WO2022172950A1 - ロール成形部品の製造装置及び製造方法 - Google Patents

ロール成形部品の製造装置及び製造方法 Download PDF

Info

Publication number
WO2022172950A1
WO2022172950A1 PCT/JP2022/005098 JP2022005098W WO2022172950A1 WO 2022172950 A1 WO2022172950 A1 WO 2022172950A1 JP 2022005098 W JP2022005098 W JP 2022005098W WO 2022172950 A1 WO2022172950 A1 WO 2022172950A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
amount
bending
displacement
workpiece
Prior art date
Application number
PCT/JP2022/005098
Other languages
English (en)
French (fr)
Inventor
大樹 織部
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to EP22752773.6A priority Critical patent/EP4292723A1/en
Priority to JP2022580655A priority patent/JPWO2022172950A1/ja
Publication of WO2022172950A1 publication Critical patent/WO2022172950A1/ja
Priority to US18/228,671 priority patent/US20230372987A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/06Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles
    • B21D5/08Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles making use of forming-rollers
    • B21D5/083Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles making use of forming-rollers for obtaining profiles with changing cross-sectional configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/14Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling without mandrel, e.g. stretch-reducing mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/004Bending sheet metal along straight lines, e.g. to form simple curves with program control

Definitions

  • the present disclosure roll-bends a workpiece consisting of a long plate material or a long shape material having a variable width portion in which the width dimension changes along the longitudinal direction, thereby obtaining an outer contour having a predetermined constant curvature and a variable curvature. or an outer contour with a variable curvature and an inner contour with a predetermined constant curvature, or an outer contour with a variable curvature and an inner contour with a variable curvature.
  • patent documents 1 and 2 disclose apparatuses for manufacturing roll-formed parts in which a long plate material is given a curvature along its longitudinal direction. According to the manufacturing apparatus of Patent Document 1, the curvature can be continuously adjusted along the longitudinal direction. Further, according to the manufacturing apparatus of Patent Document 2, it is possible to manufacture a part whose cross section changes along the longitudinal direction by roll forming.
  • the frame is an arc-shaped part provided along the circumference of the fuselage portion, the outer contour of which has a constant curvature, while the inner contour of which has a variable curvature that is constricted outwards, for example, to widen the interior space of the fuselage. shape may be adopted.
  • Patent Document 1 discloses a technique for bending a constant width workpiece, a technique for bending a variable width workpiece such that the outer contour has a constant curvature and the inner contour has a variable curvature, or It does not specifically disclose the technique of bending the outer contour with a variable curvature and the inner contour with a constant curvature, or the technique of bending the outer contour with a variable curvature and the inner contour with a variable curvature.
  • Patent Document 2 discloses a technique for bending a workpiece having a variable width, it specifically discloses a roll control method and an operation setting method for obtaining a desired shape. not.
  • the present disclosure roll-bends a workpiece made of a long plate material or a long shape material having a variable width portion in which the width dimension changes along the longitudinal direction to obtain an outer contour with a predetermined curvature and a variable width.
  • a manufacturing apparatus for manufacturing arc-shaped roll-formed parts having inner contours of curvature, or outer contours of variable curvature and inner contours of predetermined constant curvature, or outer contours of variable curvature and inner contours of variable curvature, and The object is to provide a manufacturing method.
  • An apparatus for manufacturing a roll-formed part provides a workpiece made of a long plate material or a long shaped material having a variable width portion in which at least a part of the width direction dimension changes along the longitudinal direction.
  • a manufacturing apparatus for manufacturing an arc-shaped roll-formed part by performing roll bending while conveying along a bending path, wherein the work material is brought into contact with at least the outer edge portion of the work material to bend the work material.
  • a transport roll that transports in the longitudinal direction, a fulcrum roll positioned downstream of the transport roll in the bending path and in contact with at least an inner edge of the workpiece to form a fulcrum for bending the workpiece; and a plurality of rolls, including a bending roll positioned downstream of the bending path with respect to the fulcrum roll and abutting at least an outer edge portion of the work material to impart a bend to the work material; a roll driving unit that moves the transport roll, the fulcrum roll, and the bending roll in the width direction of the workpiece;
  • the amount of displacement in the width direction of the plurality of rolls set corresponding to the position of the material in the longitudinal direction is defined as the amount of contact displacement of each roll, and based on the amount of contact displacement of the fulcrum roll, the The amount of displacement of the work material in the width direction at the position where the work material contacts the fulcrum roll, which is set corresponding to the position of the work material in the longitudinal direction, is defined as the
  • Each displacement amount in the width direction of the plurality of rolls corresponding to the position in the longitudinal direction which is obtained by synthesizing the contact displacement amount of the rolls and the origin displacement amount, is defined as a first displacement amount of each of the rolls. and the bending corresponding to the position in the longitudinal direction for making the outer contour of the work material a predetermined curvature, which is set based on the shape of the work material at the position where it contacts the fulcrum roll
  • the control unit sets the displacement amount corresponding to the sum of the first displacement amount and the second displacement amount of the bending roll to the bending roll.
  • the displacement amount of the roll in the width direction is acquired, and the roll drive unit that moves the bending roll is driven based on the acquired displacement amount of the bending roll in the width direction.
  • a method for manufacturing a roll-formed part according to the present disclosure is to use a workpiece made of a long plate material or a long shaped material having a variable width portion in which at least a part has a width dimension that varies along the longitudinal direction, as a fulcrum for bending.
  • a plurality of rolls including a fulcrum roll and a bending roll that imparts bending roll bending is performed while conveying so that the longitudinal direction is along the bending path.
  • Manufacturing method for manufacturing an arc-shaped roll-formed part wherein each displacement amount in the width direction of the plurality of rolls set corresponding to the position in the longitudinal direction of the work material is calculated based on the dimension in the width direction of the work material.
  • the position at which the work material abuts on the fulcrum roll which is set corresponding to the position of the work material in the longitudinal direction based on the contact displacement amount of the fulcrum roll.
  • the displacement amount of the work material in the width direction is defined as an origin displacement amount, and the plurality of positions corresponding to the positions in the longitudinal direction are obtained by synthesizing the contact displacement amount of each roll and the origin displacement amount.
  • the outer contour of the work material is set based on the shape of the work material at the position where the rolls are in contact with the fulcrum roll, with each displacement amount of the rolls in the width direction being the first displacement amount of the rolls.
  • the roll driving unit moves the bending roll based on the displacement amount of the bending roll in the width direction. drive.
  • a work piece made of a long plate material or a long shape material having a variable width portion whose width direction dimension changes along the longitudinal direction is subjected to roll bending processing so that the outer side of a predetermined first curvature. It is possible to provide a manufacturing apparatus and manufacturing method capable of manufacturing arc-shaped roll-formed parts having contours and inner contours of variable curvature.
  • FIG. 1 is a front view schematically showing a configuration example of a roll-formed part after being formed by a roll-formed part manufacturing apparatus of the present disclosure.
  • FIG. 2 is a front view schematically showing a configuration example of a work piece, showing a one-side variable work piece and a double-side variable work piece.
  • FIG. 3 is a schematic block diagram showing an example of the configuration of the manufacturing apparatus.
  • FIG. 4 is a schematic diagram showing a moving mode of rolls of the manufacturing apparatus and an example of a cross-sectional shape of a workpiece.
  • FIG. 5 is a schematic diagram for explaining the displacement of the rolls along the surface of the double-sided variable workpiece.
  • FIG. 6A is a schematic diagram for explaining each first displacement amount of a transport roll, an outer fulcrum roll, and a bending roll.
  • FIG. 6B shows the first displacement amount of the transport roll.
  • FIG. 6C shows the first displacement amount of the fulcrum roll.
  • FIG. 6D shows the first displacement of the bending rolls.
  • FIG. 7 is a schematic diagram for explaining the second displacement amount of the bending rolls for the double-sided variable workpiece.
  • FIG. 8 is a schematic diagram for explaining the setting of the second displacement amount of the bending rolls based on the geometrical moment of inertia and the initial shape of the outer contour.
  • FIG. 9A is a schematic diagram for explaining the displacement of bending rolls for a double-sided variable workpiece.
  • FIG. 9B shows a third displacement obtained by combining the first displacement and the second displacement for the bending roll.
  • FIG. 10A is a schematic diagram for explaining the displacement of the bending rolls with respect to the one-side variable workpiece.
  • FIG. 10B shows a third displacement obtained by combining the first displacement and the second displacement for the bending roll.
  • FIG. 1 is a front view schematically showing a configuration example of a roll-formed part after being formed by a roll-formed part manufacturing apparatus of the present disclosure.
  • a frame used in the cross-sectional direction of an aircraft fuselage that is, in the circumferential direction, will be described as an example of a roll-formed part, among various frame members used in manufacturing an aircraft fuselage.
  • the roll-formed part 40 has an overall arc shape.
  • the roll formed part 40 has an outer edge 41 and an inner edge 42 with different contours.
  • a contour shape is also called a contour.
  • the curvature Rout of the outer contour C41 corresponding to the outer edge 41 forms a predetermined constant curvature.
  • the curvature Rout of the outer contour C41 is hereinafter referred to as the first curvature.
  • the curvature Rin of the inner contour C42 corresponding to the inner edge portion 42 has a variable curvature that varies depending on the portion.
  • the roll-formed component 40 has a first portion 40A, a second portion 40B, a third portion 40C, a fourth portion 40D, and a fifth portion 40E arranged in order from one end (tip).
  • the first portion 40A and the fifth portion 40E are constant width portions in which the width dimensions W1 and W5, which are the dimensions between the outer edge portion 41 and the inner edge portion 42, respectively, have constant values.
  • the width dimensions of the first portion 40A, the second portion 40B, the third portion 40C, the fourth portion 40D, and the fifth portion 40E are different. appears in the variation of the inner contour C42. That is, the inner contours of the second portion 40B and the fourth portion 40D have variable curvatures.
  • the width dimension W3 of the third portion 40C gradually decreases from the second portion 40B side toward the fourth portion 40D side, but since the rate of decrease is constant, the inner contour has a constant curvature.
  • the roll-formed part 40 that can be formed by the manufacturing apparatus of the present disclosure is not limited to one in which the curvature Rout of the outer contour C41 is constant.
  • a roll-formed part having a variable contour whose curvature changes along the longitudinal direction as an outer contour can be formed by the manufacturing apparatus of the present disclosure.
  • Examples of materials for such roll-formed parts 40 include aluminum or aluminum alloys for frame applications of aircraft fuselages, and iron or iron-containing ferrous materials such as steel materials for other applications. Also included are alloys.
  • the roll-formed part 40 is generally formed as follows. That is, a long plate material or a long shape material is used as a starting member, and is roll-formed in the first step, which is a forming step, to obtain a workpiece 10 as an intermediate member having a predetermined cross-sectional shape as shown in FIG. .
  • the workpiece 10 is subjected to roll bending in the second step, which is a bending step, while being conveyed along the bending path A1 in the longitudinal direction, thereby forming a final part. of roll formed parts 40 are obtained.
  • the workpiece 10 after undergoing the first step has a predetermined cross-sectional shape and at least a part thereof has a variable width portion in which the width dimension varies along the longitudinal direction.
  • This variable width portion corresponds to the variable width portion described above for roll formed component 40 .
  • FIG. 2 is a front view schematically showing a configuration example of the workpiece 10 formed by the roll-formed part manufacturing apparatus of the present disclosure.
  • a variable workpiece 30 is shown.
  • the X-axis and the Y-axis are set as shown in FIG.
  • the X-axis is the axis along the outer edge of the workpiece 10 facing away from the conveying direction, and the Y-axis is perpendicular to the X-axis and extends outward from the outer edge.
  • the one-sided variable workpiece 20 has a first portion 20A, a second portion 20B, a third portion 20C, a fourth portion 20D, and a fifth portion 20E arranged in order from the tip.
  • first portion 20A, second portion 20B, third portion 20C, fourth portion 20D, and fifth portion 20E are the first portion 40A, second portion 40B, third portion 40C, and third portion 40A of the roll-formed component 40, respectively. It corresponds to the 4th part 40D and the 5th part 40E. Therefore, the first portion 20A and the fifth portion 20E form constant width portions in which the width dimensions W1 and W5 between the outer edge portion 21 and the inner edge portion 22 have constant values.
  • the double-sided variable workpiece 30 also has a first portion 30A, a second portion 30B, a third portion 30C, a fourth portion 30D, and a fifth portion 30E arranged in order from the tip. is doing.
  • These first portion 30A, second portion 30B, third portion 30C, fourth portion 30D, and fifth portion 30E are the first portion 40A, second portion 40B, third portion 40C, and third portion 40A of the roll-formed component 40, respectively. It corresponds to the 4th part 40D and the 5th part 40E. Therefore, the first portion 30A and the fifth portion 30E form constant width portions in which the width dimensions W1 and W5, which are the dimensions between the outer edge portion 31 and the inner edge portion 32, have constant values.
  • the second portion 30B, the third portion 30C, and the fourth portion 30D form a variable width portion having a variable width whose width dimension is not constant.
  • the single-sided variable workpiece 20 and the double-sided variable workpiece 30 have the same change in width dimension along the longitudinal direction.
  • the one-sided variable workpiece 20 has an outer contour C21 that is a straight line with zero curvature, and an inner contour C22 that is a variable contour whose curvature changes midway. Therefore, in the one-side variable workpiece 20, the amount of change in the width dimension corresponds to the amount of change in the Y direction of the inner contour C22.
  • neither the outer contour C31 nor the inner contour C32 is a straight line, and has a variable contour including a portion with a variable curvature. Therefore, in the double-sided variable workpiece 30, the amount of change in the width dimension corresponds to the total value of the amount of change in the Y direction of the outer contour C31 and the inner contour C32.
  • the outer contour C31 and the inner contour C32 have the same change amount at the same position in the longitudinal direction. That is, when an axis line is set so as to connect the widthwise center of the tip portion and the widthwise center of the end portion of the double-sided variable workpiece 30, the outer contour C31 and the inner contour C32 are aligned with this axis line. are symmetrical to each other. Therefore, in the double-sided variable workpiece 30 of FIG. 2, 50% of the amount of change in the widthwise dimension corresponds to the amount of change in the outer contour C31, and the remaining 50% corresponds to the amount of change in the inner contour C32.
  • the contour shape that can be adopted for the double-sided variable workpiece 30 is not limited to this.
  • the outer contour and the inner contour may be asymmetric with respect to the axis, and the amount of change in the widthwise dimension may be any percentage, such as 20% and 80%, for each of the outer and inner contours. may correspond to
  • FIG. 3 is a schematic block diagram showing an example of the configuration of the roll-formed part manufacturing apparatus of the present disclosure.
  • the manufacturing apparatus 100 includes multiple rolls.
  • a transport roll 101, a fulcrum roll 102, and a bending roll 103 are provided as the plurality of rolls.
  • the manufacturing apparatus 100 includes a control section 104 , a storage section 105 and a roll driving section 106 .
  • the conveying rolls 101 rotate while contacting at least the outer edge portions 21 and 31 of the work piece 10 that has undergone the roll forming process in the first step, thereby bending the work piece 10 in its longitudinal direction. It is conveyed downstream along the route A1. Further, the transport roll 101 is movable in the width direction of the workpiece 10, as will be described later. In addition, the transport roll 101 may be movable in the width direction of the workpiece 10 and may be rotatable, that is, swivel, about a predetermined center point.
  • the fulcrum roll 102 is located on the downstream side of the bending path A1 with respect to the transport roll 101.
  • the fulcrum roll 102 abuts at least the inner edge portions 22 and 32 of the workpiece 10 during the roll bending process of the second step, and forms a fulcrum for bending the workpiece 10 .
  • the fulcrum roll 102 is movable in the width direction of the workpiece 10 as described later.
  • the fulcrum roll 102 may be movable in the width direction of the workpiece 10 and may be rotatable, that is, swivel, about a predetermined center point.
  • FIG. 3 also shows an inner fulcrum roll 102A that contacts the inner edge portions 22 and 32 and an outer fulcrum roll 102B that contacts the outer edge portions 21 and 31 as the fulcrum rolls 102. will be described later.
  • the bending roll 103 is located downstream of the fulcrum roll 102 along the bending path A1.
  • the bending rolls 103 are in contact with at least the outer edge portions 21 and 31 of the workpiece 10 to bend the workpiece 10 during the roll bending process of the second step.
  • the bending roll 103 is movable in the width direction of the workpiece 10 and can rotate, that is, turn around a predetermined center point.
  • the manufacturing apparatus 100 may include two or more stages of bending rolls as rolls for bending the workpiece 10, or the manufacturing apparatus 100 may be configured with four or more stages of rolls regardless of the type of rolls. may be
  • the conveying direction of the workpiece 10 between the conveying roll 101 and the fulcrum roll 102 is the P direction
  • the width direction of the workpiece 10 perpendicular to the P direction is the Q direction.
  • the P direction and the X direction are parallel, but on the downstream side of the fulcrum roll 102 where bending is applied, both directions intersect each other.
  • the distance along the P direction between the transport roll 101 and the fulcrum roll 102 is the same as the distance between the fulcrum roll 102 and the bending roll 103.
  • the fulcrum The roll 102 is provided at an intermediate position between the transport roll 101 and the bending roll 103 in the P direction. If the order of the transport roll 101, the fulcrum roll 102, and the bending roll 103 along the bending path A1 does not change, the intervals between them do not necessarily have to be equal.
  • the control unit 104 includes a processor or the like that constitutes an arithmetic unit, and controls the operation of the manufacturing apparatus 100 .
  • the control unit 104 drives the roll driving unit 106 based on data and computer programs stored in the storage unit 105 including various memories and HDDs, and controls the transport roll 101, the fulcrum roll 102, the bending roll 103, and the like. controls the behavior of 3 and subsequent drawings, the conveying roll 101 is denoted by #1 in addition to the reference number, the fulcrum roll 102 is denoted by #2 in addition to the reference number, and the bending roll 103 is denoted by #2 in addition to the reference number. #3 is indicated.
  • FIG. 4 is a schematic diagram showing a movement mode of the bending roll 103 of the manufacturing apparatus 100 and an example of the cross-sectional shape of the workpiece 10. As shown in FIG. Although the bending roll 103 is exemplified here, other transport rolls 101 and fulcrum rolls 102 may be the same. Also, although the double-sided variable workpiece 30 is illustrated as the workpiece 10, the same applies to the single-sided variable workpiece 20. FIG.
  • the two-sided variable workpiece 30 is illustrated as having a Z-shaped cross section. That is, the cross section of this double-sided variable workpiece 30 includes a web 30a extending in the Y direction, a free flange 30b extending from one end of the web 30a in the Z direction perpendicular to both the X and Y directions, and a Z direction extending from the other end of the web 30a.
  • the flange 30c extends in the direction opposite to the free flange 30b, and the return flange 30d curves in the Y direction from the tip of the flange 30c.
  • the cross-sectional shape of the double-sided variable workpiece 30 the one shown in FIG. 4 is an example, and the configuration is not limited to this.
  • FIG. 4 as the bending rolls 103, a roll pair of outer bending rolls sandwiching the free flange 30b and a roll pair of inner bending rolls sandwiching the flange 30c are illustrated as an example.
  • the bending roll 103 is expressed to be smaller than the workpiece 10, but the dimensions of the bending roll 103 are not limited to this.
  • FIG. 4 as a process in which the workpiece 10 is conveyed along the bending path A1, at the first time, the bending roll 103 is positioned at the wide portion, and at the second time, the bending roll 103 is positioned at the wide width portion. 2 shows a state of being located in the narrow portion.
  • the bending roll 103 in this manufacturing apparatus 100 can slide in the Y direction or the Q direction, which is the width direction of the double-sided variable workpiece 30 .
  • the bending roll 103 can turn around the Z-axis, for example, centering on the point of contact with the double-sided variable workpiece 30.
  • the bending roll 103 moves the outer contour C31 and the inner contour C31 of the both-sides variable workpiece 30. It is displaced following the change of C32. Displacement includes sliding and pivoting. As a result, the bending roll 103 can always maintain contact with the outer edge portion 31 and the inner edge portion 32 while the double-sided variable workpiece 30 is being transported.
  • the conveying roll 101, the fulcrum roll 102, and the bending roll 103 are used to form the fifth portions 20E and 30E of the work piece 10 having constant contours.
  • the inner contour or the outer contour of the portion on the upstream side of the conveying roll 101 along the bending path A1 of the workpiece 10 is always parallel to the P direction shown in FIG.
  • the operation is controlled by the control unit 104 .
  • the manufacturing apparatus 100 applies roll bending to the workpiece 10 as described below.
  • the operations of the rolls 101, 102, and 103 during conveyance of the workpiece 10 are realized by the controller 104 driving the roll driving unit 106 based on the data stored in the storage unit 105.
  • the storage unit 105 stores various data on the cross-sectional shape (length, width, thickness, etc.) and material properties (Young's modulus, etc.) of the workpiece 10, and the rolls 101, 102, 103 using these as parameters. Data related to an arithmetic expression for calculating the amount of displacement including the amount of sliding and the amount of turning is stored in advance.
  • the storage unit 105 pre-stores data on the amount of movement of each of the rolls 101, 102, and 103 with respect to the position of the workpiece 10 in the longitudinal direction.
  • the roll drive unit 106 includes an electric actuator having an electric motor and a ball screw, or a hydraulic pump and a hydraulic cylinder, in order to slide the rolls 101, 102, and 103 in the width direction of the workpiece 10 as described above. linear actuators, such as hydraulic actuators having
  • the roll drive unit 106 includes a rotary actuator including an electric motor, a speed reducer including a pinion and a rotary gear, etc., in order to rotate each roll 101, 102, 103 around a predetermined center point. may be provided.
  • each of the rolls 101, 102, 103 may be supported by a plurality of robots having two or more axes, for example, six axes, and slidably moved and rotated.
  • the bending roll 103 is displaced while supporting the double-sided variable workpiece 30 with the transport roll 101 and the fulcrum roll 102, thereby bending the workpiece 30 with the fulcrum roll 102. Bending is applied to the contact portion.
  • the double-sided variable work piece 30 is also simply referred to as the work piece 30 .
  • the amount of displacement of each of the rolls 101 and 102103 at this time includes the first amount of displacement required to contact the surface of the workpiece 30 without bending.
  • the displacement amount of the bending roll 103 includes, in addition to the first displacement amount, a second displacement amount required to bend the workpiece 30 to the desired predetermined first curvature.
  • the first curvature is a curvature equal to the final curvature Rout of the outer contour C41 of the roll-formed part 40, which is the final product.
  • the first displacement amount (sliding amount) is mainly the contact displacement amount, which is the displacement amount of the width dimension of the workpiece 30 that changes along the longitudinal direction, and the workpiece displacement amount according to the behavior of the fulcrum roll 102 .
  • 30 can be obtained from the combined amount with the origin displacement amount, which is the amount of displacement in the width direction during transportation.
  • the second displacement amount (sliding amount) of the bending roll 103 can be obtained mainly from the shape of the workpiece 30 at the point of contact with the fulcrum roll 102 . Therefore, the first displacement amount is a displacement amount determined individually for each of the transport roll 101, the fulcrum roll 102, and the bending roll 103, and the second displacement amount is a displacement amount determined for the bending roll 103. is.
  • the fulcrum roll 102 As shown in FIG. 3, the fulcrum roll 102 according to the present embodiment has an inner fulcrum roll 102A that contacts the inner edge 32 of the workpiece 30, and an outer fulcrum roll 102B that contacts the outer edge 31. .
  • the behavior of the fulcrum roll 102 is the behavior when the outer fulcrum roll 102B is displaced so as to simply follow the contour change of the workpiece 30 in the roll bending process, or the outer fulcrum roll 102B with the contour change. is a meaning including behavior when displaced or fixed in different modes.
  • the origin displacement amount of the first displacement amount of the bending roll 103 is a parameter that takes into consideration the displacement of the origin position of the bending roll 103 due to the displacement of the outer edge of the workpiece 30 in the width direction. ing.
  • the origin displacement amount of the first displacement amount of the transport roll 101 is the same, and the origin displacement amount considers the displacement of the origin position of the transport roll 101 accompanying the displacement of the outer edge of the workpiece 30 in the width direction. It is a parameter to
  • the origin position of each roll described above is a reference position representing the position of each roll and can be arbitrarily set. For example, the rotation center position of each roll can be set as the origin position.
  • FIG. 5 shows the transport roll 101, the inner fulcrum roll 102A, and the bending roll 103 when the transport roll 101, the inner fulcrum roll 102A, and the bending roll 103 are brought into contact with the surface of the double-sided variable workpiece 30 to be transported.
  • 5 is a schematic diagram for explaining displacement of the roll 103.
  • FIG. As explained in the lower diagram of FIG. 2, both the outer contour C31 and the inner contour C32 of the double-sided variable workpiece 30 are variable contours.
  • a first portion 30A with a constant curvature and a constant width For example, from the downstream end of the double-sided variable workpiece 30, a first portion 30A with a constant curvature and a constant width, a second portion 30B with a variable curvature and a variable width, a third portion 30C with a constant curvature and a variable width, and a variable curvature It has in turn a variable width fourth portion 30D and a constant curvature and constant width fifth portion 30E.
  • FIG. 4 is a schematic diagram for explaining an amount, that is, a first displacement amount;
  • FIG. 6A shows the outer contour of the workpiece 30 at the position of each roll when the position of the workpiece 30 passing through each of the transport roll 101, the outer fulcrum roll 102B, and the bending roll 103 is used as a reference. It shows the absolute value of the amount of change in C31.
  • FIG. 6A shows the outer contour of the workpiece 30 at the position of each roll when the position of the workpiece 30 passing through each of the transport roll 101, the outer fulcrum roll 102B, and the bending roll 103 is used as a reference. It shows the absolute value of the amount of change in C31.
  • the dashed line 201 is the amount of change in the outer contour C31 of the workpiece 30 at the position of the transport roll 101
  • the two-dot chain line 202 is the change in the outer contour C31 of the workpiece 30 at the position of the outer fulcrum roll 102B
  • Quantity, solid line 203 indicates the amount of change in the outer contour C31 of the workpiece 30 at the bending roll 103 position.
  • 6B to 6D show the first displacement amount of each roll when the displacement in the width direction of the outer fulcrum roll 102B is fixed, that is, the displacement is fixed to zero.
  • 6C shows the first displacement of the outer fulcrum roll 102B
  • FIG. 6D shows the first displacement of the bending roll 103.
  • the axis indicating the first displacement amount indicates that the direction in which the transport roll 101 approaches the workpiece 30 in the width direction is positive.
  • the axis indicating the first displacement amount indicates that the direction in which the bending roll 103 approaches the workpiece 30 in the width direction is positive.
  • the contact displacement amount of the transport roll 101, the contact displacement amount of the outer fulcrum roll 102B, and The amount of contact displacement of the bending roll 103 is the moving distance of displacement in the Q direction so as to contact the outer edge 31 of the conveyed workpiece 30, in other words, the workpiece shown in curves 201 to 203 in FIG. 6A. 30 is determined by the amount of change in the outer contour C31.
  • the amount of change in the outer contour C31 of the workpiece 30 at the positions of the rolls 101-103 is also referred to as the amount of contact displacement of the rolls 101-103.
  • the amount of change in the width direction of the workpiece 30 at the position of the transport roll 101 is the amount of contact displacement of the transport roll 101
  • the fulcrum roll 102 The amount of change in the outer contour C31 of the workpiece 30 at the position of the bending roll 103 is the contact displacement amount of the fulcrum roll 102
  • the amount of change in the outer contour C31 of the workpiece 30 at the position of the bending roll 103 is the contact displacement of the bending roll 103. It is called the amount of displacement.
  • Each contact displacement amount changes according to the amount of movement of the workpiece 30, that is, the position of the workpiece 30 in the longitudinal direction (conveyance direction).
  • any position in the longitudinal direction of the workpiece 30 passes through the transport roll 101, the fulcrum roll 102, and the bending roll 103 in this order during transport. Therefore, the displacement of the outer contour C31 of the workpiece 30 occurring at the position of the bending roll 103 is preceded by each roll interval and also occurs at positions corresponding to the fulcrum roll 102 and the transport roll 101 . Therefore, when the position on the workpiece 30 passing through the bending roll 103 is used as a reference, the amount of change in the outer contour C31 of the workpiece 30 at the position of each roll 101 to 103 is 201 to 203 shown in FIG. 6A. become.
  • the displacement in the width direction of the outer fulcrum roll 102B contacting the outer contour C31 of the workpiece 30 is fixed, according to the shape change of the outer contour C31 of the workpiece 30 being conveyed along the bending path A1, The workpiece 30 itself moves in the Q direction. Therefore, it is necessary to adjust the slide amounts of the transport rolls 101 and the bending rolls 103 in accordance with the movement amount of the workpiece 30 .
  • the amount of displacement to be adjusted is called the origin displacement amount as described above. Therefore, the first displacement amount of each roll is obtained by synthesizing the contact displacement amount and the origin displacement amount for each roll.
  • the amount of displacement of the transport roll 101 in the width direction obtained by synthesizing the amount of change in contact of the transport roll 101 and the amount of displacement of the origin is defined as the first displacement amount of the transport roll 101
  • the fulcrum roll The amount of displacement in the width direction of the fulcrum roll 102 obtained by synthesizing the amount of change in contact of the bending roll 102 and the amount of displacement from the origin is defined as the first displacement amount of the fulcrum roll 102
  • the amount of change in contact of the bending roll 103 and the amount of displacement from the origin are defined as The displacement amount of the bending roll 103 in the width direction obtained by synthesis is referred to as the first displacement amount of the bending roll 103 .
  • Each first displacement amount changes according to the amount of movement of the workpiece 30, that is, the position of the workpiece 30 in the longitudinal direction (conveyance direction).
  • the first displacement amount of each roll when the displacement in the width direction of the outer fulcrum roll 102B is fixed to zero will be specifically described.
  • the amount of origin displacement which is the amount of displacement in the width direction of the workpiece 30 according to the behavior of the fulcrum roll 102, is the contact amount of the outer fulcrum roll 102B in FIG.
  • the graph indicated by the contact displacement amount 202 is represented by a graph having a shape in which the positive/negative is reversed with respect to the X-axis.
  • the contact displacement amount 202 of the outer fulcrum roll 102B that is, the origin displacement amount is subtracted from the contact displacement amount 201 of the transport roll 101 shown in FIG. becomes the first displacement amount.
  • the contact displacement amount 202 of the fulcrum roll 102 that is, the origin displacement amount, is subtracted from the contact displacement amount 203 of the bending roll 103, which is the first displacement amount of the bending roll shown by the curve 303 in FIG. 6D.
  • the first displacement amount of the outer fulcrum roll 102B at this time is constant at zero.
  • the outer fulcrum roll 102B is not limited to one whose displacement in the width direction is fixed, and may perform an operation different from the shape change along the outer contour C31 of the workpiece 30.
  • the first displacement amount of each roll can be obtained by synthesizing the contact displacement amount and the origin displacement amount in the same manner as described above. That is, the difference between the amount of change in the width direction of the outer contour C31 at the position contacting the outer fulcrum roll 102B and the amount of change in the width direction of the outer fulcrum roll 102B when the workpiece 30 is conveyed without being bent.
  • the amount of change minus 1 times is the origin displacement amount, and the first displacement amount of each roll can be obtained by synthesizing the contact displacement amount of each roll 101, 102, and 103 and the origin displacement amount. Furthermore, when the outer fulcrum roll 102B is simply displaced along the shape change of the outer contour C31, the origin displacement amount is zero, so the first displacement amount of each roll is the same as each curve 201 to 203 in FIG. 6A. become.
  • the first displacement amount of the bending roll 103 is the width of the outer contour C31 of the portion of the workpiece 30 that contacts the bending roll 103 when the workpiece 30 is conveyed without being bent. This is the amount of displacement obtained from the amount of change in direction.
  • a curve 203 shown in FIG. 6A indicates the first displacement amount of the bending roll 103 obtained in this way. It shows the first displacement amount when displacing.
  • the amount of change ( The amount of displacement obtained by subtracting the amount of change in the width direction of the outer contour C31 at the location in contact with the fulcrum roll 102 (corresponding to the amount of origin displacement) from the amount of displacement of the bending roll 103 is the first amount of displacement of the bending roll 103. becomes.
  • Curve 303 shown in FIG. 6D represents the first deflection of bending roll 103 thus obtained.
  • FIG. 7 is a schematic diagram for explaining the second displacement amount of the bending rolls 103 required to bend the outer edge 31 of the double-sided variable workpiece 30 to the predetermined first curvature.
  • the dotted line is the geometrical moment of inertia of the portion of the workpiece 30 that the fulcrum roll 102 abuts
  • the dashed line is the change in the curvature R that constitutes the outer contour C31 of the workpiece 30 at the initial stage before roll bending
  • a solid line indicates an example of the second displacement amount of the bending roll 103 .
  • the sliding amount of the second displacement amount of the bending roll 103 is about the cross-sectional area of the work piece 30 where the fulcrum roll 102 abuts.
  • a displacement amount that increases or decreases according to the next moment and the change in the curvature R forming the outside contour C31 before roll bending is set.
  • the second displacement amount constitutes the geometrical moment of inertia at the contact point of the work piece 30 with the fulcrum roll 102 and the contour that the outer contour C31 of the work piece 30 has as the initial shape. is set based on the curvature R.
  • springback occurs in the portion of the workpiece 30 to which the bending is imparted. Therefore, the second displacement amount may be set in consideration of this springback amount in addition to the geometrical moment of inertia.
  • FIG. 7 the dotted line indicates the stroke A required to shape each portion of the workpiece 30 to the target curvature, and the dashed line indicates the stroke B required to straighten the outer contour C31.
  • the second displacement amount of the bending roll 103 is calculated from the stroke A calculated from the geometrical moment of inertia of each part of the workpiece 30 indicated by the dashed line in FIG. 7 and the initial shape of the outer contour C31 indicated by the dashed line in FIG. or the sum of the strokes A and B multiplied by a predetermined coefficient.
  • the outer contour of the workpiece 30 when the outer contour of the workpiece 30 has a variable shape, the outer contour of the workpiece 30 is first formed into a straight shape with a stroke B, and then the linear outer contour of the workpiece 30 is further stroked until it reaches the target curvature. It can be understood that it is molded with A. However, in practice these moldings are processed simultaneously.
  • Equation (1) expresses the moment required for plastic bending assuming a material with an n-th power hardening law
  • Equation (2) defines the amount of springback.
  • b is the plate width
  • 2t is the plate thickness
  • E, F, n, ⁇ e are material constants.
  • Equation (2) ⁇ is the curvature before springback
  • ⁇ ' is the curvature after springback
  • I is the geometrical moment of inertia.
  • the amount of forming required to form a linear member having, for example, a curvature R as an initial shape is equal to the amount of forming required to form a linear member having a curvature R as an initial shape. Therefore, the stroke B, that is, the amount of forming (curvature ⁇ ) required to straighten the initial outer contour C31 is the shape of each portion after springback (curvature ⁇ ′), and each portion of the initial outer contour C31 is obtained by applying the shape (curvature) of and using the above equations (1) and (2).
  • the stroke of the bending roll 103 when the stroke of the bending roll 103 is changed, a forming strain is applied to the portion of the workpiece 30 that contacts the fulcrum roll 102 . Therefore, a stroke is given to the bending roll 103 so that this forming strain causes this contact portion to have the curvature ⁇ obtained as described above. Further, the portion of the workpiece 30 that has passed through the bending rolls 103 is no longer restrained by the rolls, completes the springback, and assumes the final shape of curvature ⁇ ′. That is, in the section from the fulcrum roll 102 to the bending roll 103, the curvature ? of the workpiece 30 gradually changes to the curvature ?'. Therefore, the stroke of the bending roll 103, that is, the second displacement amount is determined geometrically in consideration of this change in curvature.
  • the second displacement amount may be set based on the widthwise dimension of the web 30a.
  • the second displacement amount may be set based on the cross-sectional area of the workpiece 30 .
  • the second displacement amount may be set by appropriately combining these and also considering other parameters as necessary. For example, one or more (including all) of the geometrical moment of inertia, the change in the outer contour C31 before roll bending processing in the workpiece 30, and the amount of springback are multiplied by an appropriate coefficient to obtain the second displacement You may make it set the quantity.
  • such a second displacement amount is for obtaining the amount of sliding of the bending roll 103, but bending is applied to the contact point with the fulcrum roll 102. Therefore, the bending roll 103 is moved based on the set second displacement amount when the point to be acquired for the geometrical moment of inertia considered in setting the second displacement amount reaches the fulcrum roll 102. be.
  • the third displacement amount which is the final movement amount of the bending roll 103 in the roll bending process, is a combination of the first displacement amount and the second displacement amount described above.
  • 9A and 9B are schematic diagrams for explaining the displacement of the bending rolls 103 required to impart the final curvature to the double-sided variable workpiece 30, of which FIG. A displacement amount and a second displacement amount are shown, and FIG. 9B shows a third displacement amount, which is a combined displacement amount obtained by synthesizing the first displacement amount and the second displacement amount.
  • the control unit 104 obtains the third displacement amount shown in FIG. 9B as the displacement amount of the bending roll 103 in the width direction by synthesizing the first displacement amount and the second displacement amount. Then, the control unit 104 drives the roll driving unit 106 based on the obtained third displacement amount to control the bending roll 103 to move in the width direction.
  • the control unit 104 acquires the above-described first displacement amount regarding the transport roll 101 as the displacement amount in the width direction during the roll bending process, that is, as the third displacement amount regarding the transport roll 101. Then, the control unit 104 drives the roll driving unit 106 based on the acquired third displacement amount, that is, the first displacement amount, and controls the transport roll 101 to move in the width direction. As for the fulcrum roll 102 , the control unit 104 acquires the above-described first displacement amount of the fulcrum roll 102 as the displacement amount in the width direction during roll bending processing, that is, the third displacement amount of the fulcrum roll 102 .
  • the control unit 104 drives the roll driving unit 106 based on the acquired third displacement amount, that is, the first displacement amount, and controls the fulcrum roll 102 to move it in the width direction.
  • the transport roll 101 and the fulcrum roll 102 are moved based on their respective first displacement amounts, and the bending roll 103 is displaced by a third displacement obtained by synthesizing the first displacement amount and the second displacement amount. Moved by amount.
  • the roll-formed part 40 shown in FIG. 1 is formed from the double-sided variable workpiece 30 .
  • the final displacement amount of the bending roll 103 is divided into the first displacement amount and the second displacement amount for the sake of convenience, and the combined third displacement amount is described as the final displacement amount.
  • the process of separately acquiring and synthesizing the first displacement amount and the second displacement amount is not essential. That is, the displacement amount in the width direction of the bending roll 103 may be finally acquired as the displacement amount corresponding to the sum of the first displacement amount and the second displacement amount described above, and the acquisition process is not limited at all.
  • the one-sided variable workpiece 20 has a linear outer contour C21 and a variable inner contour C22 before roll bending. That is, the main difference from the double-sided variable workpiece 30 is that the outer contour C31 of the double-sided variable workpiece 30 is a variable contour that does not have a constant curvature, while the single-sided variable workpiece 20 has an outer contour C21 with a curvature It is the point on the straight line of zero.
  • the one-side variable workpiece 20 is also simply referred to as the "workpiece 20".
  • the conveying roll 101, the fulcrum roll 102 (outer fulcrum roll 102B), and the bending roll 103 are controlled by Each displacement amount becomes a constant value such as zero.
  • FIG. 10A and 10B are schematic diagrams for explaining the displacement of the bending roll 103 required to impart the first curvature to the one-sided variable workpiece 20, of which FIG. A first displacement amount and a second displacement amount are shown, and FIG. 10B shows a third displacement amount, which is a combined displacement amount obtained by synthesizing the first displacement amount and the second displacement amount.
  • the first displacement of bending roll 103 is a constant value, such as zero, over the length of workpiece 20 . If the origin of the bending roll 103 has an offset value, the first displacement amount will be a constant value other than zero, and if it does not have an offset value, the first displacement amount will be zero.
  • the one-side variable workpiece 20 and the two-side variable workpiece 30 have the same cross-sectional shape at any position in the longitudinal direction.
  • the moment of inertia at the position is also the same. Therefore, the second displacement amount of the bending roll 103 for the single-sided variable workpiece 20 is the same as the second displacement amount for the bending roll 103 described with reference to FIG. 7 for the double-sided variable workpiece 30 .
  • the control unit 104 sets the third displacement amount corresponding to the sum of the first displacement amount and the second displacement amount with respect to the bending roll 103 in the width direction. Acquired as a displacement amount.
  • the apparatus for manufacturing roll-formed parts processes a workpiece made of a long plate material or a long shaped material having a variable width portion in which at least a part thereof has a width dimension that varies along the longitudinal direction.
  • each displacement amount in the width direction of the plurality of rolls set corresponding to the position of the work piece in the longitudinal direction is defined as the contact displacement amount of each roll
  • the contact displacement of the fulcrum roll is defined as the contact displacement amount of each roll.
  • the amount of displacement of the work material in the width direction at the position where the work material contacts the fulcrum roll, which is set corresponding to the position of the work material in the longitudinal direction is defined as the origin displacement.
  • each displacement amount in the width direction of the plurality of rolls corresponding to the position in the longitudinal direction which is obtained by synthesizing the amount of contact displacement of the roll and the amount of origin displacement, is at a position in the longitudinal direction for giving a predetermined curvature to the outer contour of the work piece, which is set based on the shape of the work piece at the position where it abuts on the fulcrum roll.
  • the control unit determines a displacement amount corresponding to the sum of the first displacement amount and the second displacement amount of the bending roll. is acquired as the amount of displacement of the bending roll in the width direction, and the roll driving section that moves the bending roll is driven based on the acquired amount of displacement of the bending roll in the width direction.
  • control unit acquires the first displacement amount of the transport roll as the displacement amount of the transport roll in the width direction, and calculates the displacement amount of the transport roll in the width direction based on the acquired displacement amount of the transport roll.
  • the roll drive unit that moves the fulcrum roll, acquire the first displacement amount of the fulcrum roll as the displacement amount of the fulcrum roll in the width direction, and based on the acquired displacement amount of the fulcrum roll in the width direction , the roll drive unit for moving the fulcrum roll may be driven.
  • the second displacement amount may be obtained based on the outer contour shape of the workpiece before roll bending processing. Further, the second displacement amount is obtained based on at least one of a geometrical moment of inertia of the work material at a position where the fulcrum roll contacts the work material, a web width, and a cross-sectional area. may be
  • the second displacement amount may be obtained based on a springback amount that occurs after bending is applied to the workpiece.
  • the work material is a one-side variable work material having a linear outer contour and a variable inner contour before the roll bending process
  • the control unit controls the first displacement amount of the bending roll.
  • the second displacement amount may be acquired as the displacement amount in the width direction of the bending roll during the roll bending process.
  • the work material is a double-side variable work material in which both the outer contour and the inner contour are variable before the roll bending process
  • the fulcrum roll is an inner fulcrum that contacts the inner edge of the work material. It has an outer fulcrum roll that abuts on the roll and the outer edge, and the controller controls the roll driving section to move each of the transport roll, the outer fulcrum roll, and the bending roll to the workpiece. It is the amount of displacement in the width direction of the outer contour at the position where the outer contour at the position that contacts the bending roll is moved in the width direction along the change in the width direction of the outer contour at the position that contacts the bending roll.
  • the contact displacement amount may be acquired as the first displacement amount of the bending roll.
  • the work material is a double-side variable work material in which both the outer contour and the inner contour are variable before the roll bending process
  • the fulcrum roll is an inner fulcrum that contacts the inner edge of the work material. It has an outer fulcrum roll that contacts the roll and the outer edge, and the control unit controls the roll driving unit to change the width direction of the outer contour at the position where the outer fulcrum roll contacts. Differently, when the position of the outer fulcrum roll in the width direction is controlled and the workpiece is conveyed without bending, the outer contour at the position where it contacts the outer fulcrum roll.
  • the amount of origin displacement which is minus one times the difference between the amount of change in the width direction and the amount of change in the width direction of the outer fulcrum roll, and the outside of the position where the bending roll abuts on the work material.
  • the amount of displacement obtained by synthesizing the amount of contact displacement which is the amount of change in the width direction of the contour, may be acquired as the first amount of displacement of the bending roll.
  • the first displacement amount regarding the transport roll at this time can also be determined in the same manner as the first displacement amount regarding the bending roll. That is, the control unit determines the displacement in the width direction of the outer contour of the contact portion of the work piece with the outer fulcrum roll when the work piece is conveyed without being bent, as the first displacement amount related to the conveying roll. Obtained by synthesizing the amount of change minus 1 times the difference between the amount and the amount of change in the width direction of the outer fulcrum roll, and the amount of change in the width direction of the outer contour at the contact point with the conveying roll in the workpiece. It is also possible to acquire the amount of displacement that is applied.
  • each element disclosed herein may be achieved by general-purpose processors, special-purpose processors, integrated circuits, Application Specific Integrated Circuits (ASICs), conventional circuits, and/or configured or programmed to perform the disclosed functionality. Or it can be performed using a circuit or processing circuit that includes a combination thereof.
  • a processor is considered a processing circuit or circuit because it includes transistors and other circuits.
  • a circuit, unit, or means is hardware that performs or is programmed to perform the recited functions.
  • the hardware may be the hardware disclosed herein, or other known hardware programmed or configured to perform the recited functions. Where the hardware is a processor which is considered a type of circuit, the circuit, means or unit is a combination of hardware and software, the software being used to configure the hardware and/or the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

一定曲率の外側コンターと可変曲率の内側コンター、又は可変曲率の外側コンターと所定の一定曲率の内側コンター、又は可変曲率の外側コンターと可変曲率の内側コンターを有する円弧状のロール成形部品を製造可能な製造装置及び製造方法を提供する。制御部104は、曲げロール103の第1変位量と第2変位量との和に相当する第3変位量を、ロールベンディング加工時の曲げロール103の幅方向の変位量として取得する。

Description

ロール成形部品の製造装置及び製造方法
 本開示は、幅方向寸法が長手方向に沿って変化する可変幅部分を有する長尺板材又は長尺型材から成る被加工材をロールベンディング加工することにより、所定の一定曲率の外側コンターと可変曲率の内側コンター、又は可変曲率の外側コンターと所定の一定曲率の内側コンター、又は可変曲率の外側コンターと可変曲率の内側コンターを有する円弧状のロール成形部品を製造する製造装置と、その製造方法に関する。
 従来、長尺板材にその長手方向に沿って曲率を付与したロール成形部品の製造装置として、特許文献1および特許文献2に開示されたものがある。この特許文献1の製造装置によれば、長手方向に沿って曲率を連続的に調整することができる。また特許文献2の製造装置によれば、長手方向に沿って断面が変化する部品をロール成形で製造することができる。
特開2019-104019号公報 特許6741569
 ところで、航空機の胴体部分の骨格部材としてフレームがある。フレームは胴体部分の周方向に沿って設けられる円弧状の部品であり、その外側コンターは一定曲率を有する一方、内側コンターは、例えば胴体内部空間を広げるために、外側へくびれた可変曲率を有する形状が採用される場合がある。
 仮に、このようなフレームをロール成形により製造するとなると、フォーミング工程にて長手方向に沿って可変幅に成形した後、ベンディング工程にてこれに曲げを付与する必要がある。しかしながら、上記特許文献1は、一定幅の被加工材を曲げる技術を開示するものの、可変幅の被加工材を、外側コンターを一定曲率とし内側コンターを可変曲率とするように曲げる技術、又は、外側コンターを可変曲率とし内側コンターを一定曲率とするように曲げる技術、又は、外側コンターを可変曲率とし内側コンターを可変曲率とするように曲げる技術については具体的には開示していない。また、上記特許文献2は、可変幅を有する被加工材に曲げを付与するための技術を開示するものの、目的の形状を得るためのロールの制御方法および動作の設定方法については具体的に開示していない。
 そこで本開示は、幅方向寸法が長手方向に沿って変化する可変幅部分を有する長尺板材又は長尺型材から成る被加工材を、ロールベンディング加工することにより、所定の曲率の外側コンターと可変曲率の内側コンター、又は、可変曲率の外側コンターと所定の一定曲率の内側コンター、又は、可変曲率の外側コンターと可変曲率の内側コンターを有する円弧状のロール成形部品を製造する製造装置と、その製造方法を提供することを目的とする。
 本開示に係るロール成形部品の製造装置は、少なくとも一部に幅方向寸法が長手方向に沿って変化する可変幅部分を有する長尺板材又は長尺型材から成る被加工材を、前記長手方向がベンディング経路に沿うように搬送しながらロールベンディング加工することにより、円弧状のロール成形部品を製造する製造装置であって、前記被加工材の少なくとも外側縁部に当接して当該被加工材を前記長手方向へ搬送する搬送ロール、前記搬送ロールに対して前記ベンディング経路の下流側に位置し、前記被加工材の少なくとも内側縁部に当接して当該被加工材の曲げの支点を成す支点ロール、及び、前記支点ロールに対して前記ベンディング経路の下流側に位置し、前記被加工材の少なくとも外側縁部に当接して当該被加工材に曲げを付与する曲げロール、を含む複数のロールと、前記搬送ロール、前記支点ロール及び前記曲げロールを前記被加工材の幅方向に移動させるロール駆動部と、制御部と、を備え、前記被加工材の前記幅方向の寸法に基づき、前記被加工材の前記長手方向の位置に対応して設定される前記複数のロールの前記幅方向の各変位量を、各ロールの当接変位量とし、前記支点ロールの前記当接変位量に基づき、前記被加工材の前記長手方向の位置に対応して設定される、前記被加工材が前記支点ロールに当接する位置での前記被加工材の前記幅方向の変位量を原点変位量とし、各前記ロールの前記当接変位量と前記原点変位量とを合成して得られる、前記長手方向の位置に対応した前記複数のロールの前記幅方向の各変位量を、各前記ロールの第1変位量とし、前記支点ロールと当接する位置での前記被加工材の形状に基づいて設定される、前記被加工材の外側コンターを所定の曲率とするための、前記長手方向の位置に対応した前記曲げロールの前記幅方向の変位量を第2変位量としたときに、前記制御部は、前記曲げロールの前記第1変位量と前記第2変位量との和に相当する変位量を、前記曲げロールの前記幅方向の変位量として取得し、取得した前記曲げロールの前記幅方向の変位量に基づいて前記曲げロールを移動させる前記ロール駆動部を駆動させる。
 本開示に係るロール成形部品の製造方法は、少なくとも一部に幅方向寸法が長手方向に沿って変化する可変幅部分を有する長尺板材又は長尺型材から成る被加工材を、曲げの支点となる支点ロール及び曲げを付与する曲げロールを含む複数のロールを用いて、前記長手方向がベンディング経路に沿うように搬送しながらロールベンディング加工することにより、円弧状のロール成形部品を製造する製造方法であって、前記被加工材の幅方向の寸法に基づき、前記被加工材の前記長手方向の位置に対応して設定される前記複数のロールの前記幅方向の各変位量を、各ロールの当接変位量とし、前記支点ロールの前記当接変位量に基づき、前記被加工材の前記長手方向の位置に対応して設定される、前記被加工材が前記支点ロールに当接する位置での前記被加工材の前記幅方向の変位量を原点変位量とし、各前記ロールの前記当接変位量と前記原点変位量とを合成して得られる、前記長手方向の位置に対応した前記複数のロールの前記幅方向の各変位量を、各前記ロールの第1変位量とし、前記支点ロールと当接する位置での前記被加工材の形状に基づいて設定される、前記被加工材の外側コンターを所定の曲率とするための、前記長手方向の位置に対応した前記曲げロールの前記幅方向の変位量を第2変位量としたときに、前記曲げロールの前記第1変位量と前記第2変位量との和に相当する変位量を、前記曲げロールの前記幅方向の変位量として取得し、前記曲げロールの前記幅方向の変位量に基づいて前記曲げロールを移動させる前記ロール駆動部を駆動させる。
 本開示によれば、幅方向寸法が長手方向に沿って変化する可変幅部分を有する長尺板材又は長尺型材から成る被加工材を、ロールベンディング加工することにより、所定の第1曲率の外側コンターと可変曲率の内側コンターとを有する円弧状のロール成形部品を製造可能な製造装置及び製造方法を提供することができる。
図1は、本開示のロール成形部品の製造装置により成形した後のロール成形部品の構成例を模式的に示す正面図である。 図2は、被加工材の構成例を模式的に示す正面図であり、片側可変被加工材及び両側可変被加工材を示している。 図3は、製造装置の構成の一例を示す模式的なブロック図である。 図4は、製造装置のロールの移動態様と、被加工材の断面形状の一例とを示す模式図である。 図5は、両側可変被加工材の表面に沿わせたときのロールの変位を説明するための模式図である。 図6Aは、搬送ロール、外側支点ロール、及び、曲げロールの各第1変位量を説明するための模式図である。図6Bは、搬送ロールの第1変位量を示している。図6Cは、支点ロールの第1変位量を示している。図6Dは、曲げロールの第1変位量を示している。 図7は、両側可変被加工材について曲げロールの第2変位量を説明するための模式図である。 図8は、断面二次モーメントおよび外側コンターの初期形状に基づく曲げロールの第2変位量の設定を説明するための模式図である。 図9Aは、両側可変被加工材について曲げロールの変位を説明するための模式図である。図9Bは、曲げロールについて第1変位量及び第2変位量を合成した第3変位量を示している。 図10Aは、片側可変被加工材について曲げロールの変位を説明するための模式図である。図10Bは、曲げロールについて第1変位量及び第2変位量を合成した第3変位量を示している。
 (実施の形態)
 以下、図面を参照しながら、本開示の実施形態について説明する。
 [被加工材及びロール成形部品]
 図1は、本開示のロール成形部品の製造装置により成形した後のロール成形部品の構成例を模式的に示す正面図である。本実施の形態では、ロール成形部品として、例えば、航空機胴体の製造に用いられる種々の骨格部材のうち、航空機胴体の断面方向、即ち円周方向に用いられるフレームを例に説明する。
 図1の上図に示すように、ロール成形部品40は全体的に円弧状を成している。このロール成形部品40は、外側縁部41と内側縁部42とが互いに異なる輪郭形状を有している。以降、輪郭形状をコンターともいう。具体的には、図1の下図に示すように、外側縁部41に対応する外側コンターC41の曲率Routは、所定の一定曲率を成している。以降、外側コンターC41の曲率Routを第1曲率とする。これに対して内側縁部42に対応する内側コンターC42の曲率Rinは、部分に応じて曲率が異なる可変曲率を成している。
 このロール成形部品40は、一方の端部(先端)から順に並ぶ第1部分40A、第2部分40B、第3部分40C、第4部分40D、第5部分40Eを有している。このうち第1部分40A及び第5部分40Eは、外側縁部41と内側縁部42との間の寸法である幅寸法W1,W5がそれぞれ一定値を有する一定幅部分である。一方、第2部分40B、第3部分40C、第4部分40Dは、幅寸法W2、W3、W4が一定ではない可変幅を有する可変幅部分である。なお、図1では、W1=W5であり、かつ、W3<W1の構成を例示している。
 また、上述したようにロール成形部品40は外側コンターC41が一定曲率であるゆえ、第1部分40A、第2部分40B、第3部分40C、第4部分40D、第5部分40Eの幅寸法の相違は内側コンターC42の変化に表れる。すなわち、第2部分40B及び第4部分40Dの内側コンターは可変曲率を有している。一方、第3部分40Cは、幅寸法W3は第2部分40B側から第4部分40D側へ向かうにしたがって漸減しているが、その減少率が一定であるゆえ、内側コンターは一定曲率となっている。ただし、本開示の製造装置により成形可能なロール成形部品40は、外側コンターC41の曲率Routが一定のものに限定されない。例えば、長手方向に沿って曲率が変化する可変コンターを外側コンターとして有するロール成形部品であっても、本開示の製造装置により成形可能である。
 このようなロール成形部品40の材料としては、航空機胴体のフレーム用途としては典型的にはアルミニウム又はアルミニウム合金が例示され、他の用途としては鋼材等の鉄系材料である鉄又は鉄を含有する合金も挙げられる。
 このロール成形部品40は概略次のようにして成形される。すなわち、長尺板材又は長尺型材を出発部材として、成形工程である第1工程でこれをロールフォーミング加工し、図2で示すような所定断面形状を有する中間部材としての被加工材10を得る。次に、図3に示すように、この被加工材10を、その長手方向をベンディング経路A1に沿うように搬送しながら、曲げ工程である第2工程でロールベンディング加工することで、最終部品としてのロール成形部品40が得られる。ここで、第1工程を経た後の被加工材10は、所定の断面形状を有すると共に、少なくとも一部に幅方向寸法が長手方向に沿って変化する可変幅部分を有している。この可変幅部分が、ロール成形部品40について上述した可変幅部分に対応する。
 図2は、本開示のロール成形部品の製造装置により成形される被加工材10の構成例を模式的に示す正面図であり、上図に片側可変被加工材20が示され、下図に両側可変被加工材30が示されている。なお、以下では被加工材10の外側縁部であって搬送方向の下流側先端の箇所を被加工材10の原点として、図2に示すようにX軸及びY軸を設定する。X軸は被加工材10の外側縁部に沿って搬送方向の反対方向へ向かう軸であり、Y軸は、X軸に直交して外側縁部から外側へ離れる方向へ向かう軸である。図1並びに他の図面に記載のX軸、Y軸についても同様である。
 図2の上図に示すように、片側可変被加工材20は、先端から順に並ぶ第1部分20A、第2部分20B、第3部分20C、第4部分20D、第5部分20Eを有している。これらの第1部分20A、第2部分20B、第3部分20C、第4部分20D、第5部分20Eは、それぞれロール成形部品40の第1部分40A、第2部分40B、第3部分40C、第4部分40D、第5部分40Eに対応する。従って、第1部分20A及び第5部分20Eは、外側縁部21と内側縁部22との間の寸法である幅寸法W1,W5が一定値を有する一定幅部分を成している。そして、第2部分20B、第3部分20C、第4部分20Dは、幅寸法W2、W3、W4が一定ではない可変幅を有する可変幅部分を成している。また、ロール成形部品40と同様に、図2の例では、W1=W5であり、かつ、W3<W1の構成を例示している。
 図2の下図に示すように、両側可変被加工材30も同様に、先端部から順に並ぶ第1部分30A、第2部分30B、第3部分30C、第4部分30D、第5部分30Eを有している。これらの第1部分30A、第2部分30B、第3部分30C、第4部分30D、第5部分30Eは、それぞれロール成形部品40の第1部分40A、第2部分40B、第3部分40C、第4部分40D、第5部分40Eに対応する。従って、第1部分30A及び第5部分30Eは、外側縁部31と内側縁部32との間の寸法である幅寸法W1,W5が一定値を有する一定幅部分を成している。そして、第2部分30B、第3部分30C、第4部分30Dは、幅寸法が一定ではない可変幅を有する可変幅部分を成している。また、ロール成形部品40と同様に、図2の例では、W1=W5であり、かつ、W3<W1の構成を例示している。
 上述したように片側可変被加工材20及び両側可変被加工材30は、長手方向に沿っていくときの幅方向寸法の変化が互いに同じである。片側可変被加工材20は、その外側コンターC21が曲率ゼロの直線であり、内側コンターC22は曲率が途中で変化する可変コンターとなっている。従って、片側可変被加工材20では、幅寸法の変化量と内側コンターC22のY方向の変化量とが対応している。これに対し、両側可変被加工材30は、外側コンターC31及び内側コンターC32が何れも直線ではなく、曲率が可変の部分を含む可変コンターを有している。従って、両側可変被加工材30では、幅寸法の変化量は、外側コンターC31及び内側コンターC32のそれぞれのY方向の変化量の合計値と対応している。
 なお、図2に示す両側可変被加工材30では、外側コンターC31と内側コンターC32とが、長手方向の同一位置での変化量が同一の構成となっている。すなわち、両側可変被加工材30は、その先端部の幅方向の中心と末端部の幅方向の中心とを結ぶように軸線を設定した場合に、外側コンターC31と内側コンターC32とはこの軸線に対して対称を成している。従って、図2の両側可変被加工材30では、幅方向寸法の変化量のうち、50%が外側コンターC31の変化量に対応し、残りの50%が内側コンターC32の変化量に対応している。ただし、両側可変被加工材30に採用できる輪郭形状はこれに限られない。例えば、外側コンター及び内側コンターが軸線に対して非対象であってもよく、幅方向寸法の変化量を、例えば、20%と80%などの任意の割合で外側コンター及び内側コンターの各変化量に対応させてもよい。
 [ロール成形部品の製造装置]
 次に、被加工材10を第2工程でロールベンディング加工するための構成について説明する。図3は、本開示のロール成形部品の製造装置の構成の一例を示す模式的なブロック図である。図3に示すように、製造装置100は、複数のロールを備えている。本開示では、複数のロールとして、搬送ロール101、支点ロール102、および曲げロール103を備えている。さらに製造装置100は、制御部104、記憶部105、及びロール駆動部106を備えている。
 搬送ロール101は、第1工程にてロールフォーミング加工が施された被加工材10に、その少なくとも外側縁部21,31に当接しながら回転して、当該被加工材10をその長手方向のベンディング経路A1に沿って下流へ搬送する。また、搬送ロール101は、後述するように、被加工材10の幅方向に可動である。なお、搬送ロール101は被加工材10の幅方向に可動であると共に、所定の中心点回りに回動、即ち旋回可能であってもよい。
 支点ロール102は、搬送ロール101に対してベンディング経路A1の下流側に位置している。支点ロール102は、第2工程のロールベンディング加工時に、被加工材10の少なくとも内側縁部22,32に当接して、被加工材10の曲げの支点を成す。また、支点ロール102は、後述するように、被加工材10の幅方向に可動である。なお、支点ロール102は被加工材10の幅方向に可動であると共に、所定の中心点回りに回動、即ち旋回可能であってもよい。なお、図3には、支点ロール102として、内側縁部22,32に当接する内側支点ロール102A、及び、外側縁部21,31に当接する外側支点ロール102Bも図示しているが、これらについては後述する。
 曲げロール103は、支点ロール102に対してベンディング経路A1の下流側に位置している。曲げロール103は、第2工程のロールベンディング加工時に、被加工材10の少なくとも外側縁部21,31に当接して、被加工材10に曲げを付与する。また、曲げロール103は、後述するように、被加工材10の幅方向に可動であると共に、所定の中心点回りに回動、即ち旋回可能である。なお、製造装置100は、被加工材10に曲げを与えるロールとして2段以上の曲げロールを備えていてもよく、あるいは、ロールの種類にかかわらず4段以上のロールで構成される製造装置100であってもよい。
 ここで、図3に示すように、搬送ロール101と支点ロール102との間での被加工材10の搬送方向をP方向とし、このP方向に直交する被加工材10の幅方向をQ方向とする。なお、搬送ロール101と支点ロール102との間では、P方向とX方向とは平行であるが、曲げが加わる支点ロール102より下流側では両方向は互いに交差する関係となる。本実施の形態の製造装置100では、P方向に沿った距離について、搬送ロール101と支点ロール102との間隔は、支点ロール102と曲げロール103との間隔と同じであり、換言すれば、支点ロール102は、P方向において搬送ロール101と曲げロール103との中間の位置に設けられている。搬送ロール101と支点ロール102と曲げロール103のベンディング経路A1に沿った順序が変わらなければ、それらの間隔については必ずしも等間隔でなくてもよい。
 制御部104は、演算部を成すプロセッサ等を備え、製造装置100の動作を制御する。特に、制御部104は、各種のメモリやHDDを含む記憶部105に記憶されたデータおよびコンピュータプログラムに基づき、ロール駆動部106を駆動して、搬送ロール101、支点ロール102、及び曲げロール103等の動作を制御する。なお、図3及びこれ以降の図面において、搬送ロール101には符号の他に#1を表記し、支点ロール102には符号の他に#2を表記し、曲げロール103には符号の他に#3を表記している。
 図4は、製造装置100の曲げロール103の移動態様と、被加工材10の断面形状の一例とを示す模式図である。なお、ここでは曲げロール103を例示しているが、他の搬送ロール101及び支点ロール102についても同様であってもよい。また、被加工材10として両側可変被加工材30を例示しているが、片側可変被加工材20についても同様である。
 更に、両側可変被加工材30としてZ型の断面形状を有するものを例示している。すなわち、この両側可変被加工材30の断面は、Y方向に延びるウェブ30a、ウェブ30aの一端からX方向及びY方向の両方に直交するZ方向に延びるフリーフランジ30b、ウェブ30aの他端からZ方向であってフリーフランジ30bとは反対の方向へ延びるフランジ30c、及びフランジ30cの先端からY方向へ湾曲するリターンフランジ30dを有する形状となっている。両側可変被加工材30の断面形状として、図4に示したものは一例であり、この構成に限定されない。
 図4では、曲げロール103として、フリーフランジ30bを挟持する外側曲げロールのロール対と、フランジ30cを挟持する内側曲げロールのロール対とを、一例として図示している。なお、図示の便宜上、被加工材10に対して曲げロール103を小さく表現しているが、曲げロール103の寸法はこれに限定されない。また、図4では、被加工材10がベンディング経路A1に沿って搬送される過程として、第1時刻に、曲げロール103が幅広部分に位置する状態と、第2時刻に、曲げロール103が幅狭部分に位置する状態とを示している。
 図4の矢印M1に示すように、この製造装置100において曲げロール103は、両側可変被加工材30の幅方向であるY方向、あるいはQ方向にスライドが可能である。また、矢印M2に示すように、曲げロール103は、例えば両側可変被加工材30との当接箇所を中心としてZ軸回りに旋回可能である。従って、両側可変被加工材30が搬送されて曲げロール103の当接箇所が幅広部分から幅狭部分へと変化した場合、曲げロール103は、両側可変被加工材30の外側コンターC31及び内側コンターC32の変化に追従して変位する。変位にはスライドおよび旋回が含まれる。これにより、曲げロール103は、両側可変被加工材30の搬送中、外側縁部31及び内側縁部32に当接した状態を常時維持することができる。
 また、この製造装置100では、被加工材10にロールベンディング加工を施す際、搬送ロール101、支点ロール102、及び曲げロール103は、被加工材10の一定コンターを有する第5部分20E,30Eのうち、被加工材10のベンディング経路A1に沿って搬送ロール101よりも上流側にある部分の内側コンター又は外側コンターが、常に図3に示すP方向と平行を成すように、ロール駆動部106を通じて制御部104により動作制御される。その上で、製造装置100は、被加工材10に対して次に説明するようにしてロールベンディング加工が施される。
 なお、このような被加工材10の搬送中の各ロール101、102、103の動作は、制御部104が記憶部105に記憶されているデータに基づきロール駆動部106を駆動することによって実現される。そのために、記憶部105には、被加工材10の断面形状(長さ、幅、厚み等)や材料特性(ヤング率等)に関する各種データと、これらをパラメータとして各ロール101、102、103のスライド量及び旋回量を含む変位量を算出する演算式に関するデータとが、予め記憶されている。あるいは、記憶部105には、これに加えて、又は、これに代えて、被加工材10の長手方向の位置に対する各ロール101、102、103の移動量に関するデータなどが予め記憶されている。また、ロール駆動部106は、上述したように各ロール101、102、103を被加工材10の幅方向へスライド移動させるために、電動モータおよびボールネジを有する電動アクチュエータ、あるいは、油圧ポンプおよび油圧シリンダを有する油圧アクチュエータ、などのリニアアクチュエータを備えていてもよい。また、ロール駆動部106は、各ロール101、102、103を所定の中心点周りに回動、即ち旋回させるために、電動モータ並びにピニオンおよび旋回ギヤ等を含む減速機などから成る回動アクチュエータを備えていてもよい。また、各ロール101,102,103を、2軸以上、例えば6軸を有する複数のロボットにより支持してスライド移動および旋回させる構成としてもよい。
 [両側可変被加工材の成形]
 次に、被加工材10をロールベンディング加工して図1のロール成形部品40を得るための製造装置100の動作及び製造方法について説明する。以下では、はじめに両側可変被加工材30をロールベンディング加工する場合について説明し、その次に片側可変被加工材20をロールベンディング加工する場合について説明する。
 両側可変被加工材30のロールベンディング加工では、搬送ロール101及び支点ロール102により両側可変被加工材30を支持しつつ、曲げロール103を変位させることにより、被加工材30における支点ロール102との当接箇所に曲げを付与する。以下、両側可変被加工材30を単に被加工材30ともいう。このときの各ロール101、102103の変位量は、被加工材30の表面に曲げを付与せずに当接するために要する第1変位量を含む。更に、曲げロール103の変位量は、この第1変位量に加えて、被加工材30を曲げて目的とする所定の第1曲率とするために要する第2変位量を含む。前述したように、第1曲率とは最終製品であるロール成形部品40の外側コンターC41の最終曲率Routと等しい曲率である。
 このうち第1変位量(スライド量)は、主に被加工材30の長手方向に沿って変化する幅寸法の変位量である当接変位量と、支点ロール102の挙動に応じた被加工材30の搬送時の幅方向への変位量である原点変位量との合成量から得ることができる。また、曲げロール103の第2変位量(スライド量)は、主に支点ロール102との当接箇所での被加工材30の形状から得ることができる。従って、第1変位量は、搬送ロール101、支点ロール102、および曲げロール103のそれぞれに対して個別に定められる変位量であり、第2変位量は、曲げロール103に対して定められる変位量である。
 ここで、上述した第1変位量の説明で言及した支点ロール102の挙動について簡単に言及する。詳細は図6A~図6Dを参照して後述する。図3に示すように、本実施の形態に係る支点ロール102は、被加工材30の内側縁部32に当接する内側支点ロール102Aと、外側縁部31に当接する外側支点ロール102Bとを有する。そして、支点ロール102の挙動とは、ロールベンディング加工において、外側支点ロール102Bを被加工材30のコンター変化に単に追従するよう変位させた場合の挙動、または、外側支点ロール102Bを当該コンター変化とは異なる態様で変位あるいは固定させた場合の挙動、を含む意味である。外側支点ロール102Bが何れの挙動をとるかにより、搬送中の被加工材30の外側縁部31の幅方向の位置も変位し得る。従って、曲げロール103の第1変位量のうち原点変位量は、このような被加工材30の外側縁部の幅方向への変位に伴う曲げロール103の原点位置の変位を考慮するパラメータとなっている。搬送ロール101の第1変位量のうちの原点変位量も同様であり、当該原点変位量は被加工材30の外側縁部の幅方向への変位に伴う搬送ロール101の原点位置の変位を考慮するパラメータとなっている。なお、上述した各ロールの原点位置とは、各ロールの位置を代表する基準の位置であって任意に設定でき、例えば、各ロールの回転中心位置を原点位置とすることができる。
 搬送ロール101、内側支点ロール102A、曲げロール103の第1変位量についてより具体的に説明する。図5は、搬送される両側可変被加工材30の表面に、搬送ロール101、内側支点ロール102A、曲げロール103を当接するよう沿わせたときの、当該搬送ロール101、内側支点ロール102A、曲げロール103の変位を説明するための模式図である。図2の下図でも説明したように、両側可変被加工材30は、外側コンターC31及び内側コンターC32が何れも可変コンターとなっている。例えば、両側可変被加工材30の下流側先端から、一定曲率で一定幅の第1部分30A、可変曲率で可変幅の第2部分30B、一定曲率で可変幅の第3部分30C、可変曲率で可変幅の第4部分30D、及び一定曲率で一定幅の第5部分30Eを順に有している。
 従って、搬送中の被加工材30の表面に、被加工材30に曲げを加えることなく、単に曲げロール103を沿わせようとする場合であっても、図5の下図の#3のグラフに示すように、被加工材30の外側コンターC31に対応して曲げロール103をY方向にスライドさせる必要がある。同様に、図5の下図の#1のグラフに示すように、搬送ロール101であれば被加工材30の外側コンターC31に対応してY方向にスライドさせる必要がある。同様に、図5の下図の#2のグラフに示すように、内側支点ロール102Aであれば被加工材30の内側コンターC32に対応してY方向にスライドさせる必要がある。
 図6A~図6Dは、両側可変被加工材30に曲げを与えることなくその外側コンターC31に当接させた搬送ロール101、支点ロール102のうち外側支点ロール102B、及び、曲げロール103の各スライド量、すなわち第1変位量を説明するための模式図である。このうち図6Aは、搬送ロール101、外側支点ロール102B、及び曲げロール103のそれぞれを通過する被加工材30の位置を基準としたときの、各ロールの位置での被加工材30の外側コンターC31の変化量の絶対値を示している。図6Aにおいて、一点鎖線201は搬送ロール101の位置での被加工材30の外側コンターC31の変化量、二点鎖線202は外側支点ロール102Bの位置での被加工材30の外側コンターC31の変化量、実線203は曲げロール103の位置での被加工材30の外側コンターC31の変化量を示している。また、図6B~図6Dは、外側支点ロール102Bの幅方向の変位を固定、即ち変位ゼロに固定した場合の各ロールの第1変位量を示しており、このうち図6Bは搬送ロール101の第1変位量を示し、図6Cは外側支点ロール102Bの第1変位量を示し、図6Dは曲げロール103の第1変位量を示している。なお、図6Bにおいて第1変位量を示す軸は、搬送ロール101が幅方向において被加工材30に近づく方向を正として示している。同様に、図6Dにおいて第1変位量を示す軸は、曲げロール103が幅方向において被加工材30に近づく方向を正として示している。
 被加工材30に曲げを付与することなく、各ロールを被加工材30に単に当接させつつ搬送する場合、搬送ロール101の当接変位量、外側支点ロール102Bの当接変位量、及び、曲げロール103の当接変位量は、搬送される被加工材30の外側縁部31に当接するようQ方向に変位させる移動距離、換言すれば、図6Aの曲線201~203に示す被加工材30の外側コンターC31の変化量により決定される。以下、各ロール101~103の位置での被加工材30の外側コンターC31の変化量を、各ロール101~103の当接変位量ともいう。また、各ロールを個別に表現する場合は、搬送ロール101の位置での被加工材30の幅方向の変化量、即ち外側コンターC31の変化量を搬送ロール101の当接変位量、支点ロール102の位置での被加工材30の外側コンターC31の変化量を支点ロール102の当接変位量、曲げロール103の位置での被加工材30の外側コンターC31の変化量を曲げロール103の当接変位量という。各当接変位量は、被加工材30の移動量、即ち被加工材30の長手方向(搬送方向)の位置に応じて変化する。
 なお、被加工材30の長手方向の任意の位置は、搬送される際に、搬送ロール101、支点ロール102、及び曲げロール103の順に通過していく。よって、曲げロール103の位置に生じる被加工材30の外側コンターC31の変位は、各ロール間隔の分だけ先行して、支点ロール102及び搬送ロール101に対応する位置においても発生する。従って、曲げロール103を通過する被加工材30上の位置を基準にすると、各ロール101~103の位置での被加工材30の外側コンターC31の変化量は、図6Aに示す201~203のようになる。
 ただし、被加工材30の外側コンターC31に当接する外側支点ロール102Bの幅方向の変位を固定した場合、ベンディング経路A1に沿った搬送中の被加工材30の外側コンターC31の形状変化に応じて被加工材30自体がQ方向に移動する。そのため、このような被加工材30の移動量に応じて搬送ロール101および曲げロール103のスライド量を調整する必要がある。この調整する変位量を、ここでは既出のとおり原点変位量と称している。従って、各ロールの第1変位量は、各ロールについて当接変位量と原点変位量とを合成することで得られる。各ロールを個別に表現する場合は、搬送ロール101の当接変化量と原点変位量とを合成して得られる搬送ロール101の幅方向の変位量を搬送ロール101の第1変位量、支点ロール102の当接変化量と原点変位量とを合成して得られる支点ロール102の幅方向の変位量を支点ロール102の第1変位量、曲げロール103の当接変化量と原点変位量とを合成して得られる曲げロール103の幅方向の変位量を曲げロール103の第1変位量という。各第1変位量は、被加工材30の移動量、即ち被加工材30の長手方向(搬送方向)の位置に応じて変化する。
 外側支点ロール102Bの幅方向の変位をゼロに固定した場合の、各ロールの第1変位量について具体的に説明する。外側支点ロール102Bの幅方向の変位をゼロに固定した場合、支点ロール102の挙動に応じた被加工材30の幅方向の変位量である原点変位量は、図6Aにおいて外側支点ロール102Bの当接変位量202が示すグラフを、X軸を基準にして正負反転させた形状のグラフにより表される。従って、図6Aに示される搬送ロール101の当接変位量201から、外側支点ロール102Bの当接変位量202、即ち原点変位量を引いたものが、図6Bの曲線301に示す搬送ロール101についての第1変位量となる。また、曲げロール103の当接変位量203から支点ロール102の当接変位量202、即ち原点変位量を引いたものが、図6Dの曲線303に示す曲げロールについての第1変位量となる。なお、図6Cの曲線302に示すように、このときの外側支点ロール102Bの第1変位量はゼロで一定となる。
 なお、外側支点ロール102Bは幅方向の変位が固定されているものに限定されず、被加工材30の外側コンターC31に沿った形状変化とは異なる動作をするものであってもよい。その場合も上述したのと同様の方法により、当接変位量と原点変位量とを合成することで各ロールの第1変位量を取得することができる。つまり、被加工材30に曲げを付与することなく搬送したときの、外側支点ロール102Bと当接する位置の外側コンターC31の幅方向の変化量と外側支点ロール102Bの幅方向の変化量との差分のマイナス1倍の変化量を原点変位量とし、各ロール101、102、103の当接変位量と当該原点変位量とを合成することで各ロールの第1変位量を取得することができる。更に、外側支点ロール102Bを単に外側コンターC31の形状変化に沿って変位させる場合は、原点変位量がゼロとなるため、各ロールの第1変位量は、図6Aの各曲線201~203と同じになる。
 以上から分かるように、曲げロール103の第1変位量は、被加工材30に曲げを付与せずに搬送したときに、被加工材30において曲げロール103と当接する箇所の外側コンターC31の幅方向の変化量から得られる変位量である。そして、図6Aに示す曲線203は、このようにして得られる曲げロール103の第1変位量を示しており、特に、外側支点ロール102Bを被加工材30の外側コンターC31の形状変化に沿って変位させる場合の第1変位量を示している。一方、外側支点ロール102Bが、外側コンターC31の形状変化に沿った動作とは異なる動作をする場合は、被加工材30において曲げロール103と当接する箇所の外側コンターC31の幅方向の変化量(当接変位量に相当)から、支点ロール102と当接する箇所の外側コンターC31の幅方向の変化量(原点変位量に相当)を引いて得られる変位量が、曲げロール103の第1変位量となる。図6Dに示す曲線303はこのようにして得られる曲げロール103の第1変位量を示している。
 次に、曲げロール103の第2変位量について説明する。図7は、両側可変被加工材30について、外側縁部31を所定の第1曲率に曲げるのに要する曲げロール103の第2変位量を説明するための模式図である。図7において、点線は被加工材30において支点ロール102が当接する箇所の断面二次モーメント、一点鎖線はロールベンディング前である初期の被加工材30の外側コンターC31を構成する曲率Rの変化、実線は曲げロール103の第2変位量の各一例を示している。
 図7に示すように、被加工材30に第1曲率を付与する場合、曲げロール103の第2変位量のうちスライド量は、およそ被加工材30において支点ロール102が当接する箇所の断面二次モーメントと、ロールベンディング前の外側コンターC31を構成する曲率Rの変化と、に応じて増減する変位量が設定される。より具体的には、第2変位量は、被加工材30における支点ロール102との当接箇所での断面二次モーメントと、被加工材30の外側コンターC31が初期形状として持つコンターを構成する曲率Rと、に基づいて設定される。また、被加工材30において曲げが付与された部分には、その後にスプリングバックが生じる。従って、第2変位量は、断面二次モーメントに加えて、このスプリングバック量を考慮して設定してもよい。
 図7および図8を参照しつつ、第2変位量の算出方法の一例について、より具体的に説明する。図7において、点線は被加工材30の各部を目標の曲率に成形するために必要なストロークA、一点鎖線は外側コンターC31を直線状にするために必要なストロークBを示している。曲げロール103の第2変位量は、図7の破線に示す被加工材30の各部の断面二次モーメントから算出されるストロークAと、図7の一点鎖線に示す外側コンターC31の初期形状から算出されるストロークBとの和、あるいは、ストロークA,Bのそれぞれに所定の係数をかけたものの和、で表される。すなわち、被加工材30の外側コンターが可変形状の場合、はじめにストロークBで外側コンターを直線状に成形し、その後、直線状になった被加工材30の外側コンターを更に目標曲率となるまでストロークAで成形する、と理解できる。ただし、実際にはこれらの成形は同時に処理される。
 次に、スプリングバック量を考慮して被加工材30を目標の曲率ρ’とするために、成形時に被加工材30に付与しなければならない曲げの曲率ρは、以下の式(1)および(2)により算出される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 式(1)は、n乗硬化則の材料を仮定したときの塑性曲げに要するモーメントを表す式であり、式(2)は、スプリングバック量を規定する式である。なお、式(1)において、bは板幅であり、2tは板厚であり、E,F,n,ηeは材料定数である。式(2)において、ρはスプリングバック前の曲率であり、ρ’はスプリングバック後の曲率であり、Iは断面二次モーメントである。
 ここで、初期形状として例えば曲率Rを有する部材を直線状に成形するのに必要な成形量は、初期形状として直線状の部材を曲率Rに成形するのに必要な成形量と等しい。ゆえに、ストロークB、すなわち、初期の外側コンターC31を直線状にするために必要な成形量(曲率ρ)は、スプリングバック後の各部の形状(曲率ρ’)として、初期の外側コンターC31の各部の形状(曲率)を適用し、上記式(1)および式(2)を用いることで得られる。
 一方、曲げロール103のストロークを変化させると、被加工材30のうち支点ロール102との当接箇所に成形ひずみが加えられる。従って、この成形ひずみによりこの当接箇所が上述したようにして求めた曲率ρとなるよう、曲げロール103にストロークを与える。また、被加工材30のうち曲げロール103を通過した部分は、ロールによる拘束がなくなり、スプリングバックが完了して最終形状である曲率ρ’となる。つまり、支点ロール102から曲げロール103までの区間では、被加工材30の曲率ρが曲率ρ’まで徐々に変化する。ゆえに、曲げロール103のストローク、即ち第2変位量は、この曲率の変化を考慮して幾何学的に求められる。
 また、ウェブ30a以外の部分の影響が無視できる場合には、ウェブ30aの幅方向寸法に基づいて第2変位量を設定してもよい。あるいは、被加工材30の断面積に基づいて第2変位量を設定してもよい。更に、これらを適宜組み合わせた上で、かつ、必要に応じて他のパラメータも考慮して、第2変位量を設定してもよい。例えば、断面二次モーメント、被加工材30におけるロールベンディング加工前の外側コンターC31の変化、及び、スプリングバック量のうち、一又は複数(全てを含む)に適当な係数を乗じて、第2変位量を設定するようにしてもよい。
 なお、このような第2変位量は、曲げロール103のスライド量を取得するためのものであるが、曲げが加わるのは支点ロール102との当接箇所である。従って、設定された第2変位量に基づいて曲げロール103が移動されるのは、この第2変位量の設定に際して考慮された断面二次モーメントの取得対象箇所が支点ロール102に到達したときである。
 ロールベンディング加工における曲げロール103の最終的な移動量である第3変位量は、以上に説明した第1変位量と第2変位量とを合成したものとなる。図9Aおよび図9Bは、両側可変被加工材30に対して最終曲率を付与するのに要する曲げロール103の変位を説明するための模式図であり、このうち図9Aは、合成前の第1変位量及び第2変位量を示し、図9Bは、第1変位量及び第2変位量を合成した合成変位量である第3変位量を示している。製造装置100では、制御部104が、第1変位量と第2変位量とを合成することで、この図9Bに示す第3変位量を、曲げロール103の幅方向の変位量として取得する。そして、制御部104は、取得した第3変位量に基づいてロール駆動部106を駆動させて曲げロール103を制御し幅方向に移動させる。
 一方、制御部104は、搬送ロール101については、上述した搬送ロール101に関する第1変位量を、ロールベンディング加工時の幅方向の変位量、即ち搬送ロール101に関する第3変位量として取得する。そして、制御部104は、取得した第3変位量、即ち第1変位量に基づいてロール駆動部106を駆動させて搬送ロール101を制御し幅方向に移動させる。また、支点ロール102については、制御部104は、上述した支点ロール102に関する第1変位量を、ロールベンディング加工時の幅方向の変位量、即ち支点ロール102に関する第3変位量として取得する。そして、制御部104は、取得した第3変位量、即ち第1変位量に基づいてロール駆動部106を駆動させて支点ロール102を制御し幅方向に移動させる。このように、ロールベンディング加工において、搬送ロール101及び支点ロール102は、それぞれの第1変位量に基づいて移動され、曲げロール103は上記第1変位量及び第2変位量を合成した第3変位量に基づいて移動される。その結果、両側可変被加工材30から図1に示すロール成形部品40が成形される。
 なお、以上では便宜上、曲げロール103の最終的な変位量を第1変位量と第2変位量とに分けて説明し、これを合成した第3変位量を最終的な変位量と説明したが、第1変位量と第2変位量とを別々に取得して合成する処理は必須ではない。すなわち、最終的に、上述した第1変位量と第2変位量との和に相当する変位量を曲げロール103の幅方向の変位量として取得できればよく、その取得の過程は何ら限定されない。
 [片側可変被加工材の成形]
 次に、片側可変被加工材20をロールベンディング加工して図1のロール成形部品40を得るための製造装置100の動作及び製造方法について説明する。
 図2の上図に示したように、片側可変被加工材20は、ロールベンディング加工前において外側コンターC21が直線状で、かつ、内側コンターC22が可変のものである。すなわち、両側可変被加工材30との主な違いは、両側可変被加工材30では外側コンターC31が一定曲率ではない可変コンターであるのに対し、片側可変被加工材20では外側コンターC21が曲率ゼロの直線になっている点である。以下、片側可変被加工材20を単に「被加工材20」ともいう。
 ゆえに、両側可変被加工材30についての説明から分かるように、片側可変被加工材20のロールベンディング加工においては、搬送ロール101、支点ロール102(外側支点ロール102B)、及び曲げロール103についての第1変位量がいずれもゼロなどの一定値となる。
 図10Aおよび図10Bは、片側可変被加工材20に対して第1曲率を付与するのに要する曲げロール103の変位を説明するための模式図であり、このうち図10Aは、合成前の第1変位量及び第2変位量を示し、図10Bは、第1変位量及び第2変位量を合成した合成変位量である第3変位量を示している。図10Aに示すように、曲げロール103の第1変位量は、被加工材20の全長にわたってゼロなどの一定値である。なお、曲げロール103の原点がオフセット値を有する場合は第1変位量はゼロ以外の一定値となり、オフセット値を有しない場合は第1変位量はゼロとなる。
 また、完成品としてのロール成形部品40が同一である場合、片側可変被加工材20と両側可変被加工材30とは、長手方向の任意の位置での断面形状が互いに同一であるゆえ、各位置での断面二次モーメントも同一である。そのため、片側可変被加工材20に関する曲げロール103の第2変位量は、両側可変被加工材30に関して図7で説明した曲げロール103の第2変位量と同一である。
 従って、片側可変被加工材20のロールベンディング加工において、制御部104は、曲げロール103に関して、上述した第1変位量と第2変位量との和に相当する第3変位量を、幅方向の変位量として取得する。そして、この第3変位量に基づいて、ロール駆動部106を介して曲げロール103の移動を制御することで、片側可変被加工材20から図1に示すロール成形部品40が成形される。
 [作用および効果]
 上述したように、本開示に係るロール成形部品の製造装置は、少なくとも一部に幅方向寸法が長手方向に沿って変化する可変幅部分を有する長尺板材又は長尺型材から成る被加工材を、前記長手方向がベンディング経路に沿うように搬送しながらロールベンディング加工することにより、円弧状のロール成形部品を製造する製造装置であって、前記被加工材の少なくとも外側縁部に当接して当該被加工材を前記長手方向へ搬送する搬送ロール、前記搬送ロールに対して前記ベンディング経路の下流側に位置し、前記被加工材の少なくとも内側縁部に当接して当該被加工材の曲げの支点を成す支点ロール、及び、前記支点ロールに対して前記ベンディング経路の下流側に位置し、前記被加工材の少なくとも外側縁部に当接して当該被加工材に曲げを付与する曲げロール、を含む複数のロールと、前記搬送ロール、前記支点ロール及び前記曲げロールを前記被加工材の幅方向に移動させるロール駆動部と、制御部と、を備え、前記被加工材の前記幅方向の寸法に基づき、前記被加工材の前記長手方向の位置に対応して設定される前記複数のロールの前記幅方向の各変位量を、各ロールの当接変位量とし、前記支点ロールの前記当接変位量に基づき、前記被加工材の前記長手方向の位置に対応して設定される、前記被加工材が前記支点ロールに当接する位置での前記被加工材の前記幅方向の変位量を原点変位量とし、前記ロールの前記当接変位量と前記原点変位量とを合成して得られる、前記長手方向の位置に対応した前記複数のロールの前記幅方向の各変位量を、各前記ロールの第1変位量とし、前記支点ロールと当接する位置での前記被加工材の形状に基づいて設定される、前記被加工材の外側コンターを所定の曲率とするための、前記長手方向の位置に対応した前記曲げロールの前記幅方向の変位量を第2変位量としたときに、前記制御部は、前記曲げロールの前記第1変位量と前記第2変位量との和に相当する変位量を、前記曲げロールの前記幅方向の変位量として取得し、取得した前記曲げロールの前記幅方向の変位量に基づいて前記曲げロールを移動させる前記ロール駆動部を駆動させる。
 このような構成によれば、幅方向寸法が長手方向に沿って変化する可変幅部分を有する長尺板材又は長尺型材から成る被加工材を、ロールベンディング加工することにより、所定の曲率の外側コンターと可変曲率の内側コンター、又は、可変曲率の外側コンターと所定の一定曲率の内側コンター、又は、可変曲率の外側コンターと可変曲率の内側コンターを有する円弧状のロール成形部品を製造することができる。
 また、前記制御部は、前記搬送ロールの前記第1変位量を前記搬送ロールの前記幅方向の変位量として取得し、取得した前記搬送ロールの前記幅方向の変位量に基づいて、前記搬送ロールを移動させる前記ロール駆動部を駆動させ、前記支点ロールの前記第1変位量を前記支点ロールの前記幅方向の変位量として取得し、取得した前記支点ロールの前記幅方向の変位量に基づいて、前記支点ロールを移動させる前記ロール駆動部を駆動させることとしてもよい。
 また、前記第2変位量は、前記被加工材におけるロールベンディング加工前の外側コンター形状に基づいて得られることとしてもよい。また、前記第2変位量は、前記支点ロールが前記被加工材と当接する位置での前記被加工材の断面二次モーメント、ウェブ幅、及び断面積のうち少なくとも1つに基づいて得られることとしてもよい。
 また、前記第2変位量は、前記被加工材において曲げの付与後に生じるスプリングバック量に基づいて得られることとしてもよい。
 また、前記被加工材は、前記ロールベンディング加工前において外側コンターが直線状で、かつ、内側コンターが可変の片側可変被加工材であり、前記制御部は、前記曲げロールの前記第1変位量としての一定値と前記第2変位量との和に相当する変位量を、前記ロールベンディング加工時の前記曲げロールの前記幅方向の変位量として取得することとしてもよい。
 また、前記被加工材は、前記ロールベンディング加工前において外側コンター及び内側コンターの両方が可変の両側可変被加工材であり、前記支点ロールは、前記被加工材の内側縁部に当接する内側支点ロール及び外側縁部に当接する外側支点ロールを有し、前記制御部は、前記ロール駆動部を制御して、前記搬送ロール、前記外側支点ロール、及び前記曲げロールのそれぞれを、前記被加工材と当接する位置の外側コンターの前記幅方向の変化に沿って前記幅方向に移動させ、かつ、前記被加工材において前記曲げロールと当接する位置の外側コンターの前記幅方向の変位量である前記当接変位量を、前記曲げロールの前記第1変位量として取得することとしてもよい。
 また、前記被加工材は、前記ロールベンディング加工前において外側コンター及び内側コンターの両方が可変の両側可変被加工材であり、前記支点ロールは、前記被加工材の内側縁部に当接する内側支点ロール及び外側縁部に当接する外側支点ロールを有し、前記制御部は、前記ロール駆動部を制御して、前記外側支点ロールが当接する位置における、外側コンターの前記幅方向の変化量とは異なるように、前記外側支点ロールの前記幅方向の位置を制御し、かつ、前記被加工材に曲げを付与せずに搬送したときに、前記外側支点ロールと当接する位置の、前記外側コンターの前記幅方向の変化量と前記外側支点ロールの前記幅方向の変化量との差分のマイナス1倍の変化量である前記原点変位量と、前記被加工材において前記曲げロールと当接する位置の外側コンターの前記幅方向の変化量である前記当接変位量と、を合成して得られる変位量を、前記曲げロールの前記第1変位量として取得することとしてもよい。
 なお、このときの搬送ロールに関する第1変位量も、上記曲げロールに関する第1変位量と同様に定めることができる。すなわち、制御部は、搬送ロールに関する第1変位量として、被加工材に曲げを付与せずに搬送したときに、被加工材において外側支点ロールとの当接箇所の外側コンターの幅方向の変位量と外側支点ロールの幅方向の変化量との差分のマイナス1倍の変化量と、被加工材において搬送ロールとの当接箇所の外側コンターの幅方向の変化量と、を合成して得られる変位量を取得することとしてもよい。
 なお、本明細書で開示する各要素の機能は、開示された機能を実行するよう構成またはプログラムされた汎用プロセッサ、専用プロセッサ、集積回路、ASIC(Application Specific Integrated Circuits)、従来の回路、および/または、それらの組み合わせ、を含む回路または処理回路を使用して実行できる。プロセッサは、トランジスタやその他の回路を含むため、処理回路または回路とみなされる。本開示において、回路、ユニット、または手段は、列挙された機能を実行するハードウェアであるか、または、列挙された機能を実行するようにプログラムされたハードウェアである。ハードウェアは、本明細書に開示されているハードウェアであってもよいし、あるいは、列挙された機能を実行するようにプログラムまたは構成されているその他の既知のハードウェアであってもよい。ハードウェアが回路の一種と考えられるプロセッサである場合、回路、手段、またはユニットは、ハードウェアとソフトウェアとの組み合わせであり、ソフトウェアはハードウェアおよび/またはプロセッサの構成に使用される。
10     被加工材
20     片側可変被加工材
21     外側縁部
22     内側縁部
C21    外側コンター
C22    内側コンター
30     両側可変被加工材
31     外側縁部
32     内側縁部
C31    外側コンター
C32    内側コンター
40     ロール成形部品
100    製造装置
101    搬送ロール
102    支点ロール
103    曲げロール
104    制御部
105    記憶部
106    ロール駆動部
 
 

Claims (9)

  1.  少なくとも一部に幅方向寸法が長手方向に沿って変化する可変幅部分を有する長尺板材又は長尺型材から成る被加工材を、前記長手方向がベンディング経路に沿うように搬送しながらロールベンディング加工することにより、円弧状のロール成形部品を製造する製造装置であって、
     前記被加工材の少なくとも外側縁部に当接して当該被加工材を前記長手方向へ搬送する搬送ロール、
     前記搬送ロールに対して前記ベンディング経路の下流側に位置し、前記被加工材の少なくとも内側縁部に当接して当該被加工材の曲げの支点を成す支点ロール、及び、
     前記支点ロールに対して前記ベンディング経路の下流側に位置し、前記被加工材の少なくとも外側縁部に当接して当該被加工材に曲げを付与する曲げロール、
     を含む複数のロールと、
     前記搬送ロール、前記支点ロール及び前記曲げロールを前記被加工材の幅方向に移動させるロール駆動部と、
     制御部と、を備え、
     前記被加工材の前記幅方向の寸法に基づき、前記被加工材の前記長手方向の位置に対応して設定される前記複数のロールの前記幅方向の各変位量を、各ロールの当接変位量とし、
     前記支点ロールの前記当接変位量に基づき、前記被加工材の前記長手方向の位置に対応して設定される、前記被加工材が前記支点ロールに当接する位置での前記被加工材の前記幅方向の変位量を原点変位量とし、
     各前記ロールの前記当接変位量と前記原点変位量とを合成して得られる、前記長手方向の位置に対応した前記複数のロールの前記幅方向の各変位量を、各前記ロールの第1変位量とし、
     前記支点ロールと当接する位置での前記被加工材の形状に基づいて設定される、前記被加工材の外側コンターを所定の曲率とするための、前記長手方向の位置に対応した前記曲げロールの前記幅方向の変位量を第2変位量としたときに、
     前記制御部は、
     前記曲げロールの前記第1変位量と前記第2変位量との和に相当する変位量を、前記曲げロールの前記幅方向の変位量として取得し、
     取得した前記曲げロールの前記幅方向の変位量に基づいて前記曲げロールを移動させる前記ロール駆動部を駆動させる、
     ロール成形部品の製造装置。
  2.  前記制御部は、
     前記搬送ロールの前記第1変位量を前記搬送ロールの前記幅方向の変位量として取得し、取得した前記搬送ロールの前記幅方向の変位量に基づいて、前記搬送ロールを移動させる前記ロール駆動部を駆動させ、
     前記支点ロールの前記第1変位量を前記支点ロールの前記幅方向の変位量として取得し、取得した前記支点ロールの前記幅方向の変位量に基づいて、前記支点ロールを移動させる前記ロール駆動部を駆動させる、
     請求項1に記載のロール成形部品の製造装置。
  3.  前記第2変位量は、前記被加工材におけるロールベンディング加工前の外側コンター形状に基づいて得られる、
     請求項1又は2に記載のロール成形部品の製造装置。
  4.  前記第2変位量は、前記支点ロールが前記被加工材と当接する位置での前記被加工材の断面二次モーメント、ウェブ幅、及び断面積のうち少なくとも1つに基づいて得られる、
     請求項1~3の何れかに記載のロール成形部品の製造装置。
  5.  前記第2変位量は、前記被加工材において曲げの付与後に生じるスプリングバック量に基づいて得られる、
     請求項3又は4に記載のロール成形部品の製造装置。
  6.  前記被加工材は、前記ロールベンディング加工前において外側コンターが直線状で、かつ、内側コンターが可変の片側可変被加工材であり、
     前記制御部は、
     前記曲げロールの前記第1変位量としての一定値と前記第2変位量との和に相当する変位量を、前記ロールベンディング加工時の前記曲げロールの前記幅方向の変位量として取得する、
     請求項1~5の何れかに記載のロール成形部品の製造装置。
  7.  前記被加工材は、前記ロールベンディング加工前において外側コンター及び内側コンターの両方が可変の両側可変被加工材であり、
     前記支点ロールは、前記被加工材の内側縁部に当接する内側支点ロール及び外側縁部に当接する外側支点ロールを有し、
     前記制御部は、
     前記ロール駆動部を制御して、前記搬送ロール、前記外側支点ロール、及び前記曲げロールのそれぞれを、前記被加工材と当接する位置の外側コンターの前記幅方向の変化に沿って前記幅方向に移動させ、かつ、
     前記被加工材において前記曲げロールと当接する位置の外側コンターの前記幅方向の変位量である前記当接変位量を、前記曲げロールの前記第1変位量として取得する、
     請求項1~5の何れかに記載のロール成形部品の製造装置。
  8.  前記被加工材は、前記ロールベンディング加工前において外側コンター及び内側コンターの両方が可変の両側可変被加工材であり、
     前記支点ロールは、前記被加工材の内側縁部に当接する内側支点ロール及び外側縁部に当接する外側支点ロールを有し、
     前記制御部は、
     前記ロール駆動部を制御して、前記外側支点ロールが当接する位置における、外側コンターの前記幅方向の変化量とは異なるように、前記外側支点ロールの前記幅方向の位置を制御し、かつ、
     前記被加工材に曲げを付与せずに搬送したときに、前記外側支点ロールと当接する位置の、前記外側コンターの前記幅方向の変化量と前記外側支点ロールの前記幅方向の変化量との差分のマイナス1倍の変化量である前記原点変位量と、前記被加工材において前記曲げロールと当接する位置の外側コンターの前記幅方向の変化量である前記当接変位量と、を合成して得られる変位量を、前記曲げロールの前記第1変位量として取得する、
     請求項1~5の何れかに記載のロール成形部品の製造装置。
  9.  少なくとも一部に幅方向寸法が長手方向に沿って変化する可変幅部分を有する長尺板材又は長尺型材から成る被加工材を、曲げの支点となる支点ロール及び曲げを付与する曲げロールを含む複数のロールを用いて、前記長手方向がベンディング経路に沿うように搬送しながらロールベンディング加工することにより、円弧状のロール成形部品を製造する製造方法であって、
     前記被加工材の幅方向の寸法に基づき、前記被加工材の前記長手方向の位置に対応して設定される前記複数のロールの前記幅方向の各変位量を、各ロールの当接変位量とし、
     前記支点ロールの前記当接変位量に基づき、前記被加工材の前記長手方向の位置に対応して設定される、前記被加工材が前記支点ロールに当接する位置での前記被加工材の前記幅方向の変位量を原点変位量とし、
     各前記ロールの前記当接変位量と前記原点変位量とを合成して得られる、前記長手方向の位置に対応した前記複数のロールの前記幅方向の各変位量を、各前記ロールの第1変位量とし、
     前記支点ロールと当接する位置での前記被加工材の形状に基づいて設定される、前記被加工材の外側コンターを所定の曲率とするための、前記長手方向の位置に対応した前記曲げロールの前記幅方向の変位量を第2変位量としたときに、
     前記曲げロールの前記第1変位量と前記第2変位量との和に相当する変位量を、前記曲げロールの前記幅方向の変位量として取得し、
     前記曲げロールの前記幅方向の変位量に基づいて前記曲げロールを移動させる前記ロール駆動部を駆動させる、
     ロール成形部品の製造方法。
     
     
PCT/JP2022/005098 2021-02-09 2022-02-09 ロール成形部品の製造装置及び製造方法 WO2022172950A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22752773.6A EP4292723A1 (en) 2021-02-09 2022-02-09 Roll molded component manufacturing device and manufacturing method
JP2022580655A JPWO2022172950A1 (ja) 2021-02-09 2022-02-09
US18/228,671 US20230372987A1 (en) 2021-02-09 2023-08-01 Device and method for producing roll-formed part

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021018905 2021-02-09
JP2021-018905 2021-02-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/228,671 Continuation US20230372987A1 (en) 2021-02-09 2023-08-01 Device and method for producing roll-formed part

Publications (1)

Publication Number Publication Date
WO2022172950A1 true WO2022172950A1 (ja) 2022-08-18

Family

ID=82837579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005098 WO2022172950A1 (ja) 2021-02-09 2022-02-09 ロール成形部品の製造装置及び製造方法

Country Status (4)

Country Link
US (1) US20230372987A1 (ja)
EP (1) EP4292723A1 (ja)
JP (1) JPWO2022172950A1 (ja)
WO (1) WO2022172950A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711731A (en) * 1980-06-25 1982-01-21 Komatsu Ltd Production of curved boom
JPH0441569B2 (ja) 1988-03-04 1992-07-08 Toa Harbor Works Co Ltd
US20110088444A1 (en) * 2007-12-10 2011-04-21 Data M Software Gmbh Apparatus and process for forming profiles with a variable height by means of cold rolling
US20150102613A1 (en) * 2013-10-11 2015-04-16 Shape Corp. Beam with varied bending moment, apparatus, and method
JP2017119307A (ja) * 2015-12-28 2017-07-06 川崎重工業株式会社 可変幅を有するロール成形部品の製造装置および製造方法
JP2019104019A (ja) 2017-12-11 2019-06-27 川崎重工業株式会社 ロール成形部品の製造装置および製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711731A (en) * 1980-06-25 1982-01-21 Komatsu Ltd Production of curved boom
JPH0441569B2 (ja) 1988-03-04 1992-07-08 Toa Harbor Works Co Ltd
US20110088444A1 (en) * 2007-12-10 2011-04-21 Data M Software Gmbh Apparatus and process for forming profiles with a variable height by means of cold rolling
US20150102613A1 (en) * 2013-10-11 2015-04-16 Shape Corp. Beam with varied bending moment, apparatus, and method
JP2017119307A (ja) * 2015-12-28 2017-07-06 川崎重工業株式会社 可変幅を有するロール成形部品の製造装置および製造方法
JP2019104019A (ja) 2017-12-11 2019-06-27 川崎重工業株式会社 ロール成形部品の製造装置および製造方法

Also Published As

Publication number Publication date
US20230372987A1 (en) 2023-11-23
JPWO2022172950A1 (ja) 2022-08-18
EP4292723A1 (en) 2023-12-20

Similar Documents

Publication Publication Date Title
JP7079086B2 (ja) ロール成形部品の製造装置および製造方法
JP6741569B2 (ja) 可変幅を有するロール成形部品の製造装置および製造方法
WO2006093006A1 (ja) 金属材の曲げ加工方法、曲げ加工装置および曲げ加工設備列、並びにそれらを用いた曲げ加工製品
JP2009279653A (ja) パイプ、ロッド、形材、およびその他ブランクの曲げ方法および装置
JP4439573B2 (ja) 円筒成形装置
US4047411A (en) Numerically controlled pyramid roll forming machine
JP2019104019A5 (ja)
WO2022172950A1 (ja) ロール成形部品の製造装置及び製造方法
Kwiatkowski et al. Fundamentals for controlling thickness and surface quality during dieless necking-in of tubes by spinning
Staupendahl et al. Closed-loop control concept for kinematic 3D-profile bending
Cai et al. Process design and longitudinal deformation prediction in continuous sheet metal roll forming for three-dimensional surface
CN111468572A (zh) 一种滚弯工艺控制方法及系统
Peng et al. Kinetic locus design for longitudinal stretch forming of aircraft skin components
JP2014117704A (ja) ロール曲げ加工方法及びロール曲げ加工装置
KR101644012B1 (ko) 파이프 벤딩 장치를 이용한 파이프 벤딩 방법
RU2552206C2 (ru) Способ термосиловой обработки длинномерных осесимметричных деталей и устройство для его осуществления
JP7470128B2 (ja) 装置、方法およびコンピュータ可読媒体
JP2020082181A (ja) 加工装置及び加工装置の制御方法
Sheu et al. Flexible roll forming of U-section product with curved bending profile using advanced high strength steel
JP2015182121A (ja) 長尺材のロール曲げ装置及び曲げ加工方法
TWI622435B (zh) 金屬板材輥軋曲彎成形回彈補償機構
CN109590522B (zh) 一种厚度非均匀变化的薄壁铣削装置的控制方法
JP2007030023A (ja) ロール成形装置、ロール成形方法及びロール成形部品
CN114042789B (zh) 板材随动式机器人柔性渐进翻边成形优化方法
JP3241997U (ja) ロール曲げ成形装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022580655

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022752773

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022752773

Country of ref document: EP

Effective date: 20230911