WO2022174632A1 - 一种锌合金压铸件无氰碱性镀铜电镀液及其制备方法和电镀方法 - Google Patents

一种锌合金压铸件无氰碱性镀铜电镀液及其制备方法和电镀方法 Download PDF

Info

Publication number
WO2022174632A1
WO2022174632A1 PCT/CN2021/131233 CN2021131233W WO2022174632A1 WO 2022174632 A1 WO2022174632 A1 WO 2022174632A1 CN 2021131233 W CN2021131233 W CN 2021131233W WO 2022174632 A1 WO2022174632 A1 WO 2022174632A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
electroplating
electroplating solution
cyanide
zinc alloy
Prior art date
Application number
PCT/CN2021/131233
Other languages
English (en)
French (fr)
Inventor
张志梁
Original Assignee
张志梁
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张志梁 filed Critical 张志梁
Publication of WO2022174632A1 publication Critical patent/WO2022174632A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of electroplating, and particularly relates to a cyanide-free alkaline copper-plating electroplating solution for zinc alloy die castings, a preparation method and an electroplating method thereof.
  • Zinc alloy die castings are amphoteric metals with negative electrode potential, often containing about 3% aluminum, and poor chemical stability.
  • galvanizing treatment is not carried out, the driving force of the displacement reaction is large and it is more difficult to suppress, and the requirements for the cyanide-free copper plating process are higher, which has become the biggest bottleneck for the electroplating industry to completely replace the cyanide copper plating.
  • direct copper plating on zinc alloy die castings at home and abroad adopts the alkaline highly toxic cyanide copper plating process (because cyanide is the best complexing agent in the metal electrodeposition process).
  • cyanide is extremely toxic, and 0.2 grams can be fatal in an instant.
  • the typical cyanide-free copper plating systems reported in the current research include alkaline pyrophosphate copper plating, sulfamate copper plating, citrate copper plating, organic phosphonate copper plating, and organic carboxylate copper plating. All use non-cyanide complexing agents to complex with copper to inhibit the "zinc-copper replacement reaction", thereby overcoming technical problems such as poor bonding force of cyanide-free copper plating and easy bulging of zinc alloy die castings.
  • CN106521574 discloses a cyanide-free copper-plating electroplating solution suitable for wide pH and wide current density range, using aminomethylidene diphosphate and sodium phytate as copper complex complexing agents, pyrophosphate as auxiliary additives, and The respective advantages have been formed to complement each other.
  • CN110923757 discloses a cyanide-free alkali copper electroplating solution. Citrate is used in combination with auxiliary complexing agent organic amine compound and polyhydroxy carboxylic acid compound. During the electroplating process, no copper powder will be precipitated, and the coating layer is fine and uniform, and the coating layer is combined. good strength.
  • the “zinc-copper replacement reaction” is inhibited in the form of complexation. Since the complexing ability of non-cyanide complexing agents cannot be comparable to that of cyanide, the adhesion of the coating cannot meet the requirements of actual production and use. for large-scale industrial applications. In addition, the potential of zinc alloy is more negative than that of iron, and the driving force for copper replacement is greater, and the complexing ability of complexing agent is higher, and it is difficult to meet the process requirements only by using non-cyanide complexing agent.
  • the present invention discloses a cyanide-free alkaline copper plating solution for zinc alloy die castings, which can effectively change the copper ion concentration in the electric double layer by adding compound adsorbents fluoride and cucurbituril to adsorb on the cathode surface to change the copper ion concentration.
  • a cyanide-free alkaline copper plating solution for zinc alloy die castings comprises the following components: copper salt 5-50g/L, compound adsorbent 5-30g/L, complex composition 200-400g/L.
  • the compound adsorbent is a mixture of fluoride and cucurbituril, and its content in the electroplating solution is 5-15g/L of fluoride and 5-15g/L of cucurbituril.
  • the fluoride is potassium fluoride or sodium fluoride.
  • the copper salts are basic copper carbonate, copper pyrophosphate, copper hydroxide, and copper sulfate.
  • the complex composition is hydroxyethylidene diphosphoric acid, hexamethylene diamine tetramethylene phosphoric acid, aminotrimethylidene phosphoric acid, polyol phosphate, dipotassium hydrogen phosphate, disodium edetate, potassium sodium tartrate, citric acid Potassium, potassium carbonate, potassium hydroxide and potassium nitrate.
  • each component of the complex composition in the electroplating solution is 80-150g/L of hydroxyethylidene diphosphate, 10-20g/L of hexamethylenediamine tetramethylene phosphate, and 5-15g/L of aminotrimethylidene phosphoric acid.
  • L polyol phosphate 10-30g/L, dipotassium hydrogen phosphate 20-30g/L, disodium EDTA 5-20g/L, potassium sodium tartrate 10-50g/L, potassium citrate 100-200g /L, potassium carbonate 30-50g/L, potassium hydroxide 30-50g/L, potassium nitrate 10-30g/L.
  • the present invention further discloses a method for preparing a cyanide-free alkaline copper plating solution for zinc alloy die castings, comprising the following steps:
  • the invention also discloses a cyanide-free alkaline copper plating method for zinc alloy die castings, comprising the following steps:
  • the zinc alloy die-castings are sequentially subjected to degreasing, activation and water washing treatments and then placed in an electroplating bath for electroplating, and the copper-plating treatment of the zinc alloy die-castings is completed in the above-mentioned electroplating solution.
  • the electroplating solution disclosed by the invention completely replaces the highly toxic cyanide in the field of zinc alloy die castings, and relieves the serious threat caused by the highly toxic cyanide to the operator and the environment. Another way is to produce an effect of 1+1 greater than 2 through the synergistic effect of the compound adsorbent and the complex composition.
  • the fluoride in the adsorbent is mixed with cucurbituril, it is synergistically adsorbed on the cathode surface to change the copper ion concentration in the electric double layer, which can effectively Reduce the copper ion potential at the cathode interface, inhibit the discharge precipitation of copper ions, and completely inhibit the "zinc-copper replacement reaction" in the alkaline plating solution.
  • Fig. 1 is the picture after the product that adopts the electroplating solution of embodiment 1 and electroplating method to electroplate through the cross-cut test;
  • Fig. 2 is the picture after the product that adopts the electroplating solution of embodiment 2 and electroplating method to electroplate through the cross-cut test;
  • Fig. 3 is the picture that adopts the electroplating solution of embodiment 3 and electroplating method to electroplate the product through cross-cutting;
  • Fig. 4 is the picture after the product that adopts the electroplating solution of embodiment 1 and electroplating method to electroplate through thermal vibration experiment;
  • Fig. 5 is the picture that adopts the electroplating solution of embodiment 2 and electroplating method to electroplate the product after thermal vibration experiment;
  • Fig. 6 is the picture that adopts the electroplating solution of embodiment 3 and electroplating method to electroplate the product after thermal vibration experiment;
  • Fig. 7 is the picture after the cross-cut test of the product electroplated by the electroplating solution and the electroplating method of Comparative Example 1;
  • Fig. 8 is the picture after the cross-cut test of the product electroplated by the electroplating solution and the electroplating method of Comparative Example 2;
  • Figure 9 is the picture after the cross-cut test of the product electroplated by the electroplating solution and electroplating method of Comparative Example 3;
  • Figure 10 is a picture of the product electroplated by the electroplating solution and electroplating method of Comparative Example 1 after the thermal vibration test;
  • Figure 11 is a picture of the product electroplated by the electroplating solution and electroplating method of Comparative Example 2 after the thermal vibration test;
  • Figure 12 is a picture of a product electroplated by the electroplating solution and electroplating method of Comparative Example 3 after a thermal vibration test.
  • the preparation method of the electroplating solution includes the following steps: adding a calculated amount of 1/2 volume of pure water to a container; adding a complex composition, stirring until dissolved; adding copper salt in a stirring state, heating to 80 ° C and stirring to promote The copper complex is formed, and then the compound adsorbent is added to stir and dissolve. Add the remaining pure water to the working volume, stir evenly, and adjust the pH to 10 with potassium hydroxide to perform electroplating.
  • Table 1 is the electroplating solution composition of embodiment 1:
  • Electroplating method The zinc alloy die castings are degreasing and activated in sequence, and then placed in an electroplating tank for electroplating.
  • the current density is set to 2A/dm 2, and the electroplating is performed at room temperature for 10 minutes to complete the copper plating treatment of the zinc alloy die castings. After observation, it was found that the crystals of the copper plating layer after electroplating were fine and bright.
  • Binding force test Test according to GB/T 5270-2005 national standard:
  • the copper-plated layer After the cross-cut test and thermal vibration test, the copper-plated layer has no bubbling, peeling, peeling and falling off, and the bonding strength reaches the national standard of GB/T 5270-2005.
  • the preparation method of the electroplating solution includes the following steps: adding a calculated amount of 1/2 volume of pure water to a container; adding a complex composition, stirring until dissolved; adding copper salt in a stirring state, heating to 80 ° C and stirring to promote The copper complex is formed, and then the compound adsorbent is added to stir and dissolve. Add the remaining pure water to the working volume, stir evenly, and adjust the pH to 11 with potassium hydroxide to perform electroplating.
  • Table 2 is the electroplating solution of embodiment 2:
  • Electroplating method The zinc alloy die castings are degreasing and activated in sequence, and then placed in an electroplating tank for electroplating.
  • the current density is set to 5A/dm 2, and the electroplating is performed at room temperature for 10 minutes to complete the copper plating treatment of the zinc alloy die castings. After observation, it was found that the crystals of the copper plating layer after electroplating were fine and bright.
  • Binding force test Test according to GB/T 5270-2005 national standard:
  • the copper-plated layer After the cross-cut test and thermal vibration test, the copper-plated layer has no bubbling, peeling, peeling and falling off, and the bonding strength reaches the national standard of GB/T 5270-2005.
  • the preparation method of the electroplating solution includes the following steps: adding a calculated amount of 1/2 volume of pure water to a container; adding a complex composition, stirring until dissolved; adding copper salt in a stirring state, heating to 80 ° C and stirring to promote The copper complex is formed, and then the compound adsorbent is added to stir and dissolve. Add the remaining pure water to the working volume, stir evenly, and adjust the pH to 9 with potassium hydroxide to perform electroplating.
  • Table 3 is the electroplating solution of embodiment 3:
  • Electroplating method The zinc alloy die castings are degreasing and activated in sequence, and then placed in an electroplating tank for electroplating.
  • the current density is set to 5A/dm 2, and the electroplating is performed at room temperature for 10 minutes to complete the copper plating treatment of the zinc alloy die castings. After observation, it was found that the crystals of the copper plating layer after electroplating were fine and bright.
  • Binding force test Test according to GB/T 5270-2005 national standard:
  • the copper-plated layer After the cross-cut test and thermal vibration test, the copper-plated layer has no bubbling, peeling, peeling and falling off, and the bonding strength reaches the national standard of GB/T 5270-2005.
  • Comparative example 1 is an electroplating solution without compound adsorbent
  • comparative example 2 is an electroplating solution without fluoride
  • comparative example 3 is an electroplating solution without cucurbituril.
  • Binding force test Test according to GB/T 5270-2005 national standard:
  • a cyanide-free alkaline copper-plating electroplating solution for zinc alloy die-casting parts only fluoride is not used in the electroplating solution, and the other components, the preparation method of the electroplating solution, and the electroplating method are the same as those in Embodiment 1.
  • Binding force test Test according to GB/T 5270-2005 national standard:
  • Binding force test Test according to GB/T 5270-2005 national standard:
  • the plating solution of Comparative Example 1 does not contain compound adsorbent.
  • the bonding force is tested according to the national standard of GB/T 5270-2005. The cross-cut test found that some copper-plated layers fell off in the low-current area, and the heat was hot. Bubbling phenomenon occurs in the low current area of zinc alloy die castings in vibration test. It shows that the bonding force of the electroplating solution without adding the compound adsorbent is poor.
  • the bonding force of the coating in the high current area is acceptable, the workpiece shape is complex in actual large-scale production applications, the high and low current areas are obvious, and the pretreatment cannot meet the laboratory standard, making it difficult to achieve industrial application.
  • Comparative Example 2 and Comparative Example 3 used a single adsorbent. After the cross-cut test and thermal vibration test, the bonding force of the copper-plated layer cannot reach the national standard of GB/T 5270-2005. It shows that using a single substance with adsorption effect, although the bonding force of the copper plating layer has been improved, it still cannot meet the needs of large-scale production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

公开了一种锌合金压铸件无氰碱性镀铜电镀液及其制备方法和电镀方法,该电镀液包括如下组分:主盐5-50g/L、复配吸附剂5-30g/L、络合组合物200-400g/L;通过加入复配吸附剂在阴极表面改变双电层中铜离子浓度,能有效降低阴极界面铜离子电位,抑制铜离子放电析出,在碱性镀液中完全抑制"锌铜置换反应",与络合组合物的络合作用协同增效,产生1+1大于2的效果,改变双电层中铜离子浓度,有效降低铜离子电位,使铜离子放电更加困难,在碱性镀液中完全抑制"锌铜置换反应",克服了锌合金压铸件无氰镀铜结合力差、容易鼓泡技术难题,镀层结晶光亮细致,结合力牢固。

Description

一种锌合金压铸件无氰碱性镀铜电镀液及其制备方法和电镀方法 技术领域
本发明属于电镀技术领域,具体涉及一种锌合金压铸件无氰碱性镀铜电镀液及其制备方法和电镀方法。
背景技术
锌合金压铸件是两性金属,电极电位较负,常含有3%左右的铝,化学稳定性较差。在前处理过程中又不进行浸锌处理,置换反应驱动力大更难抑制,对无氰镀铜工艺要求更高,已成为电镀行业全面取代氰化镀铜的最大瓶颈。为获得良好的镀层结合力,目前国内外锌合金压铸件上直接镀铜均采用碱性剧毒氰化镀铜工艺(因为氰化物在金属电沉积过程中,是最好的络合剂)。但氰化物剧毒,0.2克即可瞬间致命,在生产、储运、使用各环节中稍有不慎,其后果不堪设想。严重污染环境和危及人类身体健康,并给社会带来巨大安全隐患。我国在二十世纪七十年代,曾掀起过淘汰剧毒氰化电镀的高潮,也取得一些成果,但基本上是镀锌工艺。而在镀铜领域乏善可陈,酸铜有置换铜层问题,大多数无氰碱铜因工艺不过关而逐渐自行淘汰、淡出业界。致使我国八十、九十年代后剧毒氰化电镀回潮。不仅中国,目前国际上发达国家也仍沿用传统的剧毒氰化工艺,因此无氰镀铜技术的开发迫切,但也是一个技术难题。
目前研究报道比较典型的无氰镀铜体系有碱性焦磷酸盐镀铜、氨基磺酸盐镀铜、柠檬酸盐镀铜、有机膦酸盐镀铜、有机羧酸盐镀铜等。均利用非氰络合剂与铜络合,抑制“锌铜置换反应”,由此克服锌合金压铸件无氰镀铜结合力差、容易鼓包等技术难题。如CN106521574公开了一种适用于宽pH和宽电流密度范围的无氰镀铜电镀液,以氨基甲叉二磷酸和肌醇六磷酸钠为铜复合配位剂,焦磷酸盐为辅助添加剂,发挥了各自的优点,形成了互补。CN110923757公开了一种无氰碱铜电镀液,将柠檬酸盐与辅助络合剂有机胺化合物和多羟基羧酸化合物联合使用,电镀过程中不会有铜粉析出,镀层细致、均匀、镀层结合力好。但从实际应用上来看,这种以络合的形式抑制“锌铜置换反应”,由于非氰络合剂的络合能力无法与氰化物相媲美,镀层结合力无法满足实际生产使用要求,无法进行大规模工业应用。而且锌合金的电位比铁更负,置换铜驱动力更大,对络合剂络合能力要求更高,仅使用非氰络合剂难以满足工艺要求。
发明内容
针对以上技术问题,本发明公开了一种锌合金压铸件无氰碱性镀铜电镀液,通过加入复配吸附剂氟化物和葫芦脲吸附在阴极表面改变双电层中铜离子浓度,能有效降低阴极界面铜离子电位,抑制铜离子放电析出,在碱性镀液中完全抑制“锌铜置换反应”,与络合组合物的络合作用协同增效,产生1+1大于2的效果,改变双电层中铜离子浓度,有效降低铜离子电位,使铜离子放电更加困难,在碱性镀液中完全抑制“锌铜置换反应”,克服了锌合金压铸件无氰镀铜结合力差、容易鼓泡技术难题,镀层结晶光亮细致,结合力牢固。硝酸钾的加入有效提高了电流密度范围,减少镀层烧焦。解决大多无氰碱铜电流开不大镀铜速度慢技术难题。
本发明是通过以下技术方案实现的:
一种锌合金压铸件无氰碱性镀铜电镀液,包括如下组分:铜盐5-50g/L、复配吸附剂5-30g/L、络合组合物200-400g/L。
所述的复配吸附剂为氟化物与葫芦脲的混合物,其在电镀液中的含量为氟化物5-15g/L、葫芦脲5-15g/L。
所述氟化物为氟化钾或氟化钠。
所述铜盐为碱式碳酸铜、焦磷酸铜、氢氧化铜、硫酸铜。
所述络合组合物为羟基乙叉二磷酸、己二胺四甲叉磷酸、氨基三甲叉磷酸、多元醇磷酸酯、磷酸氢二钾、乙二胺四乙酸二钠、酒石酸钾钠、柠檬酸钾、碳酸钾、氢氧化钾和硝酸钾。
所述络合组合物各组分在所述电镀液中的含量为羟基乙叉二磷酸80-150g/L、己二胺四甲叉磷酸10-20g/L、氨基三甲叉磷酸5-15g/L、多元醇磷酸酯10-30g/L、磷酸氢二钾20-30g/L、乙二胺四乙酸二钠5-20g/L、酒石酸钾钠10-50g/L、柠檬酸钾100-200g/L、碳酸钾30-50g/L、氢氧化钾30-50g/L、硝酸钾10-30g/L。
本发明还进一步地公开了一种锌合金压铸件无氰碱性镀铜电镀液的制备方法,包括如下步骤:
(1)向容器中加入计算量1/2体积的纯水。
(2)加入络合组合物,搅拌至溶解。在搅拌状态下加入铜盐,加温至80℃搅拌促进形成铜络合物,之后加入复配吸附剂搅拌溶解。
(3)加入剩余的纯水至工作体积搅拌均匀,用氢氧化钾调整PH至9-11即可实施电镀。
本发明还公开了一种锌合金压铸件无氰碱性镀铜方法,包括如下步骤:
将锌合金压铸件依次进行除油、活化、水洗处理后置于电镀槽中电镀,在上述电镀液中完成锌合金压铸件的镀铜处理。
本发明的上述技术方案相比现有技术具有以下优点:
本发明公开的电镀液在锌合金压铸件领域完全替代剧毒氰化物,解除剧毒氰化物对操作工人和环境造成的严重威胁。另辟蹊径通过复配吸附剂与络合组合物的协同作用产生1+1大于2的效果,吸附剂中氟化物与葫芦脲混合后,协同吸附在阴极表面改变双电层中铜离子浓度,能有效降低阴极界面铜离子电位,抑制铜离子放电析出,在碱性镀液中完全抑制“锌铜置换反应”。克服了锌合金压铸件无氰镀铜结合力差、容易鼓泡技术难题,镀层结晶光亮细致具有牢固的结合力。由于葫芦脲的特殊分子结构,使其能够与氟离子更好的吸附在阴极表面,这与现有技术中硫脲的使用不同,硫脲只是起到光亮的作用,无吸附在阴极表面抑制置换反应的作用。硝酸钾的加入有效提高了阴极电流密度范围,减少镀层烧焦。解决大多无氰碱铜电流开不大镀铜速度慢技术难题。本发明公开的电镀液可以满足工业化大生产的应用,且镀层符合GB/T 5270-2005国家标准。
附图说明
图1为采用实施例1的电镀液和电镀方法电镀出来的产品经过划格试验后的图片;
图2为采用实施例2的电镀液和电镀方法电镀出来的产品经过划格试验后的图片;
图3为采用实施例3的电镀液和电镀方法电镀出来的产品经过划格的图片;
图4为采用实施例1的电镀液和电镀方法电镀出来的产品经过热振实验后的图片;
图5为采用实施例2的电镀液和电镀方法电镀出来的产品经过热振实验后的图片;
图6为采用实施例3的电镀液和电镀方法电镀出来的产品经过热振实验后的图片;
图7为采用对比例1电镀液和电镀方法电镀出来的产品经过划格试验后的图片;
图8为采用对比例2电镀液和电镀方法电镀出来的产品经过划格试验后的图片;
图9为采用对比例3电镀液和电镀方法电镀出来的产品经过划格试验后的图片;
图10为采用对比例1电镀液和电镀方法电镀出来的产品经过热振试验后的图片;
图11为采用对比例2电镀液和电镀方法电镀出来的产品经过热振试验后的图片;
图12为采用对比例3电镀液和电镀方法电镀出来的产品经过热振试验后的图片。
具体实施方式
为了更好地理解本发明,以下将具体结合实施例对本发明进行详细的说明。
实施例1
一种锌合金压铸件无氰碱性镀铜电镀液,各组分及含量如表1;
该电镀液的制备方法,包括如下步骤:向容器中加入计算量1/2体积的纯水;加入络合组合物,搅拌至溶解;在搅拌状态下加入铜盐,加温至80℃搅拌促进形成铜络合物,之后加入复配吸附剂搅拌溶解。加入剩余的纯水至工作体积搅拌均匀,用氢氧化钾调整pH至10即可实施电镀。
表1为实施例1的电镀液组成:
电镀方法:锌合金压铸件依次进行除油、活化处理后置于电镀槽中电镀,设置电流密度为2A/dm 2,在室温下电镀10min,完成锌合金压铸件的镀铜处理。经观察发现,电镀后的铜镀层结晶细致光亮。
结合力检测:按GB/T 5270-2005国家标准检测:
(1)划格试验:用硬质钢划刀划边长为1mm方格,划至试片基体,镀铜层未有脱落,参见图1。
(2)热振试验:将镀铜锌合金压铸件放入加热炉中加热至250℃,放入冷水中骤冷,镀铜层无鼓泡、片状剥离,参见图4。
经划格试验、热振试验镀铜层无鼓泡、起皮、剥离脱落,结合力达到GB/T 5270-2005国家标准。
实施例2
一种锌合金压铸件无氰碱性镀铜电镀液,各组分及含量如表2;
该电镀液的制备方法,包括如下步骤:向容器中加入计算量1/2体积的纯水;加入络合组合物,搅拌至溶解;在搅拌状态下加入铜盐,加温至80℃搅拌促进形成铜络合物,之后加入复配吸附剂搅拌溶解。加入剩余的纯水至工作体积搅拌均匀,用氢氧化钾调整pH至11即可实施电镀。
表2为实施例2的电镀液:
电镀方法:锌合金压铸件依次进行除油、活化处理后置于电镀槽中电镀,设置电流密度为5A/dm 2,在室温下电镀10min,完成锌合金压铸件的镀铜处理。经观察发现,电镀后的铜镀层结晶细致光亮。
结合力检测:按GB/T 5270-2005国家标准检测:
(1)划格试验:用硬质钢划刀划边长为1mm方格,划至试片基体,镀铜层未有脱落,参见图2。
(2)热振试验:将镀铜锌合金压铸件放入加热炉中加热至250℃,放入冷水中骤冷,镀铜层无鼓泡、片状剥离,参见图5。
经划格试验、热振试验镀铜层无鼓泡、起皮、剥离脱落,结合力达到GB/T 5270-2005国家标准。
实施例3
一种锌合金压铸件无氰碱性镀铜电镀液,各组分及含量如表3;
该电镀液的制备方法,包括如下步骤:向容器中加入计算量1/2体积的纯水;加入络合组合物,搅拌至溶解;在搅拌状态下加入铜盐,加温至80℃搅拌促进形成铜络合物,之后加入复配吸附剂搅拌溶解。加入剩余的纯水至工作体积搅拌均匀,用氢氧化钾调整pH至9即可实施电镀。
表3为实施例3的电镀液:
电镀方法:锌合金压铸件依次进行除油、活化处理后置于电镀槽中电镀,设置电流密度为5A/dm 2,在室温下电镀10min,完成锌合金压铸件的镀铜处理。经观察发现,电镀后的铜镀层结晶细致光亮。
结合力检测:按GB/T 5270-2005国家标准检测:
(1)划格试验:用硬质钢划刀划边长为1mm方格,划至试片基体,镀铜层未有脱落,参见图3。
(2)热振试验:将镀铜锌合金压铸件放入加热炉中加热至250℃,放入冷水中骤冷,镀铜层无鼓泡、片状剥离,参见图6。
经划格试验、热振试验镀铜层无鼓泡、起皮、剥离脱落,结合力达到GB/T 5270-2005国家标准。
对比例
为了更好的说明复配吸附剂在电镀液中的作用,用以下对比例进行结合力检测试验。对比例1为不含复配吸附剂的电镀液,对比例2为不含氟化物的电镀液,对比例3为不含葫芦脲的电镀液。
对比例1
一种锌合金压铸件无氰碱性镀铜电镀液,电镀液中仅未使用复配吸附剂,其他组成、电镀液的制备方法、电镀方法均与实施例1相同。
结合力检测:按GB/T 5270-2005国家标准检测:
(1)划格试验:用硬质钢划刀划边长为1mm方格,划至试片基体,低电流区镀铜层部分脱落,结合力不良,参见图7。
(2)热振试验:将镀铜锌合金压铸件放入加热炉中加热至250℃,放入冷水中骤冷,低电流区镀铜层有鼓泡现象,参见图10。
对比例2
一种锌合金压铸件无氰碱性镀铜电镀液,电镀液中仅未使用氟化物,其他组成、电镀液的制备方法、电镀方法均与实施例1相同。
结合力检测:按GB/T 5270-2005国家标准检测:
(1)划格试验:用硬质钢划刀划边长为1mm方格,划至试片基体,低电流区镀铜层部分脱落,结合力不良,参见图8。
(2)热振试验:将镀铜锌合金压铸件放入加热炉中加热至250℃,放入冷水中骤冷,低电流区镀铜层有鼓泡现象,参见图11。
对比例3
一种锌合金压铸件无氰碱性镀铜电镀液,电镀液中仅未使用复配吸附剂,其他组成、电镀液的制备方法、电镀方法均与实施例1相同。
结合力检测:按GB/T 5270-2005国家标准检测:
(1)划格试验:用硬质钢划刀划边长为1mm方格,划至试片基体,低电流区镀铜部分脱落,结合力不良,参见图9。
(2)热振试验:将镀铜锌合金压铸件放入加热炉中加热至250℃,放入冷水中骤冷,低电流区镀铜层有鼓泡现象,参见图12。
对比例1的镀液中不含复配吸附剂,锌合金压铸件镀铜后按GB/T 5270-2005国家标准进行结合力检测,划格试验发现低电流区有部分镀铜层脱落,热振试验锌合金压铸件低电流区出现鼓泡现象。说明在没有添加复配吸附剂的电镀液结合力不良。虽然高电流区镀层结合力尚可,但实际大生产应用中工件形状复杂,高低电流区明显,前处理也无法达到实验室标准,难以实现工业化应用。
对比例2、对比例3使用单一一种吸附剂。经划格试验、热振试验镀铜层的结合力达不到GB/T 5270-2005国家标准。说明单一使用一种具有吸附作用的物质,虽然镀铜层结合力有提高,但还达不到大规模生产需求。

Claims (7)

  1. 一种锌合金压铸件无氰碱性镀铜电镀液,包括如下组分:铜盐5-50g/L、复配吸附剂5-30g/L、络合组合物200-400g/L;所述的复配吸附剂为氟化物与葫芦脲的混合物,在电镀液中的含量为氟化物5-15g/L、葫芦脲5-15g/L。
  2. 如权利要求1所述的电镀液,所述氟化物为氟化钾或氟化钠。
  3. 如权利要求1所述的电镀液,所述铜盐为碱式碳酸铜、焦磷酸铜、氢氧化铜、硫酸铜。
  4. 如权利要求1所述的电镀液,所述络合组合物为羟基乙叉二磷酸、己二胺四甲叉磷酸、氨基三甲叉磷酸、多元醇磷酸酯、磷酸氢二钾、乙二胺四乙酸二钠、酒石酸钾钠、柠檬酸钾、碳酸钾、氢氧化钾和硝酸钾。
  5. 如权利要求1所述的电镀液,所述络合组合物各组分在所述电镀液中的含量为羟基乙叉二磷酸80-150g/L、己二胺四甲叉磷酸10-20g/L、氨基三甲叉磷酸5-15g/L、多元醇磷酸酯10-30g/L、磷酸氢二钾20-30g/L、乙二胺四乙酸二钠5-20g/L、酒石酸钾钠10-50g/L、柠檬酸钾100-200g/L、碳酸钾30-50g/L、氢氧化钾30-50g/L、硝酸钾10-30g/L。
  6. 权利要求1所述的一种锌合金压铸件无氰碱性镀铜电镀液的制备方法,包括如下步骤:
    (1)向容器中加入计算量1/2体积的纯水;
    (2)加入络合组合物,搅拌至溶解;在搅拌状态下加入铜盐,加温至80℃搅拌促进形成铜络合物,之后加入复配吸附剂搅拌溶解;
    (3)加入剩余的纯水至工作体积搅拌均匀,用氢氧化钾调整pH至9-11即可实施电镀。
  7. 一种锌合金压铸件无氰碱性镀铜方法,包括如下步骤:
    将锌合金压铸件依次进行除油、活化、水洗处理后置于电镀槽中电镀,所用电镀液为权利要求1-5任一所述的电镀液。
PCT/CN2021/131233 2021-02-22 2021-11-17 一种锌合金压铸件无氰碱性镀铜电镀液及其制备方法和电镀方法 WO2022174632A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110197758.9A CN113151870A (zh) 2021-02-22 2021-02-22 一种锌合金压铸件无氰碱性镀铜电镀液及其制备方法和电镀方法
CN202110197758.9 2021-02-22

Publications (1)

Publication Number Publication Date
WO2022174632A1 true WO2022174632A1 (zh) 2022-08-25

Family

ID=76883382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131233 WO2022174632A1 (zh) 2021-02-22 2021-11-17 一种锌合金压铸件无氰碱性镀铜电镀液及其制备方法和电镀方法

Country Status (2)

Country Link
CN (1) CN113151870A (zh)
WO (1) WO2022174632A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151870A (zh) * 2021-02-22 2021-07-23 张志梁 一种锌合金压铸件无氰碱性镀铜电镀液及其制备方法和电镀方法
CN114032588A (zh) * 2021-12-16 2022-02-11 东莞振顺五金制品有限公司 无氰碱性镀铜的预镀液及预镀工艺、电镀液及电镀工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775265A (en) * 1970-05-25 1973-11-27 Canada Wire & Cable Co Ltd Method of plating copper on aluminum
CN102995077A (zh) * 2012-12-28 2013-03-27 武汉吉和昌化工科技有限公司 一种无氰碱性光亮镀铜溶液、其制备方法及其电镀工艺
CN105734622A (zh) * 2016-03-30 2016-07-06 佛山市仁昌科技有限公司 一种无氰镀铜溶液及其制备方法
CN111321436A (zh) * 2020-03-09 2020-06-23 张志梁 一种无氰镀铜液助剂和铜镀液
CN113151870A (zh) * 2021-02-22 2021-07-23 张志梁 一种锌合金压铸件无氰碱性镀铜电镀液及其制备方法和电镀方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775265A (en) * 1970-05-25 1973-11-27 Canada Wire & Cable Co Ltd Method of plating copper on aluminum
CN102995077A (zh) * 2012-12-28 2013-03-27 武汉吉和昌化工科技有限公司 一种无氰碱性光亮镀铜溶液、其制备方法及其电镀工艺
CN105734622A (zh) * 2016-03-30 2016-07-06 佛山市仁昌科技有限公司 一种无氰镀铜溶液及其制备方法
CN111321436A (zh) * 2020-03-09 2020-06-23 张志梁 一种无氰镀铜液助剂和铜镀液
CN113151870A (zh) * 2021-02-22 2021-07-23 张志梁 一种锌合金压铸件无氰碱性镀铜电镀液及其制备方法和电镀方法

Also Published As

Publication number Publication date
CN113151870A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2022174632A1 (zh) 一种锌合金压铸件无氰碱性镀铜电镀液及其制备方法和电镀方法
CN102277601B (zh) 含辅助配位剂的无氰镀银电镀液
CN102995077B (zh) 一种无氰碱性光亮镀铜溶液、其制备方法及其电镀工艺
CN106893954B (zh) 一种Co基非晶合金粉末及其制备工艺
CN103014787B (zh) 一种铜电镀液及其电镀工艺
CN105386089A (zh) 一种三价铬硬铬电镀溶液及其在硬铬电镀中的应用
CN109518237B (zh) 锌镍磷电镀液、其制备方法及电镀方法
CN108034969A (zh) 一种硫酸盐三价铬镀铬电镀液及其应用方法
CN102080241A (zh) 一种低浓度弱碱性无氰镀铜及槽液配制方法
CN103305880A (zh) 钢铁基体上柠檬酸盐—酒石酸盐双络合碱性无氰镀铜电解液
CN103014788B (zh) 一种无氰碱性镀铜光亮剂及其制备方法
CN107587123A (zh) 一种手机外壳表面处理工艺
CN105734622A (zh) 一种无氰镀铜溶液及其制备方法
CN104805480A (zh) 一种碱性锌镍电镀液、制备方法及电镀方法
CN104120463B (zh) 钢铁基体的一种无氰亚铜电镀铜表面改性方法
WO2022170803A1 (zh) 一种强酸性条件下钢铁基体直接无氰镀铜电镀液及其制备方法
CN102021617B (zh) 用于钢铁件镀铜的无氰电镀液
CN102242382A (zh) 一种生产航空、航天高尖端产品所用的镀银导体的生产方法
CN107119292A (zh) 一种镍电镀液及镀镍的方法
CN104388989A (zh) 一种三价铬电镀液及制备方法
CN104388991A (zh) 一种铜电镀液及制备方法
CN101857965B (zh) 在镁合金表面无氰无氟沉积锌及锌镍合金的方法
CN113463147A (zh) 一种碳钢表面无氰仿金铜锌锡合金电镀工艺
CN103046090B (zh) 一种无氰碱性镀铜溶液中防置换铜添加剂及其制备方法
CN102206840B (zh) 碱性氯化物镀铜处理剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926346

Country of ref document: EP

Kind code of ref document: A1