anoden- und den Kathodenraum bilden,
(ii) jeweils einer darin angeordneten Anode und einer Kathode,
(iii) einer Separatormembran, die die beiden Elektroden voneinander trennt;
(iv) jeweils mindestens einem Zu- und einem Ablauf für Edukt und Produkt; sowie
(v) gegebenenfalls Abstandshaltern, die die beiden Elektroden in ihren jeweiligen Elektrodenräumen positionieren, wobei die beiden Halbzellen über ihren Perimeter verbunden, aber elektrisch isoliert sind und eine Wandstärke von 0,05 bis 0,15 mm aufweisen.
2. Elektrolysezelle nach Anspruch 1, dadurch gekennzeichnet, dass die Halbzellen aus rostfreiem Stahl, Nickel oder Titan oder einer Legierung aus den genannten Stoffen be stehen, welche noch weitere Fremdatome enthalten können.
3. Elektrolysezelle nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, dass die Abstandshalter federnde Elemente darstellen.
4. Elektrolysezelle nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeich net, dass die beiden metallischen Halbzellen über ihr Perimeter durch einen elektrisch isolierenden Kunststoff verbunden sind,
5. Elektrolysezelle nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeich net, dass die Zu- und Abläufe Einschweißausgießer aus spritzgussfähigem Kunststoff darstellen.
6. Elektrolysezelle nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeich net, dass sie vakuumversteift ist.
7. Elektrolyse-Stack, umfassend oder bestehend aus
(i) mindestens zwei Elektrolysezellen gemäß Anspruch 1,
(ii) zwei Anpressplatten und
(iii) mindestens zwei Zugstangen, wobei
(a) die beiden Anpressplatten einander gegenüberstehen und durch die mindestens zwei Zugstangen beweglich oder starr beabstandet sind
(b) die mindestens zwei Elektrolysezellen zwischen den beiden Anpressplatten so zu einander angeordnet bzw. gestapelt sind, dass jeweils die kathodische Rückwand der ersten mit der anodischen Rückwand der folgenden Elektrolysezelle in Kon takt steht; und
(c) die Anpressplatten so zueinander beabstandet sind, dass zusammen mit den mindestens zwei vakuumversteiften Elektrolysezellen ein fester Verbund besteht.
8. Elektrolyse-Stack nach Anspruch 7, dadurch gekennzeichnet, dass dieser 2 bis etwa 150
Elektrolysezellen enthält.
9. Verfahren zur Herstellung eines Elektrolyse-Stacks, umfassend oder bestehend aus den folgenden Schritten:
(i) Bereitstellen von mindestens zwei Elektrolysezellen gemäß Anspruch 1; (ii) Bereitstellen von zwei Anpressplatten und
(iii) Bereitstellen von mindestens zwei Zugstangen, wobei man
(a) die mindestens zwei Elektrolysezellen durch Anlegen eines Unterdrucks vakuum versteift;
(b) die vakuumversteiften Elektrolysezellen aus Schritt (a) elektrisch in Serie schaltet, indem man sie so zueinander anordnet bzw. stapelt, dass jeweils die kathodische Rückwand der ersten mit der anodischen Rückwand der folgenden Elektrolysezel le in Kontakt steht;
(c) die gemäß Schritt (b) so in Serie geschalteten vakuumversteiften Elektrolysezellen mit Hilfe der mindestens zwei Zugstangen so zwischen den beiden Anpressplat ten anordnet, dass ein fester Verbund entsteht, und
(d) das Vakuum auf den Elektrolysezellen im festen Verbund wieder löst.
10. Verwendung von Elektrolysezellen nach mindestens einem der Ansprüche 1 bis 6 zur Herstellung von Elektrolyse-Stacks.
PCT/EP2022/051176 2021-02-17 2022-01-20 Elektrolysezelle WO2022175011A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2023542491A JP2024506800A (ja) 2021-02-17 2022-01-20 電解セル
EP22702893.3A EP4294966A1 (de) 2021-02-17 2022-01-20 Elektrolysezelle
CN202280015185.6A CN116917548A (zh) 2021-02-17 2022-01-20 电解池
KR1020237031680A KR20230145190A (ko) 2021-02-17 2022-01-20 전해 전지 (electrolytic cell)
CA3209497A CA3209497A1 (en) 2021-02-17 2022-01-20 Electrolytic cell
AU2022222172A AU2022222172A1 (en) 2021-02-17 2022-01-20 Electrolytic cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEDE102021103699.2 2021-02-17
DE102021103699.2A DE102021103699A1 (de) 2021-02-17 2021-02-17 Elektrolysezelle

Publications (1)

Publication Number Publication Date
WO2022175011A1 true WO2022175011A1 (de) 2022-08-25

Family

ID=80222438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/051176 WO2022175011A1 (de) 2021-02-17 2022-01-20 Elektrolysezelle

Country Status (8)

Country Link
EP (1) EP4294966A1 (de)
JP (1) JP2024506800A (de)
KR (1) KR20230145190A (de)
CN (1) CN116917548A (de)
AU (1) AU2022222172A1 (de)
CA (1) CA3209497A1 (de)
DE (1) DE102021103699A1 (de)
WO (1) WO2022175011A1 (de)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4664770A (en) * 1985-01-16 1987-05-12 Uhde Gmbh Electrolyzer
DE19526545A1 (de) * 1994-07-20 1996-03-14 Permelec Spa Nora Elektrolyseur mit Ionenaustausch-Membran- oder Diaphragma
US5599430A (en) 1992-01-14 1997-02-04 The Dow Chemical Company Mattress for electrochemical cells
JP2003041388A (ja) 2001-07-31 2003-02-13 Association For The Progress Of New Chemistry イオン交換膜電解槽および電解方法
EP1766104B1 (de) 2004-06-16 2007-11-28 Uhdenora S.p.A Elektrolysezelle
US20070272549A1 (en) * 2006-05-25 2007-11-29 Davis James E Electrolysis cell assembly
EP1882758A1 (de) 2005-05-17 2008-01-30 Toagosei Co., Ltd. Elektrolysezelle mit ionenaustauschmembran
DE102011053142A1 (de) * 2011-08-31 2013-02-28 Kumatec Sondermaschinenbau & Kunststoffverarbeitung Gmbh Elektrolyseur
EP2644530A1 (de) 2012-03-30 2013-10-02 Pöppelmann Holding GmbH & Co. KG. Einschweißausgießer
EP2746429A1 (de) 2012-12-19 2014-06-25 Uhdenora S.p.A Elektrolysezelle
EP2356266B1 (de) 2008-11-17 2015-06-24 Uhdenora S.p.A Elementarzelle und relevante modulare elektrolyseapparatur für elektrolytische verfahren
EP1451389B1 (de) 2001-12-03 2016-03-02 Thyssenkrupp Uhde Chlorine Engineers (Italia) S.r.l. Elastischer stromkollektor
EP2872675B1 (de) 2012-07-13 2018-12-19 Thyssenkrupp Uhde Chlorine Engineers (Italia) S.r.l. Elektrolysezellen umfassend einen dämmrahmen mit eckgekoppelten dehnfugen
EP2734658B1 (de) 2011-07-20 2019-06-05 New Nel Hydrogen As Rahmenkonzept für einen elektrolyseur, verfahren dafür und verwendung davon
EP3575439A1 (de) * 2017-01-26 2019-12-04 Asahi Kasei Kabushiki Kaisha Elektrolytisches bad, elektrolysevorrichtung, elektrolyseverfahren und verfahren zur herstellung von wasserstoff
CN111663149A (zh) * 2019-03-05 2020-09-15 湖南早晨纳米机器人有限公司 一种纳米发动机及其提供动力的方法和应用

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4664770A (en) * 1985-01-16 1987-05-12 Uhde Gmbh Electrolyzer
US5599430A (en) 1992-01-14 1997-02-04 The Dow Chemical Company Mattress for electrochemical cells
DE19526545A1 (de) * 1994-07-20 1996-03-14 Permelec Spa Nora Elektrolyseur mit Ionenaustausch-Membran- oder Diaphragma
JP2003041388A (ja) 2001-07-31 2003-02-13 Association For The Progress Of New Chemistry イオン交換膜電解槽および電解方法
EP1451389B1 (de) 2001-12-03 2016-03-02 Thyssenkrupp Uhde Chlorine Engineers (Italia) S.r.l. Elastischer stromkollektor
EP1766104B1 (de) 2004-06-16 2007-11-28 Uhdenora S.p.A Elektrolysezelle
EP1882758A1 (de) 2005-05-17 2008-01-30 Toagosei Co., Ltd. Elektrolysezelle mit ionenaustauschmembran
US20070272549A1 (en) * 2006-05-25 2007-11-29 Davis James E Electrolysis cell assembly
EP2356266B1 (de) 2008-11-17 2015-06-24 Uhdenora S.p.A Elementarzelle und relevante modulare elektrolyseapparatur für elektrolytische verfahren
EP2734658B1 (de) 2011-07-20 2019-06-05 New Nel Hydrogen As Rahmenkonzept für einen elektrolyseur, verfahren dafür und verwendung davon
DE102011053142A1 (de) * 2011-08-31 2013-02-28 Kumatec Sondermaschinenbau & Kunststoffverarbeitung Gmbh Elektrolyseur
EP2644530A1 (de) 2012-03-30 2013-10-02 Pöppelmann Holding GmbH & Co. KG. Einschweißausgießer
EP2872675B1 (de) 2012-07-13 2018-12-19 Thyssenkrupp Uhde Chlorine Engineers (Italia) S.r.l. Elektrolysezellen umfassend einen dämmrahmen mit eckgekoppelten dehnfugen
EP2746429A1 (de) 2012-12-19 2014-06-25 Uhdenora S.p.A Elektrolysezelle
EP3575439A1 (de) * 2017-01-26 2019-12-04 Asahi Kasei Kabushiki Kaisha Elektrolytisches bad, elektrolysevorrichtung, elektrolyseverfahren und verfahren zur herstellung von wasserstoff
CN111663149A (zh) * 2019-03-05 2020-09-15 湖南早晨纳米机器人有限公司 一种纳米发动机及其提供动力的方法和应用

Also Published As

Publication number Publication date
EP4294966A1 (de) 2023-12-27
DE102021103699A1 (de) 2022-08-18
KR20230145190A (ko) 2023-10-17
CA3209497A1 (en) 2022-08-25
JP2024506800A (ja) 2024-02-15
AU2022222172A1 (en) 2023-07-20
CN116917548A (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
DE3526614C2 (de) Brennstoffbatterie
EP0774794B1 (de) Brennstoffzelle mit Polymerelektrolyt und integrierte Dichtung
DE102015110471B4 (de) Brennstoffzellenstapel und zusammenbauverfahren dafür
EP2973809B1 (de) Bipolarplatte für eine brennstoffzelle, brennstoffzelle und verfahren zur herstellung der bipolarplatte
DE112013000719T5 (de) Brennstoffzellenfahrzeug
DE102013107516A1 (de) Zelle und Zellstack einer Redox-Flow-Batterie
DE102013225733A1 (de) Metallischer separator für eine brennstoffzelle, brennstoffzellenstapel mit selbiger und dichtungsanordnung mit dem brennstoffzellenstapel
DE102012205546A1 (de) Brennstoffzelle und vorrichtung zur herstellung einer brennstoffzelle
DE102012208383A1 (de) Brennstoffzelle
EP3476000B1 (de) Vorrichtung zur energieumwandlung, insbesondere brennstoffzelle oder elektrolyseur
DE10301052B4 (de) Bipolarplatteneinheit, elektrochemische Zelle und Mittel zum Abdichten
WO2022171411A1 (de) Verfahren zur abdichtung einer elektrolysezelle
DE60217641T2 (de) Vorrichtungen und Verfahren zur Isolation, Komprimierung und Erhaltung der Struktur eines Brennstoffzellenstapels
DE102012111229B4 (de) Bipolarplatte für einen PEM-Stapelreaktor und PEM-Stapelreaktor
WO2022175011A1 (de) Elektrolysezelle
EP1285103B1 (de) Bipolare mehrzweckelektrolysezelle für hohe strombelastungen
WO2022175010A1 (de) Verfahren zur herstellung einer elektrolysezelle und eines entsprechenden elektrolyse-stacks
EP2141264B1 (de) Vorrichtung zum Erzeugen eines Sauerstoff-/Wasserstoffgemisches
WO2011141308A1 (de) Brennstoffzellenstapel und verfahren zum herstellen eines brennstoffzellenstapels
DE60306916T2 (de) Elektrochemischer generator mit einer bipolarplatte, welche eine vielzahl von der verteilung der gase dienenden löchern aufweist
WO2022084028A1 (de) Membran-elektroden-einheit für eine elektrochemische zelle und verfahren zur herstellung einer membran-elektroden-einheit
DE3603254A1 (de) Elektrolysezelleneinheit
DD249050A5 (de) Verfahren zum herstellen eines einheitsuebertragungselementes fuer elektrischen strom fuer monopolare oder bipolare elektrochemische filter-pressen-zelleneinheiten
AT525988B1 (de) Anlage zur Reduktion von Kohlenstoffdioxid und Elektrolysezelle hierfür
WO2024088889A2 (de) Druckelektrolyseur, elektrolyseanlage und elektrolyseverfahren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22702893

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023542491

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022222172

Country of ref document: AU

Date of ref document: 20220120

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3209497

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202280015185.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237031680

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237031680

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022702893

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022702893

Country of ref document: EP

Effective date: 20230918

WWE Wipo information: entry into national phase

Ref document number: 523441591

Country of ref document: SA