WO2022174628A1 - 一种由环己烷联产己二酸和环己酮肟的方法 - Google Patents

一种由环己烷联产己二酸和环己酮肟的方法 Download PDF

Info

Publication number
WO2022174628A1
WO2022174628A1 PCT/CN2021/130661 CN2021130661W WO2022174628A1 WO 2022174628 A1 WO2022174628 A1 WO 2022174628A1 CN 2021130661 W CN2021130661 W CN 2021130661W WO 2022174628 A1 WO2022174628 A1 WO 2022174628A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclohexylamine
cyclohexanone oxime
product
cyclohexane
reaction
Prior art date
Application number
PCT/CN2021/130661
Other languages
English (en)
French (fr)
Inventor
罗和安
游奎一
蹇建
刘平乐
倪文金
艾秋红
Original Assignee
湘潭大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湘潭大学 filed Critical 湘潭大学
Priority to EP21926342.3A priority Critical patent/EP4296255A1/en
Publication of WO2022174628A1 publication Critical patent/WO2022174628A1/zh
Priority to US18/450,343 priority patent/US20240150274A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/31Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting
    • C07C51/316Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting with oxides of nitrogen or nitrogen-containing mineral acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/27Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with oxides of nitrogen or nitrogen-containing mineral acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/08Preparation of nitro compounds by substitution of hydrogen atoms by nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/04Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of oximes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/04Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of oximes
    • C07C249/10Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of oximes from nitro compounds or salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/20Vanadium, niobium or tantalum
    • C07C2523/22Vanadium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/30Improvements relating to adipic acid or caprolactam production

Definitions

  • the invention relates to a preparation method of adipic acid or cyclohexanone oxime, in particular to a method for co-producing adipic acid and cyclohexanone oxime from cyclohexane.
  • Adipic acid commonly known as fatty acid
  • ADA Adipic acid
  • fatty acid is a very important industrial material and intermediate, mainly used in the manufacture of nylon 66, plasticizers, greases, pesticides and adhesives.
  • Cyclohexanone oxime is an intermediate of ⁇ -caprolactam, an important raw material (the main purpose is to generate polyamide chips by polymerization to further produce nylon fibers, engineering plastics, plastic films, etc.).
  • the industrial production of adipic acid generally adopts a two-step oxidation method using cyclohexane as raw material: firstly, KA oil (mixture of cyclohexanone and cyclohexanol) is obtained by oxidizing cyclohexane in air, and then KA oil is used as the The raw material is oxidized by nitric acid to produce adipic acid.
  • the one-pass conversion rate and KA oil yield in the cyclohexane oxidation process are very low, generally 3-5% and 82-83%, respectively; while the one-pass conversion rate and adipic acid yield in the nitric acid oxidation process of KA oil are not high.
  • Cyclohexene hydration-oxidation two-step method is a new method of industrialization in recent years. It first hydrates cyclohexene to cyclohexanol, dehydrogenates part of cyclohexanol to cyclohexanone to form KA oil, and then oxidizes the ring with nitric acid. Hexanol yields adipic acid.
  • the advantage of this method is that the selectivity of the first step is high, but the second step still has problems such as high energy consumption and great environmental impact.
  • the cyclohexene in this process is obtained by selective partial hydrogenation of benzene, and the reaction and separation conditions are relatively harsh, and the energy consumption is relatively high.
  • One-step synthesis of adipic acid by oxidation of cyclohexene hydrogen peroxide is an environmentally friendly process. It uses hydrogen peroxide as an oxidant to catalyze the oxidation of cyclohexene to synthesize adipic acid in one step under catalytic conditions.
  • This method requires relatively expensive catalysts, such as methyl trioctyl ammonium chloride, sodium tungstate-oxalic acid system or sodium tungstate-sulfuric acid system, and the reaction and separation conditions for preparing cyclohexene are relatively harsh, and the production cost Higher consumption and higher consumption of hydrogen peroxide have affected its industrialization process.
  • Biooxidation is a gene cluster isolated from aerobic denitrification strains to encode enzymes to obtain a synthetase that converts cyclohexanol to adipic acid, which can convert cyclohexanol to adipic acid under suitable growth conditions. Converted to adipic acid.
  • this process is expensive and is not yet suitable for large-scale industrial production.
  • US4263453 (1981) proposes to increase the acetic acid solvent consumption (the mol ratio of cyclohexane and acetic acid is 1:6) and introduce a small amount of butanone and water, which can improve the cyclohexane conversion rate and the selection of adipic acid.
  • US5321157 (1994) proposes that the use of oxygen-enriched air can reduce the amount of acetic acid solvent (the molar ratio of cyclohexane and acetic acid is close to 1:1), and can obtain higher adipic acid selectivity.
  • US0147777A1 (2004) proposes to use octanoic acid as solvent, cobalt acetylacetonate as catalyst, and compound containing imide group as cocatalyst to synthesize KA oil and adipic acid by air oxidation of cyclohexane; US7507856B2 (2009) proposes to use 4-tert-butyl The cyclohexane conversion rate and adipic acid selectivity can reach 7.17% and 53.6% respectively by using benzoic acid as solvent, manganese acetylacetonate as catalyst, and cyclohexanone as inducer to synthesize adipic acid by air oxidation of cyclohexane; US0095258A1 (2012) proposed to use acetonitrile as solvent, metal oxides (TiO 2 , ZrO 2 , MgO, etc.) supported precious metals (Au, Pd, Pt, etc.) as catalysts, and use molecular oxygen to oxid
  • phenol method Starting from benzene to synthesize cyclohexanone, there are currently three industrial methods: phenol method, cyclohexane oxidation method and cyclohexene hydration method.
  • the phenol method has a long history.
  • the earliest cyclohexanone oxime production units in the world all use the phenol method to produce cyclohexanone: first, benzene is used as a raw material to produce phenol, then phenol is hydrogenated to generate cyclohexanol, and then cyclohexanol is dehydrogenated to produce cyclohexanone. Get cyclohexanone. It can be seen that the key to the phenol method is how to obtain phenol.
  • the cumene method is mainly used in the industry to produce phenol (the chlorobenzene hydrolysis method and the benzene sulfonation method are almost all eliminated due to environmental and cost problems): benzene and propylene are alkylated to generate cumene, which is then mixed with cumene. Oxygen reacts to generate cumene hydroperoxide, which is finally decomposed into phenol and acetone under the action of sulfuric acid or sulfonic acid resin.
  • This method mainly has the following disadvantages: firstly, the yield of phenol is low (72-75%), and there are many by-products; secondly, the separation and purification device of phenol and acetone is complicated, and the energy consumption is high; thirdly, the market demand and Price affects the production cost of phenol. Therefore, the method of preparing cyclohexanone from phenol has been gradually replaced by the cyclohexane oxidation method at an early stage.
  • cyclohexane undergoes oxidation reaction with molecular oxygen under non-catalytic conditions to generate cyclohexanone
  • Hexyl hydrogen peroxide also generates a certain amount of cyclohexanone and cyclohexanol and some by-products
  • Hexanone and cyclohexanol (some by-products are also generated), and then KA oil is obtained by separation, and the KA oil is further separated into cyclohexanone and cyclohexanol, and finally cyclohexanol is dehydrogenated to cyclohexanone.
  • the main advantage of this method is the mature technology, low difficulty and high yield of the complete hydrogenation of benzene to cyclohexane, but there are three major disadvantages in the oxidation process of cyclohexane: (i) In order to maintain high selectivity, the cyclohexane The single-pass cyclohexane conversion rate of hexane air oxidation can only be controlled at 3-4%, and a large amount of unconverted cyclohexane requires a large amount of energy to separate and recycle it.
  • the main product of the non-catalytic oxidation reaction of cyclohexane is cyclohexyl hydroperoxide, and its decomposition process needs to consume NaOH, and the by-products of the oxidation reaction of cyclohexane are mainly acids, esters, ethers, etc., which also need to be passed through
  • the alkaline aqueous solution is saponified and removed, so a large amount of NaOH is consumed and a large amount of saponified waste lye is produced, which not only has a high production cost, but also has a large environmental pressure.
  • KA oil needs to be further separated into cyclohexanone and cyclohexanone by rectification, and then cyclohexanol is dehydrogenated to cyclohexanone;
  • the one-pass conversion rate of hexanol dehydrogenation is generally less than 80%, so cyclohexanol and cyclohexanone should be separated after dehydrogenation, and the boiling point difference between cyclohexanone and cyclohexanol is only about 6 °C;
  • the single-pass conversion rate of the cyclohexane oxidation is only 3-5%, so the energy consumption of the whole process is also high.
  • the cyclohexanone preparation of the newly built cyclohexanone oxime industrial plant in recent years generally adopts the cyclohexene hydration route proposed by Asahi Kasei in 2002 (CN 02804368.5 and CN 02814607.7): partial hydrogenation of benzene and hydrogen to generate cyclohexane Alene and cyclohexane are separated from cyclohexene from cyclohexane and unconverted benzene by extractive distillation, and then undergo hydration reaction with water to generate cyclohexanol, and finally cyclohexanol is dehydrogenated to generate cyclohexanone.
  • the biggest advantage of this method is the low material consumption: first, the total selectivity of benzene partial hydrogenation to cyclohexene and cyclohexane is very high (up to 99% and above), and cyclohexane is also a kind of economical value. product or intermediate; secondly, the hydration of cyclohexene to cyclohexanol is basically a directional conversion reaction.
  • the energy consumption is very high: (i) in order to obtain the highest possible single pass yield of cyclohexene, the conversion rate of the partial hydrogenation of benzene is generally controlled at 40 to 50% (the cyclohexene at this time).
  • the selectivity is about 70-80%), so that the reaction product of the partial hydrogenation of benzene is actually a mixture of benzene, cyclohexene and cyclohexane with very close boiling points.
  • Distillation for separation the first stage of extractive distillation is to separate benzene from cyclohexene and cyclohexane by using an extractant, and then separate benzene and extractant by vacuum distillation and then recycle them respectively;
  • Secondary extractive distillation is to separate cyclohexene from cyclohexane using an extractant, and then separate the cyclohexene and the extractant by vacuum distillation.
  • the cyclohexane obtained from the separation can be refined and sold as a product .
  • this cyclohexene hydration route also has a market or utilization problem of the by-product cyclohexane: the by-product of cyclohexane at the current industrial technology level is relatively large, and the cyclohexane by-product per ton of cyclohexanone is relatively large. Hexane generally exceeds 0.2 tons, and the market demand for cyclohexane is very limited, so some enterprises have to support the production line of cyclohexane oxidation method for this purpose.
  • cyclohexanone oxime production method using cyclohexanone as an intermediate also has a big problem.
  • cyclohexanone hydroxylamine oximation method can be divided into sulfate hydroxylamine oximation method (HSO method) and phosphate hydroxylamine oximation method. (HPO method) two kinds.
  • a complex production line of hydroxylamine salt is required, and the hydroxylamine salt obtained from the production is then used to hydroxylaminate cyclohexanone to produce cyclohexanone oxime.
  • the cyclohexanone-hydroxylamine oximation method not only has a long production process, large equipment investment, complicated operation control, but also high hydrogen consumption and material consumption (the yield of hydroxylamine salt based on ammonia is only about 60%), so the production cost higher.
  • the Italian company Eni developed the cyclohexanone ammoximation method, namely the HAO method (US patent US 474521), and realized industrialization: cyclohexanone and hydrogen peroxide and Under the action of titanium-silicon molecular sieve catalyst, ammonia is reacted in one step to generate cyclohexanone oxime.
  • the HAO method has the advantages of low hydrogen consumption, short production process, simple control, low requirements for equipment and pipeline materials, and less investment and land occupation.
  • the HAO method needs to consume hydrogen peroxide, so it needs to be equipped with a hydrogen peroxide production line, and because the concentration of hydrogen peroxide in the hydrogen peroxide should not be too high, and the ammonia oximation reaction process will also produce water, so this method produces a large amount of wastewater and requires treatment. Heavy burden.
  • CN 103641740A (2013) discloses a gas-phase catalytic oxidation method using supported mesoporous silicon as a catalyst.
  • the conversion rate of cyclohexylamine is 20-30%, the selectivity of cyclohexanone oxime can reach more than 85%
  • CN 109206339A (2017) discloses a liquid-phase catalytic oxidation method using supported titanium dioxide as a catalyst.
  • the conversion rate of cyclohexylamine reaches more than 50%, the selectivity of cyclohexanone oxime can reach more than 90%.
  • Japan Asahi Kasei proposed a new production process of cyclohexanone oxime (CN 02804368.5, CN 02814607.7): cyclohexanol obtained by hydration of cyclohexene is The raw material is first subjected to amination reaction with ammonia to generate cyclohexylamine, and then partially oxidized with molecular oxygen under the action of a catalyst to generate cyclohexanone oxime.
  • this method still has the following shortcomings: First, because the cyclohexanol is still produced by the hydration route of cyclohexene, the high energy consumption problem as mentioned above cannot be avoided; second, the involved cyclohexanol amination The oxidation reaction with cyclohexylamine will produce some by-products whose boiling point is close to or higher than the boiling point of cyclohexanone oxime. close, while the boiling points of dicyclohexylamine and N-cyclohexylcyclohexylimine are higher than that of cyclohexanone oxime. Therefore, it is not only very difficult to separate cyclohexanone oxime from these by-products with similar or higher boiling points, but also requires very large energy.
  • CN101781217B proposes a method for co-producing nitrocyclohexane and adipic acid with high selectivity
  • CN111530465A discloses a supported porous carbon material catalyst for hydrogenation of nitrocyclohexane and conversion of nitrocyclohexane The yield can reach 99%, and the selectivity of cyclohexanone oxime and cyclohexylamine is about 90% and 10%, respectively.
  • the present invention provides a co-production of adipic acid and cyclohexane that can realize high-efficiency industrial application.
  • the method of the ketoxime is simple, efficient and environmentally friendly.
  • the method for co-producing adipic acid and cyclohexanone oxime of the present invention mainly comprises two or three steps (depending on whether the cyclohexylamine obtained in step (2) is directly treated as a by-product or continues to be converted into cyclohexanone oxime):
  • Oxidative nitration of cyclohexane Catalytic or non-catalytic oxidation and nitration of cyclohexane and NO x are carried out, mainly to generate adipic acid and nitrocyclohexane, and at the same time to generate NO-based and a small amount and side Product-A obtains crude adipic acid and nitrocyclohexane after they are separated, and wherein nitrocyclohexane enters next step;
  • step (2) catalytic hydrogenation of nitrocyclohexane: the nitrocyclohexane obtained in step (1) is subjected to catalytic hydrogenation with hydrogen to generate cyclohexanone oxime and a small amount of cyclohexylamine; they are separated to obtain crude ring Hexanone oxime and cyclohexylamine, because the amount of cyclohexylamine is small and has certain economic value, can be treated as by-products, but can also enter the next step to carry out partial oxidation and continue to be converted into cyclohexanone oxime;
  • step (1) cyclohexane and NOx are subjected to catalytic or non-catalytic oxidative nitration reaction, and the total selectivity of adipic acid and nitrocyclohexane in the obtained product is >80%; the obtained product The molar ratio of adipic acid to nitrocyclohexane is 0.05-20.
  • the NO x is one or more of N 2 O, NO, NO 2 , N 2 O 3 , N 2 O 4 and N 2 O 5 , or a mixture of nitrogen oxides and molecular oxygen , where x refers to the ratio of the number of O atoms to the number of N atoms in the substance represented by NOx .
  • the by-product-A is one or two or more of nitrocyclohexene, cyclohexyl nitrate, glutaric acid, succinic acid, cyclohexanone, and cyclohexanol;
  • the described By-product-B is one or two or more of water, cyclohexylimine, cyclohexanone, nitrocyclohexane, N-cyclohexylcyclohexylimine and dicyclohexylamine.
  • the molar ratio of cyclohexanone oxime to cyclohexylamine in the nitrocyclohexane hydrogenation reaction product of the step (2) is 2-50.
  • the hydroamination is that under the action of a catalyst, the oxidation reaction product of cyclohexylamine and H 2 and NH 3 simultaneously undergo a hydroamination reaction, and the by-product-B is converted into cyclohexylamine and cyclohexanone.
  • Oxime; the first hydrogenation and then amination is that under the action of a catalyst, the oxidation reaction product of cyclohexylamine undergoes hydrogenation and amination reaction with H 2 and NH 3 successively, and the by-product -B is converted into cyclohexylamine and cyclohexylamine.
  • Hexanone oxime the hydrogenation is that under the action of a catalyst, the oxidation reaction product of cyclohexylamine reacts with H2 , and the by-product -B is converted into cyclohexylamine and cyclohexanone oxime, cyclohexanol and bicyclic Hexylamine.
  • hydroamination or first hydrogenation followed by amination or hydrogenation is a reaction process of coupling water separation or uncoupling water separation.
  • a solid catalyst or/and an inducer is added, and the active components of the solid catalyst are vanadium phosphorus oxide complexes, imide compounds, zeolites or molecular sieves, solid acids, Salen transition metal catalysts or heteropolyacids; the inducers are peroxides or alcohol, ketone, aldehyde or ester compounds.
  • the active components of the catalyst used in the hydrogenation are selected from one or more of the transition metals of Group VIII in the periodic table, and the auxiliary active components are selected from the transition metals of Groups IB to VIIB in the periodic table of elements.
  • the solid catalyst used in the hydroamination or amination of the by-product-B is formed from a hydrotalcite or a hydrotalcite-like composite transition metal active component, wherein the transition metal active component includes the main active component and Auxiliary active components, the main active components are selected from one or more of transition metals of Group VIII in the periodic table of elements, and the auxiliary active components are selected from transitions of Groups IB to VIIB in the periodic table of elements One or more of metals.
  • Co-production of adipic acid and cyclohexanone oxime and the ratio of the two can be adjusted within a certain range: the simultaneous oxidation and nitration of cyclohexane and nitrogen oxides NO x generate adipic acid and nitro Cyclohexane; nitrocyclohexane directly generates cyclohexanone oxime by hydrogenation, and also generates a small amount of cyclohexylamine, and cyclohexylamine can be treated as a by-product due to its small amount and certain economic value. Its partial oxidation is further converted to cyclohexanone oxime.
  • adipic acid synthesis route is short, atomic utilization rate is high, equipment investment is few: adopt NOx to carry out oxidation to cyclohexane, one-step reaction synthesizes adipic acid, not only the yield that cyclohexane is converted into adipic acid is high, Moreover, a large part of NOx as a reactant is converted into easily recycled NO, so compared with the current industrial traditional KA oil nitric acid oxidation method to produce adipic acid: not only nitric acid preparation and KA oil (or cyclohexanol) are omitted. Therefore, a lot of energy consumption is also saved, and the amount of N 2 O, a strong greenhouse effect gas, is significantly reduced because the utilization rate of N is greatly improved.
  • cyclohexylamine can be treated as a by-product, but it can also be further converted into cyclohexanone oxime through its partial oxidation.
  • the present invention avoids the complicated processes such as cyclohexanone production and its oximation to prepare cyclohexanone oxime, thereby avoiding all technologies such as cyclohexanone production and its oximation
  • the disadvantages such as: high material consumption and energy consumption and waste lye problems of cyclohexanone oxidation method, or high energy consumption problem of cyclohexene hydration method to prepare cyclohexanone, and the need for cyclohexanone oximation to prepare cyclohexanone oxime Problems such as consumption of hydroxylamine or hydrogen peroxide.
  • the method for co-producing adipic acid and cyclohexanone oxime proposed by the present invention has the advantages of short technological process, low construction investment, low material consumption and energy consumption, easy operation, safety and Environmentally friendly and other significant advantages.
  • Oxidative nitration of cyclohexane Catalytic or non-catalytic oxidation and nitration of cyclohexane and NO x are carried out, mainly to generate adipic acid and nitrocyclohexane, and at the same time to generate nitrogen oxides and nitrogen oxides mainly composed of NO. A small amount of by-product-A.
  • the obtained crude adipic acid is further separated and purified to become a main product; the obtained nitrocyclohexane enters the next step to carry out catalytic hydrogenation reaction with hydrogen to prepare another main product, cyclohexanone oxime; the obtained Cyclohexane and NO x and nitrogen oxides such as NO generated by the reaction are recycled; the obtained by-product -A can be treated as a by-product due to its small amount.
  • cyclohexanone and cyclohexanol produced in the reaction may be further oxidized to adipic acid by NOx , and nitrocyclohexene can also be further hydrogenated to obtain cyclohexanone oxime.
  • the water generated by the reaction will also generate nitric acid when it encounters NOx , which may also undergo oxidation reactions with cyclohexanol and cyclohexanone.
  • the gaseous product produced by the reaction is mainly NO
  • a small amount of other nitrogen oxide gases, such as N2O may also be produced.
  • the amount of glutaric acid or succinic acid produced in the present invention is very small, the CO2 produced in the reaction is also very small.
  • the NO produced by the reaction can be easily recycled after being separated, that is, a certain proportion of O 2 can be mixed according to the requirements of the reactant NO x :
  • the ratio of the target product adipic acid and nitrocyclohexane of the above-mentioned oxidative nitration reaction of cyclohexane and NOx can actually be adjusted as required: by changing the composition and consumption of its solid catalyst, cyclohexane and NOx
  • the ratio of raw materials, reaction temperature, pressure and other reaction conditions, the molar ratio of adipic acid and nitrocyclohexane can be adjusted within the range of 1:10-10:1 or even 1:20-20:1.
  • the solid catalysts include vanadium phosphorus oxide complexes, such as M-VPO or M-AlVPO (where M is a transition metal, such as Mn, Cu, Co, Ni or Cr, etc.); imide compounds such as N-hydroxyl Phthalimide, N,N'-dihydroxypymellitic acid dicarboximide or N-hydroxy-1,8-naphthalimide, etc.; zeolites or molecular sieves, such as HZSM-5 Molecular sieve, HY molecular sieve, ⁇ -zeolite, TS-1 titanium-silicon molecular sieve, etc.; solid acids, such as sulfonic acid resin, sulfuric acid/silica gel, phosphoric acid/silica gel and SO 4 2- /[TiO 2 (4)-MoO 3 (1 )] or SO 4 2- /ZrO 2 -Ce 2 O 3 , etc.; metal oxides, such as TiO 2 , V 2 O 5 , ⁇ -Al 2
  • the amount of solid catalyst or inducer is calculated as 0 to 0.3, preferably 0.001 to 0.1, based on the catalyst mass required by the unit mass of the target product (adipic acid+nitrocyclohexane); the molar ratio of cyclohexane to NOx is 0.1 to 0.1 20, preferably 0.2-6; the reaction temperature is 10-300°C, preferably 40-200°C; the reaction pressure (absolute pressure) is 0.1-5MPa, preferably 0.2-1.5MPa.
  • by-product-A contains nitrocyclohexene, it can be separated from the oxidative nitration reaction product with nitrocyclohexane, so it can also be hydrogenated to cyclohexanone with nitrocyclohexane Oxime and cyclohexylamine:
  • the mol ratio of the target product cyclohexanone oxime of hydrogenation and cyclohexylamine in the present invention can also be changed by changing the composition and consumption of catalyst, the raw material ratio of nitrocyclohexane and hydrogen, reaction temperature and pressure and other conditions.
  • the active components of the solid catalyst for hydrogenation of nitrocyclohexane in the present invention are selected from one or more transition metals of Group VIII in the periodic table, such as cobalt, nickel, iron, palladium, etc.;
  • the active component is one or more selected from transition metals of Groups IB to VIIB in the periodic table, such as copper, zinc, etc.;
  • the carrier includes carbon materials such as activated carbon and carbon nanotubes.
  • the reaction temperature is 40-300°C, preferably 60-200°C;
  • the hydrogen pressure (absolute pressure) is 0.1-4.0 MPa, preferably 0.2-2.0 MPa.
  • cyclohexylamine can be obtained by rectifying separation. hexanone oxime.
  • the by-product-B described here is mainly one or more of cyclohexanone, nitrocyclohexane, cyclohexylimine, and N-cyclohexylcyclohexylimine.
  • the solid catalyst for partial oxidation of cyclohexylamine is selected from compounds of metals belonging to Group IVB of the periodic table (i.e. Ti, Zr and Hf) or surface hydroxyl-rich catalysts, such as titanium dioxide, silica gel, alumina, titanium-phosphorus-oxygen composite oxide, metatitanic acid, metasilicic acid, tungsten trioxide or its supported catalyst, etc.
  • surface hydroxyl-rich TiO 2 or supported TiO 2 /MCM-41 catalyst as an example, under the reaction temperature of 100 °C and oxygen pressure of 1.2 MPa, the conversion rate of cyclohexylamine can reach more than 40%, and the selectivity of cyclohexanone oxime can be improved. Up to 90%, the rest are cyclohexanone, nitrocyclohexane, cyclohexylimine and N-cyclohexylcyclohexylimine.
  • the solid catalyst for partial oxidation of cyclohexylamine in the present invention is preferably a surface hydroxyl-rich catalyst, including titanium dioxide, silica gel, alumina, titanium-phosphorus-oxygen composite oxide, metatitanic acid, metasilicic acid, tungsten trioxide or its supported catalysts, etc. .
  • the reaction temperature is 50-200°C, preferably 70-150°C; the oxygen pressure (absolute pressure) is 0.2-3.0 MPa, preferably 0.4-2.0 MPa.
  • Japan's Asahi Kasei proposes to separate them from cyclohexanone oxime and return them to ammonia and hydrogen for amination to generate cyclohexylamine.
  • C 6 H 10 NC 6 H 11 +H 2 ⁇ (C 6 H 11 ) 2 NH (f-20)
  • the hydrogenation or hydroamination or amination catalyst used in the present invention only catalyzes the reaction conversion of by-product-B with H2 or/and NH3 , but does not catalyze or hardly catalyzes cyclohexanone oxime and H2 or/and NH3
  • the reaction conversion of 3 ; the catalyst for hydroamination or amination is preferably formed by a hydrotalcite or a hydrotalcite-like composite transition metal active component, wherein the transition metal active component includes a main active component and a co-active component,
  • the main active component is selected from one or more of transition metals of Group VIII in the periodic table, such as iron, nickel, platinum, etc.; the auxiliary active component is selected from the periodic table of elements.
  • transition metals from Groups IB to VIIB such as copper, zinc, etc.
  • the active components of the hydrogenation catalyst are selected from one or more of the transition metals of Group VIII in the periodic table, such as one or more of Ni, Co, Ru, Rh, Pt or Pd, and
  • the active component is selected from one or more than two transition metals of Groups IB to VIIB in the periodic table, such as one or more of Cu, Zn, Zr or Mn.
  • the present invention can co-produce adipic acid and cyclohexanone oxime, and the molar ratio of the two can be adjusted within a large range, so the flexible design and production of the production device can be carried out according to the market demand of these two products Proper adjustment of products in the process, thereby enhancing the flexibility and industrial application value of industrial applications.
  • the adipic acid synthesis route of the present invention is short, the material consumption and energy consumption are low, and the environment is more friendly.
  • the present invention adopts NOx (where x>1) to oxidize cyclohexane, and synthesize adipic acid by one-step reaction.
  • NOx where x>1
  • the present invention not only greatly simplifies the production process (eliminates the nitric acid preparation and the KA oil preparation process) , which can greatly reduce investment and land occupation, and can greatly improve the yield of adipic acid and greatly reduce energy consumption and material consumption.
  • NO x as a reactant is mainly converted into NO, and NO is easily mixed with O 2 to form NO x , so the utilization rate of N can be greatly improved compared with the nitric acid oxidation method, and the production process is more environmentally friendly.
  • the cyclohexanone oxime synthesis route of the present invention is short, the material consumption and energy consumption is low: most of the cyclohexanone oxime of the present invention is synthesized by starting two-step reaction from cyclohexane, and nitration reaction occurs between cyclohexane and NO x Generate nitrocyclohexane, and then hydrogenate to generate cyclohexanone oxime and a small amount of cyclohexylamine.
  • Cyclohexylamine can be treated as a by-product due to its small amount and certain economic value, but it can also be further converted to cyclohexanone oxime by partial oxidation with molecular oxygen and hydroamination with ammonia and hydrogen.
  • the preparation method of cyclohexanone oxime of the present invention not only avoids the high material consumption process of cyclohexane oxidation to prepare KA oil or the high energy consumption process of cyclohexene hydration to cyclohexanol, Moreover, it also avoids the problems such as the consumption of hydroxylamine or hydrogen peroxide and the production line of hydroxylamine or hydrogen peroxide by oximation of cyclohexanone or oximation of cyclohexanone ammoximation to produce cyclohexanone oxime. Low cost and more environment friendly.
  • FIG. 1 is a schematic flow diagram of the co-production process of adipic acid and cyclohexanone oxime of the present invention (in order to facilitate the description of the present invention rather than limit the present invention).
  • Example 1 Adopting a fixed-bed gas-phase continuous reaction process.
  • the liquid cyclohexane is input by the metering pump. After being vaporized in the preheating section, the cyclohexane and NO 2 are mixed in a 0.2:1 molar ratio of cyclohexane and NO 2 through a glass tube with an inner diameter of ⁇ 10.
  • the reactor was filled with V 2 O 5 /MCM-41 catalyst with a height of about 10 cm; the temperature of the reactor was controlled at 180°C, and the outlet gas of the reactor was condensed through a glass condenser with a cooling jacket and then evacuated (circulation).
  • the constant temperature of the cooling water is at 5°C); start timing and collect the condensed product after the reaction system runs stably for 2 hours, stop feeding cyclohexane and NO 2 to the reactor after continuous operation for 24 hours; after the reaction system is cooled to normal temperature, then The product adhering to the reactor outlet and the wall of the condenser was washed with quantitative cyclohexane and collected. All reaction products have liquid and solid phases, which are separated by filtration.
  • the liquid product mainly contains unreacted cyclohexane, nitrocyclohexane and a small amount of by-products such as cyclohexyl nitrate and nitrocyclohexene, etc., which were quantitatively analyzed by gas chromatography internal standard method, and the solid phase product was mainly hexanediol. Acid and a small amount of by-products such as succinic acid and glutaric acid were quantitatively analyzed by high performance liquid chromatography with external standard method.
  • the conversion rate of cyclohexane is 32.5%, and the selectivity of adipic acid and nitrocyclohexane are 56.8% and 41.1% respectively (the total selectivity of the two is 97.9%).
  • the liquid phase product is separated by rectification to obtain nitrocyclohexane with a purity of 98.6%, and the solid phase product is dissolved in hot water and recrystallized to obtain adipic acid with a purity of 99.8%.
  • Embodiment 2 The reaction step is the same as that of Example 1, except that O 2 is also fed into the reaction process, so that the molar ratio of cyclohexane:NO 2 :O 2 is 0.8:1:0.1. According to the analysis results and mass balance of all liquid and solid products, the conversion of cyclohexane is 35.7%, and the selectivity of adipic acid and nitrocyclohexane are 50.2% and 48.4%, respectively (the total selection of both sex is 98.6%). Finally, nitrocyclohexane with a purity of 98.4% and adipic acid with a purity of 99.5% are obtained by separating and purifying the liquid and solid phases.
  • Example 3 The operation procedure is the same as that of Example 1, except that no catalyst is used. According to the analysis results and mass balance of all liquid and solid products, the conversion of cyclohexane is 9.7%, and the selectivity of adipic acid and nitrocyclohexane are 34.1% and 58.4%, respectively (the total selection of both sex is 92.5%). Finally, nitrocyclohexane with a purity of 98.2% and adipic acid with a purity of 99.6% are obtained by separating and purifying the liquid and solid phases.
  • Example 4 A tank-type batch reaction process was adopted. Add cyclohexane and liquid NO2 into a 100mL high-pressure reactor at a molar ratio of 0.2: 1 , then add 0.5g of Ni-VPO catalyst, close the inlet and outlet valves, at 90°C and 0.5MPa under stirring conditions React for 2 hours. After standing for cooling, it is divided into an upper liquid phase and a lower solid phase. The liquid phase is quantitatively analyzed by gas chromatography internal standard method; the solid phase is quantitatively analyzed by liquid chromatography external standard method.
  • Example 5 The operation steps were the same as those in Example 4, except that O 2 of 0.1 MPa was introduced before the reaction started. Quantitative analysis and mass balance of all liquid and solid products showed that the conversion of cyclohexane was 28.2%, and the selectivities of adipic acid and nitrocyclohexane were 63.0% and 32.9%, respectively (the total selectivity of the two). 95.9%). Finally, through the separation and purification method as described in Example 1, nitrocyclohexane with a purity of 99.1% and adipic acid with a purity of 99.8% were obtained respectively.
  • Example 6 The operation steps are the same as those in Example 4, except that no catalyst is added. Quantitative analysis and mass balance of all liquid and solid products showed that the conversion of cyclohexane was 10.8%, and the selectivities of adipic acid and nitrocyclohexane were 60.1% and 31.2%, respectively (the total selectivity of the two). 91.3%). Finally, through the separation and purification method as described in Example 1, nitrocyclohexane with a purity of 98.8% and adipic acid with a purity of 98.4% were obtained respectively. .
  • Embodiment 7 Weigh 0.3g of 1%Cu-20%Ni/AC catalyst and put it into a 150mL autoclave, then replace the air in the kettle with hydrogen 4 times; after closing the inlet and outlet valves, use a vacuum pump to evacuate the kettle, Then open the inlet valve to inhale or pump 69.6g of ethylenediamine solvent and 12.0g of nitrocyclohexane (purity 98.6%) obtained in Example 1, close the inlet valve and rise to the set 110°C, and feed hydrogen Then, the pressure in the kettle was maintained at 0.4 MPa, the magnetic stirring was turned on, and the reaction timing was started.
  • Example 8 Take 18.5g of cyclohexylamine separated in Example 7 and 0.4g of WO 3 /Al 2 O 3 catalyst and add it to a 100 mL reaction kettle, feed oxygen (the pressure is maintained at 1.0 MPa), and react at 110° C. After 3 hours, the reaction was completed, and the solid catalyst was separated by filtration to obtain 20.6 g of an oxidation reaction solution. This solution was accurately quantified by gas chromatography internal standard method.
  • the calculated conversion of cyclohexylamine is 40.6%
  • the selectivity of cyclohexanone oxime is 90.5%
  • the selectivity of nitrocyclohexane is 5.2%
  • the selectivity of cyclohexanone is 2.6%
  • the selectivity of cyclohexylimine is 90.5%. was 1.1%
  • the selectivity of N-cyclohexylcyclohexylimine was 0.6%.
  • Example 9 15.6 g of the oxidation reaction solution in Example 8 and 0.12 g of a hydrotalcite-based Pd-Cu/MgAlO catalyst were added to a 50 mL reaction kettle, and 0.11 MPa ammonia gas was introduced into the hydrogen gas (the reaction pressure was maintained) 1.0MPa), reacted at 120 ° C for 4 hours, after the reaction, the solid catalyst was separated by filtration to obtain 16.11g of a mixed solution, this solution was accurately quantified by gas chromatography internal standard method, and the measured cyclohexylamine was 8.77g, cyclohexylamine Hexanone oxime is 6.14g, N-cyclohexylcyclohexylimine is 0.001g, N-cyclohexylcyclohexylamine is 0.03g, cyclohexanone, nitrocyclohexane and cyclohexylimine in the oxidation reaction solution are almost All converted. Finally, the reaction solution was separated by rectification
  • Example 10 12.5 g of the oxidation reaction solution in Example 8 and 0.12 g of a hydrotalcite-based Pt-Zn/MgAlO catalyst were added to a 50 mL reaction kettle, and hydrogen was introduced to replace it three times, keeping the hydrogen pressure at 1.0 MPa. React at 120 DEG C for 3 hours. After the reaction, the solid catalyst was separated by filtration to obtain 12.81 grams of mixed solution. ) for quantitative analysis, and it was found that cyclohexylamine was 6.7 grams, cyclohexanone oxime was 4.82 grams, cyclohexanol was 0.12 grams, and dicyclohexylamine was 0.03 grams. Finally, 6.5 g of cyclohexylamine with a purity of 99.9% and 4.7 g of cyclohexanone oxime with a purity of 99.8% were obtained through rectification separation.
  • Example 11 Weigh 12.8 grams of the liquid oxidation reaction product prepared by the method described in Example 8, first separate out 0.7 grams of water and 0.11 grams of cyclohexylamine by vacuum distillation, together with 0.12 grams of hydrotalcite-based Pt- The Zn/MgAlO catalyst was added to a 50 ml reaction kettle together, and hydrogen was introduced into it, replaced 3 times, and the hydrogen pressure was maintained at 1.0 MPa, and the reaction was carried out at 120 ° C for 3 hours.
  • the solid catalyst was separated by filtration to obtain a mixed solution of 12.15 gram, this solution was qualitatively analyzed by gas chromatography-mass spectrometry, and quantified by gas chromatography internal standard method (chlorobenzene was used as internal standard), and the measured cyclohexylamine was 6.73 grams and cyclohexanone oxime was 5.05 grams, 0.12 g of cyclohexanol and 0.03 g of dicyclohexylamine. Finally, 6.5 g of cyclohexylamine with a purity of 99.9% and 4.9 g of cyclohexanone oxime with a purity of 99.8% were obtained through rectification separation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种由环己烷联产己二酸和环己酮肟的方法。它包括:(1)将环己烷与NO x进行氧化硝化,生成己二酸和硝基环己烷、氮氧化物和副产物-A,分离得粗己二酸和硝基环己烷。(2)将所得硝基环己烷与氢气进行催化氢化,生成环己酮肟和少量环己胺,分离得粗环己酮肟和环己胺,环己胺可直接作为副产品,或继续转化为环己酮肟。(3)将上一步骤所得的环己胺与分子氧部分氧化,得到由环己酮肟、副产物-B以及可能未转化的环己胺组成的氧化反应产物,然后将该氧化反应产物不经分离,或先分离出其中的部分或全部水分后,再在催化剂的作用下进行氢化胺化反应或先氢化后胺化反应或只氢化反应,然后再通过分离得到环己酮肟。本发明能够高选择性联产己二酸和环己酮肟,工艺流程短、设备投资少、物耗能耗成本低。

Description

一种由环己烷联产己二酸和环己酮肟的方法 技术领域
本发明涉及己二酸或环己酮肟的制备方法,具体涉及一种由环己烷联产己二酸和环己酮肟的方法。
背景技术
己二酸(ADA)俗称肥酸,是一个非常重要的工业材料和中间体,主要用于制造尼龙66、增塑剂、润滑脂、杀虫剂和粘合剂等。
环己酮肟为重要原材料ε-已内酰胺的中间体(主要用途是通过聚合生成聚酰胺切片进一步制锦纶纤维、工程塑料、塑料薄膜等)。
目前工业生产己二酸一般都采用以环己烷为原料的两步氧化法:首先通过空气氧化环己烷制得KA油(环己酮和环己醇的混合物),然后再以KA油为原料通过硝酸氧化制得己二酸。在环己烷氧化过程的单程转化率和KA油收率都很低,一般分别为3~5%和82~83%;而硝酸氧化KA油过程的单程转化率和己二酸收率也不高,一般分别为5~12%和90~94%,且硝酸用量大,每生产1吨产品需要消耗68%的硝酸约1.3吨,并产生大量的废酸、废水以及CO和N 2O等废气。由此可见,虽然环己烷两步氧化法工艺比较成熟并被工业生产普遍采用,但存在能耗高、环境影响大、资源利用率低、生产成本高等问题。
环己烯水合-氧化两步法是近些年工业化的一个新方法,它首先将环己烯水合为环己醇,部分环己醇脱氢为环己酮形成KA油,再采用硝酸氧化环己醇得己二酸。这个方法的优点是第一步反应的选择性高,但第二步仍然还存在能耗高,环境影响大等问题。另外,此过程的环己烯是从苯选择性部分加氢而获得,其反应和分离条件都比较苛刻,能耗较高。
环己烯双氧水氧化一步合成己二酸是一个环境友好的工艺方法,它是以过氧化氢为氧化剂,在催化条件下催化氧化环己烯一步合成己二酸。这个方法由于需要比较昂贵的催化剂,如甲基三辛基氯化铵、钨酸钠-草酸体系或钨酸钠-硫酸体系,加上制取环己烯的反应和分离条件比较苛刻、生产成本较高,以及双氧水消耗较高等原因,从而影响了它的工业化进程。
生物氧化法是在好氧脱硝菌株中分离出来的一种基因簇对酶进行编码,从而得到将环己醇转化为己二酸的合成酶,该酶在合适的生长条件下可将环己醇转化为己二酸。但该过程费用昂贵,目前尚不适合大规模工业化生产。
采用分子氧直接氧化环己烷一步合成己二酸一直是人们所期待的一种方法,早在上世纪 40年代,US2223493(1940)就提出了以乙酸作溶剂,可溶性过渡金属盐(钴、铜、锰等)为催化剂,采用空气氧化环己烷直接合成己二酸。以此方法为基础,US4263453(1981)提出加大乙酸溶剂用量(环己烷与乙酸的摩尔比为1:6)以及引入少量的丁酮和水,可以提高环己烷转化率和己二酸选择性;US5321157(1994)则提出采用富氧空气,可降低乙酸溶剂的用量(环己烷与乙酸的摩尔比接近1:1),并可获得较高的己二酸选择性。虽然这些方法可以获得较高的环己烷转化率和己二酸选择性,但是也存在较多的问题:首先,在其反应温度和压力条件下,乙酸对设备具有较大的腐蚀性;其次,目的产物己二酸和其它副产难以从乙酸溶剂中分离和提纯;第三,可溶性催化剂很难从乙酸溶剂中分离出来,尽管FRA2722783(1996)和FRA2746671(1997)提出过解决催化剂回收利用的方法,但其过程复杂、成本昂贵。因此,以乙酸为溶剂的分子氧直接氧化环己烷制己二酸的方法很难工业化。
US0147777A1(2004)提出以辛酸为溶剂,乙酰丙酮钴为催化剂,含酰亚胺基团化合物为助催化剂,采用空气氧化环己烷合成KA油和己二酸;US7507856B2(2009)提出以4-叔丁基苯甲酸为溶剂,乙酰丙酮锰为催化剂,环己酮为诱导剂的空气氧化环己烷合成己二酸,其环己烷转化率和己二酸选择性分别可达7.17%和53.6%;US0095258A1(2012)提出以乙腈作溶剂,金属氧化物(TiO 2,ZrO 2,MgO等)负载贵金属(Au,Pd,Pt等)为催化剂,采用分子氧氧化环己烷合成己二酸,环己烷转化率和己二酸选择性分别为25%和26%。这些方法虽然避免较严重的乙酸腐蚀性问题,但环己烷转化率和己二酸选择性均较低,同时仍存在溶剂和产品的分离难等问题。
近十多年来以分子氧为氧化剂制取己二酸的研究比较集中在无溶剂条件方面。Raja、Sankar和Thomas(J.Am.Chem.Soc.,1999)报道了以负载过渡金属Fe、Mn、Co等的磷铝分子筛为催化剂,在无溶剂体系下催化氧化环己烷的研究,其中以FeAlPO-5的催化效果最佳,环己烷转化率为19.8%,己二酸的选择性为32.3%,其他主要为环己醇、环己酮和一些酯类物质。Yuan等(Organic Process R&D,2004)报道了以金属卟啉为催化剂,无溶剂条件下催化氧化环己烷合成己二酸的研究,己二酸的产率为21.4%。最近,Lü、Ren和Liu(Applied Catalysis A,2012)提出了采用Anderson型催化剂[(C 18H 37) 2N(CH 3) 2] 6Mo 7O 24,在无溶剂条件下催化氧化环己烷合成己二酸的研究,环己烷转化率和己二酸选择性分别可达10.2%和87.1%。
目前环己酮肟的工业生产方法主要有两个:环己酮-羟胺法和环己酮-氨肟化法,都是以苯为起始原料,经过中间体环己酮进行环己酮肟的合成。
从苯出发合成环己酮,目前工业上有三个方法:苯酚法、环己烷氧化法和环己烯水合法。苯酚法由来已久,世界上最早的环己酮肟生产装置都采用苯酚法生产环己酮:首先以苯为原 料生产苯酚,再通过苯酚氢化生成环己醇,然后环己醇再脱氢制得环己酮。可见,苯酚法的关键在于如何获得苯酚。目前工业上主要采用异丙苯法生产苯酚(氯苯水解法和苯磺化法由于环境和成本问题几乎全部被淘汰):将苯与丙烯进行烷基化生成异丙苯,异丙苯再与氧反应生成异丙苯过氧化氢,最后在硫酸或磺酸树脂作用下分解为苯酚和丙酮。这个方法主要存在如下缺点:一是苯酚收率低(72~75%)、副产物多;二是苯酚和丙酮的分离提纯装置复杂、能耗高;三是大量的丙酮副产的市场需求和价格会影响苯酚的生产成本。因此,通过苯酚制取环己酮的方法很早开始就逐步被环己烷氧化法取代。
通过环己烷与分子氧的氧化制取环己酮的技术比较成熟,目前工业上广泛采用的是两步合成法:(i)环己烷在无催化条件下与分子氧发生氧化反应生成环己基过氧化氢,同时也生成一定量的环己酮和环己醇以及一些副产物;(ii)通过低温碱性分解方法将上一步骤得到的氧化产物中的环己基过氧化氢分解为环己酮和环己醇(同时也会生成一些副产物),然后通过分离得到KA油,再进一步将KA油分离为环已酮和环己醇,最后将环己醇脱氢为环己酮。这个方法的主要优点是苯完全氢化制环己烷的技术成熟、难度小、收率高,但环己烷的氧化过程存在三个较大缺点:(i)为了保持较高的选择性,环己烷空气氧化的单程环已烷转化率只能控制在3-4%,大量未转化的环己烷需要较大的能量对其进行分离循环,即便是这样,最终以环己烷计的KA油(环己酮和环己醇的混合物)总收率也只有83%左右,可见其环己烷消耗高、副产物量大。(ii)环己烷无催化氧化反应的主要产物是环己基过氧化氢,它的分解过程需要消耗NaOH,加上环己烷氧化反应的副产物主要是酸、酯、醚等,也需要通过碱性水溶液进行皂化脱除,从而需要消耗大量的NaOH并产生了大量的皂化废碱液,不仅生产成本较高,而且环境压力较大。(iii)由于目的产物是环己酮,所以需要将KA油进一步通过精馏分离为环己酮和环己醇,再将环己醇脱氢成为环己酮;但由于受热力学平衡限制,环己醇脱氢的单程转化率一般不到80%,所以脱氢后还要将环己醇和环己酮进行分离,而环己酮和环己醇的沸点只相差6℃左右;加上前面所述的环己烷氧化的单程转化率只有3-5%,因此整个过程能耗也很高。
综上所述,目前工业上广泛采用的环己烷氧化制取环己酮的两步法虽然技术门槛不高且比较成熟,但存在“三高一大”问题:即环己烷消耗高、碱耗高、能耗高和废碱液处理负荷大等问题。
因此,近些年新建环己酮肟工业装置的环己酮制备一般都采用日本旭化成2002年提出的环己烯水合路线(CN 02804368.5和CN 02814607.7):将苯与氢气进行部分加氢生成环己烯和环己烷,通过萃取精馏从将环己烯从环己烷和未转化的苯中分离出后再与水发生水合反应生成环己醇,最后环己醇脱氢生成环己酮。这种方法最大的优点就是物耗低:首先,苯部分 氢化生成环己烯和环己烷的总选择性非常高(可达99%及以上),而环己烷也是一种有一定经济价值的产品或中间体;其次,环己烯水合生成环己醇也基本上是一个定向转化反应。然而,它也存在明显缺点,即能耗非常高:(i)为了获得尽可能高的环己烯单程收率,苯部分氢化反应的转化率一般控制在40~50%(这时环己烯选择性约70~80%),这样苯部分氢化的反应产物实际上是由沸点非常接近的苯、环己烯和环己烷组成的混合物,目前只能通过两级萃取精馏+减压精馏来进行分离:第一级萃取精馏是利用萃取剂将苯从环己烯和环己烷中分离出来,然后再通过减压精馏将苯与萃取剂分离开来后分别循环使用;第二级萃取精馏则是利用萃取剂将环己烯从环己烷中分离出来,再通过减压精馏对环己烯和萃取剂进行分离,分离所得的环己烷可精制后作为产品出售。由此可见苯-环己烯-环己烷体系的分离难度之大和能耗之高。(ii)环己烯水合为环己醇的转化率一般只有10~12%,因此环己烯-环己醇-水体系的分离以及大量环己烯循环使用也需要消耗不少能量。(iii)由于目的产物是环己酮,所以水合得到的环己醇需要脱氢为环己酮,脱氢制环己酮不仅脱氢过程需要提供能量,而且由于反应平衡的限制,环己醇的转化率一般不超过80%,而环己酮和环己醇的沸点只相差6℃左右,从而还需要提供较大能量将环己酮与环己醇进行分离(所得环己醇循环脱氢)。除此能耗高的问题之外,这个环己烯水合路线还存在副产品环己烷的市场或利用问题:目前工业技术水平的环己烷副产量比较大,每吨环己酮副产的环己烷一般都超过了0.2吨,而环己烷的市场需求很有限,因此目前有些企业不得不为此配套环己烷氧化法的生产线。
以环己酮为中间体的环己酮肟生产方法除上述问题之外,环己酮的肟化也存在较大的问题。目前工业上主要有环己酮羟胺肟化法和环己酮氨肟化法两种,其中环己酮羟胺肟化法又可分为硫酸羟胺肟化法(HSO法)和磷酸羟胺肟化法(HPO法)两种。无论HSO还是HPO,都需要一个复杂的羟胺盐生产线,再利用生产所得的羟胺盐对环己酮进行羟胺肟化以生成环己酮肟。由此可见,环己酮-羟胺肟化法不仅生产流程长、设备投资大、操作控制复杂,而且氢耗和物耗都较高(基于氨的羟胺盐收率只有约60%),因而生产成本较高。
为了降低肟化成本、提高肟化反应的原子利用率,意大利埃尼公司开发了环己酮氨肟化法即HAO法(美国专利US 474521),并实现了工业化:即将环己酮与双氧水和氨在钛硅分子筛催化剂的作用下,一步反应生成环己酮肟。相比HSO和HPO,HAO法具有氢耗低、生产流程短、控制简便、设备和管线材质要求不高以及投资和占地少等优点。但是,HAO法需要消耗双氧水,因此需要配套双氧水生产线,而且由于双氧水中的过氧化氢浓度不宜太高,加上氨肟化反应过程也会产生水,所以该法的废水产生量较大、处理负担较重。
日本东丽公司于上世纪60年代建成初投产了一套不以环己酮作为中间体的环己酮肟生产装置,它采用的是环己烷光亚硝化法:将环己烷与亚硝酰氯进行光化学反应生成环己酮肟 盐酸盐的方法,其中亚硝酰氯可由亚硝基硫酸(NOHSO 4)与HCl反应得到。该方法的优点是反应步骤少、流程短,但电耗非常高,而且光源设备成本高、维护比较麻烦,早已停产。
实际上,早在上世纪50年代就有人提出了一种不以环己酮为中间体的环己酮肟制备方法:采用双氧水或过氧化物等氧化剂对环己胺进行部分氧化合成环己酮肟(Journal of Molecular Catalysis A:Chemical,2000,160:393-402)。这种方法自问世以来就一直被人关注。早期的研究主要集中在以双氧水或烷基过氧化氢为氧化剂方面,如美国专利US2718528(1955)和美国专利US3960954(1976)提出的方法。后来人们考虑到这些氧化剂的成本等问题,逐步将研究重点转到以分子氧为氧化剂方面,例如,美国联合公司1982年提出了以一种硅胶为催化剂,采用分子氧在150℃下对环己胺进行气固相催化氧化,环己胺的转化率为18%时,环己酮肟的选择性为60%(US 4337358)。1985年该公司又提出采用以γ-氧化铝上负载氧化钨为催化剂,采用分子氧在159℃下对环己胺进行气固相催化氧化,环己胺转化率为28%时,环己酮肟选择性为54%(US 4504681);如果采用γ-氧化铝上负载氧化钼,环己胺的转化率可达33%,环己酮肟的选择性可达64%(J.of Catalysis,1983,83:487-490)。不过,直到进入本世纪后,关于环己胺与分子氧的部分氧化制环己酮肟的研究结果才有了较大进展。例如,CN 103641740A(2013)公开了一种以负载型介孔硅为催化剂的气相催化氧化方法,环己胺转化率为20~30%时,环己酮肟选择性可达85%以上;CN 109206339A(2017)公开了一种以负载型二氧化钛为催化剂的液相催化氧化方法,环己胺转化率达到50%以上时,环己酮肟选择性可达90%以上。
基于上述环己胺与分子氧部分氧化生成环己酮肟的思路,日本旭化成提出了一个环己酮肟生产新工艺(CN 02804368.5,CN 02814607.7):以环己烯水合法得到的环己醇为原料,先与氨进行胺化反应生成环己胺,再在催化剂的作用下与分子氧进行部分氧化反应生成环己酮肟。为了能够获得较高的环己酮肟收率,这两步反应所生成的副产物(分别称为副产物-α和副产物-β)都需要分离出来,循环回胺化系统与氨进行胺化再生成环己胺。该方法的优点非常明显:首先,不需要将环己醇脱氢制成环己酮,减少了能耗;其次,由于不需要进行环己酮的肟化,所以不需要消耗羟胺盐或双氧水,当然也就不需要配套的羟胺盐或双氧水生产线,因此环己酮肟的生产成本可以显著降低,而且还具有流程短、投资省、占地少和操作控制简便等优点。不过,这种方法仍然存在如下缺点:一是由于仍是采用环己烯水合路线制取环己醇,所以还是避免不了如前所述的高能耗问题;二是所涉及的环己醇胺化和环己胺氧化反应都会产生一些沸点接近或高于环己酮肟沸点的副产物,例如其中硝基环己烷的沸点为205~206℃,与环己酮肟的沸点206~210℃非常接近,而二环己胺和N-环己基环己亚胺的沸点都高于环己酮肟的沸点。因此,要将环己酮肟与这些相近沸点或更高沸点的副产物进行分离, 不仅难度非常大,而且所需能量也非常大。
此外,美国专利US2967200A(1959)和US3255261A(1964)还提出了另一种不以环己酮为中间体的环己酮肟制备方法:环己烷与硝酸反应得到硝基环己烷,再部分氢化得到环己酮肟。该方法虽然步骤简单,但仍然存在很多问题,如:环己烷硝酸硝化反应条件比较苛刻(温度150~200℃、压力3~4MPa),设备腐蚀严重,环境影响比较大,而且环己烷转化只有20%左右,而基于环己烷和硝酸的硝基环己烷选择性都不到80%;硝基环己烷部分氢化的环己酮肟选择性也不到60%。不过,直到21世纪,关于硝基环己烷合成及加氢的研究才活跃起来,并取得较大的进展。例如,CN101781217B提出了一种高选择性联产硝基环己烷和己二酸的方法;CN111530465A公开了一种负载型多孔碳材料催化剂用于硝基环己烷加氢,硝基环己烷转化率可达99%,环己酮肟和环己胺的选择性分别约为90%和10%。
综上所述,随着社会的不断发展和进步,要求能够研发出更简单、高效和环境更加友好的己二酸和环己酮肟生产方法。
发明内容
针对上述现有技术存在的问题特别是工业应用上能耗高、环境污染严重、难以实现规模化生产等问题,本发明提供一种能够实现高效工业化应用的一种联产己二酸和环己酮肟的方法,工艺简单高效,对环境友好。
本发明的联产己二酸和环己酮肟的方法,主要包括两个或三个步骤(取决于步骤(2)所得环己胺是直接作为副产品处理还是继续转化为环己酮肟):
(1)环己烷的氧化硝化:将环己烷与NO x进行催化或非催化氧化及硝化反应,主要生成己二酸和硝基环己烷,同时生成以NO为主的和少量和副产物-A,将它们分离后即得粗己二酸和硝基环己烷,其中硝基环己烷进入下一个步骤;
(2)硝基环己烷的催化氢化:将步骤(1)所得硝基环己烷与氢气进行催化氢化反应,生成环己酮肟和少量的环己胺;将它们进行分离即得粗环己酮肟和环己胺,由于环己胺量小且具有一定经济价值,所以可作为副产品处理,但也可以进入下一个步骤对其进行部分氧化继续转化为环己酮肟;
(3)环己胺的部分氧化:将步骤(2)所得环己胺与分子氧在催化剂的作用下进行部分氧化反应,得到由环己酮肟和副产物-B以及可能未转化的环己胺组成的氧化反应产物,然后将该氧化反应产物可进行如下之一方式处理:
(i)不经分离,或先分离出其中的部分或全部水分后,在催化剂的作用下与H 2和NH 3 同时进行氢化胺化反应或先氢化后胺化反应,然后分离出环己酮肟;
(ii)不经分离,或先精馏分离出其中的部分或全部水分后,在催化剂的作用下与H 2进行氢化反应,然后再分离出环己酮肟。
进一步地,在所述步骤(1)中,将环己烷与NO x进行催化或非催化氧化硝化反应,所得产物中己二酸和硝基环己烷的总选择性>80%;所得产物中己二酸与硝基环己烷的摩尔比为0.05~20。
进一步地,所述NO x为N 2O、NO、NO 2、N 2O 3、N 2O 4和N 2O 5中的一种或两种以上,或为氮氧化物与分子氧的混合物,其中x是指NO x所代表的物质中O原子数与N原子数的比值。
进一步地,所述的副产物-A为硝基环己烯、硝酸环己酯、戊二酸、丁二酸、环己酮、环己醇中的一种或两种及以上;所述的副产物-B为水、环己亚胺、环己酮、硝基环己烷、N-环己基环己亚胺和二环己胺中的一种或两种及以上。
进一步地,在所述步骤(2)的硝基环己烷氢化反应产物中的环己酮肟与环己胺的摩尔比为2~50。
进一步地,所述的氢化胺化是在催化剂的作用下,环己胺氧化反应产物与H 2和NH 3同时发生氢化胺化反应,其中的副产物-B转化为环己胺和环己酮肟;所述的先氢化后胺化是在催化剂的作用下,环己胺氧化反应产物与H 2和NH 3先后发生氢化和胺化反应,其中的副产物-B转化为环己胺和环己酮肟;所述的氢化是在催化剂的作用下,环己胺氧化反应产物与H 2发生氢化反应,其中的副产物-B转化为环己胺和环己酮肟以及环己醇和二环己胺。
进一步地,所述的氢化胺化或先氢化后胺化或氢化是耦合分水或不耦合分水的反应过程。
进一步地,在所述步骤(1)的环己烷与NO x的氧化硝化反应中加入固体催化剂或/和诱导剂,所述固体催化剂的活性组分为钒磷氧复合物类、酰亚胺类化合物、沸石类或分子筛类、固体酸类、Salen过渡金属类催化剂或杂多酸类;所述诱导剂为过氧化物类或醇、酮、醛或酯类化合物。
进一步地,氢化所采用的催化剂的活性组分选自于元素周期表中第VIII族过渡金属中的一种或两种以上,助活性组分选自于元素周期表中第IB~VIIB族过渡金属中的一种或两种以上;环己胺部分氧化采用的固体催化剂为表面富羟基催化剂或其负载型催化剂。
进一步地,副产物-B的氢化胺化或胺化采用的固体催化剂为由水滑石或类水滑石复合过渡金属单质活性组分所形成的,其中过渡金属单质活性组分包括主活性组分和助活性组分,所述主活性组分是选自于元素周期表中第VIII族过渡金属中的一种或两种以上,助活性组分 选自于元素周期表中第IB~VIIB族过渡金属中的一种或两种以上。
本发明的方法主要有如下三个特点:
(i)联产己二酸和环己酮肟,且两者之比例在一定范围内可调:由环己烷与氮氧化物NO x同时发生氧化和硝化反应,生成己二酸和硝基环己烷;硝基环己烷再通过加氢直接生成环己酮肟,同时还生成少量的环己胺,而环己胺由于量少且具有一定经济价值,可以作为副产品处理,也可以通过它的部分氧化进一步转化为环己酮肟。
(ii)己二酸合成路线短、原子利用率高、设备投资少:采用NO x对环己烷进行氧化,一步反应合成己二酸,不仅环己烷转化为己二酸的收率高,而且作为反应物的NO x很大部分是转化为容易循环利用的NO,因此相比目前工业上传统的KA油硝酸氧化法制己二酸:不仅省去硝酸制备和KA油(或环己醇)的制备过程,从而也节省了大量能耗,而且由于N的利用率大幅度提高,从而强温室效应气体N 2O的产生量显著降低。
(iii)环己酮肟合成路线短、物耗和能耗低:①两步或三步反应合成环己酮肟:环己烷与NO x发生氧化反应生成己二酸的同时,也发生硝化反应生成硝基环己烷,而硝基环己烷通过加氢后即可生成环己酮肟和少量的环己胺。由于环己胺量小且具有一定经济价值,可作为副产品处理,但也可以通过其部分氧化进一步转化为环己酮肟。②与目前环己酮肟的工业生产方法相比较,由于本发明避免了环己酮生产及其肟化制环己酮肟等繁杂过程,从而避免了所有环己酮生产及其肟化等技术的缺点,如:环己烷氧化法制环己酮的高物耗能耗和废碱液问题,或环己烯水合法制环己酮的高能耗问题,以及环己酮肟化制环己酮肟需要消耗羟胺或双氧水等问题。
因此,相对现有己二酸和环己酮肟生产技术,本发明提出的联产己二酸和环己酮肟的方法具有工艺流程短、建设投资少、物耗能耗低、操作简便、安全且环境友好等显著优点。
为了方便理解起见,下面结合图1(旨在便于说明本发明而不是对本发明的限制)对本发明的上述步骤加以具体说明:
(1)环己烷的氧化硝化:将环己烷与NO x进行催化或非催化氧化及硝化反应,主要生成己二酸和硝基环己烷,同时生成以NO为主的氮氧化物和少量的副产物-A。将它们进行分离后:所得粗己二酸经进一步分离提纯成为一个主产品;所得硝基环己烷进入下一个步骤与氢气进行催化氢化反应,以制取另一个主产品环己酮肟;所得环己烷和NO x以及反应净生成的NO等氮氧化物均循环使用;所得副产物-A由于量小可作为副产品处理。
这里所述的反应物NO x既代表氮氧化物(如N 2O、NO、NO 2、N 2O 3、N 2O 4和N 2O 5等中的一种或多种),也代表氮氧化物与氧的混合物,因此这里x实际上是指O与N的比值,优 选x=1.5~4,更优选x=2~3.5。
环己烷与NO x反应生成己二酸和硝基环己烷的化学计量式如下:
Figure PCTCN2021130661-appb-000001
Figure PCTCN2021130661-appb-000002
生成硝酸环己酯、硝基环己烯、环己酮、环己醇和戊二酸等副产物的化学计量式分别为
Figure PCTCN2021130661-appb-000003
Figure PCTCN2021130661-appb-000004
Figure PCTCN2021130661-appb-000005
Figure PCTCN2021130661-appb-000006
应当指出,上述均为从反应物环己烷和NO x到目标产物或主要副产物以及NO的化学计量式,并非实际进行的化学反应历程或反应方程式。实际上,反应中产生的环己酮和环己醇还可能进一步被NO x氧化为己二酸,硝基环己烯也可进一步加氢得到环己酮肟。此外,反应生成的水遇到NO x也会生成硝酸,后者也可能与环己醇和环己酮等发生氧化反应。
在本发明中,虽然反应产生的气态产物主要是NO,但还可能产生很少量的其它氮氧化物气体,如N 2O。此外,由于本发明中戊二酸或丁二酸的生成量非常少,所以反应中产生的CO 2也非常少。
众所周知,反应产生的NO分离出来后很容易循环利用,即按反应物NO x的要求混配一定比例的O 2即可:
Figure PCTCN2021130661-appb-000007
由此可见,如果反应原料NO x中的氧氮比适中(即x的取值适中),可以使得整个反应过程中的NO净生成量非常少,亦即环己烷氧化硝化的反应产物中NO的含量可以非常少。
上述环己烷与NO x的氧化硝化反应的目标产物己二酸与硝基环己烷的比例实际上是可以根据需要调节的:通过改变其固体催化剂的组成与用量、环己烷与NO x的原料配比、反应温度和压力等反应条件,可将己二酸与硝基环己烷的摩尔比在1:10~10:1甚至1:20~20:1的范围 内进行调节。所述固体催化剂包括钒磷氧复合物类,如M-VPO或M-AlVPO(其中M为过渡金属,如Mn、Cu、Co、Ni或Cr等);酰亚胺类化合物如N-羟基邻苯二甲酰亚胺、N,N′-二羟基均苯四酸二甲酰亚胺或N-羟基-1,8-萘二甲酰亚胺等;沸石类或分子筛类,如HZSM-5分子筛、H-Y分子筛、β-沸石、TS-1钛硅分子筛等;固体酸类,如磺酸树脂、硫酸/硅胶、磷酸/硅胶以及SO 4 2-/[TiO 2(4)-MoO 3(1)]或SO 4 2-/ZrO 2-Ce 2O 3等;金属氧化物类,如TiO 2、V 2O 5、γ-Al 2O 3、ZrO 2、NiO、CrO、MnO 2、CuO、Ce 2O 3、WO 3等;Salen过渡金属类催化剂,如双水杨醛叉乙二胺合钴(Cosalen)、Cosalen/NaY、Cosalen/AlPO-5或Cosalen/MCM-41等;杂多酸类,如HPAs或磷钨酸等;也可以在此过程中加入诱导剂,如过氧化物类以及醇、酮、醛、酯类化合物等。固体催化剂或诱导剂用量以单位质量目标产物(己二酸+硝基环己烷)所需的催化剂质量计为0~0.3,优选0.001~0.1;环己烷与NO x的摩尔比为0.1~20,优选0.2~6;反应温度为10~300℃,优选40~200℃;反应压力(绝压)为0.1~5MPa,优选0.2~1.5MPa。
(2)硝基环己烷的氢化:将上一步骤得到的硝基环己烷与氢气进行催化氢化,反应产物主要为环己酮肟和环己胺,其反应计量式如下:
C 6H 11NO 2+H 2→(CH 2) 5NOH+H 2O    (f-8)
C 6H 11NO 2+3H 2→C 6H 11NH 2+2H 2O     (f-9)
实际上,如果副产物-A中含有硝基环己烯,它是可以伴随硝基环己烷从氧化硝化反应产物中分离出来的,所以也可以伴随硝基环己烷一起氢化为环己酮肟和环己胺:
C 6H 9NO 2+2H 2→(CH 2) 5NOH+H 2O     (f-10)
C 6H 9NO 2+4H 2→C 6H 11NH 2+2H 2O    (f-11)
由此可见,将1摩尔硝基环己烷加氢为环己酮肟只需要1摩尔氢气,将其加氢为环己胺则需要多消耗2摩尔氢气。虽然环己胺也是一种具有一定价值的产品,但它的市场需求远小于环己酮肟(己内酰胺的前驱体)的市场需求。因此,一般情况下,应尽可能提高产物中环己酮肟对环己胺的摩尔比。不过,如果需要的话,本发明中加氢的目标产物环己酮肟与环己胺的摩尔比也可以通过改变催化剂的组成和用量、硝基环己烷与氢气的原料配比、反应温度和压力等条件进行调节。
本发明中硝基环己烷加氢的固体催化剂的活性组分选自于元素周期表中第VIII族过渡金属中的一种或多种,如钴、镍、铁、钯等;所述助活性组分是选自于元素周期表中第IB~VIIB族过渡金属中的一种或多种,如铜、锌等;载体包括活性炭、碳纳米管等碳材料。反应温度为40~300℃、优选60~200℃;氢气压力(绝压)为0.1~4.0MPa,优选0.2~2.0MPa。
将加氢产物分离后即得粗环己酮肟和环己胺。由于一般情况下,环己胺的相对量不大,因此可作为副产品处理,但也可以通过与分子氧的部分氧化以及与NH 3和H 2的胺化氢化进一步转化为环己酮肟。
(3)环己胺的部分氧化:将上一步骤分离所得的环己胺与分子氧在固体催化剂的作用下进行部分氧化反应,生成的产物中包含环己酮肟和副产物-B;然后该氧化反应产物不经分离,或先分离部分或全部的水分后,在催化剂的作用下与H 2和NH 3进行氢化胺化或先氢化后胺化反应,将其副产物-B转化为环己胺或环己酮肟;或该氧化反应产物不经分离,或先分离部分或全部的水分后,在催化剂的作用下与H 2进行氢化反应,将其副产物-B转化为环己胺或环己酮肟以及少量二环己胺和环己醇。由于环己胺、环己醇、二环己胺与环己酮肟的沸点相差较大(特别是环己胺与环己酮肟的沸点相差很大),因而通过精馏分离就可以得到环己酮肟。
这里所述副产物-B主要为环己酮、硝基环己烷、环己亚胺和N-环己基环己亚胺等中的一种或多种。
环己胺与分子氧发生的反应主要为:
C 6H 11NH 2+O 2→C 6H 10NOH+H 2O       (f-12)
C 6H 11NH 2+1.5O 2→C 6H 11NO 2+H 2O      (f-13)
C 6H 11NH 2+0.5O 2→C 6H 10NH+H 2O       (f-14)
2C 6H 11NH 2+3.5O 2→2C 6H 10O+3H 2O+2NO    (f-15)
C 6H 10O+C 6H 11NH 2→C 6H 10=N-C 6H 11+H 2O     (f-16)
2C 6H 11NH 2+2.5O 2→2C 6H 11OH+H 2O+2NO      (f-17)
C 6H 11OH+C 6H 11NH 2→(C 6H 11) 2NH+H 2O   (f-18)
由以上反应式可见,应该严格控制生成环己酮和环己醇的副反应(f-15)和(f-17),它们不仅本身带来N或者NH 3的损失,而且还会通过反应(f-16)或(f-18)消耗环己胺,生成N-环己基环己亚胺或二环己胺,进一步造成N或NH 3的损失。不过,可能是反应(f-18)的速率相对反应(f-17)的较快,因此本发明中的副产物-B中很少发现有环己醇存在。
环己胺部分氧化的固体催化剂选自属于元素周期表第IVB族的金属(即Ti、Zr和Hf)中的金属的化合物或表面富羟基催化剂,如二氧化钛、硅胶、氧化铝、钛磷氧复合氧化物、偏钛酸、偏硅酸、三氧化钨或其负载型催化剂等。以表面富羟基的TiO 2或负载型TiO 2/MCM-41 催化剂为例,在反应温度100℃和氧压1.2MPa下,环己胺转化率可达40%以上,环己酮肟选择性可达90%,其余为环己酮、硝基环己烷、环己亚胺和N-环己基环己亚胺。
本发明中的环己胺部分氧化的固体催化剂优选表面富羟基催化剂,包括二氧化钛、硅胶、氧化铝、钛磷氧复合氧化物、偏钛酸、偏硅酸、三氧化钨或其负载型催化剂等。反应温度为50~200℃,优选70~150℃;氧气压力(绝压)为0.2~3.0MPa,优选0.4~2.0MPa。
然而,环己胺与分子氧的反应产物中所述副产物-B的选择性取决于催化剂及其反应条件,较好的也可能会有5%左右,有些催化剂可能高达10%左右。如果不加以回收利用这些副产物,无论是从经济还是环境的角度,都将是较大的问题。因此,日本旭化成(CN 02814607.7)提出先将它们从环己酮肟中分离出来,返回与氨和氢气进行胺化再生成环己胺。但是,在副产物-B中,除环己酮和环己亚胺之外,其它物质的沸点都很接近或高于环己酮肟的沸点,如硝基环己烷的沸点为205-206℃,与环己酮肟的206-210℃相当接近,而二环己胺和N-环己基环己亚胺的沸点都在255℃以上,可见采用常规方法实际上是很难将它们从环己酮肟中分离开来的,而且分离能耗可能非常高,会在工业应用中受到很大的限制。
副产物-B与氢气或/和氨气发生的相关反应式如下:
C 6H 10O+H 2→C 6H 11OH   (f-19)
C 6H 10=N-C 6H 11+H 2→(C 6H 11) 2NH      (f-20)
Figure PCTCN2021130661-appb-000008
C 6H 11NO 2+3H 2→C 6H 11NH 2+2H 2O     (f-22)
C 6H 11NO 2+H 2→C 6H 10NOH+H 2O      (f-23)
C 6H 10O+NH 3+H 2→C 6H 11NH 2+H 2O    (f-24)
C 6H 10=N-C 6H 11+NH 3+H 2→2C 6H 11NH 2    (f-25)
(C 6H 11) 2NH+NH 3→2C 6H 11NH 2    (f-26)
本发明采用的氢化或氢化胺化或胺化的催化剂,只催化副产物-B与H 2或/和NH 3的反应转化,不催化或者几乎不催化环己酮肟与H 2或/和NH 3的反应转化;氢化胺化或胺化的催化剂优选由水滑石或类水滑石复合过渡金属单质活性组分所形成的,其中过渡金属单质活性组分包括主活性组分和助活性组分,所述主活性组分是选自于元素周期表中第VIII族过渡金属中的一种或多种,如铁,镍,铂等;所述助活性组分是选自于元素周期表中第IB~VIIB族过 渡金属中的一种或多种,如铜,锌等。氢化催化剂的活性组分选自于元素周期表中第VIII族过渡金属中的一种或两种以上,如,Ni、Co、Ru、Rh、Pt或Pd中的一种或两种以上,助活性组分选自于元素周期表中第IB~VIIB族过渡金属中的一种或两种以上,如Cu、Zn、Zr或Mn中的一种或两种以上。
对比目前工业生产己二酸和环己酮肟的方法,本发明方法的创新点和效益主要为:
(i)本发明可联产己二酸和环己酮肟,且两者之摩尔比在一个较大范围内可调,因此可以根据这两个产品的市场需求进行生产装置的灵活设计和生产过程中产品的适当调节,从而提升工业化应用的灵活性和工业化应用价值。
(ii)本发明的己二酸合成路线短、物耗能耗低、环境更友好。本发明采用NO x(式中x>1)对环己烷进行氧化,一步反应合成己二酸。相比目前的KA油(源于环己烷氧化或环己烯水合)硝酸氧化法的己二酸生产工艺,本发明不仅大幅度简化了生产工艺(省去了硝酸制备和KA油制备过程),从而可以大幅度减少投资和占地,而且可以大幅度提高己二酸收率以及大幅度降低能耗和物耗。此外,作为反应物的NO x主要是转化为NO,而NO很容易配O 2形成NO x,因此N的利用率比硝酸氧化法可大幅度提高,生产过程的环境友好性更强。
(iii)本发明的环己酮肟合成路线短、物耗能耗低:本发明的大部分环己酮肟是通过从环己烷出发两步反应合成的,环己烷与NO x发生硝化反应生成硝基环己烷,再加氢生成环己酮肟和少量的环己胺。由于环己胺量少且具有一定经济价值,因此可以作为副产品处理,但也可以通过与分子氧的部分氧化以及与氨和氢的氢化胺化,进一步转化为环己酮肟。与目前环己酮肟的工业生产方法相比,本发明的环己酮肟制备方法不仅避免了环己烷氧化制KA油的高物耗过程或环己烯水合制环己醇的高能耗过程,而且还避免了环己酮羟胺肟化或环己酮氨肟化制环己酮肟需要消耗羟胺或双氧水以及配套羟胺或双氧水生产线等问题,不仅工艺路线短、设备投资和占地少,而且生产成本低、环境更友好。
附图说明
图1为本发明己二酸和环己酮肟联产工艺的流程示意图(旨在便于说明本发明而不是对本发明的限制)。
具体实施方式
以下实施例旨在说明本发明,而不是对本发明的限制。
(1)环己烷的氧化硝化
实施例1:采用固定床气相连续反应过程。液态环己烷由计量泵输入,经预热段气化后, 按环己烷:NO 2为0.2:1的摩尔配比,将环己烷与NO 2混合通过一个内径为φ10的玻璃管式反应器,其中装填了高度约为10厘米的V 2O 5/MCM-41催化剂;反应器温度控制在180℃,反应器出口气体经过一个带冷却夹套的玻璃冷凝管冷凝后排空(循环冷却水恒温在5℃);在反应系统稳定运行2小时后开始计时和收集冷凝产物,连续运行24小时后停止向反应器通入环己烷和NO 2;在反应系统降温至常温后,再对粘在反应器出口处和冷凝管壁面上的产物用定量的环己烷进行清洗并收集。全部反应产物有液、固两相,对其进行过滤分离。液相产物主要含未反应完的环己烷、硝基环己烷以及少量副产物硝酸环己酯和硝基环己烯等,采用气相色谱内标法定量分析,固相产物主要为己二酸以及少量副产物如丁二酸和戊二酸等,采用高效液相色谱外标法定量分析。然后根据分析结果和物料衡算得:环己烷的转化率为32.5%,己二酸和硝基环己烷的选择性分别为56.8%和41.1%(两者总选择性为97.9%)。最后,对液相产物采用精馏分离得到纯度为98.6%的硝基环己烷,对固相产物采用热水溶解、重结晶得到纯度为99.8%的己二酸。
此实施例重复多次,将分离所得的硝基环己烷供其加氢实施例使用。
实施例2:反应步骤同实例1,不同之处在于,反应过程中还同时通入O 2,使得环己烷:NO 2:O 2为0.8:1:0.1的摩尔配比。根据对全部液相和固相产物的分析结果和物料衡算得环己烷的转化率为35.7%,己二酸和硝基环己烷的选择性分别为50.2%和48.4%(两者总选择性为98.6%)。最后通过对液、固两相的分离提纯得到纯度为98.4%的硝基环己烷和纯度为99.5%的己二酸。
实施例3:操作步骤同实例1,不同之处在于不使用催化剂。根据对全部液相和固相产物的分析结果和物料衡算得环己烷的转化率为9.7%,己二酸和硝基环己烷的选择性分别为34.1%和58.4%(两者总选择性为92.5%)。最后,通过对液、固两相的分离提纯得到纯度为98.2%的硝基环己烷和纯度为99.6%的己二酸。
实施例4:采用釜式间歇反应过程。将环己烷与液态NO 2按照0.2:1的摩尔比例加入到100mL高压反应釜中,再加入0.5克Ni-VPO催化剂,关闭进、出口阀门后,在90℃和0.5MPa下以及搅拌条件下反应2小时。静置冷却后分为上层液相和下层固相,液相采用气相色谱内标法进行定量分析;固相采用液相色谱外标法进行定量分析。根据分析结果和物料衡算得环己烷转化率25.4%,己二酸和硝基环己烷的选择性分别为71.2%和24.1%(两者总选择性为95.3%)。最后通过如实施例1所述的分离提纯方法,分别得到纯度为98.6%的硝基环己烷和纯度为99.9%的己二酸。
实施例5:操作步骤同实施例4,不同之处在于,反应开始前通入0.1MPa的O 2。对全部液相和固相产物进行定量分析和物料衡算得环己烷的转化率为28.2%,己二酸和硝基环己 烷的选择性分别为63.0%和32.9%(两者总选择性为95.9%)。最后通过如实施例1所述的分离提纯方法,分别得到纯度为99.1%的硝基环己烷和纯度为99.8%的己二酸。
实施例6:操作步骤同实施例4,不同之处在于不加催化剂。对全部液相和固相产物进行定量分析和物料衡算得环己烷的转化率为10.8%,己二酸和硝基环己烷的选择性分别为60.1%和31.2%(两者总选择性为91.3%)。最后通过如实施例1所述的分离提纯方法,分别得到纯度为98.8%的硝基环己烷和纯度为98.4%的己二酸。。
(2)硝基环己烷的氢化
实施例7:称取1%Cu-20%Ni/AC催化剂0.3g投入150mL高压反应釜中,然后用氢气置换釜内空气4次;关闭进、出口阀门后用真空泵将釜内抽至真空,再打开进口阀门吸入或泵入乙二胺溶剂69.6g以及按实施例1所得的硝基环己烷(纯度为98.6%)12.0g,关闭进口阀门后升到设定的110℃,通入氢气后保持釜内压力0.4MPa,开启磁力搅拌,反应计时开始。反应6小时后冷却至室温;将反应混合液过滤,分离出催化剂,采用气相色谱仪内标法分析滤液中各物质的含量,计算得硝基环己烷转化率为99.8%,环己酮肟的选择性为89.7%,环己胺的选择性为10.3%。所得滤液通过精馏分离出环己胺和环己酮肟,其中环己胺的纯度为99.4%,环己酮肟的纯度为99.6%。
此实施例重复多次,将分离所得的环己胺供以下实施例使用。
(3)环己胺的部分氧化
实施例8:取实施例7中分离所得的环己胺18.5g和0.4g WO 3/Al 2O 3催化剂一起加入100mL反应釜中,通入氧气(压力维持1.0MPa),在110℃下反应3小时,反应结束后,过滤分离出固体催化剂,得到氧化反应液20.6g。此溶液采用采用气相色谱内标法进行准确定量。计算得环己胺转化率为40.6%,环己酮肟的选择性为90.5%,硝基环己烷选择性为5.2%,环己酮的选择性为2.6%,环己亚胺的选择性为1.1%,N-环己基环己亚胺的选择性为0.6%。
此实施例重复多次,收集所有液态氧化反应产物供以下实施例使用。收集的液态氧化反应产物中各组分的质量百分数如下:环己胺为53.0%,环己酮肟为37.4%,硝基环己烷为2.5%,环己酮为0.9%,环己亚胺为0.4%,N-环己基环己亚胺为0.2%。
(4)氧化反应产物的氢化胺化或氢化:
实施例9:将实施例8中的氧化反应液15.6g和水滑石基Pd-Cu/MgAlO催化剂0.12g一起加入50mL反应釜中,在临氢状态下,通入0.11MPa氨气(反应压力维持1.0MPa),在120℃下反应4小时,反应结束后,过滤分离出固体催化剂,得到混合溶液16.11g,此溶液 采用气相色谱内标法进行准确定量,测得环己胺为8.77g、环己酮肟为6.14g,N-环己基环己亚胺为0.001g,N-环己基环己胺为0.03g,氧化反应液中的环己酮、硝基环己烷以及环己亚胺几乎全部转化。最后将反应液通过精馏分离得到环己胺8.35g,纯度为99.9%,环己酮肟为5.88g,纯度为99.8%。
实施例10:将实施例8中的氧化反应液12.5g和水滑石基Pt-Zn/MgAlO催化剂0.12g一起加入50mL反应釜中,通入氢气,置换3次,保持氢气压力为1.0MPa,在120℃下反应3小时,反应结束后,过滤分离出固体催化剂,得到混合溶液12.81克,此溶液采用气质联用仪对其进行定性分析,并采用气相色谱内标法(氯苯作内标物)进行定量分析,测得环己胺为6.7克、环己酮肟为4.82克,环己醇0.12克,二环己基胺为0.03克。最后通过精馏分离得到纯度为99.9%的环己胺6.5克,纯度为99.8%的环己酮肟4.7克。
实施例11:称取按实施例8所述方法制取的液态氧化反应产物12.8克,先通过减压蒸馏分离出其中0.7克水分和0.11克环己胺后,连同0.12克水滑石基Pt-Zn/MgAlO催化剂,一起加入50毫升反应釜中,通入氢气,置换3次,再保持氢气压力1.0MPa,在120℃下反应3小时,反应结束后,过滤分离出固体催化剂,得到混合溶液12.15克,此溶液采用气质联用仪对其进行定性分析,并采用气相色谱内标法(氯苯作内标物)进行定量,测得环己胺为6.73克、环己酮肟为5.05克,环己醇0.12克,二环己基胺为0.03克。最后通过精馏分离得到纯度为99.9%的环己胺6.5克,纯度为99.8%的环己酮肟4.9克。

Claims (10)

  1. 一种由环己烷联产己二酸和环己酮肟的方法,主要包括如下步骤:
    (1)环己烷的氧化硝化:将环己烷与NO x进行催化或非催化的氧化硝化反应,生成己二酸和硝基环己烷以及少量副产物,所述副产物记为副产物-A,将它们进行分离即得己二酸和硝基环己烷;
    (2)硝基环己烷的氢化:将步骤(1)所得硝基环己烷与氢气进行催化氢化反应,主要生成环己酮肟和少量环己胺,将环己酮肟与环己胺进行分离,所得的环己胺通过部分氧化可进一步转化为环己酮肟,或者直接作为副产品处理;
    (3)环己胺的部分氧化:将步骤(2)所得环己胺与分子氧在催化剂的作用下进行部分氧化反应,得到由环己酮肟和副产物以及可能未转化的环己胺组成的氧化反应产物,所述副产物记为副产物-B,然后将该氧化反应产物可进行如下之一方式处理:
    (i)不经分离,或先分离出其中的部分或全部的水分后,在催化剂的作用下与H 2和NH 3同时进行氢化胺化反应或先氢化后胺化反应,然后再通过分离得到环己酮肟;
    (ii)不经分离,或先通过精馏分离出其中的部分或全部的水分后,在催化剂的作用下与H 2进行氢化反应,然后再通过分离得到环己酮肟。
  2. 如权利要求1所述的方法,在所述步骤(1)中,将环己烷与NO x进行催化或非催化氧化硝化反应,所得产物中己二酸和硝基环己烷的总选择性>80%;所得产物中己二酸与硝基环己烷的摩尔比为0.05~20。
  3. 如权利要求1或2所述的方法,所述NO x为N 2O、NO、NO 2、N 2O 3、N 2O 4和N 2O 5等氮氧化物中的一种或两种以上,或为氮氧化物与分子氧的混合物,其中x是指NO x所代表的物质中O原子数与N原子数的比值。
  4. 如权利要求1所述的方法,所述的副产物-A为硝基环己烯、硝酸环己酯、戊二酸、丁二酸、环己酮、环己醇中的一种或两种及以上;所述的副产物-B为水、环己亚胺、环己酮、硝基环己烷、N-环己基环己亚胺和二环己胺中的一种 或两种及以上。
  5. 如权利要求1所述的方法,在所述步骤(2)的硝基环己烷氢化反应产物中的环己酮肟与环己胺的摩尔比为2~50。
  6. 如权利要求1所述的方法,所述步骤(3)中氢化胺化或先氢化后胺化或氢化,是耦合分水或不耦合分水的反应过程。
  7. 如权利要求1所述的方法,所述的氢化胺化是在催化剂的作用下,环己胺氧化反应产物与H 2和NH 3同时发生氢化胺化反应,其中的副产物-B转化为环己胺或环己酮肟;所述的先氢化后胺化是在催化剂的作用下,环己胺氧化反应产物与H 2和NH 3先后发生氢化和胺化反应,其中的副产物-B转化为环己胺或环己酮肟;所述的氢化是在催化剂的作用下,环己胺氧化反应产物与H 2发生氢化反应,其中的副产物-B转化为环己胺或环己酮肟以及少量二环己胺和环己醇。
  8. 如权利要求1或2所述的方法,在所述步骤(1)的环己烷与NO x的氧化硝化反应中加入固体催化剂或/和诱导剂,所述固体催化剂的活性组分为钒磷氧复合物类、酰亚胺类化合物、沸石类或分子筛类、固体酸类、Salen过渡金属类催化剂或杂多酸类;所述诱导剂为过氧化物类或醇、酮、醛或酯类化合物。
  9. 如权利要求1或7所述的方法,氢化所采用的催化剂的活性组分选自于元素周期表中第VIII族过渡金属中的一种或两种以上,助活性组分选自于元素周期表中第IB~VIIB族过渡金属中的一种或两种以上;环己胺部分氧化采用的固体催化剂为表面富羟基催化剂或其负载型催化剂。
  10. 如权利要求1或7所述的方法,副产物-B的氢化胺化或胺化采用的固体催化剂为由水滑石或类水滑石复合过渡金属单质活性组分所形成的,其中过渡金属单质活性组分包括主活性组分和助活性组分,所述主活性组分是选自于元素周期表中第VIII族过渡金属中的一种或两种以上,助活性组分选自于元素周期表中第IB~VIIB族过渡金属中的一种或两种以上。
PCT/CN2021/130661 2021-02-22 2021-11-15 一种由环己烷联产己二酸和环己酮肟的方法 WO2022174628A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21926342.3A EP4296255A1 (en) 2021-02-22 2021-11-15 Method for co-producing adipic acid and cyclohexanone oxime from cyclohexane
US18/450,343 US20240150274A1 (en) 2021-02-22 2023-08-15 Method for producing adipic acid and cyclohexanone oxime from cyclohexane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110197792.6 2021-02-22
CN202110197792.6A CN112939765B (zh) 2021-02-22 2021-02-22 一种由环己烷联产己二酸和环己酮肟的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/450,343 Continuation US20240150274A1 (en) 2021-02-22 2023-08-15 Method for producing adipic acid and cyclohexanone oxime from cyclohexane

Publications (1)

Publication Number Publication Date
WO2022174628A1 true WO2022174628A1 (zh) 2022-08-25

Family

ID=76245187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130661 WO2022174628A1 (zh) 2021-02-22 2021-11-15 一种由环己烷联产己二酸和环己酮肟的方法

Country Status (4)

Country Link
US (1) US20240150274A1 (zh)
EP (1) EP4296255A1 (zh)
CN (1) CN112939765B (zh)
WO (1) WO2022174628A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112939765B (zh) * 2021-02-22 2022-08-09 湘潭大学 一种由环己烷联产己二酸和环己酮肟的方法

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US95258A (en) 1869-09-28 Improved vise
US147777A (en) 1874-02-24 Improvement in the construction of railroad-cars
US474521A (en) 1892-05-10 Magnus epple
US2223493A (en) 1938-07-12 1940-12-03 Du Pont Oxidation of cyclic compounds
US2718528A (en) 1954-02-10 1955-09-20 Hercules Powder Co Ltd Process for the production of oximes
US2967200A (en) 1959-01-28 1961-01-03 Du Pont Preparation of ketoximes
GB908757A (en) * 1960-04-01 1962-10-24 Du Pont Process for producing adipic acid and a ketone oxime
US3255261A (en) 1964-06-22 1966-06-07 Du Pont Process for producing nitrocycloalkanes
US3960954A (en) 1968-05-27 1976-06-01 Halcon International, Inc. Process for preparing oximes and hydroxylamines
US4263453A (en) 1979-12-10 1981-04-21 Gulf Research & Development Company Process for converting cyclohexane to adipic acid
US4337358A (en) 1980-06-30 1982-06-29 Allied Corporation Process for oxidizing primary amines to oximes by elemental oxygen
US4504681A (en) 1982-12-20 1985-03-12 Allied Corporation Catalytic oxidation of primary amines to oximes by elemental oxygen
US5321157A (en) 1992-09-25 1994-06-14 Redox Technologies Inc. Process for the preparation of adipic acid and other aliphatic dibasic acids
FR2722783B1 (fr) 1994-07-21 1996-08-30 Rhone Poulenc Chimie Procede de preparation d'acide adipique par oxydattion directe du cyclohexane et recyclage du catalyseur
FR2746671B1 (fr) 1996-04-02 1998-09-25 Rhone Poulenc Fibres Procede de separation d'un catalyseur par electrodialyse membranaire
US7507856B2 (en) 2001-08-03 2009-03-24 Rhodia Polyamide Intermediates Method of oxidising hydrocarbons to acids
CN101781217A (zh) * 2010-03-16 2010-07-21 湘潭大学 一种高选择性联产硝基环己烷和己二酸的方法
CN103288626A (zh) * 2013-06-21 2013-09-11 湘潭大学 一种联产己二酸和硝基环己烷的方法
CN103641740A (zh) 2013-12-19 2014-03-19 湖南师范大学 一种分子氧气相氧化环己胺制环己酮肟和己内酰胺的方法
CN109206339A (zh) 2017-06-29 2019-01-15 湘潭大学 一种环己胺氧化制备环己酮肟的方法
CN111253281A (zh) * 2020-02-19 2020-06-09 湘潭大学 一种环己酮肟的制备方法
CN111530465A (zh) 2020-05-26 2020-08-14 湘潭大学 一种负载型烟蒂多孔碳材料催化剂的制备方法及其在硝基环己烷加氢反应中的应用
CN112939765A (zh) * 2021-02-22 2021-06-11 湘潭大学 一种由环己烷联产己二酸和环己酮肟的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE643224A (zh) * 1963-02-14 1964-07-31
JP4201497B2 (ja) * 2001-01-31 2008-12-24 旭化成ケミカルズ株式会社 シクロヘキサノンオキシムを製造する方法
US7091381B2 (en) * 2001-07-25 2006-08-15 Asahi Kasei Chemicals Corporation Process for preparation of cyclohexanone oxime
CN104341318B (zh) * 2014-10-17 2017-01-11 湘潭大学 一种合成环己酮肟和己内酰胺的方法
CN105237434B (zh) * 2015-10-29 2017-09-29 中石化南京工程有限公司 一种生产环己酮肟的方法
CN109160887B (zh) * 2018-07-31 2021-04-20 湖南科技学院 一种催化转移氢化硝基环己烷制备环己酮肟的方法
CN111153831B (zh) * 2020-02-19 2022-11-01 湘潭大学 一种环己酮肟的制备方法
CN111420693A (zh) * 2020-03-30 2020-07-17 湘潭大学 一种N掺杂Cu修饰镍基活性炭催化剂的制备方法及其在硝基环己烷加氢反应中的应用

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US95258A (en) 1869-09-28 Improved vise
US147777A (en) 1874-02-24 Improvement in the construction of railroad-cars
US474521A (en) 1892-05-10 Magnus epple
US2223493A (en) 1938-07-12 1940-12-03 Du Pont Oxidation of cyclic compounds
US2718528A (en) 1954-02-10 1955-09-20 Hercules Powder Co Ltd Process for the production of oximes
US2967200A (en) 1959-01-28 1961-01-03 Du Pont Preparation of ketoximes
GB908757A (en) * 1960-04-01 1962-10-24 Du Pont Process for producing adipic acid and a ketone oxime
US3255261A (en) 1964-06-22 1966-06-07 Du Pont Process for producing nitrocycloalkanes
US3960954A (en) 1968-05-27 1976-06-01 Halcon International, Inc. Process for preparing oximes and hydroxylamines
US4263453A (en) 1979-12-10 1981-04-21 Gulf Research & Development Company Process for converting cyclohexane to adipic acid
US4337358A (en) 1980-06-30 1982-06-29 Allied Corporation Process for oxidizing primary amines to oximes by elemental oxygen
US4504681A (en) 1982-12-20 1985-03-12 Allied Corporation Catalytic oxidation of primary amines to oximes by elemental oxygen
US5321157A (en) 1992-09-25 1994-06-14 Redox Technologies Inc. Process for the preparation of adipic acid and other aliphatic dibasic acids
FR2722783B1 (fr) 1994-07-21 1996-08-30 Rhone Poulenc Chimie Procede de preparation d'acide adipique par oxydattion directe du cyclohexane et recyclage du catalyseur
FR2746671B1 (fr) 1996-04-02 1998-09-25 Rhone Poulenc Fibres Procede de separation d'un catalyseur par electrodialyse membranaire
US7507856B2 (en) 2001-08-03 2009-03-24 Rhodia Polyamide Intermediates Method of oxidising hydrocarbons to acids
CN101781217A (zh) * 2010-03-16 2010-07-21 湘潭大学 一种高选择性联产硝基环己烷和己二酸的方法
CN101781217B (zh) 2010-03-16 2013-05-29 湘潭大学 一种高选择性联产硝基环己烷和己二酸的方法
CN103288626A (zh) * 2013-06-21 2013-09-11 湘潭大学 一种联产己二酸和硝基环己烷的方法
CN103641740A (zh) 2013-12-19 2014-03-19 湖南师范大学 一种分子氧气相氧化环己胺制环己酮肟和己内酰胺的方法
CN109206339A (zh) 2017-06-29 2019-01-15 湘潭大学 一种环己胺氧化制备环己酮肟的方法
CN111253281A (zh) * 2020-02-19 2020-06-09 湘潭大学 一种环己酮肟的制备方法
CN111530465A (zh) 2020-05-26 2020-08-14 湘潭大学 一种负载型烟蒂多孔碳材料催化剂的制备方法及其在硝基环己烷加氢反应中的应用
CN112939765A (zh) * 2021-02-22 2021-06-11 湘潭大学 一种由环己烷联产己二酸和环己酮肟的方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
HILLS P.R. ET AL.: "Radiation-initiated nitrosation of cyclohexane", INTERNATIONAL JOURNAL OF APPLIED RADIATION AND ISOTOPES, vol. 12, no. 3-4, 9 October 2002 (2002-10-09), XP024719080, ISSN: 0020-708X, DOI: 10.1016/0020-708X(61)90067-9 *
J.OF CATALYSIS, vol. 83, 1983, pages 487 - 490
JIAN JIAN, YOU KUIYI, LUO AND AN: "Single-stage Preparation of Adipic Acid at High Selectivity from Selective Catalytic Oxidation of Cyclohexene with NO2", PROCEEDINGS OF THE 9TH NATIONAL CONFERENCE ON ENVIRONMENTAL CATALYSIS AND MATERIALS OF CHINA: CONFERENCE ON ENVIRONMENTAL CATALYSIS AND MATERIALS FOR SUPPORTING RAPID DEVELOPMENT OF TWO-TYPE SOCIETY, 20 November 2015 (2015-11-20), pages 121 - 121, XP055959778 *
JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 160, 2000, pages 393 - 402
LVRENLIU, APPLIED CATALYSIS A, 2012
MAO LIQIU, LÜ XING, LI GUANGHONG, YIN DULIN, YOU KUIYI, LUO HE’AN: "Hydrogenation of nitrocyclohexane to cyclohexanone oxime catalyzed by Pd/C", CHEMICAL INDUSTRY AND ENGINEERING PROGRESS, vol. 28, no. 6, 30 June 2009 (2009-06-30), XP055959775, ISSN: 1000-6613, DOI: 10.16085/j.issn.1000-6613.2009.06.008 *
MATSUMOTO YOHEI, KURIYAMA MASAMI, YAMAMOTO KOSUKE, NISHIDA KOYO, ONOMURA OSAMU: "Metal-Free Synthesis of Adipic Acid via Organocatalytic Direct Oxidation of Cyclohexane under Ambient Temperature and Pressure", ORGANIC PROCESS RESEARCH & DEVELOPMENT, AMERICAN CHEMICAL SOCIETY, US, vol. 22, no. 9, 21 September 2018 (2018-09-21), US , pages 1312 - 1317, XP055959784, ISSN: 1083-6160, DOI: 10.1021/acs.oprd.8b00196 *
RAJASANKARTHOMAS, J. AM. CHEM. SOC., 1999
YUAN ET AL., ORGANIC PROCESS R&D, 2004

Also Published As

Publication number Publication date
EP4296255A1 (en) 2023-12-27
CN112939765A (zh) 2021-06-11
US20240150274A1 (en) 2024-05-09
CN112939765B (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
JP4090885B2 (ja) シクロヘキサノンオキシムの製造方法
CN105237434A (zh) 一种生产环己酮肟的方法
CN111153831B (zh) 一种环己酮肟的制备方法
WO2022174628A1 (zh) 一种由环己烷联产己二酸和环己酮肟的方法
WO2014202031A1 (zh) 一种联产己二酸和硝基环己烷的方法
CN111253281B (zh) 一种环己酮肟的制备方法
JP4198052B2 (ja) シクロヘキサノンオキシムの製造方法
CN105523907B (zh) 一种由苯直接制备环己酮的方法
TW200417452A (en) Integrated process for the preparation of phenol from benzene with recycling of the by-products
CN112279781A (zh) 一种对羟基苯甲腈的合成方法
JP4201497B2 (ja) シクロヘキサノンオキシムを製造する方法
CN112661618B (zh) 一种环戊酮的铜催化制备方法
CN112661619B (zh) 一种制备环戊酮的方法
JP2002128716A (ja) イソプロピルアルコールの製造方法
CN112939808A (zh) 一种环己酮肟的制备方法
US20230029768A1 (en) Process for producing cyclohexanol and cyclohexanone
CN114105741A (zh) 一种大环烷醇酮的制备方法
Tinge et al. The Fibrant Hydranone® and HPO plus Technologies for Cyclohexanone and ϵ‐Caprolactam Production (Case Study) An Overview of the Technology and Outlook
CN116836064A (zh) 一种乙酸环己酯直接临氢胺化合成环己胺的新方法
CN114956980A (zh) 一种合成巴豆酸的方法
CN115304471A (zh) 一种长碳链二元羧酸的制备方法
CN110449145A (zh) 一种催化剂及其用于催化环己烯水合制备环己酮的应用
CN115626874A (zh) 一种连续合成巴豆酸的方法
CN112661619A (zh) 一种制备环戊酮的方法
CN115677462A (zh) 催化氧化香茅醇制备香茅醛的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926342

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021926342

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021926342

Country of ref document: EP

Effective date: 20230922