WO2022174401A1 - 基于离子液体制备透明柔性电极的方法及柔性太阳能电池 - Google Patents
基于离子液体制备透明柔性电极的方法及柔性太阳能电池 Download PDFInfo
- Publication number
- WO2022174401A1 WO2022174401A1 PCT/CN2021/076960 CN2021076960W WO2022174401A1 WO 2022174401 A1 WO2022174401 A1 WO 2022174401A1 CN 2021076960 W CN2021076960 W CN 2021076960W WO 2022174401 A1 WO2022174401 A1 WO 2022174401A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ionic liquid
- solution
- flexible
- transparent
- electrode
- Prior art date
Links
- 239000002608 ionic liquid Substances 0.000 title claims abstract description 125
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000000243 solution Substances 0.000 claims description 147
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 90
- 239000002042 Silver nanowire Substances 0.000 claims description 89
- 229910052751 metal Inorganic materials 0.000 claims description 40
- 239000002184 metal Substances 0.000 claims description 40
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 39
- 239000002070 nanowire Substances 0.000 claims description 37
- 238000004528 spin coating Methods 0.000 claims description 31
- 239000000758 substrate Substances 0.000 claims description 26
- 229910044991 metal oxide Inorganic materials 0.000 claims description 17
- 150000004706 metal oxides Chemical class 0.000 claims description 17
- 238000002360 preparation method Methods 0.000 claims description 17
- 238000000137 annealing Methods 0.000 claims description 13
- 239000011259 mixed solution Substances 0.000 claims description 13
- 230000005525 hole transport Effects 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 10
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 9
- 239000002904 solvent Substances 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 2
- 239000005751 Copper oxide Substances 0.000 claims description 2
- 229920001167 Poly(triaryl amine) Polymers 0.000 claims description 2
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 2
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 229910000431 copper oxide Inorganic materials 0.000 claims description 2
- PDZKZMQQDCHTNF-UHFFFAOYSA-M copper(1+);thiocyanate Chemical compound [Cu+].[S-]C#N PDZKZMQQDCHTNF-UHFFFAOYSA-M 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910000476 molybdenum oxide Inorganic materials 0.000 claims description 2
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 2
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 claims description 2
- 229920001467 poly(styrenesulfonates) Polymers 0.000 claims description 2
- 229960002796 polystyrene sulfonate Drugs 0.000 claims description 2
- 239000011970 polystyrene sulfonate Substances 0.000 claims description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 2
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 claims 1
- 150000007513 acids Chemical class 0.000 claims 1
- 150000002500 ions Chemical class 0.000 claims 1
- 239000006193 liquid solution Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 4
- 238000013086 organic photovoltaic Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 51
- 238000005452 bending Methods 0.000 description 26
- 239000007864 aqueous solution Substances 0.000 description 23
- 239000011787 zinc oxide Substances 0.000 description 19
- 238000012360 testing method Methods 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000002131 composite material Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000002834 transmittance Methods 0.000 description 7
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical group [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 6
- 239000010408 film Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000005693 optoelectronics Effects 0.000 description 3
- 229910001961 silver nitrate Inorganic materials 0.000 description 3
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000009827 uniform distribution Methods 0.000 description 3
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 2
- 229930003268 Vitamin C Natural products 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000010129 solution processing Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 235000019154 vitamin C Nutrition 0.000 description 2
- 239000011718 vitamin C Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical group [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/40—Thermal treatment, e.g. annealing in the presence of a solvent vapour
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/84—Layers having high charge carrier mobility
- H10K30/85—Layers having high electron mobility, e.g. electron-transporting layers or hole-blocking layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/84—Layers having high charge carrier mobility
- H10K30/86—Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
Definitions
- the invention relates to a transparent flexible electrode, in particular to a novel transparent flexible electrode in a flexible organic solar cell and a preparation method thereof, in particular to a method for preparing a novel transparent flexible electrode from silver nanowires doped with an ionic liquid solution and a flexible preparation method thereof organic solar battery.
- transparent flexible electrodes Compared with dry preparation, solution processing method has the advantages of low cost and large-scale printing preparation, and has great development potential.
- the electrical and mechanical properties of transparent flexible electrodes play a crucial role in the photoelectric conversion efficiency of solar cells.
- transparent flexible electrodes are mainly prepared by directly spin-coating silver nanowire solutions, but the prepared transparent electrodes have large contact resistance. , the electrical and mechanical properties are poor; and the existing methods for improving the electrical properties and adhesion of transparent flexible electrodes generally require higher process and/or higher energy consumption.
- the purpose of the present invention is to provide a method for preparing a new type of transparent flexible electrode, preferably silver nanowires doped with ionic liquid solution to prepare a new type of transparent flexible electrode to effectively improve the electrical properties and mechanical properties of the electrode, and the photoelectric conversion efficiency of the prepared flexible organic solar cell
- the whole electrode preparation process does not need high temperature calcination, and the repeatability is high and the operation is convenient.
- a method for preparing a transparent flexible electrode based on an ionic liquid includes the following steps: spin-coating a mixed solution of an ionic liquid solution and a metal nanowire solution on a flexible transparent substrate, spin-coating a conductive layer solution, and thermally annealing , to obtain a transparent flexible electrode.
- a flexible solar cell comprising a transparent flexible electrode, an active layer, a hole transport layer, and a top electrode; or a transparent flexible electrode, an active layer, an electron transport layer, and a top electrode; spin-coating an ionic liquid solution and a metal on a flexible transparent substrate
- the mixed solution of the nanowire solution is spin-coated with the conductive layer solution, and thermally annealed to obtain a transparent flexible electrode.
- the invention discloses the application of the above transparent flexible electrode in the preparation of flexible devices, such as flexible solar cells and flexible sensors.
- the transparent flexible electrode of the present invention is a flexible solar cell electrode, which is connected with the top electrode. With the use of.
- the invention adopts a new transparent flexible electrode, which has low sheet resistance (12 ⁇ /sq) and high transmittance (84%), and has excellent mechanical properties.
- the extremely high photoelectric conversion efficiency can reach the performance level of a rigid device; the preparation of the active layer, the hole transport layer or the electron transport layer, and the top electrode is the prior art.
- the conductive layer solution is one or more of a mixed solution of an ionic liquid solution and a metal nanowire solution, a metal nanowire solution or a metal oxide solution.
- the prepared conductive layer is one or more of metal nanowires doped with ionic liquid solution, metal nanowires not doped with ionic liquid solution, or metal oxides.
- the metal oxides are preferably doped metal oxides, such as aluminum doped metal oxides.
- the flexible transparent substrate is composed of transparent plastic and metal nanowires such as silver nanowires located in the transparent plastic;
- the ionic liquid solution includes ionic liquid, water-soluble metal salt, weak acid and solvent, and the solvent is water and/or alcohol
- the ionic liquid solution is composed of imidazole type ionic liquid, water-soluble silver salt, weak acid and water, more preferably, the volume concentration of imidazole type ionic liquid is 0.1 ⁇ 0.15 ⁇ , and the volume concentration of weak acid is 0.4 ⁇ 0.6 ⁇ , the concentration of water-soluble silver salt is 0.015 ⁇ 0.02mg/mL; for example, the water-soluble silver salt is silver nitrate, the weak acid is acetic acid, and the ionic liquid is as follows: .
- the concentration of the metal nanowires is 0.15-0.5 wt%, preferably 0.22-0.3 wt%; the solvent is water.
- the volume percentage of the ionic liquid solution is 0-50% and does not include 0, preferably 25-35%; the mixture of the spin-coating ionic liquid solution and the metal nanowire solution
- the speed is 1000 ⁇ 3000 rpm
- the time is 10-100 seconds
- the rotation speed is 1500-2500 rpm
- the time is 40-60 seconds.
- transparent plastics include PET, PEN and other base materials that can be used for flexible solar cells; metal nanowires are silver nanowires, gold nanowires, etc.
- the aspect ratio of silver nanowires is 600-700:1.
- the metal nanowire solution doped with the ionic liquid solution (that is, the mixed solution of the ionic liquid solution and the metal nanowire solution) is spin-coated on the flexible transparent substrate, such as the silver nanowire solution doped with the ionic liquid solution, for preparing
- the electrode of the flexible organic solar cell has good electrical properties; it has excellent properties for preparing flexible transparent solar cells.
- a metal nanowire solution doped with an ionic liquid solution is spin-coated on a flexible transparent substrate, and then a metal oxide solution is spin-coated.
- a conductive layer is prepared on the flexible transparent substrate to obtain a transparent flexible electrode;
- the metal nanowire solution doped with the ionic liquid solution is spin-coated on the transparent substrate, then spin-coated with the metal oxide solution, thermally annealed and then spin-coated with the metal oxide solution, and thermally annealed again to prepare a conductive layer on the flexible transparent substrate to obtain a transparent Flexible electrode;
- the thickness of the transparent flexible electrode is 80-150 nm
- the thickness of the transparent flexible electrode in the present invention is the thickness excluding the flexible transparent substrate, which is a thin film and conductive layer formed by a mixture of ionic liquid solution and metal nanowire solution The total thickness of the film formed by the solution.
- the concentration of metal oxide is 5-20 mg/mL, preferably 5-10 mg/mL; the temperature of thermal annealing is 100-150 °C, and the time is 10-30 min, preferably 120 oC heating for 15 min ;
- the rotational speed is 1000-3000 rpm, and the time is 10-100 seconds, preferably when the metal oxide solution is spin-coated, the rotational speed is 1500-2500 rpm, and the time is 40-60 seconds.
- the conductive layer is prepared by using metal nanowires doped with ionic liquid solution, preferably using silver nanowire solution doped with ionic liquid solution volume ratio of 30%, after low-speed spin coating (2000 rpm), after combining with metal oxide, After annealing at 120 o C, a high-quality film (with uniform distribution of silver nanowires on the surface, good stability, good repeatability, and flat film) was obtained, the sheet resistance was as low as 12.0 ⁇ /sq, and it had excellent mechanical properties.
- flexible solar cells with excellent performance can be prepared by combining with active layers, etc., and unexpected technical effects have been achieved.
- a mixture of ionic liquid solution and metal nanowire solution is spin-coated on a flexible transparent substrate, then a conductive layer solution is spin-coated, and thermally annealed to obtain a transparent flexible electrode; and an active layer material is spin-coated on the conductive layer of the transparent flexible electrode.
- prepare the active layer evaporate or spin the hole transport layer material on the active layer to prepare the hole transport layer, evaporate or transfer the electrode on the hole transport layer to prepare the electrode to obtain a flexible solar cell; or spin the active layer on the active layer.
- the electron transport layer material is coated, the electron transport layer is prepared, and electrodes are prepared by vapor deposition or transfer on the electron transport layer to obtain a flexible solar cell.
- the active layer, hole transport layer, electron transport layer, and top electrode are existing materials; for example, the active layer material is one or more of PBDB-T-2F, Y6, and BTP-eC9; the hole transport layer material is selected from Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], poly3,4-ethylenedioxythiophene/polystyrene sulfonate, nickel oxide, copper oxide, 2, One of 2',7,7'-tetra[N,N-bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene, cuprous thiocyanate, and molybdenum oxide, using The hole transport layer is prepared on the active layer by evaporation or spin coating.
- the spin coating speed is 1000-6000 rpm, the time is 20-60 s, and the thickness of the hole transport layer is 10-100 nm; the electron transport layer includes ZnO One or more of , TiO 2 , SnO 2 , PFN, PFN-Br, and PDINO, the electron transport layer is prepared on the active layer by annealing after spin coating.
- the spin coating speed is 2000-5000 rpm, and the time is 30-60 s, the annealing temperature is 100-150 oC , the time is 10-60 min, and the thickness of the electron transport layer is 10-100 nm;
- the electrodes are Au electrode, Ag electrode, Al electrode, Cu electrode, PH1000 polymer electrode,
- One or more of the metal oxide electrodes are prepared on the hole (or electron) transport layer by vapor deposition or transfer; the thickness of the electrode is 100-200 nm.
- the transparent flexible electrode is a composite electrode, and the structure is, for example, Em-Ag/AgNWs-IL/AZO-SG.
- Each layer structure is a conventional structure after coating, and no special structure preparation is performed, such as no existing There are nano-imprinting techniques for forming special structures.
- the present invention adopts metal nanowire transparent flexible electrode doped with ionic liquid solution for the first time, and the prepared transparent flexible electrode surface has uniform distribution of silver nanowires, good stability, good repeatability, and smooth film; especially the transparent flexible electrode prepared by the present invention has It has low sheet resistance (12.0 ⁇ /sq) and excellent mechanical properties. It shows extremely high photoelectric conversion efficiency after being prepared as a complete device.
- the transparent flexible electrode prepared by using the metal nanowire doped with the ionic liquid solution in the present invention has great improvement in electrical properties and mechanical properties, and the efficiency and mechanical properties of the prepared battery device are also further improved.
- the transparent flexible electrode of the present invention has the advantages of excellent electrical performance, good mechanical performance, low cost and convenient preparation, and at the same time, the transparent flexible electrode has the characteristics of better light transmission, good mechanical performance, etc., making it a highly competitive It is a transparent flexible electrode that has wide application prospects in the field of flexible batteries and electronic products.
- the electrical properties and mechanical properties are qualitatively improved.
- the surface resistance of transparent flexible electrodes prepared by metal nanowires doped with ionic liquid solution can be reduced to 12.0 ⁇ /sq, and solve the problems of poor contact and poor mechanical properties of silver nanowires; high-quality transparent flexible electrodes make the entire flexible organic While ensuring high photoelectric conversion efficiency, solar cells improve the bending resistance of the cell, and can still maintain high efficiency under extreme bending conditions.
- the invention selects metal nanowire transparent flexible electrodes doped with ionic liquid solution, the obtained electrode surface has uniform distribution of silver nanowires, good stability, good repeatability, flat film, and the prepared flexible organic solar cell has high photoelectric conversion efficiency; High-quality transparent flexible electrodes also have good application prospects in the field of flexible electronics.
- the invention utilizes metal nanowires doped with ionic liquid solution to replace the existing metal nanowires without ionic liquid solution, thereby effectively improving the electrical properties and mechanical properties of the prepared transparent flexible electrode.
- the flexible organic solar cell prepared by the present invention has the highest photoelectric conversion efficiency of the current single-junction organic flexible solar cell.
- FIG. 1 is a scanning electron microscope (SEM) image of silver nanowires doped with an ionic liquid solution in Example 1.
- SEM scanning electron microscope
- FIG. 2 is a scanning electron microscope (SEM) image of the silver nanowires of the undoped ionic liquid solution in Example 1.
- SEM scanning electron microscope
- FIG. 3 is a surface resistance diagram of transparent flexible electrodes prepared by silver nanowires doped with ionic liquid solution and silver nanowires not doped with ionic liquid solution in Example 1, averaged from various tests.
- Figure 4 is a graph of the change of sheet resistance of the transparent flexible electrodes prepared by the silver nanowires doped with the ionic liquid solution and the silver nanowires without the ionic liquid solution in Example 1 after the bending test (bending at a bending radius of 4 mm).
- FIG. 5 is a photograph of a transparent flexible electrode prepared by doped ionic liquid solution of silver nanowires in Example 1.
- FIG. 6 is a structural diagram of a flexible and solar cell according to the second embodiment.
- FIG. 7 is a J-V curve diagram of a flexible organic solar cell prepared by using silver nanowires doped with ionic liquid solution and silver nanowires not doped with ionic liquid solution in Example 2.
- FIG. 7 is a J-V curve diagram of a flexible organic solar cell prepared by using silver nanowires doped with ionic liquid solution and silver nanowires not doped with ionic liquid solution in Example 2.
- FIG. 8 is a bending test diagram of flexible organic solar cells prepared by using silver nanowires doped with ionic liquid solution and silver nanowires without ionic liquid solution in Example 2 (bending at a bending radius of 4 mm).
- FIG. 9 is a J-V curve diagram of a flexible organic solar cell prepared by using silver nanowires doped with ionic liquid solution and spin-coating ionic liquid solution on silver nanowires in Example 3.
- FIG. 9 is a J-V curve diagram of a flexible organic solar cell prepared by using silver nanowires doped with ionic liquid solution and spin-coating ionic liquid solution on silver nanowires in Example 3.
- the transparent flexible electrode of the invention adopts a composite electrode structure, and combines ionic liquid-doped silver nanowires with metal oxides, which solves the problem of low coverage of silver nanowires and avoids device efficiency caused by high contact resistance between silver nanowires.
- All raw materials of the present invention are commercially available and meet the application requirements of flexible solar cells, such as silver nanowires, which are commercially available products, such as Gu's Nano Technology Co., Ltd., which exist in the form of aqueous solutions; the preparation methods and tests involved in the embodiments of the present invention
- the method is a conventional test method for flexible solar cells.
- the flexible transparent substrate please refer to the first step (1) of the CN2020100853546 embodiment, which is a PET plastic substrate embedded with silver nanowires, which is a Chinese patent previously applied for by our research group. On the basis of this substrate, the spin coating experiment was performed again to obtain the transparent flexible electrode of the present invention and each comparative electrode.
- Aluminum doped zinc oxide (AZO) according to the literature (High-Performance Polymer Solar Cells with PCE of 10.42% via Al-Doped ZnO Cathode Interlayer) was synthesized according to the experimental procedure; the ionic liquid [2,3-dhpmim][Cl] was a yellow oily liquid.
- the surface morphology (SEM) of the prepared electrodes was tested with a scanning electron microscope (Hitachi SU8010); the surface resistance of the prepared electrodes was tested with a four-probe resistance measurement system; Electrode transmittance was tested; bending test was performed on the prepared electrodes and devices with a bending tester; Keithley 2450 source meter and solar simulator (AM 1.5G, 100 mW/cm 2 ) were used to test the performance of the prepared devices parameter (JV).
- SEM surface morphology
- the method for preparing a transparent flexible electrode based on an ionic liquid in the present invention is as follows: spin-coating a mixed solution of an ionic liquid solution and a metal nanowire solution on a flexible transparent substrate, spin-coating a conductive layer solution, and thermally annealing to obtain a transparent flexible electrode.
- Example 1 (1) adding ionic liquid, silver nitrate and acetic acid to water to obtain an ionic liquid solution, wherein the volume concentration of the ionic liquid is 0.125 ⁇ , and the volume concentration of acetic acid is 0.5 ⁇ , the concentration of silver nitrate is 0.017mg/mL; the ionic liquid is as follows: .
- 0.3 mL of the above ionic liquid solution was added to 0.7 mL of silver nanowire aqueous solution to obtain a silver nanowire aqueous solution doped with ionic liquid solution, wherein the volume percentage of the ionic liquid solution was 30%, and the concentration of silver nanowires was 0.25 wt%.
- the silver nanowire aqueous solution doped with the ionic liquid solution in the above step (2) is replaced by the silver nanowire aqueous solution without the ionic liquid solution (that is, the silver nanowire aqueous solution with a silver nanowire concentration of 0.25 wt%), and the rest are not.
- the silver nanowire aqueous solution without the ionic liquid solution that is, the silver nanowire aqueous solution with a silver nanowire concentration of 0.25 wt%), and the rest are not.
- transparent flexible electrodes prepared from silver nanowires without ionic liquid solution were obtained.
- Figure 1 is the scanning electron microscope (SEM) image of the silver nanowires doped with the ionic liquid solution
- Figure 2 is the scanning electron microscope (SEM) image of the silver nanowires without the ionic liquid solution after spin coating. It can be clearly seen that the doping The silver nanowires in the hetero 30% ionic liquid solution had better contact.
- Figure 3 is the surface resistance diagram of the transparent flexible electrodes prepared from silver nanowires doped with ionic liquid solution and silver nanowires without ionic liquid solution.
- the silver nanowires prepared from ionic liquid solution The surface resistance of the transparent flexible electrode is reduced to 12.0 ⁇ /sq, which is greatly reduced compared to the transparent flexible electrode prepared by the undoped ionic liquid solution (18.0 ⁇ /sq). It can be shown that the transparent flexible electrodes prepared by using silver nanowires doped with ionic liquid solution can indeed improve their electrical conductivity.
- the volume percentage of the ionic liquid solution in the above step (1) is adjusted to 15%, and the rest is the same as above (especially the silver nanowire concentration is kept at 0.25wt%) to prepare a transparent flexible electrode, and the same method is used to test the surface resistance to obtain
- the surface resistance of the electrode is 15.2 ⁇ /sq;
- the volume percentage of the ionic liquid solution in the above step (1) is adjusted to 50%, and the rest is the same as the above to prepare a transparent flexible electrode.
- the same method is used to test the surface resistance to obtain the electrode surface resistance It is 12.0 ⁇ /sq, and the average transmittance is 82%.
- the average transmittance is much lower than that of the silver nanowires doped with 30% ionic liquid solution.
- Figure 4 is a graph showing the change of sheet resistance of transparent flexible electrodes prepared by doped ionic liquid solution silver nanowires and undoped ionic liquid solution silver nanowires after bending test. It can be seen from the figure that under the bending radius of 4 mm , after 1200 times of inward bending (with the conductive layer as the inner side), the transparent flexible electrode prepared by the silver nanowires without the ionic liquid solution is compared with the transparent flexible electrode prepared by the silver nanowires doped with the ionic liquid solution. The resistance increases significantly, indicating that the present invention improves the mechanical properties of the electrode.
- Figure 5 is a photo of a transparent flexible electrode prepared from silver nanowires doped with ionic liquid solution. It can be seen that the electrode of the present invention has a very high transmittance, and the average transmittance of the conventional test is 84%. The average transmittance of the transparent flexible electrodes prepared by silver nanowires is also 84%. It can be seen that the doping ionic liquid has no obvious effect on the electrode permeation.
- Comparative Example 1 Spin-coating an aqueous solution of silver nanowires (0.25wt%) on a flexible transparent substrate (same as Example 1), 2000 rpm for 40 s, without heating, and then spin-coating an ionic liquid solution (same with Example 1), 3000 rpm for 30 s, without heating, and then spin-coating 10 mg/mL aluminum-doped zinc oxide aqueous solution, 2000 rpm for 60 s, annealing at 120 o C for 15 minutes, and then spin-coating 5 mg/mL mL of aluminum-doped zinc oxide aqueous solution, annealed at 2000 rpm for 60 s, 120 o C for 15 minutes, to obtain a transparent flexible electrode; the same test, its sheet resistance is 16.0 ⁇ /sq, under the bending radius of 4 mm, after 1200 times After bending inwards, its sheet resistance is 1.1 times that of the original, which is worse than that of transparent flexible electrodes prepared from silver nanowires do
- the silver nanowire aqueous solution doped with 30% vitamin C solution (the ionic liquid in the ionic liquid solution of Example 1 was replaced with vitamin C, and other conditions remained unchanged) was spin-coated on a flexible transparent substrate (same as Example 1).
- Silver nanowires doped with 30% ionic liquid alcohol solution (the water solvent in the ionic liquid solution of Example 1 was changed to ethanol solvent, and other conditions remained unchanged) were spin-coated on a flexible transparent substrate (same as Example 1).
- Aqueous solution (0.25wt%), 2000 rpm for 40 s without heating, then spin-coated with 10 mg/mL aluminum-doped zinc oxide aqueous solution, 2000 rpm for 60 s, annealed at 120 o C for 15 min, and then spin-coated with 5 mg/mL
- the aluminum-doped zinc oxide aqueous solution was annealed at 2000 rpm for 60 s and 120 o C for 15 minutes to obtain a transparent flexible electrode; the same test, its sheet resistance was 15.4 ⁇ /sq, under the bending radius of 4 mm, after 1200 times of orientation After inward bending, its sheet resistance is 1.11 times that of the original, which is worse than that of transparent flexible electrodes prepared from silver nanowires
- Example 2 The transparent flexible electrode prepared in Example 1 was placed in a nitrogen glove box, and the active layer solution was spin-coated on the surface of the conductive layer.
- the components of the solution were PBDB-T-2F and Y6, the solvent was pure CF, and the composition concentration It is a solution of 16 mg/mL, the rate of dripping is 3000 rpm, and the time is 30s.
- the active layer is obtained by annealing at 110 o C for 10 minutes; then in the coating machine, the surface of the active layer is evaporated Molybdenum trioxide hole transport layer and Al electrode with thicknesses of 10 nm and 100 nm, respectively. So far, the preparation of the flexible solar cell is completed, which is a flexible organic solar cell prepared from silver nanowires doped with ionic liquid solution. The structure and photos are shown in Figure 6.
- the transparent flexible electrode prepared from silver nanowires without ionic liquid solution in Example 1 was placed in a nitrogen glove box, and the same preparation steps were performed to obtain a flexible organic solar cell prepared from silver nanowires without ionic liquid. Compared.
- Table 1 and FIG. 7 are J-V curves of flexible organic solar cells prepared with silver nanowires doped with ionic liquid solution and silver nanowires without ionic liquid solution. It can be seen that the performance of flexible organic solar cells prepared from silver nanowires without ionic liquid solution is lower than that of flexible organic solar cells prepared from silver nanowires doped with ionic liquid solution.
- the efficiency of the flexible organic solar cell is 15.71%, which is almost the same as that of the organic solar cell on the rigid substrate (the substrate is glass, the electrode is indium tin oxide, and the rest is the same) (15.78%).
- FIG. 8 is the inward bending test diagram of the flexible organic solar cells prepared by the silver nanowires doped with the ionic liquid solution and the silver nanowires without the ionic liquid solution.
- the flexible organic solar cells fabricated from nanowires maintained their performance at 92.8% of the initial efficiency after bending, while the flexible organic solar cells fabricated with silver nanowires doped with ionic liquid solution remained after bending for 1200 times at a bending radius of 4 mm. 95.4% of the initial efficiency. It shows that the present invention can obtain a flexible organic solar cell with high performance and good mechanical properties by doping the silver nanowires of the ionic liquid solution, overcoming the shortcomings of poor bending performance of the cells prepared by the prior art, and achieving unexpected technical effects. .
- Comparative Example 2 Spin-coating an aqueous solution of silver nanowires (0.25 wt%) on a flexible transparent substrate (same as Example 1), 2000 rpm for 40 s, without heating, and then spin-coating an ionic liquid solution (same as the Example 1), 3000 rpm for 30 s, without heating, and then spin-coating 10 mg/mL aluminum-doped zinc oxide aqueous solution, 2000 rpm for 60 s, annealing at 120 o C for 15 minutes, and then spin-coating 5 mg/mL mL of aluminum-doped zinc oxide aqueous solution, annealed at 2000 rpm for 60 s, and 120 o C for 15 minutes to obtain a transparent flexible electrode; the above transparent flexible electrode was then subjected to the same battery preparation steps as in Example 2 to obtain a flexible organic solar cell.
- Table 2 and FIG. 9 show the silver nanowires and aluminum-doped zinc oxide composite electrodes prepared by using silver nanowires doped with 30% ionic liquid solution in Example 2 and the composite electrodes prepared by spin-coating ionic liquid solution on silver nanowires in Comparative Example 2.
- Silver nanowires and aluminum-doped zinc oxide composite electrodes prepared from silver nanowires doped with 30% ionic liquid solution in Example 2 and silver nanowires prepared by spin-coating ionic liquid solution on silver nanowires in Example 3 and Properties of flexible organic solar cells fabricated from Al-doped ZnO composite electrodes: .
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明公开了基于离子液体制备透明柔性电极的方法及柔性太阳能电池,是一种能够在低温下完成、制备简易、成本较低以及效率较高的柔性有机太阳能电池,其中,透明柔性电极通过离子液体溶液处理,能够得到电学性能更好、机械性能更好的透明柔性电极,面电阻低至12 Ω/sq,且具有极好的机械性能,尤其是与活性层等结合制备得到性能优异的柔性太阳能电池,取得了意想不到的技术效果。
Description
本发明涉及一种透明柔性电极,具体涉及一种柔性有机太阳能电池中的新型透明柔性电极及其制备方法,尤其涉及掺杂离子液体溶液的银纳米线制备新型透明柔性电极的方法及制备的柔性有机太阳能电池。
基于有机材料的柔性光电器件,是未来柔性电子器件发展的一大趋势,具有巨大的应用前景。但是想要获得高性能的透明柔性电极是实现高效柔性有机光电器件的前提,也是目前该领域的核心难题,关于如何获得同时具有高导电、高透光以及制备方法简单、绿色的透明柔性电极,依然是巨大的挑战。由于缺乏高性能的透明柔性电极,目前柔性有机光电器件的性能仍大幅度落后于相应的刚性器件,透明柔性电极通常采用干法(如蒸镀)或溶液处理工艺制备。相比于干法制备,溶液处理方法制备具有成本低、可大规模印刷制备等优点,发展潜力巨大。透明柔性电极的电学性能及机械性能对于太阳能电池的光电转换效率起着至关重要的作用,目前主要通过直接旋涂银纳米线溶液制备透明柔性电极,但制备的透明电极具有较大的接触电阻,电学、机械性能较差;而现有使用的提升透明柔性电极电学性能和附着力的方法一般都需要较高的工艺和/或较大的能耗。
本发明的目的在于提供一种新型透明柔性电极制备方法,优选掺杂离子液体溶液的银纳米线制备新型透明柔性电极有效提高电极电学性能及机械性能,所制备的柔性有机太阳能电池的光电转化效率提高,整个电极制备过程不需要高温煅烧,重复性高,操作方便。
本发明采用如下技术方案:基于离子液体制备透明柔性电极的方法,包括以下步骤,在柔性透明基底上旋涂离子液体溶液与金属纳米线溶液的混合液,再旋涂导电层溶液,热退火处理,得到透明柔性电极。
一种柔性太阳能电池,包括透明柔性电极、活性层、空穴传输层、顶电极;或者包括透明柔性电极、活性层、电子传输层、顶电极;在柔性透明基底上旋涂离子液体溶液与金属纳米线溶液的混合液,再旋涂导电层溶液,热退火处理,得到透明柔性电极。
本发明公开了上述透明柔性电极在制备柔性器件,比如柔性太阳能电池、柔性传感器中的应用,比如在制备上述柔性太阳能电池中的应用时,本发明透明柔性电极为柔性太阳能电池电极,与顶电极配合使用。
本发明采用新的透明柔性电极,具有较低的面电阻(12 Ω/sq)与高透光率(84%),且具有极好的机械性能,制备成完整柔性有机太阳能电池器件以后表现出极高的光电转化效率,可以达到刚性器件的性能水平;活性层、空穴传输层或者电子传输层、顶电极的制备为现有技术。
本发明中,导电层溶液为离子液体溶液与金属纳米线溶液的混合液、金属纳米线溶液或者金属氧化物溶液中的一种或几种。制备的导电层为掺杂离子液体溶液的金属纳米线、未掺杂离子液体溶液的金属纳米线或者金属氧化物中的一种或者几种。金属氧化物优选掺杂金属氧化物,比如铝掺杂金属氧化物。
本发明中,柔性透明基底由透明塑料以及位于所述透明塑料内的金属纳米线比如银纳米线组成;离子液体溶液包括离子液体、水溶性金属盐、弱酸以及溶剂,溶剂为水和/或醇类溶剂;优选的,离子液体溶液由咪唑型离子液体、水溶性银盐、弱酸以及水组成,进一步优选的,咪唑型离子液体的体积浓度为0.1~0.15‰,弱酸的体积浓度为0.4~0.6‰,水溶性银盐的浓度为0.015~0.02mg/mL;比如水溶性银盐为硝酸银,弱酸为乙酸,离子液体如下:
。
本发明中,离子液体溶液与金属纳米线溶液的混合液中,金属纳米线的浓度0.15~0.5 wt%,优选0.22~0.3 wt%;溶剂为水。
本发明中,离子液体溶液与金属纳米线溶液的混合液中,离子液体溶液体积百分数为0~50%且不包括0,优选25~35%;旋涂离子液体溶液与金属纳米线溶液的混合液时,转速为1000~3000
rpm,时间为10~100秒,优选,转速为1500~2500 rpm,时间为40~60秒。
本发明中,透明塑料包括PET、PEN等可用于柔性太阳能电池的基底材料;金属纳米线为银纳米线、金纳米线等,优选的,银纳米线的长径比为600~700﹕1。
本发明将掺杂离子液体溶液的金属纳米线溶液(即离子液体溶液与金属纳米线溶液的混合液)旋涂柔性透明基底上,比如为掺杂离子液体溶液的银纳米线溶液,用于制备柔性有机太阳能电池的电极,具有良好的电学性能;用于制备柔性透明太阳能电池具有优异的性能。
本发明在柔性透明基底上旋涂掺杂离子液体溶液的金属纳米线溶液,再旋涂金属氧化物溶液,热退火后在柔性透明基底上制备导电层,得到透明柔性电极;优选的,在柔性透明基底上旋涂掺杂离子液体溶液的金属纳米线溶液,再旋涂金属氧化物溶液,热退火后再旋涂金属氧化物溶液,再次热退火,在柔性透明基底上制备导电层,得到透明柔性电极;透明柔性电极的厚度为80~150 nm,本发明所述透明柔性电极的厚度为不包括柔性透明基底的厚度,为离子液体溶液与金属纳米线溶液的混合液形成的薄膜、导电层溶液形成的薄膜的总厚度。金属氧化物溶液中,金属氧化物的浓度为5~20 mg/mL,优选5~10 mg/mL;热退火的温度为100~150℃,时间为10~30 min,优选120
oC加热15 min;旋涂金属氧化物溶液时,转速为1000~3000 rpm,时间为10~100秒,优选旋涂金属氧化物溶液时,转速为1500~2500 rpm,时间为40~60秒。
现有技术为了获得接触良好的银纳米线的薄膜,一般采用较高温度退火(>150
oC)得到接触电阻较小的银纳米线薄膜,因此会对PET塑料基底造成一定损害;且此方法不利于工业生产,仅适用实验室小尺寸实验研究。本发明采用掺杂离子液体溶液的金属纳米线制备导电层,优选用掺杂离子液体溶液体积比为30% 的银纳米线溶液,经过低速旋涂(2000 rpm),与金属氧化物结合后,经过120
oC退火,在取得高质量薄膜(表面银纳米线分布均匀、稳定性好、重复性好,薄膜平整)的同时,面电阻低至12.0 Ω/sq,且具有极好的机械性能,尤其是与活性层等结合制备得到性能优异的柔性太阳能电池,取得了意想不到的技术效果。
本发明在柔性透明基底上旋涂离子液体溶液与金属纳米线溶液的混合液,再旋涂导电层溶液,热退火处理,得到透明柔性电极;在透明柔性电极的导电层上旋涂活性层材料,制备活性层;在活性层上蒸镀或者旋涂空穴传输层材料,制备空穴传输层,在空穴传输层上蒸镀或者转移制备电极,得到柔性太阳能电池;或者在活性层上旋涂电子传输层材料,制备电子传输层,在电子传输层上蒸镀或者转移制备电极,得到柔性太阳能电池。活性层、空穴传输层、电子传输层、顶电极为现有材料;比如,活性层材料为PBDB-T-2F、Y6、BTP-eC9的一种或几种;空穴传输层材料选自聚[双(4-苯基)(2,4,6-三甲基苯基)胺]、聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐、氧化镍、氧化铜、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴、硫氰酸亚铜、氧化钼中的一种,采用蒸镀或者旋涂的方法在活性层上制备空穴传输层,旋涂的速度为1000~6000 rpm,时间为20~60 s,空穴传输层厚度为10~100 nm;电子传输层包括ZnO、TiO
2、SnO
2、PFN、PFN-Br、PDINO中的一种或几种,采用旋涂后退火的方法在活性层上制备电子传输层,旋涂的速度为2000~5000 rpm,时间为30~60 s,退火的温度为100~150
oC,时间为10~60 min,电子传输层厚度为10~100 nm;电极为Au电极、Ag电极、Al电极、Cu电极、PH1000聚合物电极、金属氧化物电极中的一种或几种,采用蒸镀或者转移的方法在空穴(或者电子)传输层上制备电极;电极的厚度为100~200 nm。
本发明中,所述透明柔性电极为复合电极,结构比如为Em-Ag/AgNWs-IL/AZO-SG,各层结构都是涂后的常规结构,没有进行特殊的结构制备,比如没有采用现有技术涉及的形成特殊结构的纳米压印技术。本发明首次采用掺杂离子液体溶液的金属纳米线透明柔性电极,制备的透明柔性电极表面银纳米线分布均匀、稳定性好、重复性好,薄膜平整;尤其是本发明制备的透明柔性电极具有较低的面电阻(12.0 Ω/sq),且具有极好的机械性能,制备成完整器件以后表现出极高的光电转化效率。本发明利用掺杂离子液体溶液的金属纳米线制备的透明柔性电极在电学性能、机械性能方面有了很大的改观,制备的电池器件的效率以及机械性能也得到了进一步的提高。
本发明的透明柔性电极具备电学性能优异、机械性能好、成本低、方便制备的优点,同时由于该透明柔性电极具有较好的光透过、机械性能好等特点使其成为一种极具竞争力的透明柔性电极,在柔性电池和电子产品领域应用前景广泛。
本发明公开的运用掺杂离子液体溶液的金属纳米线制备的透明柔性电极相较于未掺杂离子液体溶液的金属纳米线制备的透明柔性电极,在电学性质和机械性能方面有了质的提高,掺杂离子液体溶液的金属纳米线制备的透明柔性电极面电阻可降低至12.0 Ω/sq,且解决了银纳米线接触差,机械性能差的问题;高质量的透明柔性电极使得整个柔性有机太阳能电池在保证高光电转化效率的同时,提升电池的耐弯曲性能,在极限弯曲条件下仍能保持较高效率。
本发明选择掺杂离子液体溶液的金属纳米线透明柔性电极,得到的电极表面银纳米线分布均匀、稳定性好、重复性好,薄膜平整,制备的柔性有机太阳能电池光电转化效率高;并且高质量的透明柔性电极在柔性电子产品领域也有很好的应用前景。
2.本发明利用掺杂离子液体溶液的金属纳米线,代替了现有未掺杂离子液体溶液的金属纳米线,有效提高所制备的透明柔性电极的电学性能和机械性能。
3. 本发明制备的柔性有机太阳能电池有目前单结有机柔性太阳能电池最高的光电转化效率。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。本发明的具体实施方式由以下实施例及其附图详细给出。
图1为实施例一掺杂离子液体溶液的银纳米线的扫描电子显微镜图(SEM)。
图2为实施例一未掺杂离子液体溶液的银纳米线的扫描电子显微镜图(SEM)。
图3为实施例一掺杂离子液体溶液的银纳米线与未掺杂离子液体溶液的银纳米线制备的透明柔性电极的面电阻图,多样测试取平均。
图4为实施例一掺杂离子液体溶液的银纳米线与未掺杂离子液体溶液的银纳米线制备的透明柔性电极弯曲测试后的面电阻变化图(在4 mm的弯曲半径下弯曲)。
图5为实施例一掺杂离子液体溶液的银纳米线制备的透明柔性电极照片。
图6为实施例二柔性有及太阳能电池结构图。
图7为实施例二用掺杂离子液体溶液的银纳米线与未掺杂离子液体溶液的银纳米线制备的柔性有机太阳能电池的J-V曲线图。
图8为实施例二用掺杂离子液体溶液的银纳米线与未掺杂离子液体溶液的银纳米线制备的柔性有机太阳能电池的弯曲测试图(在4 mm的弯曲半径下弯曲)。
图9为实施例三用用掺杂离子液体溶液的银纳米线与银纳米线上旋涂离子液体溶液制备的柔性有机太阳能电池的J-V曲线图。
本发明的透明柔性电极采用复合电极结构,将掺杂离子液体的银纳米线与金属氧化物结合,解决了银纳米线覆盖率低的问题,避免银纳米线之间接触电阻过高造成器件效率低。本发明所有原料都为市购,符合柔性太阳能电池的应用要求,比如银纳米线,为市购产品,比如顾氏纳米科技有限公司,以水溶液形式存在;本发明实施例涉及的制备方法以及测试方法为柔性太阳能电池的常规测试方法。柔性透明基底参见CN2020100853546实施例一步骤(1),为嵌有银纳米线的PET塑料基底,是本课题组之前申请的一篇中国专利。在该基底的基础上,重新做了旋涂实验,得到本发明的透明柔性电极以及各对比电极。
铝掺杂氧化锌(AZO)根据文献(High-Performance
Polymer Solar Cells with PCE of 10.42% via Al-Doped ZnO Cathode Interlayer)中的实验步骤合成;离子液体[2,3-dhpmim][Cl]为黄色油状液体。
用扫描电子显微镜(Hitachi SU8010)测试所制备的电极的表面形貌(SEM);用四探针电阻测量系统对制备的电极面电阻进行测试;用紫外可见分光光度计(Cary 60)对制备的电极透过率进行测试;用弯曲测试仪对所制备的电极及器件进行弯曲测试;用Keithley 2450源表以及太阳光模拟器(AM 1.5G,100
mW/cm
2)测试所制备的器件的性能参数(J-V)。
本发明基于离子液体制备透明柔性电极的方法为,在柔性透明基底上旋涂离子液体溶液与金属纳米线溶液的混合液,再旋涂导电层溶液,热退火处理,得到透明柔性电极。
下面将结合实施例,详细说明本发明:实施例一 :(1)将离子液体、硝酸银、乙酸加入水中,得到离子液体溶液,其中离子液体的体积浓度为0.125‰,乙酸的体积浓度为0.5‰,硝酸银的浓度为0.017mg/mL;离子液体如下:
。
将0.3mL上述离子液体溶液加入0.7mL银纳米线水溶液中,得到掺杂离子液体溶液的银纳米线水溶液,其中离子液体溶液的体积百分数为30%,银纳米线的浓度为0.25 wt%。
(2)在柔性透明基底上旋涂掺杂离子液体溶液的银纳米线水溶液,2000
rpm 40 s,无需加热,然后在掺杂离子液体的银纳米线上旋涂10 mg/mL的铝掺杂氧化锌水溶液,2000 rpm 60 s,120
oC退火15分钟,再旋涂5 mg/mL的铝掺杂氧化锌水溶液,2000 rpm 60 s,120
oC退火15分钟,得到三层厚度为100 nm的透明柔性电极(未计算柔性透明基底的厚度),至此,透明柔性电极制备完成。
将上述步骤(2)中的掺杂离子液体溶液的银纳米线水溶液换为未掺杂离子液体溶液的银纳米线水溶液(即银纳米线浓度为0.25wt%的银纳米线水溶液),其余不变,得到未掺杂离子液体溶液的银纳米线制备的透明柔性电极,作为对比。
图1为掺杂离子液体溶液的银纳米线扫描电子显微镜图(SEM),图2为未掺杂离子液体溶液的银纳米线旋涂后的扫描电子显微镜图(SEM),可以明显看出掺杂30%离子液体溶液的银纳米线接触更好。图3为掺杂离子液体溶液的银纳米线与未掺杂离子液体溶液的银纳米线制备的透明柔性电极的面电阻图,从图中可以看出由掺杂离子液体溶液的银纳米线制备的透明柔性电极面电阻降低至12.0 Ω/sq,对比未掺杂离子液体溶液的银纳米线制备的透明柔性电极面电阻(18.0 Ω/sq)大大降低。由此可说明选用掺杂离子液体溶液的银纳米线制备的透明柔性电极确实能提高其导电性能。
将上述步骤(1)中离子液体溶液的体积百分数调整为15%,其余与上述一样(尤其是保持银纳米线浓度为0.25wt%),制备得到透明柔性电极,同样的方法测试面电阻,得到电极面电阻为15.2 Ω/sq;将上述步骤(1)中离子液体溶液的体积百分数调整为50%,其余与上文一样,制备得到透明柔性电极,同样的方法测试面电阻,得到电极面电阻为12.0 Ω/sq,平均透过率82%,平均透过率相对掺杂30%离子液体溶液的银纳米线有较多下降。
图4为掺杂离子液体溶液的银纳米线与未掺杂离子液体溶液的银纳米线制备的透明柔性电极弯曲测试后的面电阻变化图,从图中可以看出在4 mm的弯曲半径下,经过1200次的向内弯曲(以导电层为内)后,未掺杂离子液体溶液的银纳米线制备的透明柔性电极相较于掺杂离子液体溶液的银纳米线制备的透明柔性电极面电阻增加明显,说明本发明提升电极的机械性能。
图5为掺杂离子液体溶液的银纳米线制备的透明柔性电极照片,可以看到本发明电极有很高的透过率,常规测试平均透过率为84%,未掺杂离子液体溶液的银纳米线制备的透明柔性电极平均透过率也为84%。由此可见掺杂离子液体对电极透过无明显影响。
对比例一:在柔性透明基底(与实施例一一致)上旋涂银纳米线水溶液(0.25wt%),2000 rpm 40 s,无需加热,然后在银纳米线上旋涂离子液体溶液(与实施例一一致),3000
rpm 30 s,无需加热,接下来再旋涂10 mg/mL的铝掺杂氧化锌水溶液,2000 rpm 60 s,120
oC退火15分钟,再旋涂5 mg/mL的铝掺杂氧化锌水溶液,2000 rpm 60 s,120
oC退火15分钟,得到透明柔性电极;同样的测试,其面电阻为16.0 Ω/sq,在4 mm的弯曲半径下,经过1200次的向内弯曲后,其面电阻为原始的1.1倍,较掺杂30%离子液体溶液的银纳米线制备的透明柔性电极差。
在柔性透明基底(与实施例一一致)上旋涂银纳米线水溶液(0.25wt%),2000
rpm 40 s,无需加热,然后在银纳米线上旋涂去离子水,3000 rpm 30 s,无需加热,接下来再旋涂10 mg/mL的铝掺杂氧化锌水溶液,2000
rpm 60 s,120
oC退火15分钟,再旋涂5 mg/mL的铝掺杂氧化锌水溶液,2000 rpm 60 s,120
oC退火15分钟,得到透明柔性电极;同样的测试,其面电阻为20.2 Ω/sq,在4 mm的弯曲半径下,经过1200次的向内弯曲后,其面电阻为原始的1.2倍,较未掺杂离子液体溶液的银纳米线制备的透明柔性电极差。
在柔性透明基底(与实施例一一致)上旋涂掺杂30%维生素C溶液(将实施例一的离子液体溶液中的离子液体换为维生素C,其他条件不变)的银纳米线水溶液(0.25wt%),2000 rpm 40 s,无需加热,然后旋涂10
mg/mL的铝掺杂氧化锌水溶液,2000 rpm 60 s,120
oC退火15分钟,再旋涂5 mg/mL的铝掺杂氧化锌水溶液,2000 rpm 60 s,120
oC退火15分钟,得到透明柔性电极;同样的测试,其面电阻为16.1 Ω/sq,在4 mm的弯曲半径下,经过1200次的向内弯曲后,其面电阻为原始的1.12倍,较掺杂30%离子液体溶液的银纳米线制备的透明柔性电极差。
在柔性透明基底(与实施例一一致)上旋涂掺杂30%离子液体醇溶液(将实施例一的离子液体溶液中的水溶剂换为乙醇溶剂,其他条件不变)的银纳米线水溶液(0.25wt%),2000 rpm 40 s,无需加热,然后旋涂10
mg/mL的铝掺杂氧化锌水溶液,2000 rpm 60 s,120
oC退火15分钟,再旋涂5 mg/mL的铝掺杂氧化锌水溶液,2000 rpm 60 s,120
oC退火15分钟,得到透明柔性电极;同样的测试,其面电阻为15.4 Ω/sq,在4 mm的弯曲半径下,经过1200次的向内弯曲后,其面电阻为原始的1.11倍,较掺杂30%离子液体溶液的银纳米线制备的透明柔性电极差。
实施例二:将实施例一制备的透明柔性电极置于氮气手套箱中,在导电层表面旋涂活性层溶液,溶液的组分为PBDB-T-2F、Y6,溶剂为纯CF,组成浓度为16 mg/mL的溶液,滴涂的速率为3000 rpm,时间为30s,滴涂完毕后,在110
oC下退火10分钟,得到活性层;然后在镀膜机中,在活性层表面蒸镀三氧化钼空穴传输层和Al电极,厚度分别为10 nm和100 nm。至此,柔性太阳能电池制备完成,为掺杂离子液体溶液的银纳米线制备的柔性有机太阳能电池,结构及照片见图6。
将实施例一未掺杂离子液体溶液的银纳米线制备的透明柔性电极置于氮气手套箱中,进行一样的制备步骤,得到未掺杂离子液体的银纳米线制备的柔性有机太阳能电池,作为对比。
表1和图7是用掺杂离子液体溶液的银纳米线与未掺杂离子液体溶液的银纳米线制备的柔性有机太阳能电池的J-V曲线图。由此可知,未掺杂离子液体溶液的银纳米线制备的柔性有机太阳能电池性能低于掺杂离子液体溶液的银纳米线制备的柔性有机太阳能电池,掺杂离子液体溶液的银纳米线制备的柔性有机太阳能电池效率为15.71%,与刚性基底(基底为玻璃,电极为氧化铟锡,其余一样)有机太阳能电池效率几乎一致(15.78%)。
图8为掺杂离子液体溶液的银纳米线与未掺杂离子液体溶液的银纳米线制备的柔性有机太阳能电池的向内弯曲测试图,从图中可以看到未掺杂离子液体溶液的银纳米线制备的柔性有机太阳能电池经过弯曲后,性能保持为初始效率的92.8%,而用掺杂离子液体溶液的银纳米线制备的柔性有机太阳能电池在4mm弯曲半径下弯曲1200次后仍能保持初始效率的95.4%。说明本发明可以通过掺杂离子液体溶液的银纳米线,获得高性能,具有良好机械性能的柔性有机太阳能电池,克服了现有技术制备的电池弯曲性能差的缺点,取得了意想不到的技术效果。
对比例二:在柔性透明基底(与实施例一一致)上旋涂银纳米线水溶液(0.25wt%),2000 rpm 40 s,无需加热,然后在银纳米线上旋涂离子液体溶液(与实施例一一致),3000
rpm 30 s,无需加热,接下来再旋涂10 mg/mL的铝掺杂氧化锌水溶液,2000 rpm 60 s,120
oC退火15分钟,再旋涂5 mg/mL的铝掺杂氧化锌水溶液,2000 rpm 60 s,120
oC退火15分钟,得到透明柔性电极;将上述透明柔性电极再进行与实施例二一样的电池制备步骤,得到柔性有机太阳能电池。
表2和图9为实施例二用掺杂30%离子液体溶液的银纳米线制备的银纳米线和铝掺杂氧化锌复合电极及对比例二用银纳米线上旋涂离子液体溶液制备的银纳米线和铝掺杂氧化锌复合电极制备的柔性有机太阳能电池的效率表及J-V曲线图。由此可知,掺杂30%离子液体溶液的银纳米线才能制备出具有良好性能的柔性有机太阳能电池。
Claims (10)
- 基于离子液体制备透明柔性电极的方法,其特征在于,包括以下步骤,在柔性透明基底上旋涂离子液体溶液与金属纳米线溶液的混合液,再旋涂导电层溶液,热退火处理,得到透明柔性电极。
- 根据权利要求1所述基于离子液体制备透明柔性电极的方法,其特征在于,导电层溶液为离子液体溶液与金属纳米线溶液的混合液、金属纳米线溶液或者金属氧化物溶液中的一种或几种;离子液体溶液包括离子液体、水溶性金属盐、弱酸以及溶剂;金属纳米线为银纳米线或者金纳米线。
- 根据权利要求2所述基于离子液体制备透明柔性电极的方法,其特征在于,溶剂为水和/或醇类溶剂;离子液体为咪唑型离子液体;离子液体的体积浓度为0.1~0.15‰,弱酸的体积浓度为0.4~0.6‰,水溶性金属盐的浓度为0.015~0.02mg/mL。
- 一种柔性太阳能电池,其特征在于,包括透明柔性电极、活性层、空穴传输层、顶电极;或者包括透明柔性电极、活性层、电子传输层、顶电极;在柔性透明基底上旋涂离子液体溶液与金属纳米线溶液的混合液,再旋涂导电层溶液,热退火处理,得到透明柔性电极。
- 根据权利要求5所述柔性太阳能电池,其特征在于,所述活性层材料为PBDB-T-2F、Y6、BTP-eC9的一种或几种;所述电子传输层材料为ZnO、TiO 2、SnO 2、PFN、PFN-Br、PDINO中的一种或几种;所述空穴传输层材料选自聚[双(4-苯基)(2,4,6-三甲基苯基)胺]、聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐、氧化镍、氧化铜、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴、硫氰酸亚铜、氧化钼中的一种;所述电极为Au电极、Ag电极、Al电极、Cu电极、PH1000聚合物电极、金属氧化物电极中的一种或几种。
- 根据权利要求5所述柔性太阳能电池,其特征在于,离子液体溶液与金属纳米线溶液的混合液中,金属纳米线的浓度0.15~0.5 wt%;离子液体溶液与金属纳米线溶液的混合液中,离子液体溶液的体积百分数为0~50%且不包括0。
- 根据权利要求5所述柔性太阳能电池,其特征在于,旋涂离子液体溶液与金属纳米线溶液的混合液时,转速为1000~3000 rpm,时间为10~100秒;热退火的温度为100~150℃,时间为10~30 min。
- 权利要求1所述透明柔性电极在制备柔性器件中的应用。
- 根据权利要求9所述的应用,其特征在于,所述柔性器件包括柔性太阳能电池、柔性传感器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/076960 WO2022174401A1 (zh) | 2021-02-19 | 2021-02-19 | 基于离子液体制备透明柔性电极的方法及柔性太阳能电池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/076960 WO2022174401A1 (zh) | 2021-02-19 | 2021-02-19 | 基于离子液体制备透明柔性电极的方法及柔性太阳能电池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022174401A1 true WO2022174401A1 (zh) | 2022-08-25 |
Family
ID=82931914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/076960 WO2022174401A1 (zh) | 2021-02-19 | 2021-02-19 | 基于离子液体制备透明柔性电极的方法及柔性太阳能电池 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022174401A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110076539A1 (en) * | 2009-09-28 | 2011-03-31 | Fujifilm Corporation | Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell |
CN105140408A (zh) * | 2015-08-02 | 2015-12-09 | 北京天恒盛通科技发展有限公司 | 柔性透明复合离子液体凝胶导电电极的制备方法 |
CN108269644A (zh) * | 2017-01-04 | 2018-07-10 | 北京赛特超润界面科技有限公司 | 一种金属纳米线@离子液体凝胶复合柔性透明电极的制备方法 |
CN108735349A (zh) * | 2018-04-27 | 2018-11-02 | 东南大学 | 一种含离子液体的银纳米线透明导电薄膜及其制备方法 |
CN111192965A (zh) * | 2020-02-10 | 2020-05-22 | 苏州大学 | 柔性透明电极及其制备方法与由其制备的柔性太阳能电池 |
-
2021
- 2021-02-19 WO PCT/CN2021/076960 patent/WO2022174401A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110076539A1 (en) * | 2009-09-28 | 2011-03-31 | Fujifilm Corporation | Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell |
CN105140408A (zh) * | 2015-08-02 | 2015-12-09 | 北京天恒盛通科技发展有限公司 | 柔性透明复合离子液体凝胶导电电极的制备方法 |
CN108269644A (zh) * | 2017-01-04 | 2018-07-10 | 北京赛特超润界面科技有限公司 | 一种金属纳米线@离子液体凝胶复合柔性透明电极的制备方法 |
CN108735349A (zh) * | 2018-04-27 | 2018-11-02 | 东南大学 | 一种含离子液体的银纳米线透明导电薄膜及其制备方法 |
CN111192965A (zh) * | 2020-02-10 | 2020-05-22 | 苏州大学 | 柔性透明电极及其制备方法与由其制备的柔性太阳能电池 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tang et al. | Recent progress of flexible perovskite solar cells | |
CN111192965B (zh) | 柔性透明电极及其制备方法与由其制备的柔性太阳能电池 | |
CN108598268B (zh) | 环境条件下印刷制备平面异质结钙钛矿太阳电池的方法 | |
CN109802041B (zh) | 一种非富勒烯钙钛矿平面异质结太阳能电池及制备方法 | |
CN105226191A (zh) | 柔性钙钛矿太阳能电池及其制备工艺 | |
CN111081883B (zh) | 一种高效稳定的平面异质结钙钛矿太阳能电池及制备方法 | |
CN109786555B (zh) | 一种钙钛矿太阳能电池及制备方法 | |
CN109768167B (zh) | 无电流迟滞的钙钛矿太阳电池及其制备方法 | |
CN201247782Y (zh) | 一种高效聚合物太阳能电池 | |
CN104393175A (zh) | 一种有机太阳能电池及制备方法 | |
CN105206749A (zh) | 钙钛矿太阳能电池及其制备工艺 | |
CN103839687A (zh) | 一种叠层染料敏化太阳电池 | |
CN101447553A (zh) | 一种聚合物太阳能电池的制备方法 | |
CN114784198A (zh) | 一种高效钙钛矿太阳能电池、电池组件、电池器件及其制备方法 | |
CN105280818A (zh) | 一种稳定的平面异质结钙钛矿太阳能电池及其制备方法 | |
CN103280528B (zh) | 一种聚合物太阳能电池 | |
CN111223993B (zh) | 一种高开路电压的半透明钙钛矿太阳能电池 | |
TWI529990B (zh) | Production method of trans - type large area organic solar cell | |
WO2022174401A1 (zh) | 基于离子液体制备透明柔性电极的方法及柔性太阳能电池 | |
CN101877386A (zh) | 基于介观光学结构的万向太阳能电池 | |
CN115000237A (zh) | 一种全透明钙钛矿太阳能电池及其制作方法 | |
CN112968130B (zh) | 一种柔性太阳能电池器件及其制备方法 | |
US20230092575A1 (en) | Flexible transparent electrode and preparation method therefor, and flexible solar cell prepared using flexible transparent electrode | |
CN113013339B (zh) | 基于离子液体制备透明柔性电极的方法及柔性太阳能电池 | |
CN104393069A (zh) | 二氧化钛纳米晶体颗粒及其制备方法以及在太阳能电池上的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21926121 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21926121 Country of ref document: EP Kind code of ref document: A1 |