WO2022172909A1 - Plant growing facility, plant cultivation method, led lighting device for plant growth, shelf plate for plant growth shelf, and shelf for plant growth - Google Patents

Plant growing facility, plant cultivation method, led lighting device for plant growth, shelf plate for plant growth shelf, and shelf for plant growth Download PDF

Info

Publication number
WO2022172909A1
WO2022172909A1 PCT/JP2022/004864 JP2022004864W WO2022172909A1 WO 2022172909 A1 WO2022172909 A1 WO 2022172909A1 JP 2022004864 W JP2022004864 W JP 2022004864W WO 2022172909 A1 WO2022172909 A1 WO 2022172909A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
led lighting
growing
light
led
Prior art date
Application number
PCT/JP2022/004864
Other languages
French (fr)
Japanese (ja)
Inventor
直哉 光武
雅幸 関戸
大介 後藤
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2022172909A1 publication Critical patent/WO2022172909A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/20Forcing-frames; Lights, i.e. glass panels covering the forcing-frames

Definitions

  • the present disclosure relates to a plant growing facility, a plant growing method, a plant growing LED lighting device, a plant growing shelf board, and a plant growing shelf.
  • the present disclosure provides a plant cultivating facility, a plant cultivating method, a plant cultivating LED lighting device, a plant cultivating shelf board, and a plant cultivating shelf that can improve plant production.
  • a plant growing facility is a plant growing facility having a first growing area and a second growing area, wherein the first growing area emits light having a color temperature of 4500 K or more and 5500 K or less.
  • the second growth area has a second lighting device that emits light having a color temperature of 2500K or more and 3500K or less.
  • the radiant flux in the wavelength range of 400 nm to 499 nm is B
  • the radiant flux in the wavelength range of 500 nm to 599 nm is G
  • the radiant flux in the wavelength range of 600 nm to 699 nm is R.
  • the emission spectrum of the light emitted by the first lighting device satisfies the relationships 0.54 ⁇ B/G ⁇ 0.72 and 0.59 ⁇ R/G ⁇ 0.77
  • the The emission spectrum of the light emitted by the second lighting device may satisfy the relationships of 0.26 ⁇ B/G ⁇ 0.44 and 0.89 ⁇ R/G ⁇ 1.17.
  • the first lighting device may be a lighting device for raising seedlings
  • the second lighting device may be a lighting device for cultivation.
  • a method for cultivating a plant according to the present embodiment is a method for cultivating a plant, comprising a seedling raising step of illuminating the plant with light having a color temperature of 4500 K or more and 5500 K or less; and a cultivation step of illuminating.
  • the radiant flux in the wavelength range of 400 nm or more and 499 nm or less is B
  • the radiant flux in the wavelength range of 500 nm or more and 599 nm or less is G
  • the radiant flux in the wavelength range of 600 nm or more and 699 nm or less is
  • R the emission spectrum of the light used in the seedling raising step satisfies the relationships 0.54 ⁇ B / G ⁇ 0.72 and 0.59 ⁇ R / G ⁇ 0.77
  • the emission spectrum of the light used may satisfy the relationships of 0.26 ⁇ B/G ⁇ 0.44 and 0.89 ⁇ R/G ⁇ 1.17.
  • the method for cultivating a plant according to the present embodiment may include a planting step of planting the plant between the seedling-raising step and the cultivating step.
  • An LED lighting device for growing plants is an LED lighting device for growing plants in which a plurality of LED chips are arranged, and the color temperature of the light from the LED chips is 4500 K or more and 5500 K or less.
  • B be the radiant flux in the wavelength range of 400 nm or more and 499 nm or less
  • G be the radiant flux in the wavelength range of 500 nm or more and 599 nm or less
  • R be the radiant flux in the wavelength range of 600 nm or more and 699 nm or less.
  • the emission spectrum of the irradiated light satisfies the relationships of 0.54 ⁇ B/G ⁇ 0.72 and 0.59 ⁇ R/G ⁇ 0.77.
  • the thickest portion has a thickness of 5 mm or less, and includes a substrate film and a metal wiring portion formed on the surface of the substrate film, and the plurality of LED chips may be mounted on the metal wiring portion.
  • the LED lighting device for growing plants may be a lighting device for raising seedlings.
  • a shelf board for a plant growing shelf according to the present embodiment includes a substrate and an LED lighting device for plant growing according to the present embodiment attached to the substrate.
  • the plant cultivating shelf according to the present embodiment is a plant cultivating shelf, and includes a shelf plate, and the shelf plate is attached to the lower surface side of a substrate.
  • the LED lighting device for growing plants according to the present embodiment It has
  • the LED lighting device for plant growing may be further arranged on the side surface of the shelf board.
  • the production of plants can be improved.
  • FIG. 1 is a schematic perspective view showing a plant growing facility according to one embodiment.
  • FIG. 2 is a schematic perspective view showing a first cultivating shelf and a second cultivating shelf according to one embodiment.
  • FIG. 3 is a schematic diagram showing an LED lighting module according to one embodiment.
  • FIG. 4 is a plan view showing an LED lighting sheet according to one embodiment.
  • FIG. 5A is a plan view showing a modification of the LED lighting sheet.
  • FIG. 5B is a plan view showing a modification of the LED lighting sheet.
  • FIG. 6A is a graph showing the relationship between time and voltage when a constant voltage is applied from the control unit to the LED lighting sheet.
  • FIG. 6B is a graph showing the relationship between time and voltage when pulses are applied to the LED lighting sheet as a comparative example.
  • FIG. 6A is a graph showing the relationship between time and voltage when a constant voltage is applied from the control unit to the LED lighting sheet.
  • FIG. 6B is a graph showing the relationship between time and voltage when pulses
  • FIG. 7 is a cross-sectional view (cross-sectional view taken along line VII-VII in FIG. 4) showing an LED lighting sheet according to one embodiment.
  • FIG. 8 is a diagram showing the emission spectrum of light from the LED chips of the first LED lighting sheet.
  • FIG. 9 is a diagram showing the emission spectrum of light from the LED chips of the second LED lighting sheet.
  • 10(a)-(h) are cross-sectional views showing a method for manufacturing an LED lighting sheet according to one embodiment.
  • FIG. 11A is a diagram showing a modified example of a plant growing shelf.
  • FIG. 11B is a diagram showing a modification of the plant growing shelf.
  • FIG. 12 is a graph comparing the leaf thickness of the plant at the time of planting, the fresh weight of the plant at the time of planting, and the plant height of the plant at the time of planting for Example 1, Comparative Example 1, and Comparative Example 2, respectively.
  • FIG. 13 is a graph comparing the fresh weight of plants after planting for each of Example 1, Comparative Example 1 and Comparative Example 2.
  • FIG. 14 is a graph comparing the fresh weight of plants after planting in Example 2, Comparative Example 3 and Comparative Example 4, respectively.
  • the plant growing facility has a first growing area and a second growing area.
  • the first growth region has a first lighting device that illuminates light with a color temperature of 4500K or more and 5500K or less
  • the second growth region has a second lighting device that irradiates light with a color temperature of 2500K or more and 3500K or less. 2 lighting devices.
  • the first growing area has a first lighting device that emits light with a color temperature of 4500K or more and 5500K or less.
  • the second growth area has a second lighting device that emits light with a color temperature of 2500K or more and 3500K or less. Therefore, the plant can be grown by moving it to an optimum light source depending on the growing stage of the plant. As a result, it is possible to increase the amount of plants grown, and to obtain plants with a good yield. For example, during the seedling-raising period, which is the first stage of plant growth, the first lighting device irradiates the plant with light having a color temperature of 4500K or more and 5500K or less.
  • the second lighting device irradiates the plants with light having a color temperature of 2500K or more and 3500K or less. This allows plants to grow under an appropriate light source. Moreover, this embodiment is more effective when applied to leafy vegetables among plants.
  • the plant cultivation method includes a seedling raising step of illuminating the plants with light having a color temperature of 4500K or more and 5500K or less, and a cultivation step of illuminating the plants with light having a color temperature of 2500K or more and 3500K or less.
  • the plants By irradiating the plants with light with a color temperature of 4500K or more and 5500K or less during the seedling-raising period, which is the first stage of plant growth, the plants can grow compactly and robustly. As a result, after the seedling-raising period is completed, it is possible to prevent the strains from collapsing when the plant is planted, and to prevent the work efficiency of planting from being lowered. In addition, by suppressing the collapse of the stock at the time of fixed planting, the growth of the plant can be prevented from stagnation. Furthermore, by irradiating the plants with light having a color temperature of 4500 K or more and 5500 K or less during the seedling-raising period, it is possible to reduce variations in plant growth. As a result, the size and quality of plants to be grown can be kept within a certain standard range, and the number of nonconforming products can be reduced.
  • the growth of the plants can be accelerated and the number of days of plant cultivation can be reduced. Thereby, the production amount of plants per unit area can be improved. Since the cultivation period is a stage in which the plant grows large, a larger space is required in the plant growing facility compared to the seedling-raising period. Therefore, by accelerating the growth of plants and reducing the number of days of the cultivation period, the production cycle of plants can be dramatically improved. Thereby, the production amount per unit area of the plant can be increased.
  • the radiant flux in the wavelength range of 400 nm to 499 nm is B
  • the radiant flux in the wavelength range of 500 nm to 599 nm is G
  • the radiant flux in the wavelength range of 600 nm to 699 nm is R.
  • the emission spectrum of the light emitted by the first lighting device satisfies the relationships of 0.54 ⁇ B/G ⁇ 0.72 and 0.59 ⁇ R/G ⁇ 0.77.
  • the emission spectrum of light emitted by the second lighting device satisfies the relationships of 0.26 ⁇ B/G ⁇ 0.44 and 0.89 ⁇ R/G ⁇ 1.17.
  • the plants can be grown compactly and robustly, and a decrease in planting work efficiency can be suppressed.
  • the production amount of plants per unit area can be improved.
  • Factors for improving profitability include, for example, selection of cultivation targets with a high unit price, promotion of growth to grow large crops in a short period of time, and reduction of costs such as initial costs and running costs.
  • Factors for improving profitability include, for example, selection of cultivation targets with a high unit price, promotion of growth to grow large crops in a short period of time, and reduction of costs such as initial costs and running costs.
  • a proposal for promoting growth by promoting photosynthesis there is a growth control technology using two types of LED chips, a red LED chip and a blue LED chip.
  • it is necessary to prepare two types of LED chips making it difficult to reduce costs.
  • a white LED chip is sufficient as a light source, and it is desired to grow plants efficiently by an LED lighting device using a mass-produced white LED chip.
  • the first lighting device emits light with a color temperature of 4500K or higher and 5500K or lower
  • the second lighting device emits light with a color temperature of 2500K or higher and 3500K or lower. Irradiate. Therefore, mass-produced white LED chips can be used as the LED chips, so that the cost of the LED lighting device can be reduced.
  • FIG. 1 is a diagram schematically showing the configuration of a plant growing facility 90 according to this embodiment.
  • a plant growing facility 90 according to the present embodiment includes a first growing shelf 80A and a second growing shelf 80B.
  • the first growing shelf 80A is a plant growing shelf for growing plants in the seedling-raising period, which is the early stage of plant growing
  • the second growing shelf 80B is for plants in the growing period, which is the late stage of plant growing. It is a growing shelf for growing plants.
  • the first cultivating shelf 80A and the second cultivating shelf 80B have shelves with the same space, but the present invention is not limited to this.
  • the first growing shelf 80A for growing seedlings with relatively small plants may be smaller than the second growing shelf 80B for growing relatively large plants.
  • the inter-shelf distance (vertical distance) of the first cultivating shelf 80A may be smaller than the inter-shelf distance of the second cultivating shelf 80B.
  • the first cultivating shelf 80A corresponds to the first cultivating area
  • the second cultivating shelf 80B corresponds to the second cultivating area.
  • both the first growing area and the second growing area may be arranged on one growing shelf.
  • the first growing area may be arranged in the upper part (lower part) of one growing shelf
  • the second growing area may be arranged in the lower part (upper part).
  • the first cultivating shelf 80A and the second cultivating shelf 80B are also collectively referred to as the cultivating shelves 80A and 80B.
  • the seedling-raising period is the early stage of plant growth, and refers to the period after sowing until the plant reaches a certain weight.
  • the raising seedling period means the period until planting.
  • the cultivation period is the latter stage of plant growth, and refers to the period from the time the plant grows to a certain weight to the time the plant is harvested.
  • the cultivation period refers to the period after it is permanently planted.
  • Fixed planting refers to planting a plant in a field (second growth area) where the plant is cultivated until harvest. Also, raising seedlings, fixed planting, and cultivating mentioned above are collectively referred to as cultivating.
  • the plant growing facility 90 is a plant growing factory using artificial light.
  • This plant growing facility 90 comprises a building 91 that accommodates a first growing shelf 80A and a second growing shelf 80B.
  • a plant growing facility is a concept including a plant growing system, a plant growing room, a plant growing factory, etc. in addition to the plant growing factory.
  • the first growing shelf 80A for the seedling growing period has a first LED lighting sheet (first lighting device) 20A that emits light with a color temperature of 4500K or more and 5500K or less.
  • the second growing shelf 80B for the cultivation period has a second LED lighting sheet (second lighting device) 20B that emits light with a color temperature of 2500K or more and 3500K or less.
  • the first LED lighting sheet 20A and the second LED lighting sheet 20B are also collectively referred to as the LED lighting sheets 20A and 20B.
  • the emission spectrum of the light emitted from the first LED lighting sheet 20A satisfies the relationships of 0.54 ⁇ B/G ⁇ 0.72 and 0.59 ⁇ R/G ⁇ 0.77.
  • the emission spectrum of the light emitted from the second LED lighting sheet 20B satisfies the relationships of 0.26 ⁇ B/G ⁇ 0.44 and 0.89 ⁇ R/G ⁇ 1.17.
  • the first LED lighting sheet 20A is electrically connected to a control unit 40 that controls the first LED lighting sheet 20A.
  • the first LED lighting sheet 20A and the controller 40 constitute a first LED lighting module 10A.
  • a control unit 40 for controlling the second LED lighting sheet 20B is electrically connected to the second LED lighting sheet 20B.
  • a second LED lighting module 10B is configured by the second LED lighting sheet 20B and the control unit 40 .
  • the first LED lighting module 10A and the second LED lighting module 10B are also collectively referred to as the LED lighting modules 10A and 10B.
  • each of the first cultivating shelf 80A and the second cultivating shelf 80B includes a plurality of (four) pillars 82 and a plurality of pillars 82 vertically spaced apart from each other along the pillars 82. and a substrate 81 of A culture medium area for cultivating plants PL is provided on the upper surface of each substrate 81 except for the substrate 81 on the uppermost stage.
  • the bottom surface of each substrate 81 except for the bottom substrate 81 constitutes a ceiling surface for the substrates 81 positioned below the substrate 81, and the LED lighting sheets 20A and 20B are arranged in parallel.
  • the control unit 40 is arranged at a location sufficiently distant from each of the LED lighting sheets 20A and 20B.
  • the board 81 and the LED lighting sheets 20A and 20B attached to the lower surface side of the board 81 constitute a shelf board 83 for a plant growing shelf.
  • the board 81 and the LED lighting modules 10A and 10B attached to the lower surface of the board 81 constitute a shelf board 83 for growing plants.
  • a plant-growing facility 90 provided with such a plant-growing shelf plate 83 (Fig. 2), plant-growing shelves 80A and 80B (Fig. 2), and plant-growing shelves 80A and 80B (Fig. 1) is also provided.
  • the LED lighting sheets 20A and 20B according to this embodiment have flexibility and lightness. Therefore, attachment of the LED lighting sheets 20A and 20B to the lower surface of each substrate 81 can be performed more easily than attachment by a conventional straight tube type illumination device or the like. Furthermore, since the LED lighting sheets 20A and 20B have flexibility, the LED lighting sheets 20A and 20B can be attached to ceiling surfaces having various sizes and shapes. As a result, the LED lighting sheets 20A and 20B according to the present embodiment can be applied to various growing shelves 80A and 80B and plant growing facilities 90.
  • the LED lighting sheets 20A and 20B are thinner than conventional straight tube lighting devices.
  • the space between substrates 81 in the vertical direction can be narrowed, and the number of substrates 81 included in each of the growing racks 80A and 80B can be increased.
  • the yield of plants PL per unit area can be increased.
  • LED lighting module and LED lighting sheet for growing plants Next, configurations of the LED lighting modules 10A and 10B and the LED lighting sheets 20A and 20B according to the present embodiment will be described with reference to FIGS. 3 to 9.
  • FIG. 1 LED lighting module and LED lighting sheet for growing plants
  • the plant growing LED lighting modules 10A and 10B are installed in a plant growing facility 90 (FIG. 1) using artificial light to grow plants.
  • the LED lighting modules 10A and 10B include the LED lighting sheets 20A and 20B for growing plants, and the controller 40 electrically connected to the LED lighting sheets 20A and 20B. .
  • the LED lighting sheets 20A and 20B are so-called planar light source sheets, and a plurality of LED chips 21 are arranged on the light emitting surface side of the sheet surface (the side facing the plant direction when used). It is.
  • the irradiation light from the LED chip 21 passes through the light-emitting surface as it is and reaches the plant directly below.
  • the amount of light can be increased to promote the growth of plants, and the thickness of the entire sheet can be reduced to make it difficult for shadows on the sides of the LED chips 21 to occur.
  • FIG. 4 shows an example of the direct type LED lighting sheets 20A and 20B, the present invention is not limited to this, and an edge light type LED lighting sheet with a light guide plate or the like interposed may be used.
  • An edge-light type LED lighting sheet tends to suppress variations in the amount of light emitted from the light-emitting surface.
  • the LED lighting sheets 20A and 20B are provided with a flexible wiring board 30 and a plurality of LED chips 21 regularly arranged on the flexible wiring board 30.
  • a flexible wiring board 30 By using such a flexible wiring board 30, it is possible to obtain the LED lighting sheets 20A and 20B having a relatively large sheet surface area.
  • a plant growing facility such as a plant growing factory or a plant growing shelf, a plurality of LED lighting sheets 20A and 20B are arranged and used. In this case, if the positions of the adjacent LED lighting sheets 20A and 20B vary, the amount of light varies, which may reduce the yield of plants.
  • the LED lighting sheets 20A and 20B having a relatively large sheet surface area can reduce the number of LED lighting sheets 20A and 20B to be used.
  • FIG. 4 shows an example of the LED lighting sheets 20A and 20B provided with the flexible wiring board 30, it is not limited to this, and an LED lighting sheet provided with a rigid wiring board may be used.
  • An LED lighting sheet with a rigid wiring board has high resistance to stress and is less likely to break.
  • illustration of a light-reflective insulating protective film 34 and a transparent protective film 35, which will be described later, is omitted.
  • the LED chips 21 are arranged inside the flexible wiring board 30 in a grid pattern in plan view. That is, the LED chips 21 are arranged in multiple rows and columns in a matrix, and N rows R of LED chips 21 connected in series are arranged.
  • N rows R of LED chips 21 connected in series are arranged.
  • the number of LED chips 21 to be arranged is not limited to this.
  • 10 or more and 14 or less (14 ⁇ M ⁇ 10) LED chips 21 are arranged in series in the first arrangement direction (X direction), and this row R is the second arrangement of the LED chips 21. It is preferable to arrange 4 or more and 10 or less (10 ⁇ N ⁇ 4) rows in parallel in the direction (Y direction).
  • the LED chips 21 can be arranged at short intervals along the first arrangement direction (X direction).
  • in-plane variations in the illuminance of the LED lighting sheets 20A and 20B can be suppressed, and variations in the light applied to the plants can be suppressed.
  • 14 or less LED chips 21 in series power consumption can be reduced, and running costs such as utility costs in the plant growing facility 90 can be reduced.
  • the LED chips 21 in the other rows can be suppressed. Moreover, it is possible to prevent the illuminance of the entire LED lighting sheets 20A and 20B from being extremely lowered. In addition, by limiting the range where the illuminance of the LED lighting sheets 20A and 20B has decreased, the range in which nonconforming products may occur can be limited, and a reduction in yield can be suppressed. In addition, when the LED lighting sheets 20A and 20B are of the direct type, there is an increased risk of damage due to erroneous strong contact with the LED chips 21 during installation or cleaning. It is important from the viewpoint of risk management. Further, by arranging the LED chips 21 in 10 or less rows in parallel, power consumption can be reduced, and running costs such as utility costs in the plant growing facility 90 can be reduced.
  • the LED lighting sheets 20A and 20B have a plurality of metal wiring portions 22, and the plurality of metal wiring portions 22 are arranged along the first arrangement direction (X direction).
  • a plurality of metal wiring portions 22 arranged along the first arrangement direction (X direction) correspond to the respective rows R of the LED chips 21 .
  • the LED chips 21 are arranged so as to straddle a pair of metal wiring portions 22 adjacent to each other in the X direction.
  • Each terminal (not shown) of the LED chip 21 is electrically connected to a pair of metal wiring portions 22, respectively.
  • the plurality of metal wiring portions 22 constitute a power feeding portion to the LED chips 21, and by supplying power to the plurality of metal wiring portions 22, all the LED chips 21 arranged in the row R are lit. .
  • the plurality of metal wiring portions 22 constitute a part of a metal wiring portion 32 to be described later.
  • the interval Px between the LED chips 21 in the first arrangement direction (X direction) is preferably 37 mm or more and 50 mm or less.
  • the interval Py between the LED chips 21 in the second arrangement direction (Y direction) is set to 37 mm or more and 100 mm or less.
  • the thickness of the thickest portion of the LED lighting sheets 20A and 20B is preferably 5 mm or less.
  • the thickness of the thickest portion of the LED lighting sheets 20A and 20B is preferably 5 mm or less.
  • the arrangement of the LED chips 21 is not limited to the grid point shape in plan view, and may be arranged in a zigzag pattern in plan view as shown in FIG. 5A. Moreover, the LED chips 21 do not have to be arranged uniformly within the surfaces of the LED lighting sheets 20A and 20B. For example, the density of the LED chips 21 may be increased in the periphery of the LED lighting sheets 20A and 20B. Specifically, as shown in FIG. 5B, the LED chips 21 are arranged in a grid pattern in the central portion (lower portion of FIG. 5B) of the LED lighting sheets 20A and 20B, and the peripheral edge portions of the LED lighting sheets 20A and 20B ( 5B), the LED chips 21 may be arranged in a zigzag pattern.
  • the overall shape of the LED lighting sheets 20A and 20B is rectangular in plan view, but the size and planar shape of the LED lighting sheets 20A and 20B are not particularly limited. Since the LED lighting sheets 20A and 20B have a high degree of freedom in size and shape processing, it is possible to flexibly respond to various demands related to this point. In addition, by taking advantage of its flexibility, it is possible to attach it not only to a flat installation surface but also to installation surfaces of various shapes. Moreover, the LED lighting sheets 20A and 20B themselves have rigidity. For this reason, for example, by bending the LED lighting sheets 20A and 20B into a cylindrical shape so that the LED chips 21 are on the outside, the LED lighting sheets 20A and 20B alone can be illuminated without an installation surface.
  • the length Lx of the LED lighting sheets 20A and 20B in the first arrangement direction (X direction) is preferably 500 mm or more and 700 mm or less, more preferably 550 mm or more and 650 mm or less.
  • the length Ly of the LED lighting sheets 20A and 20B in the second arrangement direction (Y direction) is preferably 300 mm or more and 500 mm or less, more preferably 350 mm or more and 450 mm or less.
  • each of the LED lighting sheets 20A and 20B is not excessively large, when a specific LED chip 21 is damaged, the other LED chips 21 are minimized from being affected. . As a result, it is possible to prevent the illuminance of the entire shelf plate 83 (FIG. 2) for growing plants from being extremely lowered, and to limit the range in which the illuminance is lowered.
  • the control unit 40 supplies power to the LED lighting sheets 20A and 20B and controls light emission of the LED lighting sheets 20A and 20B.
  • the control unit 40 is detachably connected to the LED lighting sheets 20A, 20B via a first connector 44A provided on the LED lighting sheets 20A, 20B. That is, the control unit 40 is configured separately from the LED lighting sheets 20A and 20B, and is externally connected to the LED lighting sheets 20A and 20B. That is, the controller 40 is not integrated with the LED lighting sheets 20A and 20B.
  • the control unit 40 serving as a heat source can be separated from the LED lighting sheets 20A and 20B, and the heat from the control unit 40 can be prevented from affecting the growth of plants.
  • the control unit 40 also has a power input unit 41 , an AC/DC converter (driver) 42 and a PWM control unit 43 .
  • the power input unit 41 is supplied with an AC voltage having an arbitrary voltage of 100V to 240V, for example.
  • the AC/DC converter 42 converts an AC voltage of 100V to 240V into a constant voltage (for example, 44V) DC voltage.
  • the PWM control section 43 arbitrarily changes the pulse width of the constant voltage waveform from the AC/DC converter 42 to perform light control of the LED chips 21 of the LED lighting sheets 20A and 20B. That is, the PWM control section 43 also serves as a dimming control section that controls dimming of the LED lighting sheets 20A and 20B.
  • a constant voltage output from the PWM control unit 43 is applied to the LED lighting sheets 20A and 20B via the first connector 44A.
  • the LED chips 21 can be dimmed. That is, the PWM controller 43 can arbitrarily control the illuminance of the LED chip 21 by appropriately changing the duty ratio of the DC voltage from the AC/DC converter 42 . For example, as shown in FIG. 6A, the PWM control unit 43 reduces the illuminance of the LED chip 21 by suppressing the duty ratio of the constant voltage from the AC/DC converter 42 from 100% (solid line) to 50% (dotted line). can be lowered.
  • the illuminance of the LED lighting sheets 20A and 20B can be adjusted according to the growth stage of the plant, and the degree of plant growth can be adjusted. For example, during the seedling raising period or cultivation period, the illuminance of the LED lighting sheets 20A and 20B is reduced at the beginning of the period when the leaves of the plant are small, and the illuminance of the LED lighting sheets 20A and 20B is reduced at the end of the period when the leaves of the plant are large. can be raised.
  • the illuminance of the LED lighting sheets 20A and 20B may be increased during the seedling raising period or during the cultivation period at the beginning of the period when the plant is short, since the distance between the plant and the LED chip 21 is large. Since the distance between the plant and the LED chip 21 is reduced in the latter half of the period when the height of the plant increases, the illuminance of the LED lighting sheets 20A and 20B may be lowered.
  • the illuminance may be increased for plants that require high illuminance, and may be decreased for plants that can be grown at low illuminance. The illuminance may be increased to accelerate the shipment, and may be decreased to delay the shipment.
  • the integrated amount of light per unit time from the LED lighting sheets 20A and 20B can be increased. That is, for example, the integrated light amount when a constant voltage is applied to the LED lighting sheets 20A and 20B (the area of the shaded portion in FIG. 6A) is compared with the integrated light amount when a pulse voltage is applied as a comparative example (FIG. 6B can be larger than the shaded area of ). Thereby, the luminous efficiency of the light from the LED lighting sheets 20A and 20B can be increased, and the growing efficiency of plants can be improved.
  • the LED lighting sheets 20A and 20B are provided with regulators 45.
  • the regulators 45 are provided corresponding to the respective columns of the LED chips 21.
  • ten regulators 45 are provided corresponding to the ten columns of the LED chips 21. .
  • This regulator 45 serves to keep constant the current flowing through the plurality of LED chips 21 in each column. As a result, even if one LED chip 21 is damaged, it is possible to prevent an excessive current from flowing to the LED chips 21 in other columns, thereby preventing the LED chips 21 in other columns from being damaged. As a result, it is possible to prevent the illuminance of the entire LED lighting sheets 20A and 20B from being extremely lowered, and to suppress variations in the light emitted to the plants.
  • the regulator 45 can control the amount of current controlled by the connected resistance value for each column. can be raised. In this way, the LED lighting sheets 20A and 20B are normally laid together without gaps, thereby ensuring uniformity. On the other hand, even if the LED lighting sheets 20A and 20B are spaced about 5 cm to 10 cm from the viewpoint of cost and ensuring air permeability, the effect of eliminating the seam can be expected.
  • the LED lighting sheets 20A and 20B are provided with a power supply line 46 branched from the first connector 44A.
  • a second connector 44B is provided on the LED lighting sheets 20A and 20B.
  • the power supply line 46 is not electrically connected to the LED chips 21 of the LED lighting sheets 20A and 20B, and is connected to wiring of another LED lighting sheet 200 having the same configuration as the LED lighting sheets 20A and 20B. are electrically connected. That is, the power supply line 46 is detachably connected to the wiring of the LED lighting sheet 200 via the second connector 44B and the other first connector 44A provided on the other LED lighting sheet 200 .
  • a current from the power supply line 46 is supplied to the other LED lighting sheet 200 via the second connector 44B and the other first connector 44A.
  • the LED lighting sheets 20A, 20B and another LED lighting sheet 200 can be connected, and these LED lighting sheets 20A, 20B and the LED lighting sheet 200 can be controlled simultaneously by one control unit 40.
  • the number of controllers 40 which are sources of heat generation, can be reduced.
  • variations in plant growth due to the heat from the control unit 40 are less likely to occur, and reduction in yield can be suppressed.
  • each member which comprises LED lighting sheet 20A, 20B includes a flexible wiring board 30 and a plurality of LED chips 21 arranged on the flexible wiring board 30.
  • the flexible wiring board 30 has a substrate film 31 having flexibility and a metal wiring portion 32 formed on the surface of the substrate film 31 (the surface on the light emitting surface side).
  • the metal wiring portion 32 is laminated on the substrate film 31 with an adhesive layer 33 interposed therebetween.
  • Each LED chip 21 is mounted on the metal wiring portion 32 in a conductive manner.
  • the LED chips 21 are mounted on the flexible wiring board 30, it is possible to arrange the plurality of LED chips 21 at a desired high density.
  • a light-reflective insulating protective film 34 covers a region of the LED lighting sheets 20A and 20B, excluding a region where the LED chip 21, the regulator 45, the first connector 44A and the second connector 44B are provided, and the peripheral region thereof. formed.
  • This light-reflective insulating protective film 34 is arranged so as to cover the metal wiring portion 32 .
  • the light-reflective insulating protective film 34 has both an insulating function that contributes to improving migration resistance properties of the LED lighting sheets 20A and 20B and a light reflecting function that contributes to improving the light environment created by the LED lighting sheets 20A and 20B. layer. This layer is formed from an insulating resin composition containing a white pigment.
  • a structure without the light-reflective insulating protective film 34 is also possible when the migration resistance and the light-reflecting function can be obtained only with the metal wiring portion 32 described above and the transparent protective film 35 described later.
  • a transparent protective film 35 is formed so as to cover the light-reflective insulating protective film 34 and the LED chip 21 .
  • the transparent protective film 35 is a resinous film formed on the outermost surface (the surface closest to the light emitting surface) mainly to ensure waterproofness of the LED lighting sheets 20A and 20B.
  • a solder portion 36 is provided on the metal wiring portion 32 .
  • Each LED chip 21 is electrically connected to the metal wiring portion 32 via a solder portion 36 .
  • a flexible resin film can be used for the substrate film 31 .
  • “having flexibility” means “having a radius of curvature of at least 1 m or less, preferably 50 cm, more preferably 30 cm, still more preferably 10 cm, and particularly preferably 5 cm. "Things"
  • thermoplastic resin with high heat resistance and insulation may be used as the material for the substrate film 31 .
  • polyethylene naphthalate (PEN) which is improved in heat resistance and dimensional stability by applying heat resistance improvement treatment such as annealing treatment, can also be preferably used.
  • PET polyethylene terephthalate
  • flame retardancy by adding a flame retardant inorganic filler or the like
  • the thickness of the substrate film 31 is not particularly limited.
  • the thickness of the substrate film 31 can be appropriately set from the viewpoints of not becoming a bottleneck as a heat dissipation path, having heat resistance and insulating properties, and balancing manufacturing costs.
  • the thickness of the substrate film 31 may be approximately 10 ⁇ m or more and 500 ⁇ m or less, preferably 50 ⁇ m or more and 250 ⁇ m or less.
  • it is preferable that the thickness is within the above range also from the viewpoint of maintaining good productivity in the case of manufacturing by a roll-to-roll method.
  • adhesive layer As the adhesive for forming the adhesive layer 33, a known resin-based adhesive can be appropriately used. Among these resin adhesives, urethane-based, polycarbonate-based, silicone-based, ester-based or epoxy-based adhesives can be particularly preferably used.
  • the metal wiring portion 32 is a wiring pattern formed on the surface of the substrate film 31 (the surface on the side of the light emitting surface) with a conductive base material such as metal foil.
  • the metal wiring portion 32 is preferably formed on the surface of the substrate film 31 with an adhesive layer 33 interposed therebetween by a dry lamination method.
  • the metal wiring portion 32 includes the plurality of metal wiring portions 22 described above.
  • the multiple metal wiring portions 22 include a first metal wiring portion 22A and a second metal wiring portion 22B spaced apart from the first metal wiring portion 22A.
  • the LED chip 21 is mounted on the first metal wiring portion 22A and the second metal wiring portion 22B, and the LED chip 21 is electrically connected to the first metal wiring portion 22A and the second metal wiring portion 22B. It is The LED chip 21 is lit by power supplied to the first metal wiring portion 22A and the second metal wiring portion 22B.
  • the metal wiring part 32 has both heat dissipation and electrical conductivity at a high level.
  • copper foil can be used.
  • heat dissipation from the LED chips 21 is stabilized, and an increase in electrical resistance can be prevented, so that variations in light emission among the LED chips 21 are reduced and stable light emission becomes possible.
  • the life of the LED chip 21 is extended.
  • metals forming the metal wiring portion 32 include metals such as aluminum, gold, and silver, in addition to the above copper.
  • the thickness of the metal wiring portion 32 may be appropriately set according to the magnitude of withstand current required for the flexible wiring board 30 and the like.
  • the thickness of the metal wiring portion 32 is preferably 10 ⁇ m or more in order to suppress warping due to heat shrinkage of the substrate film 31 during soldering processing such as a reflow method.
  • the thickness of the metal wiring portion 32 is preferably 50 ⁇ m or less, so that the flexible wiring board 30 can maintain sufficient flexibility, and a decrease in handling performance due to an increase in weight can be suppressed.
  • solder part The solder portion 36 joins the metal wiring portion 32 and the LED chip 21 . This soldering can be performed by either a reflow method or a laser method.
  • the LED chip 21 is a light-emitting element utilizing light emission at a PN junction where a P-type semiconductor and an N-type semiconductor are joined.
  • the LED chip 21 may have a structure in which a P-type electrode and an N-type electrode are respectively provided on the upper and lower surfaces of the element, or a structure in which both the P-type electrode and the N-type electrode are provided on one side of the element. can be
  • the LED chip 21 it is preferable to select one with high luminous efficiency.
  • the LED chip 21 preferably has a luminous efficiency of 150 lm/W or more, and more preferably has a luminous efficiency of 180 lm/W or more.
  • the number (density) of the LED chips 21 mounted can be reduced, and the heat generated by the LED chips 21 due to Joule heat can be reduced.
  • variations in plant growth caused by the heat from the LED chip 21 are less likely to occur, and a decrease in yield can be suppressed.
  • the LED lighting sheets 20A and 20B have the LED chips 21 directly mounted on the metal wiring portions 32 capable of exhibiting high heat dissipation.
  • the LED chips 21 are arranged at a high density, excessive heat generated when the LED chips 21 are turned on is rapidly diffused through the metal wiring portion 32, and the LED lighting sheets 20A and 20B are heated through the substrate film 31. can sufficiently dissipate heat to the outside. As a result, variations in plant growth caused by the heat from the LED chip 21 are less likely to occur, and a decrease in yield can be suppressed.
  • the LED chips 21 used in the first LED lighting sheet 20A for raising seedlings and the LED chips 21 used in the second LED lighting sheet 20B for cultivation have different optical characteristics. is doing.
  • the LED chips 21 of the first LED lighting sheet 20A and the LED chips 21 of the second LED lighting sheet 20B will be described below.
  • the LED chips 21 of the first LED lighting sheet 20A irradiate light suitable for raising seedlings.
  • the color temperature of the light from the LED chip 21 is 4500K or more and 5500K or less, preferably 4800K or more and 5200K or less, and more preferably 4900K or more and 5100K or less.
  • B be the radiant flux in the wavelength range from 400 nm to 499 nm
  • G be the radiant flux in the wavelength range from 500 nm to 599 nm
  • R the radiant flux in the wavelength range from 600 nm to 699 nm.
  • the emission spectrum of the light emitted by the LED chips 21 of the first LED lighting sheet 20A has a relationship of 0.54 ⁇ B/G ⁇ 0.72 and 0.59 ⁇ R/G ⁇ 0.77. meet.
  • the emission spectrum S1 of light from the LED chips 21 of the first LED lighting sheet 20A has a first peak P1, a second peak P2, and a third peak P3. ing.
  • the first peak P1 has a center wavelength of 440 nm or more and 460 nm or less.
  • the second peak P2 has a center wavelength of 510 nm or more and 530 nm or less.
  • the third peak P3 has a center wavelength of 610 nm or more and 630 nm or less. That is, the emission spectrum S has a first peak P1 existing in the blue wavelength range, a second peak P2 existing in the green wavelength range, and a third peak P3 existing in the red wavelength range. .
  • the emission spectrum of the light from the LED chip 21 can be measured using a spectral irradiance meter (for example, CL-500A manufactured by Konica Minolta) used for measuring the light source color.
  • a spectral irradiance meter for example, CL-
  • the relative emission intensity at the center wavelength of the first peak P1 is greater than the relative emission intensity at the center wavelength of the second peak P2, and the relative emission intensity at the center wavelength of the second peak P2 is the third It is larger than the relative emission intensity at the center wavelength of peak P3. That is, in this specification, among the peaks of the emission spectrum S of the light from the LED chip 21, the peak having the highest relative emission intensity is referred to as the first peak P1. A peak having the second highest relative emission intensity is called a second peak P2. A peak having the third highest relative emission intensity is called a third peak P3. Note that the light from the LED chip 21 may include four or more peaks. Since the emission spectrum S of the light from the LED chip 21 has the first peak P1, the second peak P2 and the third peak P3 as described above, the light from the LED chip 21 is white. ing.
  • the radiant flux B corresponds to an integrated value (area) in the wavelength range of 400 nm or more and 499 nm or less in the emission spectrum S1 of the light from the LED chip 21 .
  • the radiant flux G corresponds to an integrated value (area) in the wavelength range of 500 nm or more and 599 nm or less in the emission spectrum S1 of the light from the LED chip 21 .
  • the radiant flux B corresponds to an integrated value (area) in the wavelength range of 600 nm or more and 699 nm or less in the emission spectrum S1 of the light from the LED chip 21 .
  • the radiant fluxes B, G, and R can be measured by a high-precision light measuring instrument (eg, Light Analyzer LA105 manufactured by Nippon Medical Instruments Manufacturing Co., Ltd.).
  • the emission spectrum of the light emitted by the LED chips 21 of the first LED lighting sheet 20A satisfies the relationship 0.54 ⁇ B/G ⁇ 0.72.
  • the emission spectrum preferably satisfies the relationship 0.57 ⁇ B/G ⁇ 0.69, and more preferably satisfies the relationship 0.60 ⁇ B/G ⁇ 0.66.
  • the emission spectrum of the light emitted by the LED chips 21 of the first LED lighting sheet 20A satisfies the relationship 0.59 ⁇ R/G ⁇ 0.77.
  • the emission spectrum preferably satisfies the relationship 0.62 ⁇ B/G ⁇ 0.74, and more preferably satisfies the relationship 0.65 ⁇ B/G ⁇ 0.71.
  • the LED chips 21 of the first LED lighting sheet 20A satisfy the above optical characteristics, plants can be grown into compact and sturdy seedlings, and damage during planting can be reduced. That is, by setting the color temperature of the light from the LED chip 21 to be 4500 K or more and 5500 K or less, it is possible to keep the fresh weight of the plant low, shorten the height of the plant, and increase the thickness of the leaves of the plant. As a result, the plant can be made firm and sturdy while growing compactly. As a result, when the plant is planted, the plant is less likely to fall down, the work efficiency of planting is reduced, and the growth of the plant is prevented from stagnation. In addition, because of its compact size, it is possible to suppress overlapping of adjacent seedlings even if the seedling-raising period is extended.
  • the seedling raising period can be extended more than usual.
  • the LED chip 21 of the 2nd LED lighting sheet 20B irradiates the light suitable for cultivation.
  • the color temperature of the light from the LED chip 21 is 2500K or higher and 3500K or lower, preferably 2700K or higher and 3300K or lower, and more preferably 2900K or higher and 3100K or lower.
  • B be the radiant flux in the wavelength range from 400 nm to 499 nm
  • G be the radiant flux in the wavelength range from 500 nm to 599 nm
  • R be the radiant flux in the wavelength range from 600 nm to 699 nm.
  • the emission spectrum of the light emitted by the LED chips 21 of the second LED lighting sheet 20B has a relationship of 0.26 ⁇ B/G ⁇ 0.44 and 0.89 ⁇ R/G ⁇ 1.17. meet.
  • the emission spectrum S2 of light from the LED chips 21 of the second LED lighting sheet 20B has a first peak P1, a second peak P2, and a third peak P3. ing.
  • the first peak P1 has a center wavelength of 610 nm or more and 630 nm or less.
  • the second peak P2 has a center wavelength of 440 nm or more and 460 nm or less.
  • the third peak P3 has a center wavelength of 510 nm or more and 530 nm or less. That is, the emission spectrum S2 has a first peak P1 existing in the red wavelength range, a second peak P2 existing in the blue wavelength range, and a third peak P3 existing in the green wavelength range. .
  • the relative emission intensity at the center wavelength of the first peak P1 is greater than the relative emission intensity at the center wavelength of the second peak P2
  • the relative emission intensity at the center wavelength of the third peak P3 is greater than the second It is smaller than the relative emission intensity at the center wavelength of peak P2.
  • the light from the LED chip 21 may include four or more peaks. Since the emission spectrum S2 of the light from the LED chip 21 has the first peak P1, the second peak P2 and the third peak P3 as described above, the light from the LED chip 21 becomes white. .
  • the radiant flux B corresponds to an integrated value (area) in the wavelength range of 400 nm or more and 499 nm or less in the emission spectrum S2 of the light from the LED chip 21 .
  • the radiant flux G corresponds to an integrated value (area) in the wavelength range of 500 nm or more and 599 nm or less in the emission spectrum S2 of the light from the LED chip 21 .
  • the radiant flux B corresponds to an integrated value (area) in the wavelength range of 600 nm or more and 699 nm or less in the emission spectrum S2 of the light from the LED chip 21 .
  • Each radiant flux B, G, R can be measured in the same manner as the LED chip 21 of the first LED lighting sheet 20A.
  • the emission spectrum of the light emitted by the LED chips 21 of the second LED lighting sheet 20B satisfies the relationship 0.26 ⁇ B/G ⁇ 0.44.
  • the emission spectrum preferably satisfies the relationship 0.29 ⁇ B/G ⁇ 0.41, and more preferably satisfies the relationship 0.32 ⁇ B/G ⁇ 0.38.
  • the emission spectrum of the light emitted by the LED chips 21 of the second LED lighting sheet 20B satisfies the relationship 0.89 ⁇ R/G ⁇ 1.17.
  • the emission spectrum preferably satisfies the relationship 0.94 ⁇ B/G ⁇ 1.12, and more preferably satisfies the relationship 0.99 ⁇ B/G ⁇ 1.07.
  • the cultivation period is a stage in which the plant grows larger than the seedling-raising period, and requires more space than the seedling-raising period.
  • the LED chips 21 of the second LED lighting sheet 20B satisfy the above optical characteristics, it is possible to speed up plant growth, increase the amount of plant growth, and shorten the number of days for plant growth. As a result, the yield of plants in the plant growing facility 90 can be improved. That is, since the light source color of the LED chips 21 of the second LED lighting sheet 20B is a color considered to have good photosynthetic quantum efficiency, it is possible to promote the growth of plants.
  • the yield of plants in the plant growing facility 90 can be improved. Therefore, it is possible to shorten the growth period, which is the combination of the seedling-raising period and the cultivation period, and to dramatically improve the plant production cycle. By shortening the growing period, the plant production per unit area of the plant growing facility 90 can be improved.
  • the light-reflective insulating protective film 34 is a layer formed in a region excluding the region in which the LED chip 21 is provided and its peripheral region.
  • the light-reflective insulating protective film 34 is a so-called resist layer that improves the migration resistance of the flexible wiring board 30 by having sufficient insulating properties.
  • the light-reflective insulating protective film 34 is a light-reflecting layer having light-reflecting properties that contributes to the improvement of the light emission brightness of the light environment created by the LED lighting sheets 20A and 20B.
  • the light-reflective insulating protective film 34 can be formed from various resin compositions containing a base resin such as a urethane-based resin and a white pigment made of an inorganic filler such as titanium oxide.
  • a base resin such as a urethane-based resin
  • a white pigment made of an inorganic filler such as titanium oxide.
  • the base resin of the resin composition used for forming the light-reflective insulating protective film 34 in addition to urethane resin, acrylic polyurethane resin, polyester resin, phenol resin, and the like can be appropriately used.
  • As the base resin of the resin composition forming the light-reflective insulating protective film 34 it is more preferable to use the same or similar resin as the resin composition forming the transparent protective film 35 as the base resin.
  • the transparent protective film 35 it is preferable to use an acrylic polyurethane resin as a main material resin, as will be described later. From this, when the base resin of the resin composition forming the transparent protective film 35 is an acrylic polyurethane resin, the base resin of the resin composition for forming the light-reflective insulating protective film 34 is a urethane-based resin or It is more preferable to use an acrylic polyurethane resin.
  • Inorganic fillers to be contained as white pigments in the resin composition forming the light-reflective insulating protective film 34 include titanium oxide, alumina, barium sulfate, magnesia, aluminum nitride, boron nitride, barium titanate, kaolin, At least one selected from talc, calcium carbonate, zinc oxide, silica, mica powder, powdered glass, powdered nickel and powdered aluminum can be used.
  • the thickness of the light-reflective insulating protective film 34 is 5 ⁇ m or more and 50 ⁇ m or less, more preferably 7 ⁇ m or more and 20 ⁇ m or less. If the thickness of the light-reflective insulating protective film 34 is less than 5 ⁇ m, the light-reflective insulating protective film becomes thin particularly at the edge portion of the metal wiring portion 32, and if the metal wiring cannot be covered and is exposed, The risk that insulation cannot be maintained increases. On the other hand, the thickness of the light-reflective insulating protective film 34 is preferably 50 ⁇ m or less from the viewpoint of holding the light-reflective insulating protective film 34 against the curvature of the substrate during handling and transportation.
  • the light reflectance of the light-reflective insulating protective film 34 at wavelengths of 400 nm to 780 nm is preferably 65% or more, more preferably 70% or more, and preferably 80% or more. More preferred.
  • 20 parts by mass or more of titanium oxide may be contained with respect to 100 parts by mass of the base resin of urethane or acrylic polyurethane.
  • a transparent protective film 35 is formed on the outermost surfaces of the LED lighting sheets 20A and 20B so as to cover the LED chips 21 .
  • the transparent protective film 35 has waterproofness and transparency. The waterproof property of the transparent protective film 35 can prevent water from entering the device when the LED lighting sheets 20A and 20B are used as a light source for growing plants. If the LED chip 21 is selected to have a high luminous efficiency such as 150 lm/W or more, for example, in the LED lighting sheets 20A and 20B, the damage of a specific LED chip 21 will have a greater impact. . Therefore, it is important from the viewpoint of risk management to make the LED chip 21 as hard to be damaged as possible.
  • the transparent protective film 35 can be formed from various resin compositions using acrylic polyurethane resin or the like as a base resin.
  • the base resin of the resin composition used for forming the transparent protective film 35 in addition to acrylic polyurethane resin, urethane resin, polyester resin, phenolic resin, and the like can be appropriately used.
  • the base resin of the resin composition forming the transparent protective film 35 it is more preferable to use the same or similar resin as the resin composition forming the light-reflective insulating protective film 34 as the base resin.
  • the base resin of the resin composition forming the light-reflective insulating protective film 34 is a urethane resin
  • the same resin forming the transparent protective film 35 is an acrylic polyurethane resin. can.
  • the thickness of the transparent protective film 35 is 10 ⁇ m or more and 40 ⁇ m or less, preferably 15 ⁇ m or more and 30 ⁇ m or less, and more preferably 20 ⁇ m or more and 25 ⁇ m or less.
  • the water resistance of the LED lighting sheets 20A and 20B by the transparent protective film 35 makes it possible to suppress deterioration of the LED chips 21 when water for growing plants is sprayed on the LED lighting sheets 20A and 20B. It is not particularly limited as long as it is a degree. As for such water resistance, it is preferable to exhibit IPX4 or more in the waterproof/dustproof protection standard defined by IEC (International Electrotechnical Commission). The waterproofness of IPX4 or higher is such that the LED chip 21 is not adversely affected by splashed water from all directions.
  • the LED chip 21 is adversely affected. to the extent that it does not affect
  • the substrate film 31 is prepared (Fig. 10(a)).
  • a metal foil 32A such as a copper foil, which is the material of the metal wiring portion 32, is laminated (FIG. 10(b)).
  • the metal foil 32A is adhered to the surface of the substrate film 31 with an adhesive layer 33 such as a urethane-based adhesive.
  • the metal foil 32A may be directly formed on the surface of the substrate film 31 by an electrolytic plating method or a vapor phase film forming method (sputtering, ion plating, electron beam deposition, vacuum deposition, chemical deposition, etc.).
  • the substrate film 31 may be directly welded to the metal foil 32A.
  • an etching mask 37 patterned into a shape required for the metal wiring portion 32 is formed on the surface of the metal foil 32A (FIG. 10(c)).
  • the etching mask 37 is provided so that the portion corresponding to the wiring pattern of the metal foil 32A, which becomes the metal wiring portion 32, is not corroded by the etchant.
  • the method of forming the etching mask 37 is not particularly limited, and for example, it may be formed by exposing a photoresist or dry film through a photomask and then developing it. Alternatively, an etching mask may be formed on the surface of the metal foil 32A using a printing technique such as an inkjet printer.
  • the metal foil 32A located at the location not covered with the etching mask 37 is removed with an immersion liquid (FIG. 10(d)). As a result, portions of the metal foil 32A other than the portion that will become the metal wiring portion 32 are removed.
  • the etching mask 37 is removed using an alkaline stripping solution. Thereby, the etching mask 37 is removed from the surface of the metal wiring portion 32 (FIG. 10(e)).
  • a light-reflective insulating protective film 34 is laminated on the metal wiring portion 32 (FIG. 10(f)).
  • the formation of the light-reflective insulating protective film 34 is not particularly limited as long as it is a coating means capable of uniformly applying the material resin composition constituting the light-reflective insulating protective film 34. Examples include screen printing, offset printing, and the like. Methods such as dip coater and brush coating can be used.
  • the light-reflective insulating protective film 34 may be formed by coating the entire surface with a photosensitive insulating protective film material, exposing only necessary portions through a photomask, and developing the film.
  • the LED chip 21, the regulator 45, and the connectors 44A and 44B are mounted on the metal wiring portion 32 (Fig. 10(g)).
  • FIG. 10(g) and FIG. 10(h) which will be described later, illustration of the regulator 45 and the like is omitted for the sake of clarity.
  • the LED chip 21 is joined to the metal wiring portion 32 by soldering via the solder portion 36 .
  • the joining by soldering can be performed by a reflow method or a laser method, or by using a conductive resin.
  • a transparent protective film 35 is formed so as to cover the light-reflective insulating protective film 34, the LED chip 21, the regulator 45, and the connectors 44A and 44B (FIG. 10(h)).
  • This transparent protective film 35 is preferably formed by a method of spraying a transparent resin composition by spraying (hereinafter referred to as "spray coating method") or a method of forming by a curtain coating method.
  • the transparent protective film 35 is formed by the spray coating method, for example, by spraying a coating liquid for spray coating containing an acrylic polyurethane resin onto a desired area on the flexible wiring board 30 with a spray coating machine to form a coating film.
  • the transparent protective film 35 is formed by the curtain coating method, for example, by dropping a coating liquid for curtain coating containing an acrylic polyurethane resin onto a desired region on the flexible wiring substrate 30 using a curtain coating machine to form a coating film. can be done by forming
  • the LED lighting sheets 20A and 20B according to the present embodiment are not limited to the method described above. It can also be produced by a known method.
  • plants are raised using the first growing shelf 80A for the seedling raising period.
  • plant seeds are sown in the culture medium of the first growing shelf 80A, and after germination, the plants are grown until they reach a certain size (seedling raising step).
  • seedling raising step the plants are irradiated with light having a color temperature of 4500K or more and 5500K or less by the first LED lighting sheet 20A, and seedlings are raised.
  • the plants When the plants reach a size suitable for planting, plant them (planting process).
  • the plant seedlings grown on the first growing shelf 80A are transferred to the culture medium of the second growing shelf 80B for the cultivation period. After planting the plants, the first growing shelf 80A is used again to grow the next plant.
  • the planted plants are then continued to grow on the second growing shelf 80B for the cultivation period.
  • the plant is grown on the second growing shelf 80B until it reaches a size suitable for harvesting (cultivating step).
  • the plants are irradiated with light having a color temperature of 2500K or more and 3500K or less by the second LED lighting sheet 20B, and seedlings are raised.
  • the plants grown to a certain size on the second growing shelf 80B are harvested.
  • the second growing shelf 80B after harvesting the plants is used again to grow the next plant.
  • the first growing shelf 80A has the first LED lighting sheet 20A that emits light with a color temperature of 4500K or more and 5500K or less.
  • the second growing shelf 80B has a second LED lighting sheet 20B that emits light with a color temperature of 2500K or more and 3500K or less.
  • the first LED lighting sheet 20A irradiates the plants with light having a color temperature of 4500 K or more and 5500 K or less
  • the second LED lighting sheet 20B irradiates the plants with a color temperature of 2500 K or more and 3500 K or less. of light is applied to the plants. This allows plants to grow under an appropriate light source.
  • the first LED lighting sheet 20A irradiates the plant with light having a color temperature of 4500K or higher and 5500K or lower during the seedling-raising period, thereby allowing the plant to grow compactly and robustly.
  • the seedling-raising period it is possible to prevent the strains from collapsing when the plants are planted, and to prevent the work efficiency of planting from decreasing.
  • the collapse of the stock at the time of fixed planting the growth of the plant can be prevented from stagnation.
  • because of its compact size it is possible to suppress overlapping of adjacent seedlings even if the seedling-raising period is extended.
  • the second LED lighting sheet 20B irradiates the plants with light having a color temperature of 2500 K or more and 3500 K or less, thereby accelerating the growth of the plants and reducing the number of days for cultivating the plants. be able to.
  • the yield can be increased even with the same cultivation days.
  • the production amount per unit area can be improved.
  • the cultivation period is a stage in which plants grow to a large size, so compared to the seedling-raising period, a large amount of space is required in the plant-growing facility. Therefore, the production cycle can be dramatically improved by increasing the ratio of seedling-raising days and decreasing the ratio of cultivation days even during the same growing period. By accelerating plant growth and reducing the number of days in the cultivation period, the production cycle of plants can be dramatically improved. Thereby, the production amount per unit area of the plant can be increased.
  • the emission spectrum of the light emitted from the first LED lighting sheet 20A is 0.54 ⁇ B/G ⁇ 0.72 and 0.59 ⁇ R/G ⁇ 0. .77.
  • the emission spectrum of the light emitted from the second LED lighting sheet 20B satisfies the relationships of 0.26 ⁇ B/G ⁇ 0.44 and 0.89 ⁇ R/G ⁇ 1.17.
  • the thickness of the thickest portions of the LED lighting sheets 20A and 20B is 5 mm or less, the distance between the upper and lower substrates 81 of the plant growing shelves 80A and 80B is reduced, and the number of substrates 81 is reduced. can increase the plant yield per unit area.
  • the LED lighting device is a planar light source sheet
  • the present invention is not limited to this.
  • the LED lighting device may be a straight tube lighting device.
  • the LED lighting sheets 20A and 20B may be arranged not only on the bottom surface of the substrate 81 but also on the side surfaces of the substrate 81.
  • the LED lighting sheets 20A and 20B on the side faces hang down from the substrate 81 located above toward the substrate 81 located below the substrate 81 concerned.
  • the LED lighting sheets 20A and 20B may reach the substrate 81 located below.
  • the LED lighting sheets 20A and 20B may cover only the upper side of the space located between the upper and lower substrates 81 without reaching the substrates 81 located below.
  • the amount of light at the periphery of the substrate 81, which tends to be weak, is compensated for, and the brightness of the LED lighting sheets 20A and 20B is increased in the plane.
  • the plant can grow uniformly in the plane, and the yield of the grown plant can be improved.
  • LED lighting sheet A (Creation of LED lighting sheet) LED lighting sheet A, LED lighting sheet B, and LED lighting sheet C were produced as follows. Of these, the LED lighting sheet A emits light with a color temperature of 3000K, the LED lighting sheet B emits light with a color temperature of 4000K, and the LED lighting sheet C emits light with a color temperature of 5000K. is.
  • LED lighting sheet A 3000K
  • a copper foil thickness 35 ⁇ m
  • a metal wiring part On one surface of a 560 mm ⁇ 390 mm size film substrate (polyethylene naphthalate, thickness 50 ⁇ m), a copper foil (thickness 35 ⁇ m) for forming a metal wiring part is laminated, and then the copper foil for metal wiring An etching treatment was performed to form a metal wiring portion. Then, on the substrate film and the metal wiring portion, a 10 ⁇ m-thick ink is formed by screen printing using an insulating ink obtained by using a urethane-based resin as a base resin and adding titanium oxide at a rate of 20% by mass with respect to the base resin. A light-reflective insulating protective film was formed.
  • a plurality of LED chips (“NFSW757G-V2" (manufactured by Nichia Corporation)) are arranged in 10 rows of 14 rows at a pitch of 40 mm in the X direction and a pitch of 35 mm in the Y direction. Mounted by soldering.
  • This LED chip is a top emission type light emitting element, and has a rectangular parallelepiped shape of 3.0 mm (length) ⁇ 3.0 mm (width) ⁇ 0.65 mm (height).
  • the light source color of these LED chips is the color of an incandescent bulb, and the color temperature of each is 3000K.
  • a transparent protective film covering the insulating protective film and the LED chip was formed by a spray coating method.
  • the LED lighting sheet produced as described above was designated as LED lighting sheet A.
  • the color temperature of the light emitted by this LED lighting sheet A was 3000K.
  • B be the radiant flux in the wavelength range from 400 nm to 499 nm
  • G be the radiant flux in the wavelength range from 500 nm to 599 nm
  • R be the radiant flux in the wavelength range from 600 nm to 699 nm.
  • LED lighting sheet B 4000K
  • LED lighting sheet C 5000K
  • the optical properties of the three types of LED lighting sheet A, LED lighting sheet B, and LED lighting sheet C are as follows.
  • Example 1 A plant (leaf lettuce) was grown using LED lighting sheet C (5000K) during the seedling raising period and using LED lighting sheet A (3000K) during the cultivation period. During this period, the LED lighting sheet C (5000K) and the LED lighting sheet A (3000K) were first placed on the growing shelf for the seedling raising period and the growing shelf for the cultivation period, respectively. Then, plant (leaf lettuce) seeds were sown on a growing shelf for the seedling raising period, and the seedling raising period was completed 24 days after the sowing. Next, the plants were planted on the cultivating shelves for the cultivation period, and the plants were continuously cultivated using the cultivating racks for the cultivation period. Plants were then harvested 34 days after sowing.
  • Example 1 Plants were grown and harvested in the same manner as in Example 1, except that LED lighting sheet B (4000K) was used during the seedling raising period and LED lighting sheet A (3000K) was used during the cultivation period.
  • Example 2 Plants were grown and harvested in the same manner as in Example 1, except that the LED lighting sheet A (3000K) was used during the seedling raising period and the LED lighting sheet A (3000K) was used during the cultivation period.
  • Example 1 For each of Example 1, Comparative Example 1, and Comparative Example 2, the leaf thickness ( ⁇ m) at the time of planting, the fresh weight (g) of the plant at the time of planting, and the plant height (cm) at the time of planting were measured. (See FIG. 12). In addition, the fresh weight (g) of the plants was measured and compared on the 24th day (at the time of planting), 27th day, 31st day, and 34th day (at the time of harvesting) after seeding (see FIG. 13). The fresh weight was calculated by measuring the fresh weight of the above-ground part of the plant for each strain and averaging the results. Table 2 shows the above-ground fresh weight of plants at the time of harvest and the variation (standard deviation) of the above-ground fresh weight of the plants at the time of harvest.
  • the plant of Example 1 had the smallest fresh weight and plant height at the time of planting, followed by the plant of Comparative Example 1, and the plant of Comparative Example 2 was the largest.
  • the thickness of the leaves at the time of planting was the thickest in the plant of Example 1, the thickest in the plant of Comparative Example 2, and the thinnest in the plant of Comparative Example 1.
  • the fresh weight at the time of harvest did not differ significantly among the plants of Example 1, Comparative Example 1, and Comparative Example 2.
  • the use of the LED lighting sheet A (3000K) during the cultivation period allows the plant to grow. was able to promote
  • the variation in fresh weight at the time of harvest was the smallest for the plant of Example 1, followed by the second smallest for the plant of Comparative Example 1, and the largest for the plant of Comparative Example 2.
  • the LED lighting sheet C 5000K
  • Example 2 Similar to Example 1 described above, a plant (leaf lettuce) was actually raised using the LED lighting sheet C (5000K) during the seedling raising period and using the LED lighting sheet A (3000K) during the cultivation period.
  • Example 3 Plants were grown and harvested in the same manner as in Example 2 except that LED lighting sheet C (5000K) was used during the seedling raising period and LED lighting sheet B (4000K) was used during the cultivation period.
  • LED lighting sheet C 5000K
  • LED lighting sheet B 4000K
  • Example 4 Plants were grown and harvested in the same manner as in Example 2 except that the LED lighting sheet C (5000K) was used during the seedling raising period and the LED lighting sheet C (5000K) was used during the cultivation period.
  • Example 2 Comparative Example 3, and Comparative Example 4, the fresh weight (g) of the plants was measured and compared on days 24 (at the time of planting), 27 days, 31 days, and 34 days (at the time of harvest) after seeding. (See FIG. 14). The fresh weight was calculated by measuring the fresh weight of the above-ground part of the plant for each strain and averaging the results. Table 3 shows the above-ground fresh weight of the plants at harvest.
  • the fresh weight at the time of harvest was the largest for the plant of Example 2, the second largest for the plant of Comparative Example 3, and the smallest for the plant of Comparative Example 4.
  • the LED lighting sheet A (3000K) during the cultivation period the growth of plants could be promoted.
  • Example 3 A plant (leaf lettuce) was grown using LED lighting sheet C (5000K) during the seedling raising period and using LED lighting sheet A (3000K) during the cultivation period. At this time, first, the LED lighting sheet C (5000K) and the LED lighting sheet A (3000K) were placed on the growing shelf for the seedling raising period and the growing shelf for the cultivation period, respectively. The plants (leaf lettuce) were then sown in growing racks for the growing period. Next, the plants were planted on the cultivating shelves for the cultivation period, and the plants were continuously cultivated using the cultivating racks for the cultivation period.
  • Example 6 Plants were grown and harvested in the same manner as in Example 3, except that the LED lighting sheet A (3000K) was used during the seedling raising period and the LED lighting sheet A (3000K) was used during the cultivation period.
  • the plants of Example 3 were cultivated at 3 levels (level 1 to level 3) by changing the number of days of the seedling raising period and the cultivation period. That is, in Level 1, the seedling raising period was set to 24 days, and the cultivation period was set to 9 days (33 days for the growing period). For Level 2, the seedling raising period was 25 days and the cultivation period was 8 days (33 days of growing period). For Level 3, the seedling raising period was 26 days and the cultivation period was 7 days (33 days of growing period). In addition, the plant of Comparative Example 5 was cultivated with a seedling raising period of 24 days and a cultivation period of 9 days (33 days of cultivation period). For Example 3 (Levels 1 to 3) and Comparative Example 5, the fresh weight (g) of the plants at harvest was measured and compared. In addition, for each of Example 3 (Levels 1 to 3) and Comparative Example 6, the projected leaf area (pixels (px)) of plants at the time of planting was measured and compared. The results are shown in Table 4.
  • the live weight of the plants of Example 3 (levels 1 to 3) at the time of harvest was greater than that of the plants of Comparative Example 5. Moreover, between levels 1 to 3 in Example 3, the live weight did not change significantly. Thus, when the LED lighting sheet A (3000K) was used during the cultivation period, a similar yield could be obtained even if the cultivation period was shortened. In addition, it can be seen that the plants of Example 3 (levels 1 to 3) have reduced variation in fresh weight compared to the plants of Comparative Example 6. Thus, it can be seen that when the LED lighting sheet C (5000K) is used during the cultivation period, variations in plant growth can be reduced.
  • the projected leaf area at the time of planting was smaller in the plants of Example 3 (levels 1 to 3) than in the plants of Comparative Example 6. That is, it was found that by using the LED lighting sheet C (5000K) during the seedling-raising period, the seedlings can be made compact, and therefore the number of seedling-raising days can be extended.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Cultivation Of Plants (AREA)
  • Greenhouses (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Hydroponics (AREA)

Abstract

This plant growing facility (90) has a first growth region (80A) and a second growth region (80B). The first growth region (80A) has a first lighting device (20A) which emits light with a color temperature of 4,500-5,500 K, and the second growth region (80B) has a second lighting device (20B) which emits light with a color temperature of 2,500-3,500 K.

Description

植物育成施設、植物の栽培方法、植物育成用のLED照明装置、植物の育成棚用の棚板及び植物の育成棚Plant growing facility, plant growing method, LED lighting device for plant growing, shelf plate for plant growing shelf, and plant growing shelf
 本開示は、植物育成施設、植物の栽培方法、植物育成用のLED照明装置、植物の育成棚用の棚板及び植物の育成棚に関する。 The present disclosure relates to a plant growing facility, a plant growing method, a plant growing LED lighting device, a plant growing shelf board, and a plant growing shelf.
 植物育成工場において用いる照明装置として、従来の蛍光灯や高圧ナトリウムランプ等に替えて、近年、消費電力が少ないLEDを光源とする照明装置の需要が拡大している。  In recent years, the demand for lighting equipment that uses LEDs, which consume less power, as light sources has increased in place of conventional fluorescent lamps, high-pressure sodium lamps, etc., as lighting equipment used in plant growing factories.
 LEDを光源とする照明装置を用いた植物育成工場の一例として、植物の育成棚の棚板に、LEDを光源とする直管型の植物育成灯を複数配置した植物育成装置が知られている(例えば特許文献1参照)。 As an example of a plant growing factory using a lighting device using an LED as a light source, there is known a plant growing apparatus in which a plurality of straight tube type plant growing lights using an LED as a light source are arranged on a shelf board of a plant growing shelf. (See Patent Document 1, for example).
 フレキシブルタイプの回路基板に複数のLEDチップを配置して面状の光源を形成した植物育成用のLED照明装置も提案されている(例えば特許文献2参照)。 An LED lighting device for growing plants, in which a plurality of LED chips are arranged on a flexible circuit board to form a planar light source, has also been proposed (see Patent Document 2, for example).
特開2008-118957号公報JP 2008-118957 A 特開2013-251230号公報JP 2013-251230 A
 本開示は、植物の生産量を向上させることが可能な、植物育成施設、植物の栽培方法、植物育成用のLED照明装置、植物の育成棚用の棚板及び植物の育成棚を提供する。 The present disclosure provides a plant cultivating facility, a plant cultivating method, a plant cultivating LED lighting device, a plant cultivating shelf board, and a plant cultivating shelf that can improve plant production.
 本実施の形態による植物育成施設は、第1の育成領域と第2の育成領域とを有する植物育成施設であって、前記第1の育成領域は、色温度が4500K以上5500K以下の光を照射する第1の照明装置を有し、前記第2の育成領域は、色温度が2500K以上3500K以下の光を照射する第2の照明装置を有する。 A plant growing facility according to the present embodiment is a plant growing facility having a first growing area and a second growing area, wherein the first growing area emits light having a color temperature of 4500 K or more and 5500 K or less. The second growth area has a second lighting device that emits light having a color temperature of 2500K or more and 3500K or less.
 本実施の形態による植物育成施設において、400nm以上499nm以下の波長範囲の放射束をBとし、500nm以上599nm以下の波長範囲の放射束をGとし、600nm以上699nm以下の波長範囲の放射束をRとしたとき、前記第1の照明装置が照射する光の発光スペクトルは、0.54≦B/G≦0.72、かつ、0.59≦R/G≦0.77という関係を満たし、前記第2の照明装置が照射する光の発光スペクトルは、0.26≦B/G≦0.44、かつ、0.89≦R/G≦1.17という関係を満たしてもよい。 In the plant growing facility according to the present embodiment, the radiant flux in the wavelength range of 400 nm to 499 nm is B, the radiant flux in the wavelength range of 500 nm to 599 nm is G, and the radiant flux in the wavelength range of 600 nm to 699 nm is R. , the emission spectrum of the light emitted by the first lighting device satisfies the relationships 0.54 ≤ B/G ≤ 0.72 and 0.59 ≤ R/G ≤ 0.77, and the The emission spectrum of the light emitted by the second lighting device may satisfy the relationships of 0.26≦B/G≦0.44 and 0.89≦R/G≦1.17.
 本実施の形態による植物育成施設において、前記第1の照明装置は、育苗用の照明装置であり、前記第2の照明装置は、栽培用の照明装置であってもよい。 In the plant growing facility according to the present embodiment, the first lighting device may be a lighting device for raising seedlings, and the second lighting device may be a lighting device for cultivation.
 本実施の形態による植物の栽培方法は、植物の栽培方法であって、色温度が4500K以上5500K以下の光を前記植物に照明する育苗工程と、色温度が2500K以上3500K以下の光を前記植物に照明する栽培工程と、を有する。 A method for cultivating a plant according to the present embodiment is a method for cultivating a plant, comprising a seedling raising step of illuminating the plant with light having a color temperature of 4500 K or more and 5500 K or less; and a cultivation step of illuminating.
 本実施の形態による植物の栽培方法において、400nm以上499nm以下の波長範囲の放射束をBとし、500nm以上599nm以下の波長範囲の放射束をGとし、600nm以上699nm以下の波長範囲の放射束をRとしたとき、前記育苗工程で用いる光の発光スペクトルは、0.54≦B/G≦0.72、かつ、0.59≦R/G≦0.77という関係を満たし、前記栽培工程で用いる光の発光スペクトルは、0.26≦B/G≦0.44、かつ、0.89≦R/G≦1.17という関係を満たしてもよい。 In the plant cultivation method according to the present embodiment, the radiant flux in the wavelength range of 400 nm or more and 499 nm or less is B, the radiant flux in the wavelength range of 500 nm or more and 599 nm or less is G, and the radiant flux in the wavelength range of 600 nm or more and 699 nm or less is When R, the emission spectrum of the light used in the seedling raising step satisfies the relationships 0.54 ≤ B / G ≤ 0.72 and 0.59 ≤ R / G ≤ 0.77, and in the cultivation step The emission spectrum of the light used may satisfy the relationships of 0.26≦B/G≦0.44 and 0.89≦R/G≦1.17.
 本実施の形態による植物の栽培方法において、前記育苗工程と、前記栽培工程との間に、前記植物の定植を行う定植工程を含んでもよい。 The method for cultivating a plant according to the present embodiment may include a planting step of planting the plant between the seedling-raising step and the cultivating step.
 本実施の形態による植物育成用のLED照明装置は、複数のLEDチップが配置された、植物育成用のLED照明装置であって、前記LEDチップからの光の色温度は、4500K以上5500K以下であり、400nm以上499nm以下の波長範囲の放射束をBとし、500nm以上599nm以下の波長範囲の放射束をGとし、600nm以上699nm以下の波長範囲の放射束をRとしたとき、前記LEDチップが照射する光の発光スペクトルは、0.54≦B/G≦0.72、かつ、0.59≦R/G≦0.77という関係を満たす。 An LED lighting device for growing plants according to the present embodiment is an LED lighting device for growing plants in which a plurality of LED chips are arranged, and the color temperature of the light from the LED chips is 4500 K or more and 5500 K or less. There, let B be the radiant flux in the wavelength range of 400 nm or more and 499 nm or less, let G be the radiant flux in the wavelength range of 500 nm or more and 599 nm or less, and let R be the radiant flux in the wavelength range of 600 nm or more and 699 nm or less. The emission spectrum of the irradiated light satisfies the relationships of 0.54≦B/G≦0.72 and 0.59≦R/G≦0.77.
 本実施の形態による植物育成用のLED照明装置において、最も厚い部分における厚みが5mm以下であり、基板フィルムと、前記基板フィルムの表面に形成された金属配線部とを備え、前記複数のLEDチップは、前記金属配線部に実装されていてもよい。 In the LED lighting device for cultivating plants according to the present embodiment, the thickest portion has a thickness of 5 mm or less, and includes a substrate film and a metal wiring portion formed on the surface of the substrate film, and the plurality of LED chips may be mounted on the metal wiring portion.
 本実施の形態による植物育成用のLED照明装置において、育苗用の照明装置であってもよい。 The LED lighting device for growing plants according to the present embodiment may be a lighting device for raising seedlings.
 本実施の形態による植物の育成棚用の棚板は、基板と、前記基板に取り付けられた、本実施の形態による植物育成用のLED照明装置を備えている。 A shelf board for a plant growing shelf according to the present embodiment includes a substrate and an LED lighting device for plant growing according to the present embodiment attached to the substrate.
 本実施の形態による植物の育成棚は、植物の育成棚であって、棚板を備え、前記棚板は、基板の下面側に取り付けられた、本実施の形態による植物育成用のLED照明装置を備えている。 The plant cultivating shelf according to the present embodiment is a plant cultivating shelf, and includes a shelf plate, and the shelf plate is attached to the lower surface side of a substrate. The LED lighting device for growing plants according to the present embodiment. It has
 本実施の形態による植物の育成棚において、前記植物育成用のLED照明装置は、前記棚板の側面側にも更に配置されていてもよい。 In the plant growing shelf according to the present embodiment, the LED lighting device for plant growing may be further arranged on the side surface of the shelf board.
 本実施の形態によれば、植物の生産量を向上させることができる。 According to this embodiment, the production of plants can be improved.
図1は、一実施の形態による植物育成施設を示す概略斜視図である。FIG. 1 is a schematic perspective view showing a plant growing facility according to one embodiment. 図2は、一実施の形態による第1の育成棚及び第2の育成棚を示す概略斜視図である。FIG. 2 is a schematic perspective view showing a first cultivating shelf and a second cultivating shelf according to one embodiment. 図3は、一実施の形態によるLED照明モジュールを示す概略図である。FIG. 3 is a schematic diagram showing an LED lighting module according to one embodiment. 図4は、一実施の形態によるLED照明シートを示す平面図である。FIG. 4 is a plan view showing an LED lighting sheet according to one embodiment. 図5Aは、LED照明シートの変形例を示す平面図である。FIG. 5A is a plan view showing a modification of the LED lighting sheet. 図5Bは、LED照明シートの変形例を示す平面図である。FIG. 5B is a plan view showing a modification of the LED lighting sheet. 図6Aは、制御部からLED照明シートに定電圧が印加される場合における時間と電圧の関係を示すグラフである。FIG. 6A is a graph showing the relationship between time and voltage when a constant voltage is applied from the control unit to the LED lighting sheet. 図6Bは、比較例としてLED照明シートにパルスが印加される場合における時間と電圧の関係を示すグラフである。FIG. 6B is a graph showing the relationship between time and voltage when pulses are applied to the LED lighting sheet as a comparative example. 図7は、一実施の形態によるLED照明シートを示す断面図(図4のVII-VII線断面図)である。FIG. 7 is a cross-sectional view (cross-sectional view taken along line VII-VII in FIG. 4) showing an LED lighting sheet according to one embodiment. 図8は、第1のLED照明シートのLEDチップからの光の発光スペクトルを示す図である。FIG. 8 is a diagram showing the emission spectrum of light from the LED chips of the first LED lighting sheet. 図9は、第2のLED照明シートのLEDチップからの光の発光スペクトルを示す図である。FIG. 9 is a diagram showing the emission spectrum of light from the LED chips of the second LED lighting sheet. 図10(a)-(h)は、一実施の形態によるLED照明シートの製造方法を示す断面図である。10(a)-(h) are cross-sectional views showing a method for manufacturing an LED lighting sheet according to one embodiment. 図11Aは、植物の育成棚の変形例を示す図である。FIG. 11A is a diagram showing a modified example of a plant growing shelf. 図11Bは、植物の育成棚の変形例を示す図である。FIG. 11B is a diagram showing a modification of the plant growing shelf. 図12は、実施例1、比較例1及び比較例2のそれぞれについて、定植時の植物の葉の厚み、定植時の植物の生体重、定植時の植物の草丈を比較するグラフである。FIG. 12 is a graph comparing the leaf thickness of the plant at the time of planting, the fresh weight of the plant at the time of planting, and the plant height of the plant at the time of planting for Example 1, Comparative Example 1, and Comparative Example 2, respectively. 図13は、実施例1、比較例1及び比較例2のそれぞれについて、定植後の植物の生体重を比較するグラフである。FIG. 13 is a graph comparing the fresh weight of plants after planting for each of Example 1, Comparative Example 1 and Comparative Example 2. FIG. 図14は、実施例2、比較例3及び比較例4のそれぞれについて、定植後の植物の生体重を比較するグラフである。FIG. 14 is a graph comparing the fresh weight of plants after planting in Example 2, Comparative Example 3 and Comparative Example 4, respectively.
 本実施の形態による植物育成施設は、第1の育成領域と第2の育成領域とを有する。このうち第1の育成領域は、色温度が4500K以上5500K以下の光を照明する第1の照明装置を有し、第2の育成領域は、色温度が2500K以上3500K以下の光を照射する第2の照明装置を有する。 The plant growing facility according to the present embodiment has a first growing area and a second growing area. Among these, the first growth region has a first lighting device that illuminates light with a color temperature of 4500K or more and 5500K or less, and the second growth region has a second lighting device that irradiates light with a color temperature of 2500K or more and 3500K or less. 2 lighting devices.
 本実施の形態による植物育成施設において、第1の育成領域は、色温度が4500K以上5500K以下の光を照射する第1の照明装置を有する。第2の育成領域は、色温度が2500K以上3500K以下の光を照射する第2の照明装置を有する。このため、植物の育成段階に応じて、植物を最適な光源下に移動して育成できる。これにより、植物の育成量を増やすことができ、植物を良好な収量で得ることができる。例えば、植物育成の前期である育苗期間には、第1の照明装置により色温度が4500K以上5500K以下の光を植物に照射する。また植物育成の後期である栽培期間には、第2の照明装置により色温度が2500K以上3500K以下の光を植物に照射する。これにより、植物を適切な光源下で育成できる。また、本実施の形態は、とりわけ植物のうち葉物野菜に適用すると、より効果的である。 In the plant growing facility according to the present embodiment, the first growing area has a first lighting device that emits light with a color temperature of 4500K or more and 5500K or less. The second growth area has a second lighting device that emits light with a color temperature of 2500K or more and 3500K or less. Therefore, the plant can be grown by moving it to an optimum light source depending on the growing stage of the plant. As a result, it is possible to increase the amount of plants grown, and to obtain plants with a good yield. For example, during the seedling-raising period, which is the first stage of plant growth, the first lighting device irradiates the plant with light having a color temperature of 4500K or more and 5500K or less. In addition, during the cultivation period, which is the latter stage of plant growth, the second lighting device irradiates the plants with light having a color temperature of 2500K or more and 3500K or less. This allows plants to grow under an appropriate light source. Moreover, this embodiment is more effective when applied to leafy vegetables among plants.
 本実施の形態による植物の栽培方法において、色温度が4500K以上5500K以下の光を植物に照明する育苗工程と、色温度が2500K以上3500K以下の光を植物に照明する栽培工程と、を有する。 The plant cultivation method according to the present embodiment includes a seedling raising step of illuminating the plants with light having a color temperature of 4500K or more and 5500K or less, and a cultivation step of illuminating the plants with light having a color temperature of 2500K or more and 3500K or less.
 植物育成の前期である育苗期間に色温度が4500K以上5500K以下の光を植物に照射することにより、植物をコンパクトかつ頑丈に成長させることができる。これにより、育苗期間が完了した後、植物を定植するときに株が倒れることを抑え、定植の作業効率が低下することを抑えられる。また定植時に株が倒れることを抑えることにより、植物の生長が停滞しないようにすることができる。さらに、育苗期間に、色温度が4500K以上5500K以下の光を植物に照射することにより、植物の成長のばらつきを低減できる。これにより、育成される植物の大きさや品質を一定の規格の範囲に収めて不適合品を減らすことができる。 By irradiating the plants with light with a color temperature of 4500K or more and 5500K or less during the seedling-raising period, which is the first stage of plant growth, the plants can grow compactly and robustly. As a result, after the seedling-raising period is completed, it is possible to prevent the strains from collapsing when the plant is planted, and to prevent the work efficiency of planting from being lowered. In addition, by suppressing the collapse of the stock at the time of fixed planting, the growth of the plant can be prevented from stagnation. Furthermore, by irradiating the plants with light having a color temperature of 4500 K or more and 5500 K or less during the seedling-raising period, it is possible to reduce variations in plant growth. As a result, the size and quality of plants to be grown can be kept within a certain standard range, and the number of nonconforming products can be reduced.
 また、植物育成の後期である栽培期間に色温度が2500K以上3500K以下の光を植物に照射することにより、植物の成長を早め、植物の栽培日数を減らすことができる。これにより、単位面積当たりの植物の生産量を向上させることができる。栽培期間は、植物が大きく育つ段階であるため、育苗期間と比較して植物育成施設に多くのスペースが必要とされる。このため、植物の成長を早め、栽培期間の日数を減らすことにより、植物の生産サイクルを飛躍的に向上させることができる。これにより、植物の単位面積当たりの生産量を上げることができる。 In addition, by irradiating the plants with light having a color temperature of 2500K or more and 3500K or less during the cultivation period, which is the latter stage of plant growth, the growth of the plants can be accelerated and the number of days of plant cultivation can be reduced. Thereby, the production amount of plants per unit area can be improved. Since the cultivation period is a stage in which the plant grows large, a larger space is required in the plant growing facility compared to the seedling-raising period. Therefore, by accelerating the growth of plants and reducing the number of days of the cultivation period, the production cycle of plants can be dramatically improved. Thereby, the production amount per unit area of the plant can be increased.
 本実施の形態による植物育成施設において、400nm以上499nm以下の波長範囲の放射束をBとし、500nm以上599nm以下の波長範囲の放射束をGとし、600nm以上699nm以下の波長範囲の放射束をRとする。このとき、第1の照明装置が照射する光の発光スペクトルは、0.54≦B/G≦0.72、かつ、0.59≦R/G≦0.77という関係を満たす。また第2の照明装置が照射する光の発光スペクトルは、0.26≦B/G≦0.44、かつ、0.89≦R/G≦1.17という関係を満たす。これにより、育苗期間には、植物をコンパクトかつ頑丈に成長させることができ、定植の作業効率が低下することを抑えられる。また栽培期間には、植物の成長を早め、植物の栽培日数を減らすことにより、単位面積当たりの植物の生産量を向上させることができる。 In the plant growing facility according to the present embodiment, the radiant flux in the wavelength range of 400 nm to 499 nm is B, the radiant flux in the wavelength range of 500 nm to 599 nm is G, and the radiant flux in the wavelength range of 600 nm to 699 nm is R. and At this time, the emission spectrum of the light emitted by the first lighting device satisfies the relationships of 0.54≦B/G≦0.72 and 0.59≦R/G≦0.77. The emission spectrum of light emitted by the second lighting device satisfies the relationships of 0.26≦B/G≦0.44 and 0.89≦R/G≦1.17. As a result, during the seedling raising period, the plants can be grown compactly and robustly, and a decrease in planting work efficiency can be suppressed. In addition, during the cultivation period, by accelerating the growth of plants and reducing the number of days for plant cultivation, the production amount of plants per unit area can be improved.
 ところで、人工光によって植物を栽培する植物育成施設の主な課題としては、採算性を向上させることが挙げられている。採算性を向上させる要素としては、例えば、単価の高い栽培対象物を選定することの他、短期間で大きく育てるための生育促進や、イニシャルコストやランニングコストといったコストの低減等が考えられる。例えば、光合成を促進することにより生育を促進する案として、赤色LEDチップ及び青色LEDチップの2種類のLEDチップを使用した生育コントロール技術がある。しかしながら、2種類のLEDチップを使用する場合、2種類のLEDチップを準備する必要があり、コストの低減を図ることが困難である。また、近年、葉物野菜であっても、緑色の光を吸収して光合成を行うことが証明されている。このため、光源としては、白色LEDチップで十分であり、大量生産されている白色LEDチップを用いたLED照明装置によって植物を効率良く育成することが望まれている。これに対して、本実施の形態によれば、第1の照明装置は、色温度が4500K以上5500K以下の光を照射し、第2の照明装置は、色温度が2500K以上3500K以下の光を照射する。このため、LEDチップとして大量生産されている白色LEDチップを用いることができるので、LED照明装置のコストを抑えられる。 By the way, one of the main challenges facing plant growing facilities that use artificial light to grow plants is to improve profitability. Factors for improving profitability include, for example, selection of cultivation targets with a high unit price, promotion of growth to grow large crops in a short period of time, and reduction of costs such as initial costs and running costs. For example, as a proposal for promoting growth by promoting photosynthesis, there is a growth control technology using two types of LED chips, a red LED chip and a blue LED chip. However, when using two types of LED chips, it is necessary to prepare two types of LED chips, making it difficult to reduce costs. Moreover, in recent years, it has been proved that even leafy vegetables absorb green light and carry out photosynthesis. For this reason, a white LED chip is sufficient as a light source, and it is desired to grow plants efficiently by an LED lighting device using a mass-produced white LED chip. On the other hand, according to the present embodiment, the first lighting device emits light with a color temperature of 4500K or higher and 5500K or lower, and the second lighting device emits light with a color temperature of 2500K or higher and 3500K or lower. Irradiate. Therefore, mass-produced white LED chips can be used as the LED chips, so that the cost of the LED lighting device can be reduced.
 以下、図面を参照しながら一実施の形態について具体的に説明する。以下に示す各図は、模式的に示したものである。そのため、各部の大きさ、形状は理解を容易にするために、適宜誇張している。また、技術思想を逸脱しない範囲において適宜変更して実施することが可能である。なお、以下に示す各図において、同一部分には同一の符号を付しており、一部詳細な説明を省略する場合がある。また、本明細書中に記載する各部材の寸法等の数値および材料名は、実施の形態としての一例であり、これに限定されるものではなく、適宜選択して使用できる。本明細書において、形状や幾何学的条件を特定する用語、例えば平行や直交、垂直等の用語については、厳密に意味するところに加え、実質的に同じ状態も含むものとする。 An embodiment will be specifically described below with reference to the drawings. Each figure shown below is shown typically. Therefore, the size and shape of each part are appropriately exaggerated for easy understanding. In addition, it is possible to modify and implement as appropriate without departing from the technical idea. In addition, in each figure shown below, the same code|symbol is attached|subjected to the same part and detailed description may be partially abbreviate|omitted. In addition, numerical values such as dimensions and material names of each member described in this specification are examples as an embodiment, and are not limited to these, and can be appropriately selected and used. In this specification, terms specifying shapes and geometrical conditions, such as parallel, orthogonal, and perpendicular terms, not only have strict meanings but also include substantially the same states.
 (植物育成施設及び植物の育成棚)
 図1は、本実施の形態による植物育成施設90の構成を模式的に示す図である。本実施の形態による植物育成施設90は、第1の育成棚80Aと第2の育成棚80Bとを備えている。このうち第1の育成棚80Aは、植物育成の前期である育苗期間にある植物を育成する植物の育成棚であり、第2の育成棚80Bは、植物育成の後期である栽培期間にある植物を育成する植物の育成棚である。この場合、第1の育成棚80Aと第2の育成棚80Bは、同一のスペースの棚を有しているが、これに限られるものではない。植物のサイズが相対的に小さい育苗用の第1の育成棚80Aは、植物のサイズが相対的に大きい栽培用の第2の育成棚80Bよりも小さくても良い。また、第1の育成棚80Aの棚間距離(上下方向距離)は、第2の育成棚80Bの棚間距離よりも小さくても良い。本実施の形態において、第1の育成棚80Aが第1の育成領域に対応し、第2の育成棚80Bが第2の育成領域に対応する。しかしながら、これに限らず、1つの育成棚に、第1の育成領域と第2の育成領域とが両方とも配置されていても良い。例えば、1つの育成棚の上部(下部)に第1の育成領域を配置し、下部(上部)に第2の育成領域を配置しても良い。以下、第1の育成棚80Aと第2の育成棚80Bとをまとめて、育成棚80A、80Bともいう。
(Plant growing facility and plant growing shelf)
FIG. 1 is a diagram schematically showing the configuration of a plant growing facility 90 according to this embodiment. A plant growing facility 90 according to the present embodiment includes a first growing shelf 80A and a second growing shelf 80B. Of these, the first growing shelf 80A is a plant growing shelf for growing plants in the seedling-raising period, which is the early stage of plant growing, and the second growing shelf 80B is for plants in the growing period, which is the late stage of plant growing. It is a growing shelf for growing plants. In this case, the first cultivating shelf 80A and the second cultivating shelf 80B have shelves with the same space, but the present invention is not limited to this. The first growing shelf 80A for growing seedlings with relatively small plants may be smaller than the second growing shelf 80B for growing relatively large plants. Further, the inter-shelf distance (vertical distance) of the first cultivating shelf 80A may be smaller than the inter-shelf distance of the second cultivating shelf 80B. In this embodiment, the first cultivating shelf 80A corresponds to the first cultivating area, and the second cultivating shelf 80B corresponds to the second cultivating area. However, not limited to this, both the first growing area and the second growing area may be arranged on one growing shelf. For example, the first growing area may be arranged in the upper part (lower part) of one growing shelf, and the second growing area may be arranged in the lower part (upper part). Hereinafter, the first cultivating shelf 80A and the second cultivating shelf 80B are also collectively referred to as the cultivating shelves 80A and 80B.
 本明細書において、育苗期間とは、植物育成の前期の段階であり、播種の後、植物が一定の体重となるまでの期間をいう。植物が定植される場合には、育苗期間とは定植までの期間をいう。栽培期間とは、植物育成後期の段階であり、植物が一定の体重となるまで成長した後、植物を収穫するまでの期間をいう。植物が定植される場合には、栽培期間とは定植されてからの期間をいう。また定植とは、植物を収穫まで栽培する圃場(第2の育成領域)に、その植物を植え付けることをいう。また、上述した育苗と定植と栽培とをあわせて育成という。 In this specification, the seedling-raising period is the early stage of plant growth, and refers to the period after sowing until the plant reaches a certain weight. When a plant is planted permanently, the raising seedling period means the period until planting. The cultivation period is the latter stage of plant growth, and refers to the period from the time the plant grows to a certain weight to the time the plant is harvested. When a plant is permanently planted, the cultivation period refers to the period after it is permanently planted. Fixed planting refers to planting a plant in a field (second growth area) where the plant is cultivated until harvest. Also, raising seedlings, fixed planting, and cultivating mentioned above are collectively referred to as cultivating.
 図1に示すように、植物育成施設90は、人工光を用いた植物育成工場である。この植物育成施設90は、第1の育成棚80Aと第2の育成棚80Bとを収容する建物91を備えている。なお、本明細書中、植物育成施設とは、植物育成工場のほか、植物育成システム、植物育成室、植物育成工場等を含む概念である。 As shown in FIG. 1, the plant growing facility 90 is a plant growing factory using artificial light. This plant growing facility 90 comprises a building 91 that accommodates a first growing shelf 80A and a second growing shelf 80B. In addition, in this specification, a plant growing facility is a concept including a plant growing system, a plant growing room, a plant growing factory, etc. in addition to the plant growing factory.
 次に、図2を参照して、第1の育成棚80Aと第2の育成棚80Bとについて更に説明する。本実施の形態において、育苗期間用の第1の育成棚80Aは、色温度が4500K以上5500K以下の光を照射する、第1のLED照明シート(第1の照明装置)20Aを有する。栽培期間用の第2の育成棚80Bは、色温度が2500K以上3500K以下の光を照射する、第2のLED照明シート(第2の照明装置)20Bを有する。以下、第1のLED照明シート20Aと第2のLED照明シート20Bとをまとめて、LED照明シート20A、20Bともいう。 Next, the first cultivating shelf 80A and the second cultivating shelf 80B will be further described with reference to FIG. In the present embodiment, the first growing shelf 80A for the seedling growing period has a first LED lighting sheet (first lighting device) 20A that emits light with a color temperature of 4500K or more and 5500K or less. The second growing shelf 80B for the cultivation period has a second LED lighting sheet (second lighting device) 20B that emits light with a color temperature of 2500K or more and 3500K or less. Hereinafter, the first LED lighting sheet 20A and the second LED lighting sheet 20B are also collectively referred to as the LED lighting sheets 20A and 20B.
 また、400nm以上499nm以下の波長範囲の放射束をBとし、500nm以上599nm以下の波長範囲の放射束をGとし、600nm以上699nm以下の波長範囲の放射束をRとする。このとき、第1のLED照明シート20Aが照射する光の発光スペクトルは、0.54≦B/G≦0.72、かつ、0.59≦R/G≦0.77という関係を満たす。また、第2のLED照明シート20Bが照射する光の発光スペクトルは、0.26≦B/G≦0.44、かつ、0.89≦R/G≦1.17という関係を満たす。 Also, let B be the radiant flux in the wavelength range of 400 nm or more and 499 nm or less, let G be the radiant flux in the wavelength range of 500 nm or more and 599 nm or less, and let R be the radiant flux in the wavelength range of 600 nm or more and 699 nm or less. At this time, the emission spectrum of the light emitted from the first LED lighting sheet 20A satisfies the relationships of 0.54≦B/G≦0.72 and 0.59≦R/G≦0.77. Moreover, the emission spectrum of the light emitted from the second LED lighting sheet 20B satisfies the relationships of 0.26≦B/G≦0.44 and 0.89≦R/G≦1.17.
 図2に示すように、第1のLED照明シート20Aには、第1のLED照明シート20Aを制御する制御部40が電気的に接続されている。第1のLED照明シート20Aと、制御部40とにより、第1のLED照明モジュール10Aが構成されている。また第2のLED照明シート20Bには、第2のLED照明シート20Bを制御する制御部40が電気的に接続されている。第2のLED照明シート20Bと、制御部40とにより、第2のLED照明モジュール10Bが構成されている。以下、第1のLED照明モジュール10Aと第2のLED照明モジュール10Bとをまとめて、LED照明モジュール10A、10Bともいう。 As shown in FIG. 2, the first LED lighting sheet 20A is electrically connected to a control unit 40 that controls the first LED lighting sheet 20A. The first LED lighting sheet 20A and the controller 40 constitute a first LED lighting module 10A. A control unit 40 for controlling the second LED lighting sheet 20B is electrically connected to the second LED lighting sheet 20B. A second LED lighting module 10B is configured by the second LED lighting sheet 20B and the control unit 40 . Hereinafter, the first LED lighting module 10A and the second LED lighting module 10B are also collectively referred to as the LED lighting modules 10A and 10B.
 図2に示すように、第1の育成棚80Aと第2の育成棚80Bは、それぞれ複数(4本)の支柱82と、支柱82に沿ってそれぞれ上下方向に間隔を空けて配置された複数の基板81とを有している。最上段の基板81を除く各基板81の上面には、植物PLを栽培するための培地領域が設けられている。最下段の基板81を除く各基板81の下面は、当該基板81の下方に位置する基板81に対して天井面を構成しており、各LED照明シート20A、20Bが並列に配置されている。この場合、制御部40は各LED照明シート20A、20Bから十分に離れた場所に配置される。このため、制御部40に近い位置にある植物PLと遠い位置にある植物PLとで、制御部40からの熱によって生育にばらつきが生じるおそれが少ない。また、基板81と、基板81の下面側に取り付けられたLED照明シート20A、20Bとにより、植物の育成棚用の棚板83が構成される。あるいは、基板81と、基板81の下面側に取り付けられた各LED照明モジュール10A、10Bとにより、植物の育成棚用の棚板83が構成される。本実施の形態において、このような植物の育成棚用の棚板83(図2)、植物の育成棚80A、80B(図2)、及び植物の育成棚80A、80Bを備えた植物育成施設90(図1)も提供する。 As shown in FIG. 2, each of the first cultivating shelf 80A and the second cultivating shelf 80B includes a plurality of (four) pillars 82 and a plurality of pillars 82 vertically spaced apart from each other along the pillars 82. and a substrate 81 of A culture medium area for cultivating plants PL is provided on the upper surface of each substrate 81 except for the substrate 81 on the uppermost stage. The bottom surface of each substrate 81 except for the bottom substrate 81 constitutes a ceiling surface for the substrates 81 positioned below the substrate 81, and the LED lighting sheets 20A and 20B are arranged in parallel. In this case, the control unit 40 is arranged at a location sufficiently distant from each of the LED lighting sheets 20A and 20B. Therefore, there is little possibility that the heat from the control unit 40 causes variation in growth between the plant PL located near the control unit 40 and the plant PL located far from the control unit 40 . Further, the board 81 and the LED lighting sheets 20A and 20B attached to the lower surface side of the board 81 constitute a shelf board 83 for a plant growing shelf. Alternatively, the board 81 and the LED lighting modules 10A and 10B attached to the lower surface of the board 81 constitute a shelf board 83 for growing plants. In the present embodiment, a plant-growing facility 90 provided with such a plant-growing shelf plate 83 (Fig. 2), plant-growing shelves 80A and 80B (Fig. 2), and plant-growing shelves 80A and 80B (Fig. 1) is also provided.
 後述するように、本実施の形態によるLED照明シート20A、20Bは可撓性と軽量性を有する。このため、各基板81の下面へのLED照明シート20A、20Bの取付けは、従来の直管型の照明装置等による取付けよりも容易に行うことができる。さらに、LED照明シート20A、20Bが可撓性を有することにより、LED照明シート20A、20Bを、様々なサイズや形状からなる天井面へ取り付けることができる。この結果、本実施の形態によるLED照明シート20A、20Bは、様々な育成棚80A、80Bや植物育成施設90へ適用できる。 As will be described later, the LED lighting sheets 20A and 20B according to this embodiment have flexibility and lightness. Therefore, attachment of the LED lighting sheets 20A and 20B to the lower surface of each substrate 81 can be performed more easily than attachment by a conventional straight tube type illumination device or the like. Furthermore, since the LED lighting sheets 20A and 20B have flexibility, the LED lighting sheets 20A and 20B can be attached to ceiling surfaces having various sizes and shapes. As a result, the LED lighting sheets 20A and 20B according to the present embodiment can be applied to various growing shelves 80A and 80B and plant growing facilities 90.
 また、LED照明シート20A、20Bは、従来の直管型の照明装置と比較して薄型化されている。これにより、上下方向の基板81の間隔を狭めることができ、各育成棚80A、80Bに含まれる基板81の数を増やせる。この結果、単位面積あたりの植物PLの収穫量を増加することができる。 In addition, the LED lighting sheets 20A and 20B are thinner than conventional straight tube lighting devices. As a result, the space between substrates 81 in the vertical direction can be narrowed, and the number of substrates 81 included in each of the growing racks 80A and 80B can be increased. As a result, the yield of plants PL per unit area can be increased.
 (植物育成用のLED照明モジュール及びLED照明シート)
 次に、図3乃至図9を参照して、本実施の形態によるLED照明モジュール10A、10B及びLED照明シート20A、20Bの構成について説明する。
(LED lighting module and LED lighting sheet for growing plants)
Next, configurations of the LED lighting modules 10A and 10B and the LED lighting sheets 20A and 20B according to the present embodiment will be described with reference to FIGS. 3 to 9. FIG.
 図3に示すように、本実施の形態による植物育成用のLED照明モジュール10A、10Bは、人工光を用いた植物育成施設90(図1)内に設置され、植物を育成するものである。このようなLED照明モジュール10A、10Bは、上述したように、植物育成用のLED照明シート20A、20Bと、LED照明シート20A、20Bに電気的に接続された制御部40と、を備えている。 As shown in FIG. 3, the plant growing LED lighting modules 10A and 10B according to the present embodiment are installed in a plant growing facility 90 (FIG. 1) using artificial light to grow plants. As described above, the LED lighting modules 10A and 10B include the LED lighting sheets 20A and 20B for growing plants, and the controller 40 electrically connected to the LED lighting sheets 20A and 20B. .
 図4に示すように、LED照明シート20A、20Bは、いわゆる面状の光源シートであり、そのシート面の発光面側(使用時に植物方向を向く側)に複数のLEDチップ21が配列されたものである。このような直下型のLED照明シート20A、20Bを用いることで、LEDチップ21からの照射光がそのまま発光面を通過して直接直下の植物に到達する。これにより、光量を強くして植物の育成の促進を図ることができ、また、シート全体の厚さを薄くしてLEDチップ21の側部側の影を発生しにくくすることができる。なお、図4では、直下型のLED照明シート20A、20Bの例を示しているが、これに限定されず、導光板等を介在させたエッジライト型のLED照明シートを用いてもよい。エッジライト型のLED照明シートは、発光面からの光量のばらつきを抑制しやすい。 As shown in FIG. 4, the LED lighting sheets 20A and 20B are so-called planar light source sheets, and a plurality of LED chips 21 are arranged on the light emitting surface side of the sheet surface (the side facing the plant direction when used). It is. By using such direct-type LED lighting sheets 20A and 20B, the irradiation light from the LED chip 21 passes through the light-emitting surface as it is and reaches the plant directly below. As a result, the amount of light can be increased to promote the growth of plants, and the thickness of the entire sheet can be reduced to make it difficult for shadows on the sides of the LED chips 21 to occur. Although FIG. 4 shows an example of the direct type LED lighting sheets 20A and 20B, the present invention is not limited to this, and an edge light type LED lighting sheet with a light guide plate or the like interposed may be used. An edge-light type LED lighting sheet tends to suppress variations in the amount of light emitted from the light-emitting surface.
 LED照明シート20A、20Bは、フレキシブル配線基板30と、フレキシブル配線基板30上に規則的に配置された複数のLEDチップ21とを備えている。このようなフレキシブル配線基板30を用いることで、シート面の面積が比較的大きいLED照明シート20A、20Bを得ることができる。一般に、植物育成工場等の植物育成施設や植物の育成棚では、LED照明シート20A、20Bは、複数を配列して使用される。この場合、隣り合うLED照明シート20A、20Bどうしの位置がばらつくと光量のばらつきが生じて植物の収率が低下するおそれがある。シート面の面積が比較的大きいLED照明シート20A、20Bは、使用するLED照明シート20A、20Bの数を減らすことができる。これにより、複数のLED照明シート20A、20Bの配置による光量のばらつきを抑制できる。なお、図4では、フレキシブル配線基板30を備えたLED照明シート20A、20Bの例を示しているが、これに限定されず、リジット配線基板を備えたLED照明シートを用いてもよい。リジット配線基板を備えたLED照明シートは、応力による耐性が高く、破損しにくい。なお、図4において、後述する光反射性絶縁保護膜34及び透明保護膜35の表示を省略している。 The LED lighting sheets 20A and 20B are provided with a flexible wiring board 30 and a plurality of LED chips 21 regularly arranged on the flexible wiring board 30. By using such a flexible wiring board 30, it is possible to obtain the LED lighting sheets 20A and 20B having a relatively large sheet surface area. In general, in a plant growing facility such as a plant growing factory or a plant growing shelf, a plurality of LED lighting sheets 20A and 20B are arranged and used. In this case, if the positions of the adjacent LED lighting sheets 20A and 20B vary, the amount of light varies, which may reduce the yield of plants. The LED lighting sheets 20A and 20B having a relatively large sheet surface area can reduce the number of LED lighting sheets 20A and 20B to be used. As a result, it is possible to suppress variations in the amount of light due to the arrangement of the plurality of LED lighting sheets 20A and 20B. Although FIG. 4 shows an example of the LED lighting sheets 20A and 20B provided with the flexible wiring board 30, it is not limited to this, and an LED lighting sheet provided with a rigid wiring board may be used. An LED lighting sheet with a rigid wiring board has high resistance to stress and is less likely to break. In FIG. 4, illustration of a light-reflective insulating protective film 34 and a transparent protective film 35, which will be described later, is omitted.
 この場合、LEDチップ21は、フレキシブル配線基板30内で平面視で格子点状に配置されている。すなわちLEDチップ21は、マトリックス状に多段多列に配置されており、直列にM個接続されたLEDチップ21の列RがN列配置されている。例えば図4において、LEDチップ21は、LEDチップ21の第1の配列方向(X方向)に沿って、14個(M=14)直列に接続されている。さらに、この14個のLEDチップ21をもつ列Rが、LEDチップ21の第2の配列方向(Y方向)に沿って、10列(N=10)並列に配置されている。なお、LEDチップ21の配置数はこれに限られるものではない。具体的には、LEDチップ21を、第1の配列方向(X方向)に10個以上14個以下(14≧M≧10)直列に配置し、この列RをLEDチップ21の第2の配列方向(Y方向)に4列以上10列以下(10≧N≧4)並列に配置することが好ましい。LEDチップ21を10個以上直列に配置することにより、LEDチップ21を第1の配列方向(X方向)に沿って短い間隔で配置できる。これにより、LED照明シート20A、20Bの照度の面内ばらつきを抑えることができ、植物に照射する光のばらつきを抑制できる。LEDチップ21を14個以下直列に配置することにより、消費電力を削減でき、植物育成施設90における光熱費等のランニングコストを低減できる。また、LEDチップ21の列をLEDチップ21の第2の配列方向(Y方向)に4列以上並列に配置することにより、特定のLEDチップ21が破損した場合でも、他の列のLEDチップ21に波及することを抑制できる。またLED照明シート20A、20B全体の照度が極端に低下することを抑止できる。また、LED照明シート20A、20Bの照度が低下した範囲を限定することで、不適合品が発生するおそれがある範囲を限定し、収率の低下を抑制できる。また、LED照明シート20A、20Bが直下型の場合には、設置や清掃のときにLEDチップ21に誤って強く接触して破損するおそれが高まるため、破損時の対策を行っておくことは、リスク管理の観点で重要である。さらに、LEDチップ21の列を10列以下並列に配置することにより、消費電力を削減でき、植物育成施設90における光熱費等のランニングコストを低減できる。 In this case, the LED chips 21 are arranged inside the flexible wiring board 30 in a grid pattern in plan view. That is, the LED chips 21 are arranged in multiple rows and columns in a matrix, and N rows R of LED chips 21 connected in series are arranged. For example, in FIG. 4, 14 (M=14) LED chips 21 are connected in series along the first arrangement direction (X direction) of the LED chips 21 . Further, the row R having the 14 LED chips 21 is arranged in 10 rows (N=10) in parallel along the second arrangement direction (Y direction) of the LED chips 21 . Note that the number of LED chips 21 to be arranged is not limited to this. Specifically, 10 or more and 14 or less (14≧M≧10) LED chips 21 are arranged in series in the first arrangement direction (X direction), and this row R is the second arrangement of the LED chips 21. It is preferable to arrange 4 or more and 10 or less (10≧N≧4) rows in parallel in the direction (Y direction). By arranging ten or more LED chips 21 in series, the LED chips 21 can be arranged at short intervals along the first arrangement direction (X direction). As a result, in-plane variations in the illuminance of the LED lighting sheets 20A and 20B can be suppressed, and variations in the light applied to the plants can be suppressed. By arranging 14 or less LED chips 21 in series, power consumption can be reduced, and running costs such as utility costs in the plant growing facility 90 can be reduced. Further, by arranging four or more rows of the LED chips 21 in parallel in the second arrangement direction (Y direction) of the LED chips 21, even if a specific LED chip 21 is damaged, the LED chips 21 in the other rows can be suppressed. Moreover, it is possible to prevent the illuminance of the entire LED lighting sheets 20A and 20B from being extremely lowered. In addition, by limiting the range where the illuminance of the LED lighting sheets 20A and 20B has decreased, the range in which nonconforming products may occur can be limited, and a reduction in yield can be suppressed. In addition, when the LED lighting sheets 20A and 20B are of the direct type, there is an increased risk of damage due to erroneous strong contact with the LED chips 21 during installation or cleaning. It is important from the viewpoint of risk management. Further, by arranging the LED chips 21 in 10 or less rows in parallel, power consumption can be reduced, and running costs such as utility costs in the plant growing facility 90 can be reduced.
 LED照明シート20A、20Bは、複数の金属配線部22を有し、複数の金属配線部22は、第1の配列方向(X方向)に沿って配列されている。第1の配列方向(X方向)に沿って配列された複数の金属配線部22は、それぞれLEDチップ21の各列Rに対応している。LEDチップ21は、それぞれX方向に互いに隣接する一対の金属配線部22同士を跨ぐように配置されている。またLEDチップ21の図示しない各端子は、一対の金属配線部22にそれぞれ電気的に接続されている。複数の金属配線部22は、LEDチップ21への給電部を構成しており、複数の金属配線部22に電力が供給されることにより、当該列Rに配置されたLEDチップ21が全て点灯する。なお、複数の金属配線部22は、後述する金属配線部32の一部を構成する。 The LED lighting sheets 20A and 20B have a plurality of metal wiring portions 22, and the plurality of metal wiring portions 22 are arranged along the first arrangement direction (X direction). A plurality of metal wiring portions 22 arranged along the first arrangement direction (X direction) correspond to the respective rows R of the LED chips 21 . The LED chips 21 are arranged so as to straddle a pair of metal wiring portions 22 adjacent to each other in the X direction. Each terminal (not shown) of the LED chip 21 is electrically connected to a pair of metal wiring portions 22, respectively. The plurality of metal wiring portions 22 constitute a power feeding portion to the LED chips 21, and by supplying power to the plurality of metal wiring portions 22, all the LED chips 21 arranged in the row R are lit. . In addition, the plurality of metal wiring portions 22 constitute a part of a metal wiring portion 32 to be described later.
 第1の配列方向(X方向)におけるLEDチップ21同士の間隔Pxは、37mm以上50mm以下とすることが好ましい。また、第2の配列方向(Y方向)におけるLEDチップ21同士の間隔Pyは、37mm以上100mm以下とすることが好ましい。LEDチップ21同士の間隔を上記範囲とすることにより、LED照明シート20A、20Bの輝度を面内で均一にして、植物に照射する光のばらつきを抑制するとともに、LED照明シート20A、20Bの消費電力を抑えることができる。 The interval Px between the LED chips 21 in the first arrangement direction (X direction) is preferably 37 mm or more and 50 mm or less. Moreover, it is preferable that the interval Py between the LED chips 21 in the second arrangement direction (Y direction) is set to 37 mm or more and 100 mm or less. By setting the interval between the LED chips 21 within the above range, the brightness of the LED lighting sheets 20A and 20B is uniform in the plane, and the variation in the light irradiated to the plants is suppressed, and the consumption of the LED lighting sheets 20A and 20B. Electricity can be saved.
 LED照明シート20A、20Bのうち最も厚い部分における厚みは、5mm以下とすることが好ましい。このようにLED照明シート20A、20Bの厚みを薄くすることにより、LED照明シート20A、20Bを設置する基板81(図2)同士の上下方向の間隔を狭くすることができる。これにより各植物の育成棚80A、80B(図2)あたりの基板81の数を増やすことができる。この結果、単位面積あたりの植物の収穫量を増やすことができる。また、植物とLED照明シート20A、20Bが近接しているときに植物に照射される比較的強い光のばらつきをより抑制できる。 The thickness of the thickest portion of the LED lighting sheets 20A and 20B is preferably 5 mm or less. By reducing the thickness of the LED lighting sheets 20A and 20B in this way, it is possible to narrow the vertical interval between the substrates 81 (FIG. 2) on which the LED lighting sheets 20A and 20B are installed. As a result, the number of substrates 81 per growing shelf 80A, 80B (FIG. 2) for each plant can be increased. As a result, the yield of plants per unit area can be increased. In addition, when the plants and the LED lighting sheets 20A and 20B are close to each other, variations in the relatively strong light emitted to the plants can be further suppressed.
 LEDチップ21の配列は、平面視格子点状に限られるものではなく、図5Aに示すように、平面視で千鳥状に配置されていても良い。また、LEDチップ21は、LED照明シート20A、20Bの面内で均一に配置されていなくても良い。例えば、LED照明シート20A、20Bの周縁部において、LEDチップ21の密度をより高めても良い。具体的には、図5Bに示すように、LED照明シート20A、20Bの中央部(図5Bの下部)でLEDチップ21を格子点状に配置し、LED照明シート20A、20Bの周縁部(図5Bの上部)でLEDチップ21を千鳥状に配置しても良い。これにより、LED照明シート20A、20Bの周縁部におけるLED照明シート20A、20Bの輝度の低下を抑制し、LED照明シート20A、20Bの輝度を面内で均一にして、植物に照射する光のばらつきを抑制できる。 The arrangement of the LED chips 21 is not limited to the grid point shape in plan view, and may be arranged in a zigzag pattern in plan view as shown in FIG. 5A. Moreover, the LED chips 21 do not have to be arranged uniformly within the surfaces of the LED lighting sheets 20A and 20B. For example, the density of the LED chips 21 may be increased in the periphery of the LED lighting sheets 20A and 20B. Specifically, as shown in FIG. 5B, the LED chips 21 are arranged in a grid pattern in the central portion (lower portion of FIG. 5B) of the LED lighting sheets 20A and 20B, and the peripheral edge portions of the LED lighting sheets 20A and 20B ( 5B), the LED chips 21 may be arranged in a zigzag pattern. This suppresses a decrease in the luminance of the LED lighting sheets 20A and 20B at the peripheral edges of the LED lighting sheets 20A and 20B, makes the luminance of the LED lighting sheets 20A and 20B uniform in the plane, and causes variations in the light irradiated to the plants. can be suppressed.
 LED照明シート20A、20Bの全体形状は、平面視長方形形状となっているが、LED照明シート20A、20Bのサイズや平面形状については特に限定されるものではない。LED照明シート20A、20Bは、サイズや形状の加工の自由度が高いため、この点に関する様々な需要に対しても柔軟に対応することが可能である。また、その可撓性を活かして、フラットな設置面に限らず様々な形状の設置面への取付けが可能である。また、LED照明シート20A、20B自体が剛性をもっている。このため、例えばLED照明シート20A、20BをLEDチップ21が外側になる様に円筒状に曲げることによって、設置面がなくとも、LED照明シート20A、20B単体で照明とすることも可能である。 The overall shape of the LED lighting sheets 20A and 20B is rectangular in plan view, but the size and planar shape of the LED lighting sheets 20A and 20B are not particularly limited. Since the LED lighting sheets 20A and 20B have a high degree of freedom in size and shape processing, it is possible to flexibly respond to various demands related to this point. In addition, by taking advantage of its flexibility, it is possible to attach it not only to a flat installation surface but also to installation surfaces of various shapes. Moreover, the LED lighting sheets 20A and 20B themselves have rigidity. For this reason, for example, by bending the LED lighting sheets 20A and 20B into a cylindrical shape so that the LED chips 21 are on the outside, the LED lighting sheets 20A and 20B alone can be illuminated without an installation surface.
 図4において、LED照明シート20A、20Bの第1の配列方向(X方向)の長さLxは、500mm以上700mm以下とすることが好ましく、550mm以上650mm以下とすることが更に好ましい。LED照明シート20A、20Bの第2の配列方向(Y方向)の長さLyは、300mm以上500mm以下とすることが好ましく、350mm以上450mm以下とすることが更に好ましい。LED照明シート20A、20Bの大きさを上記範囲とすることにより、LED照明シート20A、20Bを一般的な植物育成用の基板81(図2)に適合させることができ、基板81のデッドスペースを減らすことができる。また、個々のLED照明シート20A、20Bの大きさが過度に大きすぎないことにより、特定のLEDチップ21が破損した場合に、他のLEDチップ21に影響が及ぶことを最低限に抑えている。これにより、植物の育成棚用の棚板83(図2)全体の照度が極端に低下することを防止しかつ照度が低下する範囲を限定できる。 In FIG. 4, the length Lx of the LED lighting sheets 20A and 20B in the first arrangement direction (X direction) is preferably 500 mm or more and 700 mm or less, more preferably 550 mm or more and 650 mm or less. The length Ly of the LED lighting sheets 20A and 20B in the second arrangement direction (Y direction) is preferably 300 mm or more and 500 mm or less, more preferably 350 mm or more and 450 mm or less. By setting the size of the LED lighting sheets 20A and 20B within the above range, the LED lighting sheets 20A and 20B can be adapted to a general substrate 81 (FIG. 2) for growing plants, and the dead space of the substrate 81 can be reduced. can be reduced. In addition, since the size of each of the LED lighting sheets 20A and 20B is not excessively large, when a specific LED chip 21 is damaged, the other LED chips 21 are minimized from being affected. . As a result, it is possible to prevent the illuminance of the entire shelf plate 83 (FIG. 2) for growing plants from being extremely lowered, and to limit the range in which the illuminance is lowered.
 次に、制御部40について説明する。図3に示すように、制御部40は、LED照明シート20A、20Bに電力を供給するとともに、LED照明シート20A、20Bの発光等を制御するものである。この制御部40は、LED照明シート20A、20B上に設けられた第1コネクタ44Aを介してLED照明シート20A、20Bに対して着脱自在に接続される。すなわち制御部40は、LED照明シート20A、20Bと別体に構成され、LED照明シート20A、20Bに対して外付けで接続されるようになっている。すなわち制御部40は、LED照明シート20A、20Bと一体化されていない。これにより、熱源となる制御部40をLED照明シート20A、20Bから分離でき、制御部40からの熱によって植物の生育に影響を及ぼさないようにすることができる。 Next, the control unit 40 will be explained. As shown in FIG. 3, the control unit 40 supplies power to the LED lighting sheets 20A and 20B and controls light emission of the LED lighting sheets 20A and 20B. The control unit 40 is detachably connected to the LED lighting sheets 20A, 20B via a first connector 44A provided on the LED lighting sheets 20A, 20B. That is, the control unit 40 is configured separately from the LED lighting sheets 20A and 20B, and is externally connected to the LED lighting sheets 20A and 20B. That is, the controller 40 is not integrated with the LED lighting sheets 20A and 20B. As a result, the control unit 40 serving as a heat source can be separated from the LED lighting sheets 20A and 20B, and the heat from the control unit 40 can be prevented from affecting the growth of plants.
 また制御部40は、電力入力部41と、AC/DCコンバーター(ドライバー)42と、PWM制御部43とを有している。このうち電力入力部41には、例えば100V乃至240Vの任意の電圧をもつ交流の電圧が供給される。AC/DCコンバーター42は、100V乃至240Vの交流電圧を定圧(例えば44V)の直流電圧に変換する。PWM制御部43は、AC/DCコンバーター42からの定電圧波形のパルス幅を任意に変化させることにより、LED照明シート20A、20BのLEDチップ21の調光を行うものである。すなわちPWM制御部43は、LED照明シート20A、20Bの調光を制御する調光制御部としての役割も果たす。PWM制御部43から出力される定電圧は、第1コネクタ44Aを介してLED照明シート20A、20Bに印加される。 The control unit 40 also has a power input unit 41 , an AC/DC converter (driver) 42 and a PWM control unit 43 . Among them, the power input unit 41 is supplied with an AC voltage having an arbitrary voltage of 100V to 240V, for example. The AC/DC converter 42 converts an AC voltage of 100V to 240V into a constant voltage (for example, 44V) DC voltage. The PWM control section 43 arbitrarily changes the pulse width of the constant voltage waveform from the AC/DC converter 42 to perform light control of the LED chips 21 of the LED lighting sheets 20A and 20B. That is, the PWM control section 43 also serves as a dimming control section that controls dimming of the LED lighting sheets 20A and 20B. A constant voltage output from the PWM control unit 43 is applied to the LED lighting sheets 20A and 20B via the first connector 44A.
 制御部40のPWM制御部43からLED照明シート20A、20Bに定電圧が印加されることにより、LED照明シート20A、20Bに直接整流化されたパルス電圧が印加される場合と異なり、LEDチップ21の調光を行うことが可能となる。すなわち、PWM制御部43は、AC/DCコンバーター42からの直流電圧のデューティー比を適宜変化させることにより、LEDチップ21の照度を任意に制御できる。例えば、図6Aに示すように、PWM制御部43は、AC/DCコンバーター42からの定電圧のデューティー比を100%(実線)から50%(点線)に抑えることにより、LEDチップ21の照度を低下させることができる。 By applying a constant voltage to the LED lighting sheets 20A and 20B from the PWM control unit 43 of the control unit 40, unlike the case where the rectified pulse voltage is applied directly to the LED lighting sheets 20A and 20B, the LED chips 21 can be dimmed. That is, the PWM controller 43 can arbitrarily control the illuminance of the LED chip 21 by appropriately changing the duty ratio of the DC voltage from the AC/DC converter 42 . For example, as shown in FIG. 6A, the PWM control unit 43 reduces the illuminance of the LED chip 21 by suppressing the duty ratio of the constant voltage from the AC/DC converter 42 from 100% (solid line) to 50% (dotted line). can be lowered.
 このようにLEDチップ21の照度を適宜調節することにより、植物の生育ステージに応じてLED照明シート20A、20Bの照度を調節し、植物の生育の度合いを調整できる。例えば、育苗期間中又は栽培期間中、植物の葉の小さい期間初期には、LED照明シート20A、20Bの照度を低くし、植物の葉の大きい期間後期には、LED照明シート20A、20Bの照度を高くしても良い。あるいは、育苗期間中又は栽培期間中、植物の背丈の低い期間初期には、植物とLEDチップ21との距離が離れているため、LED照明シート20A、20Bの照度を高くしても良い。植物の背丈の大きくなる期間後期には、植物とLEDチップ21との距離が近づくため、LED照明シート20A、20Bの照度を低くしても良い。LED照明シート20A、20Bの照度調整の他の例としては、高い照度が必要な種類の植物のときは照度を高くし、低い照度でも育成できる種類の植物のときは照度を低くても良い。出荷の時期を早めたいときは照度を高くし、出荷の時期を遅らせたいときは照度を低くしても良い。 By appropriately adjusting the illuminance of the LED chips 21 in this manner, the illuminance of the LED lighting sheets 20A and 20B can be adjusted according to the growth stage of the plant, and the degree of plant growth can be adjusted. For example, during the seedling raising period or cultivation period, the illuminance of the LED lighting sheets 20A and 20B is reduced at the beginning of the period when the leaves of the plant are small, and the illuminance of the LED lighting sheets 20A and 20B is reduced at the end of the period when the leaves of the plant are large. can be raised. Alternatively, the illuminance of the LED lighting sheets 20A and 20B may be increased during the seedling raising period or during the cultivation period at the beginning of the period when the plant is short, since the distance between the plant and the LED chip 21 is large. Since the distance between the plant and the LED chip 21 is reduced in the latter half of the period when the height of the plant increases, the illuminance of the LED lighting sheets 20A and 20B may be lowered. As another example of adjusting the illuminance of the LED lighting sheets 20A and 20B, the illuminance may be increased for plants that require high illuminance, and may be decreased for plants that can be grown at low illuminance. The illuminance may be increased to accelerate the shipment, and may be decreased to delay the shipment.
 また、PWM制御部43からLED照明シート20A、20Bに定電圧が印加されることにより、LED照明シート20A、20Bからの光の単位時間あたりの積算光量を増加できる。すなわち、例えば、LED照明シート20A、20Bに定電圧が印加された場合における積算光量(図6Aの網掛け部分の面積)を、比較例としてパルスで電圧が印加される場合における積算光量(図6Bの網掛け部分の面積)よりも大きくすることができる。これにより、LED照明シート20A、20Bからの光の発光効率を高め、植物の育成効率を向上させることができる。 Further, by applying a constant voltage from the PWM control unit 43 to the LED lighting sheets 20A and 20B, the integrated amount of light per unit time from the LED lighting sheets 20A and 20B can be increased. That is, for example, the integrated light amount when a constant voltage is applied to the LED lighting sheets 20A and 20B (the area of the shaded portion in FIG. 6A) is compared with the integrated light amount when a pulse voltage is applied as a comparative example (FIG. 6B can be larger than the shaded area of ). Thereby, the luminous efficiency of the light from the LED lighting sheets 20A and 20B can be increased, and the growing efficiency of plants can be improved.
 再度図3を参照すると、LED照明シート20A、20Bには、レギュレータ45が設けられている。この場合、レギュレータ45は、LEDチップ21の各列に対応してそれぞれ設けられており、具体的には、10列のLEDチップ21の列に対応して10個のレギュレータ45が設けられている。このレギュレータ45は、各列の複数のLEDチップ21に流れる電流を一定に保持する役割を果たす。これにより、1つのLEDチップ21が破損した場合でも、他の列のLEDチップ21に過大な電流が流れることを抑え、他の列のLEDチップ21が破損しないようにすることができる。この結果、LED照明シート20A、20B全体の照度が極端に低下することを防止でき、植物に照射する光のばらつきを抑制できる。また、レギュレータ45は接続する抵抗値により制御する電流量を列ごとに制御可能であり、たとえば、最初の列と最後の列の制御用抵抗値を変化させることで、周辺部の列のみ出力を上げることができる。これにより、通常、LED照明シート20A、20B同士を隙間なく敷き詰めることで均一性を確保する狙いがある。一方、コストの観点や通気性確保の観点で、LED照明シート20A、20B間を5cm~10cm程度空けたとしても、その継ぎ目が消せる効果が期待できる。 Referring to FIG. 3 again, the LED lighting sheets 20A and 20B are provided with regulators 45. In this case, the regulators 45 are provided corresponding to the respective columns of the LED chips 21. Specifically, ten regulators 45 are provided corresponding to the ten columns of the LED chips 21. . This regulator 45 serves to keep constant the current flowing through the plurality of LED chips 21 in each column. As a result, even if one LED chip 21 is damaged, it is possible to prevent an excessive current from flowing to the LED chips 21 in other columns, thereby preventing the LED chips 21 in other columns from being damaged. As a result, it is possible to prevent the illuminance of the entire LED lighting sheets 20A and 20B from being extremely lowered, and to suppress variations in the light emitted to the plants. In addition, the regulator 45 can control the amount of current controlled by the connected resistance value for each column. can be raised. In this way, the LED lighting sheets 20A and 20B are normally laid together without gaps, thereby ensuring uniformity. On the other hand, even if the LED lighting sheets 20A and 20B are spaced about 5 cm to 10 cm from the viewpoint of cost and ensuring air permeability, the effect of eliminating the seam can be expected.
 さらに、LED照明シート20A、20Bには、第1コネクタ44Aから分岐して電力供給ライン46が設けられている。また、LED照明シート20A、20B上には第2コネクタ44Bが設けられている。電力供給ライン46は、当該LED照明シート20A、20BのLEDチップ21には電気的に接続されることなく、LED照明シート20A、20Bと同一の構成をもつ他のLED照明シート200の配線に対して電気的に接続される。すなわち電力供給ライン46は、第2コネクタ44B及び他のLED照明シート200上に設けられた他の第1コネクタ44Aを介して、LED照明シート200の配線に着脱自在に接続される。電力供給ライン46からの電流は、第2コネクタ44B及び他の第1コネクタ44Aを介して、他のLED照明シート200に供給される。これにより、LED照明シート20A、20Bと他のLED照明シート200とを連結し、これらのLED照明シート20A、20B及びLED照明シート200を1つの制御部40によって同時に制御できる。1つの制御部40によって複数のLED照明シート20A、20B、200を同時に制御できることによって、熱の発生源である制御部40の数を減らすことができる。これにより、制御部40からの熱による植物の育成のばらつきが発生しにくくなって収量の低下を抑制できる。 Furthermore, the LED lighting sheets 20A and 20B are provided with a power supply line 46 branched from the first connector 44A. A second connector 44B is provided on the LED lighting sheets 20A and 20B. The power supply line 46 is not electrically connected to the LED chips 21 of the LED lighting sheets 20A and 20B, and is connected to wiring of another LED lighting sheet 200 having the same configuration as the LED lighting sheets 20A and 20B. are electrically connected. That is, the power supply line 46 is detachably connected to the wiring of the LED lighting sheet 200 via the second connector 44B and the other first connector 44A provided on the other LED lighting sheet 200 . A current from the power supply line 46 is supplied to the other LED lighting sheet 200 via the second connector 44B and the other first connector 44A. Thereby, the LED lighting sheets 20A, 20B and another LED lighting sheet 200 can be connected, and these LED lighting sheets 20A, 20B and the LED lighting sheet 200 can be controlled simultaneously by one control unit 40. By simultaneously controlling the plurality of LED lighting sheets 20A, 20B, 200 by one controller 40, the number of controllers 40, which are sources of heat generation, can be reduced. As a result, variations in plant growth due to the heat from the control unit 40 are less likely to occur, and reduction in yield can be suppressed.
 (LED照明シートの各部材)
 次に、LED照明シート20A、20Bを構成する各部材について説明する。図7に示すように、LED照明シート20A、20Bは、フレキシブル配線基板30と、フレキシブル配線基板30上に配置された複数のLEDチップ21とを備えている。このうちフレキシブル配線基板30は、可撓性を有する基板フィルム31と、基板フィルム31の表面(発光面側の面)に形成された金属配線部32とを有している。金属配線部32は、接着剤層33を介して基板フィルム31に積層されている。
(Each member of the LED lighting sheet)
Next, each member which comprises LED lighting sheet 20A, 20B is demonstrated. As shown in FIG. 7, the LED lighting sheets 20A and 20B include a flexible wiring board 30 and a plurality of LED chips 21 arranged on the flexible wiring board 30. As shown in FIG. Among them, the flexible wiring board 30 has a substrate film 31 having flexibility and a metal wiring portion 32 formed on the surface of the substrate film 31 (the surface on the light emitting surface side). The metal wiring portion 32 is laminated on the substrate film 31 with an adhesive layer 33 interposed therebetween.
 各LEDチップ21は、金属配線部32に導通可能な態様で実装されている。このLED照明シート20A、20Bにおいては、LEDチップ21がフレキシブル配線基板30に実装されていることにより、複数のLEDチップ21を、所望の高い密度で配置することが可能である。 Each LED chip 21 is mounted on the metal wiring portion 32 in a conductive manner. In the LED lighting sheets 20A and 20B, since the LED chips 21 are mounted on the flexible wiring board 30, it is possible to arrange the plurality of LED chips 21 at a desired high density.
 LED照明シート20A、20Bのうち、LEDチップ21、レギュレータ45、第1コネクタ44Aおよび第2コネクタ44Bが設けられている領域及びその周辺領域を除く領域を覆って、光反射性絶縁保護膜34が形成されている。この光反射性絶縁保護膜34は、金属配線部32を覆うように配置されている。光反射性絶縁保護膜34は、LED照明シート20A、20Bの耐マイグレーション特性の向上に寄与する絶縁機能と、LED照明シート20A、20Bにより作られる光環境の向上に寄与する光反射機能とを兼ね備える層である。この層は、白色顔料を含む絶縁性の樹脂組成物により形成される。前述の金属配線部32と後述の透明保護膜35のみで、耐マイグレーション特性および光反射機能が得られる場合には、光反射性絶縁保護膜34がない構造も可能である。 A light-reflective insulating protective film 34 covers a region of the LED lighting sheets 20A and 20B, excluding a region where the LED chip 21, the regulator 45, the first connector 44A and the second connector 44B are provided, and the peripheral region thereof. formed. This light-reflective insulating protective film 34 is arranged so as to cover the metal wiring portion 32 . The light-reflective insulating protective film 34 has both an insulating function that contributes to improving migration resistance properties of the LED lighting sheets 20A and 20B and a light reflecting function that contributes to improving the light environment created by the LED lighting sheets 20A and 20B. layer. This layer is formed from an insulating resin composition containing a white pigment. A structure without the light-reflective insulating protective film 34 is also possible when the migration resistance and the light-reflecting function can be obtained only with the metal wiring portion 32 described above and the transparent protective film 35 described later.
 また、光反射性絶縁保護膜34及びLEDチップ21を覆うように、透明保護膜35が形成されている。透明保護膜35は、主としてLED照明シート20A、20Bの防水性を確保するためにその最表面(最も発光面側に位置する面)に形成される樹脂性の膜である。 A transparent protective film 35 is formed so as to cover the light-reflective insulating protective film 34 and the LED chip 21 . The transparent protective film 35 is a resinous film formed on the outermost surface (the surface closest to the light emitting surface) mainly to ensure waterproofness of the LED lighting sheets 20A and 20B.
 金属配線部32上には、ハンダ部36が設けられている。各LEDチップ21は、それぞれハンダ部36を介して、金属配線部32に電気的に接続されている。 A solder portion 36 is provided on the metal wiring portion 32 . Each LED chip 21 is electrically connected to the metal wiring portion 32 via a solder portion 36 .
 (基板フィルム)
 基板フィルム31は、可撓性を有する樹脂フィルムを用いることができる。なお、本明細書中、「可撓性を有する」とは、「曲率半径を少なくとも1m以下、好ましくは50cm、より好ましくは30cm、更に好ましくは10cm、特に好ましくは5cmに曲げることが可能であること」をいう。
(substrate film)
A flexible resin film can be used for the substrate film 31 . In this specification, "having flexibility" means "having a radius of curvature of at least 1 m or less, preferably 50 cm, more preferably 30 cm, still more preferably 10 cm, and particularly preferably 5 cm. "Things"
 基板フィルム31の材料としては、耐熱性及び絶縁性が高い熱可塑性樹脂が用いられても良い。このような樹脂として、耐熱性と加熱時の寸法安定性、機械的強度、及び耐久性に優れるポリイミド樹脂(PI)や、ポリエチレンナフタレート(PEN)を用いることができる。中でも、アニール処理等の耐熱性向上処理を施すことによって耐熱性と寸法安定性を向上させたポリエチレンナフタレート(PEN)を好ましく用いることもできる。また、難燃性の無機フィラー等を添加することによって難燃性を向上させたポリエチレンテレフタレート(PET)を用いても良い。 As the material for the substrate film 31, a thermoplastic resin with high heat resistance and insulation may be used. Polyimide resin (PI) and polyethylene naphthalate (PEN), which are excellent in heat resistance, dimensional stability when heated, mechanical strength, and durability, can be used as such a resin. Among them, polyethylene naphthalate (PEN), which is improved in heat resistance and dimensional stability by applying heat resistance improvement treatment such as annealing treatment, can also be preferably used. Polyethylene terephthalate (PET), which is improved in flame retardancy by adding a flame retardant inorganic filler or the like, may also be used.
 基板フィルム31の厚さは、特に限定されない。基板フィルム31の厚さは、放熱経路としてボトルネックとはならないこと、耐熱性及び絶縁性を有するものであること、及び、製造コストのバランスとの観点から適宜設定できる。具体的には、基板フィルム31の厚さは、概ね10μm以上500μm以下、好ましくは、50μm以上250μm以下であっても良い。また、ロール・トゥ・ロール方式による製造を行う場合の生産性を良好に維持する観点からも上記厚さ範囲内であることが好ましい。 The thickness of the substrate film 31 is not particularly limited. The thickness of the substrate film 31 can be appropriately set from the viewpoints of not becoming a bottleneck as a heat dissipation path, having heat resistance and insulating properties, and balancing manufacturing costs. Specifically, the thickness of the substrate film 31 may be approximately 10 μm or more and 500 μm or less, preferably 50 μm or more and 250 μm or less. Moreover, it is preferable that the thickness is within the above range also from the viewpoint of maintaining good productivity in the case of manufacturing by a roll-to-roll method.
 (接着剤層)
 接着剤層33を形成する接着剤は、公知の樹脂系接着剤を適宜用いることができる。それらの樹脂接着剤のうち、ウレタン系、ポリカーボネート系、シリコーン系、エステル系またはエポキシ系の接着剤等を特に好ましく用いることができる。
(adhesive layer)
As the adhesive for forming the adhesive layer 33, a known resin-based adhesive can be appropriately used. Among these resin adhesives, urethane-based, polycarbonate-based, silicone-based, ester-based or epoxy-based adhesives can be particularly preferably used.
 (金属配線部)
 金属配線部32は、基板フィルム31の表面(発光面側の面)に金属箔等の導電性基材によって形成される配線パターンである。この金属配線部32は、基板フィルム31の表面へ接着剤層33を介してドライラミネート法によって形成されることが好ましい。金属配線部32は、上述した複数の金属配線部22を含む。複数の金属配線部22は、第1の金属配線部22Aと、第1の金属配線部22Aから離間して配置された第2の金属配線部22Bとを含む。第1の金属配線部22A及び第2の金属配線部22Bには、LEDチップ21が搭載され、LEDチップ21は、第1の金属配線部22A及び第2の金属配線部22Bに電気的に接続されている。第1の金属配線部22A及び第2の金属配線部22Bに供給される電力によりLEDチップ21が点灯するようになっている。
(Metal wiring part)
The metal wiring portion 32 is a wiring pattern formed on the surface of the substrate film 31 (the surface on the side of the light emitting surface) with a conductive base material such as metal foil. The metal wiring portion 32 is preferably formed on the surface of the substrate film 31 with an adhesive layer 33 interposed therebetween by a dry lamination method. The metal wiring portion 32 includes the plurality of metal wiring portions 22 described above. The multiple metal wiring portions 22 include a first metal wiring portion 22A and a second metal wiring portion 22B spaced apart from the first metal wiring portion 22A. The LED chip 21 is mounted on the first metal wiring portion 22A and the second metal wiring portion 22B, and the LED chip 21 is electrically connected to the first metal wiring portion 22A and the second metal wiring portion 22B. It is The LED chip 21 is lit by power supplied to the first metal wiring portion 22A and the second metal wiring portion 22B.
 金属配線部32は、放熱性と電気伝導性を高い水準で両立させるものであることが好ましく、例えば銅箔を用いることができる。この場合、LEDチップ21からの放熱性が安定し、電気抵抗の増加を防げるので、LEDチップ21間の発光バラツキが小さくなって安定した発光が可能となる。また、LEDチップ21の寿命も延長される。更に、熱による基板フィルム31等の周辺部材の劣化も防止できるので、LED照明シート20A、20Bの製品寿命も延長できる。金属配線部32を形成する金属の例としては、上記の銅の他、アルミニウム、金、銀等の金属を挙げることができる。 It is preferable that the metal wiring part 32 has both heat dissipation and electrical conductivity at a high level. For example, copper foil can be used. In this case, heat dissipation from the LED chips 21 is stabilized, and an increase in electrical resistance can be prevented, so that variations in light emission among the LED chips 21 are reduced and stable light emission becomes possible. Also, the life of the LED chip 21 is extended. Furthermore, since deterioration of peripheral members such as the substrate film 31 due to heat can be prevented, the product life of the LED lighting sheets 20A and 20B can be extended. Examples of metals forming the metal wiring portion 32 include metals such as aluminum, gold, and silver, in addition to the above copper.
 金属配線部32の厚さは、フレキシブル配線基板30に要求される耐電流の大きさ等に応じて適宜設定すればよい。但し、リフロー方式等によるハンダ加工処理時の基板フィルム31の熱収縮による反りを抑制するためには、金属配線部32の厚さが10μm以上であることが好ましい。一方、金属配線部32の厚さは、50μm以下であることが好ましく、これにより、フレキシブル配線基板30の十分な可撓性を維持でき、重量増大によるハンドリング性の低下等も抑止できる。 The thickness of the metal wiring portion 32 may be appropriately set according to the magnitude of withstand current required for the flexible wiring board 30 and the like. However, the thickness of the metal wiring portion 32 is preferably 10 μm or more in order to suppress warping due to heat shrinkage of the substrate film 31 during soldering processing such as a reflow method. On the other hand, the thickness of the metal wiring portion 32 is preferably 50 μm or less, so that the flexible wiring board 30 can maintain sufficient flexibility, and a decrease in handling performance due to an increase in weight can be suppressed.
 (ハンダ部)
 ハンダ部36は、金属配線部32とLEDチップ21との接合を行うものである。このハンダによる接合は、リフロー方式、あるいは、レーザー方式の2方式のいずれかによることができる。
(solder part)
The solder portion 36 joins the metal wiring portion 32 and the LED chip 21 . This soldering can be performed by either a reflow method or a laser method.
 (LEDチップ)
 LEDチップ21は、P型半導体とN型半導体が接合されたPN接合部での発光を利用した発光素子である。LEDチップ21としては、P型電極及びN型電極をそれぞれ素子の上面及び下面に設けた構造であっても良く、素子の片面にP型電極及びN型電極の双方が設けられた構造であっても良い。
(LED chip)
The LED chip 21 is a light-emitting element utilizing light emission at a PN junction where a P-type semiconductor and an N-type semiconductor are joined. The LED chip 21 may have a structure in which a P-type electrode and an N-type electrode are respectively provided on the upper and lower surfaces of the element, or a structure in which both the P-type electrode and the N-type electrode are provided on one side of the element. can be
 LEDチップ21としては、発光効率が高いものを選択することが好ましい。具体的には、LEDチップ21として、150lm/W以上の発光効率を有しているものを用いることが好ましく、180lm/W以上の発光効率を有しているものを用いることが更に好ましい。LEDチップ21の発光効率を150lm/W以上に高めることにより、LEDチップ21の実装数(密度)を下げ、LEDチップ21からのジュール熱による発熱を少なくすることができる。この結果、LEDチップ21からの熱による植物の育成のばらつきが発生しにくくなって収量の低下を抑制できる。 As the LED chip 21, it is preferable to select one with high luminous efficiency. Specifically, the LED chip 21 preferably has a luminous efficiency of 150 lm/W or more, and more preferably has a luminous efficiency of 180 lm/W or more. By increasing the luminous efficiency of the LED chips 21 to 150 lm/W or higher, the number (density) of the LED chips 21 mounted can be reduced, and the heat generated by the LED chips 21 due to Joule heat can be reduced. As a result, variations in plant growth caused by the heat from the LED chip 21 are less likely to occur, and a decrease in yield can be suppressed.
 LED照明シート20A、20Bは、上述の通り、高い放熱性を発揮できる金属配線部32に、LEDチップ21を直接実装するものである。これにより、LEDチップ21を高密度で配置した場合においても、LEDチップ21の点灯時に発生する過剰な熱を金属配線部32を通して速やかに拡散し、基板フィルム31を介してLED照明シート20A、20Bの外部へ十分放熱できる。この結果、LEDチップ21からの熱による植物の育成のばらつきが発生しにくくなって収量の低下を抑制できる。 As described above, the LED lighting sheets 20A and 20B have the LED chips 21 directly mounted on the metal wiring portions 32 capable of exhibiting high heat dissipation. As a result, even when the LED chips 21 are arranged at a high density, excessive heat generated when the LED chips 21 are turned on is rapidly diffused through the metal wiring portion 32, and the LED lighting sheets 20A and 20B are heated through the substrate film 31. can sufficiently dissipate heat to the outside. As a result, variations in plant growth caused by the heat from the LED chip 21 are less likely to occur, and a decrease in yield can be suppressed.
 ところで本実施の形態において、育苗用の第1のLED照明シート20Aに用いられるLEDチップ21と、栽培用の第2のLED照明シート20Bに用いられるLEDチップ21とは、互いに異なる光学特性を有している。以下、第1のLED照明シート20AのLEDチップ21と、第2のLED照明シート20BのLEDチップ21とについてそれぞれ説明する。 By the way, in the present embodiment, the LED chips 21 used in the first LED lighting sheet 20A for raising seedlings and the LED chips 21 used in the second LED lighting sheet 20B for cultivation have different optical characteristics. is doing. The LED chips 21 of the first LED lighting sheet 20A and the LED chips 21 of the second LED lighting sheet 20B will be described below.
 (第1のLED照明シートのLEDチップ)
 本実施の形態において、第1のLED照明シート20AのLEDチップ21は、育苗に適した光を照射する。この場合、LEDチップ21からの光の色温度は、4500K以上5500K以下であり、好ましくは4800K以上5200K以下であり、より好ましくは4900K以上5100K以下である。また、400nm以上499nm以下の波長範囲の放射束をBとし、500nm以上599nm以下の波長範囲の放射束をGとし、600nm以上699nm以下の波長範囲の放射束をRとする。このとき、第1のLED照明シート20AのLEDチップ21が照射する光の発光スペクトルは、0.54≦B/G≦0.72、かつ、0.59≦R/G≦0.77という関係を満たす。
(LED chip of the first LED lighting sheet)
In the present embodiment, the LED chips 21 of the first LED lighting sheet 20A irradiate light suitable for raising seedlings. In this case, the color temperature of the light from the LED chip 21 is 4500K or more and 5500K or less, preferably 4800K or more and 5200K or less, and more preferably 4900K or more and 5100K or less. Let B be the radiant flux in the wavelength range from 400 nm to 499 nm, G be the radiant flux in the wavelength range from 500 nm to 599 nm, and R be the radiant flux in the wavelength range from 600 nm to 699 nm. At this time, the emission spectrum of the light emitted by the LED chips 21 of the first LED lighting sheet 20A has a relationship of 0.54 ≤ B/G ≤ 0.72 and 0.59 ≤ R/G ≤ 0.77. meet.
 図8に示すように、第1のLED照明シート20AのLEDチップ21からの光の発光スペクトルS1は、第1のピークP1と、第2のピークP2と、第3のピークP3とを有している。第1のピークP1は、中心波長が440nm以上460nm以下である。第2のピークP2は、中心波長が510nm以上530nm以下である。第3のピークP3は、中心波長が610nm以上630nm以下である。すなわち、発光スペクトルSは、青色波長域に存在する第1のピークP1と、緑色波長域に存在する第2のピークP2と、赤色波長域に存在する第3のピークP3とを有している。なお、LEDチップ21からの光の発光スペクトルは、光源色の測定に用いられる分光放射照度計(例えばコニカミノルタ社製、CL-500A)を用いて測定できる。 As shown in FIG. 8, the emission spectrum S1 of light from the LED chips 21 of the first LED lighting sheet 20A has a first peak P1, a second peak P2, and a third peak P3. ing. The first peak P1 has a center wavelength of 440 nm or more and 460 nm or less. The second peak P2 has a center wavelength of 510 nm or more and 530 nm or less. The third peak P3 has a center wavelength of 610 nm or more and 630 nm or less. That is, the emission spectrum S has a first peak P1 existing in the blue wavelength range, a second peak P2 existing in the green wavelength range, and a third peak P3 existing in the red wavelength range. . The emission spectrum of the light from the LED chip 21 can be measured using a spectral irradiance meter (for example, CL-500A manufactured by Konica Minolta) used for measuring the light source color.
 この場合、第1のピークP1の中心波長における相対発光強度は、第2のピークP2の中心波長における相対発光強度よりも大きく、第2のピークP2の中心波長における相対発光強度は、第3のピークP3の中心波長における相対発光強度よりも大きくなっている。すなわち、本明細書中、LEDチップ21からの光の発光スペクトルSのピークのうち、相対発光強度が最も大きいピークを第1のピークP1と称している。相対発光強度が2番目に大きいピークを第2のピークP2と称している。相対発光強度が3番目に大きいピークを第3のピークP3と称している。なお、LEDチップ21からの光は、4つ以上のピークを含んでいてもよい。LEDチップ21からの光の発光スペクトルSが上述したような第1のピークP1、第2のピークP2および第3のピークP3を有していることにより、LEDチップ21からの光が白色となっている。 In this case, the relative emission intensity at the center wavelength of the first peak P1 is greater than the relative emission intensity at the center wavelength of the second peak P2, and the relative emission intensity at the center wavelength of the second peak P2 is the third It is larger than the relative emission intensity at the center wavelength of peak P3. That is, in this specification, among the peaks of the emission spectrum S of the light from the LED chip 21, the peak having the highest relative emission intensity is referred to as the first peak P1. A peak having the second highest relative emission intensity is called a second peak P2. A peak having the third highest relative emission intensity is called a third peak P3. Note that the light from the LED chip 21 may include four or more peaks. Since the emission spectrum S of the light from the LED chip 21 has the first peak P1, the second peak P2 and the third peak P3 as described above, the light from the LED chip 21 is white. ing.
 図8に示すように、400nm以上499nm以下の波長範囲の放射束をBとし、500nm以上599nm以下の波長範囲の放射束をGとし、600nm以上699nm以下の波長範囲の放射束をRとする。ここで、放射束Bは、LEDチップ21からの光の発光スペクトルS1のうち、400nm以上499nm以下の波長範囲における積分値(面積)に相当する。放射束Gは、LEDチップ21からの光の発光スペクトルS1のうち、500nm以上599nm以下の波長範囲における積分値(面積)に相当する。放射束Bは、LEDチップ21からの光の発光スペクトルS1のうち、600nm以上699nm以下の波長範囲における積分値(面積)に相当する。各放射束B、G、Rの測定は、高精度光測定機(例えば、日本医科器械製作所製、ライトアナライザー、LA105)によって行うことができる。 As shown in FIG. 8, let B be the radiant flux in the wavelength range of 400 nm or more and 499 nm or less, let G be the radiant flux in the wavelength range of 500 nm or more and 599 nm or less, and let R be the radiant flux in the wavelength range of 600 nm or more and 699 nm or less. Here, the radiant flux B corresponds to an integrated value (area) in the wavelength range of 400 nm or more and 499 nm or less in the emission spectrum S1 of the light from the LED chip 21 . The radiant flux G corresponds to an integrated value (area) in the wavelength range of 500 nm or more and 599 nm or less in the emission spectrum S1 of the light from the LED chip 21 . The radiant flux B corresponds to an integrated value (area) in the wavelength range of 600 nm or more and 699 nm or less in the emission spectrum S1 of the light from the LED chip 21 . The radiant fluxes B, G, and R can be measured by a high-precision light measuring instrument (eg, Light Analyzer LA105 manufactured by Nippon Medical Instruments Manufacturing Co., Ltd.).
 このとき、第1のLED照明シート20AのLEDチップ21が照射する光の発光スペクトルは、0.54≦B/G≦0.72という関係を満たす。上記発光スペクトルは、好ましくは0.57≦B/G≦0.69という関係を満たし、より好ましくは0.60≦B/G≦0.66という関係を満たす。また、第1のLED照明シート20AのLEDチップ21が照射する光の発光スペクトルは、0.59≦R/G≦0.77という関係を満たす。上記発光スペクトルは、好ましくは0.62≦B/G≦0.74という関係を満たし、より好ましくは0.65≦B/G≦0.71という関係を満たす。 At this time, the emission spectrum of the light emitted by the LED chips 21 of the first LED lighting sheet 20A satisfies the relationship 0.54≤B/G≤0.72. The emission spectrum preferably satisfies the relationship 0.57≦B/G≦0.69, and more preferably satisfies the relationship 0.60≦B/G≦0.66. Moreover, the emission spectrum of the light emitted by the LED chips 21 of the first LED lighting sheet 20A satisfies the relationship 0.59≦R/G≦0.77. The emission spectrum preferably satisfies the relationship 0.62≦B/G≦0.74, and more preferably satisfies the relationship 0.65≦B/G≦0.71.
 第1のLED照明シート20AのLEDチップ21が上記光学特性を満たすことにより、植物をコンパクトかつ頑丈な苗に成長させることができ、植物を定植する際のダメージを低減できる。すなわち、LEDチップ21からの光の色温度が4500K以上5500K以下であることにより、植物の生体重を低く抑え、植物の丈を小さくする一方で、植物の葉の厚みを厚くすることができる。このため、植物をコンパクトに生育させつつ、植物をしっかりとした頑丈にすることができる。これにより、植物を定植する際に、植物が倒れにくくなり、定植の作業効率が低下することを抑制し、植物の生長が停滞しないようにすることができる。また、コンパクトであるが故に、育苗期間を延長しても隣接する苗の重なりを抑制できる。つまり、光の色温度が4500K以上5500K以下であることにより、通常より育苗期間を延長できる。また、栽培期間が終了し、収穫する際における植物の生体重のばらつきを低減し、不適合品を減らし、植物の収率を向上できる。 When the LED chips 21 of the first LED lighting sheet 20A satisfy the above optical characteristics, plants can be grown into compact and sturdy seedlings, and damage during planting can be reduced. That is, by setting the color temperature of the light from the LED chip 21 to be 4500 K or more and 5500 K or less, it is possible to keep the fresh weight of the plant low, shorten the height of the plant, and increase the thickness of the leaves of the plant. As a result, the plant can be made firm and sturdy while growing compactly. As a result, when the plant is planted, the plant is less likely to fall down, the work efficiency of planting is reduced, and the growth of the plant is prevented from stagnation. In addition, because of its compact size, it is possible to suppress overlapping of adjacent seedlings even if the seedling-raising period is extended. That is, when the color temperature of the light is 4500K or more and 5500K or less, the seedling raising period can be extended more than usual. In addition, it is possible to reduce variation in the fresh weight of plants at the time of harvesting after the cultivation period, reduce nonconforming products, and improve the yield of plants.
 (第2のLED照明シートのLEDチップ)
 また、第2のLED照明シート20BのLEDチップ21は、栽培に適した光を照射する。この場合、LEDチップ21からの光の色温度は、2500K以上3500K以下であり、好ましくは2700K以上3300K以下であり、より好ましくは2900K以上3100K以下である。また、400nm以上499nm以下の波長範囲の放射束をBとし、500nm以上599nm以下の波長範囲の放射束をGとし、600nm以上699nm以下の波長範囲の放射束をRとする。このとき、第2のLED照明シート20BのLEDチップ21が照射する光の発光スペクトルは、0.26≦B/G≦0.44、かつ、0.89≦R/G≦1.17という関係を満たす。
(LED chip of the second LED lighting sheet)
Moreover, the LED chip 21 of the 2nd LED lighting sheet 20B irradiates the light suitable for cultivation. In this case, the color temperature of the light from the LED chip 21 is 2500K or higher and 3500K or lower, preferably 2700K or higher and 3300K or lower, and more preferably 2900K or higher and 3100K or lower. Let B be the radiant flux in the wavelength range from 400 nm to 499 nm, G be the radiant flux in the wavelength range from 500 nm to 599 nm, and R be the radiant flux in the wavelength range from 600 nm to 699 nm. At this time, the emission spectrum of the light emitted by the LED chips 21 of the second LED lighting sheet 20B has a relationship of 0.26≦B/G≦0.44 and 0.89≦R/G≦1.17. meet.
 図9に示すように、第2のLED照明シート20BのLEDチップ21からの光の発光スペクトルS2は、第1のピークP1と、第2のピークP2と、第3のピークP3とを有している。第1のピークP1は、中心波長が610nm以上630nm以下である。第2のピークP2は、中心波長が440nm以上460nm以下である。第3のピークP3は、中心波長が510nm以上530nm以下である。すなわち、発光スペクトルS2は、赤色波長域に存在する第1のピークP1と、青色波長域に存在する第2のピークP2と、緑色波長域に存在する第3のピークP3とを有している。 As shown in FIG. 9, the emission spectrum S2 of light from the LED chips 21 of the second LED lighting sheet 20B has a first peak P1, a second peak P2, and a third peak P3. ing. The first peak P1 has a center wavelength of 610 nm or more and 630 nm or less. The second peak P2 has a center wavelength of 440 nm or more and 460 nm or less. The third peak P3 has a center wavelength of 510 nm or more and 530 nm or less. That is, the emission spectrum S2 has a first peak P1 existing in the red wavelength range, a second peak P2 existing in the blue wavelength range, and a third peak P3 existing in the green wavelength range. .
 この場合、第1のピークP1の中心波長における相対発光強度は、第2のピークP2の中心波長における相対発光強度よりも大きく、第3のピークP3の中心波長における相対発光強度は、第2のピークP2の中心波長における相対発光強度よりも小さくなっている。なお、LEDチップ21からの光は、4つ以上のピークを含んでいてもよい。LEDチップ21からの光の発光スペクトルS2が上述したような第1のピークP1、第2のピークP2および第3のピークP3を有していることにより、LEDチップ21からの光が白色となる。 In this case, the relative emission intensity at the center wavelength of the first peak P1 is greater than the relative emission intensity at the center wavelength of the second peak P2, and the relative emission intensity at the center wavelength of the third peak P3 is greater than the second It is smaller than the relative emission intensity at the center wavelength of peak P2. Note that the light from the LED chip 21 may include four or more peaks. Since the emission spectrum S2 of the light from the LED chip 21 has the first peak P1, the second peak P2 and the third peak P3 as described above, the light from the LED chip 21 becomes white. .
 図9に示すように、400nm以上499nm以下の波長範囲の放射束をBとし、500nm以上599nm以下の波長範囲の放射束をGとし、600nm以上699nm以下の波長範囲の放射束をRとする。ここで、放射束Bは、LEDチップ21からの光の発光スペクトルS2のうち、400nm以上499nm以下の波長範囲における積分値(面積)に相当する。放射束Gは、LEDチップ21からの光の発光スペクトルS2のうち、500nm以上599nm以下の波長範囲における積分値(面積)に相当する。放射束Bは、LEDチップ21からの光の発光スペクトルS2のうち、600nm以上699nm以下の波長範囲における積分値(面積)に相当する。各放射束B、G、Rの測定は、第1のLED照明シート20AのLEDチップ21の場合と同様に行うことができる。 As shown in FIG. 9, let B be the radiant flux in the wavelength range of 400 nm or more and 499 nm or less, let G be the radiant flux in the wavelength range of 500 nm or more and 599 nm or less, and let R be the radiant flux in the wavelength range of 600 nm or more and 699 nm or less. Here, the radiant flux B corresponds to an integrated value (area) in the wavelength range of 400 nm or more and 499 nm or less in the emission spectrum S2 of the light from the LED chip 21 . The radiant flux G corresponds to an integrated value (area) in the wavelength range of 500 nm or more and 599 nm or less in the emission spectrum S2 of the light from the LED chip 21 . The radiant flux B corresponds to an integrated value (area) in the wavelength range of 600 nm or more and 699 nm or less in the emission spectrum S2 of the light from the LED chip 21 . Each radiant flux B, G, R can be measured in the same manner as the LED chip 21 of the first LED lighting sheet 20A.
 このとき、第2のLED照明シート20BのLEDチップ21が照射する光の発光スペクトルは、0.26≦B/G≦0.44という関係を満たす。上記発光スペクトルは、好ましくは0.29≦B/G≦0.41という関係を満たし、より好ましくは0.32≦B/G≦0.38という関係を満たす。また、第2のLED照明シート20BのLEDチップ21が照射する光の発光スペクトルは、0.89≦R/G≦1.17という関係を満たす。上記発光スペクトルは、好ましくは0.94≦B/G≦1.12という関係を満たし、より好ましくは0.99≦B/G≦1.07という関係を満たす。 At this time, the emission spectrum of the light emitted by the LED chips 21 of the second LED lighting sheet 20B satisfies the relationship 0.26≤B/G≤0.44. The emission spectrum preferably satisfies the relationship 0.29≦B/G≦0.41, and more preferably satisfies the relationship 0.32≦B/G≦0.38. Moreover, the emission spectrum of the light emitted by the LED chips 21 of the second LED lighting sheet 20B satisfies the relationship 0.89≦R/G≦1.17. The emission spectrum preferably satisfies the relationship 0.94≦B/G≦1.12, and more preferably satisfies the relationship 0.99≦B/G≦1.07.
 第2のLED照明シート20BのLEDチップ21が上記光学特性を満たすことにより、植物の単位面積あたりの生産量を向上できる。一般に栽培期間は、育苗期間と比較して植物が大きく育つ段階であり、育苗期間と比較して多くのスペースが必要となる。本実施の形態によれば、第2のLED照明シート20BのLEDチップ21が上記光学特性を満たすことにより、植物の育成を速め、植物の育成量を増加するとともに育成日数を短縮できる。この結果、植物育成施設90における植物の収量を向上させることができる。すなわち、第2のLED照明シート20BのLEDチップ21の光源色が、光合成の量子効率が良いと考えられている色であるため、植物の成長を促すことが可能となる。この結果、植物育成施設90における植物の収量を向上させることができる。このため、育苗期間と栽培期間とを合わせた育成期間を短くし、植物の生産サイクルを飛躍的に向上させることができる。育成期間を短くすることにより、植物育成施設90の単位面積当たりの植物の生産量を向上させることができる。 By satisfying the above optical characteristics for the LED chips 21 of the second LED lighting sheet 20B, the production amount per unit area of plants can be improved. In general, the cultivation period is a stage in which the plant grows larger than the seedling-raising period, and requires more space than the seedling-raising period. According to the present embodiment, since the LED chips 21 of the second LED lighting sheet 20B satisfy the above optical characteristics, it is possible to speed up plant growth, increase the amount of plant growth, and shorten the number of days for plant growth. As a result, the yield of plants in the plant growing facility 90 can be improved. That is, since the light source color of the LED chips 21 of the second LED lighting sheet 20B is a color considered to have good photosynthetic quantum efficiency, it is possible to promote the growth of plants. As a result, the yield of plants in the plant growing facility 90 can be improved. Therefore, it is possible to shorten the growth period, which is the combination of the seedling-raising period and the cultivation period, and to dramatically improve the plant production cycle. By shortening the growing period, the plant production per unit area of the plant growing facility 90 can be improved.
 (光反射性絶縁保護膜)
 図7に示すように、光反射性絶縁保護膜34は、LEDチップ21が設けられている領域及びその周辺領域を除く領域に形成される層である。この光反射性絶縁保護膜34は、十分な絶縁性を有することにより、フレキシブル配線基板30の耐マイグレーション特性を向上させる所謂レジスト層である。また光反射性絶縁保護膜34は、LED照明シート20A、20Bにより作られる光環境の発光輝度の向上に寄与する光反射性を備えた光反射層である。
(Light-reflective insulating protective film)
As shown in FIG. 7, the light-reflective insulating protective film 34 is a layer formed in a region excluding the region in which the LED chip 21 is provided and its peripheral region. The light-reflective insulating protective film 34 is a so-called resist layer that improves the migration resistance of the flexible wiring board 30 by having sufficient insulating properties. Also, the light-reflective insulating protective film 34 is a light-reflecting layer having light-reflecting properties that contributes to the improvement of the light emission brightness of the light environment created by the LED lighting sheets 20A and 20B.
 光反射性絶縁保護膜34は、ウレタン系樹脂等をベース樹脂とし、酸化チタン等の無機フィラーからなる白色顔料を更に含有する各種の樹脂組成物により形成できる。光反射性絶縁保護膜34を形成するために用いる樹脂組成物のベース樹脂としては、ウレタン系樹脂の他、アクリル系ポリウレタン樹脂、ポリエステル系樹脂、フェノール系樹脂等を適宜用いることができる。光反射性絶縁保護膜34を形成する樹脂組成物のベース樹脂としては、透明保護膜35を形成する樹脂組成物と同一または同系の樹脂をベース樹脂とすることがより好ましい。透明保護膜35については、後述するように、アクリル系ポリウレタン樹脂を主たる材料樹脂として用いることが好ましい。これより、透明保護膜35を形成する樹脂組成物のベース樹脂がアクリル系ポリウレタン樹脂である場合には、光反射性絶縁保護膜34を形成するための樹脂組成物のベース樹脂はウレタン系樹脂またはアクリル系ポリウレタン樹脂とすることがより好ましい。 The light-reflective insulating protective film 34 can be formed from various resin compositions containing a base resin such as a urethane-based resin and a white pigment made of an inorganic filler such as titanium oxide. As the base resin of the resin composition used for forming the light-reflective insulating protective film 34, in addition to urethane resin, acrylic polyurethane resin, polyester resin, phenol resin, and the like can be appropriately used. As the base resin of the resin composition forming the light-reflective insulating protective film 34, it is more preferable to use the same or similar resin as the resin composition forming the transparent protective film 35 as the base resin. As for the transparent protective film 35, it is preferable to use an acrylic polyurethane resin as a main material resin, as will be described later. From this, when the base resin of the resin composition forming the transparent protective film 35 is an acrylic polyurethane resin, the base resin of the resin composition for forming the light-reflective insulating protective film 34 is a urethane-based resin or It is more preferable to use an acrylic polyurethane resin.
 光反射性絶縁保護膜34を形成する樹脂組成物に白色顔料として含有させる無機フィラーとしては、酸化チタンの他、アルミナ、硫酸バリウム、マグネシア、チッ化アルミニウム、チッ化ホウ素、チタン酸バリウム、カオリン、タルク、炭酸カルシウム、酸化亜鉛、シリカ、マイカ粉、粉末ガラス、粉末ニッケル及び粉末アルミニウムから選ばれる少なくとも1種を用いることができる。 Inorganic fillers to be contained as white pigments in the resin composition forming the light-reflective insulating protective film 34 include titanium oxide, alumina, barium sulfate, magnesia, aluminum nitride, boron nitride, barium titanate, kaolin, At least one selected from talc, calcium carbonate, zinc oxide, silica, mica powder, powdered glass, powdered nickel and powdered aluminum can be used.
 光反射性絶縁保護膜34の厚さは、5μm以上50μm以下であって、より好ましくは、7μm以上20μm以下である。光反射性絶縁保護膜34の厚さが、5μm未満であると、特に金属配線部32のエッジ部分において、光反射性絶縁保護膜が薄くなり、この金属配線を被覆できずに露出する場合は絶縁性が維持できなくなるリスクが大きくなる。一方、取扱い及び搬送等の際の基板湾曲から光反射性絶縁保護膜34を保持する観点から、光反射性絶縁保護膜34の厚さは、50μm以下であることが好ましい。 The thickness of the light-reflective insulating protective film 34 is 5 μm or more and 50 μm or less, more preferably 7 μm or more and 20 μm or less. If the thickness of the light-reflective insulating protective film 34 is less than 5 μm, the light-reflective insulating protective film becomes thin particularly at the edge portion of the metal wiring portion 32, and if the metal wiring cannot be covered and is exposed, The risk that insulation cannot be maintained increases. On the other hand, the thickness of the light-reflective insulating protective film 34 is preferably 50 μm or less from the viewpoint of holding the light-reflective insulating protective film 34 against the curvature of the substrate during handling and transportation.
 また、光反射性絶縁保護膜34は、波長400nm以上780nm以下における光線反射率が、いずれも65%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることが更に好ましい。LED照明シート20A、20Bにおいて、例えば、酸化チタンを、ウレタン系またはアクリル系ポリウレタンのベース樹脂100質量部に対して20質量部以上含有させても良い。これにより、光反射性絶縁保護膜34の厚さを8μmとする場合における同層の上記光線反射率を75%以上とすることが可能である。 In addition, the light reflectance of the light-reflective insulating protective film 34 at wavelengths of 400 nm to 780 nm is preferably 65% or more, more preferably 70% or more, and preferably 80% or more. More preferred. In the LED lighting sheets 20A and 20B, for example, 20 parts by mass or more of titanium oxide may be contained with respect to 100 parts by mass of the base resin of urethane or acrylic polyurethane. Thereby, when the thickness of the light-reflective insulating protective film 34 is 8 μm, the light reflectance of the same layer can be made 75% or more.
 (透明保護膜)
 透明保護膜35は、LEDチップ21を覆うように、LED照明シート20A、20Bの最表面に形成されている。透明保護膜35は、防水性と透明性とを有する。透明保護膜35の防水性により、LED照明シート20A、20Bを植物育成用光源として使用する場合の装置内部への水の侵入を防ぐことができる。LEDチップ21として、例えば150lm/W以上の発光効率を有するような、発光効率が高いものを選択した場合、LED照明シート20A、20Bにおいて、特定のLEDチップ21が破損した場合の影響が大きくなる。そのためLEDチップ21が可能な限り破損しにくいようにすることは、リスク管理の観点で重要である。
(transparent protective film)
A transparent protective film 35 is formed on the outermost surfaces of the LED lighting sheets 20A and 20B so as to cover the LED chips 21 . The transparent protective film 35 has waterproofness and transparency. The waterproof property of the transparent protective film 35 can prevent water from entering the device when the LED lighting sheets 20A and 20B are used as a light source for growing plants. If the LED chip 21 is selected to have a high luminous efficiency such as 150 lm/W or more, for example, in the LED lighting sheets 20A and 20B, the damage of a specific LED chip 21 will have a greater impact. . Therefore, it is important from the viewpoint of risk management to make the LED chip 21 as hard to be damaged as possible.
 透明保護膜35は、アクリル系ポリウレタン樹脂等をベース樹脂とする各種の樹脂組成物により形成できる。透明保護膜35を形成するために用いる樹脂組成物のベース樹脂としては、アクリル系ポリウレタン樹脂の他、ウレタン系樹脂、ポリエステル系樹脂、フェノール系樹等を適宜用いることができる。透明保護膜35を形成する樹脂組成物のベース樹脂としては、光反射性絶縁保護膜34を形成する樹脂組成物と同一または同系の樹脂をベース樹脂とすることがより好ましい。好ましい具体的な組合せとして、光反射性絶縁保護膜34を形成する樹脂組成物のベース樹脂をウレタン系樹脂とし、透明保護膜35を形成する同樹脂をアクリル系ポリウレタン樹脂とする組合せを挙げることができる。 The transparent protective film 35 can be formed from various resin compositions using acrylic polyurethane resin or the like as a base resin. As the base resin of the resin composition used for forming the transparent protective film 35, in addition to acrylic polyurethane resin, urethane resin, polyester resin, phenolic resin, and the like can be appropriately used. As the base resin of the resin composition forming the transparent protective film 35, it is more preferable to use the same or similar resin as the resin composition forming the light-reflective insulating protective film 34 as the base resin. As a specific preferred combination, the base resin of the resin composition forming the light-reflective insulating protective film 34 is a urethane resin, and the same resin forming the transparent protective film 35 is an acrylic polyurethane resin. can.
 透明保護膜35の厚さは、10μm以上40μm以下であり、好ましくは15μm以上30μm以下であり、より好ましくは20μm以上25μm以下である。透明保護膜35の厚さを上記範囲とすることにより、LED照明シート20A、20Bの良好な可撓性や薄さ、軽量性、及び植物育成用途において求められる良好な光学特性を維持できる。また、LED照明シート20A、20Bに対して植物育成用途に求められる十分な防水性をもたらすことができる。 The thickness of the transparent protective film 35 is 10 μm or more and 40 μm or less, preferably 15 μm or more and 30 μm or less, and more preferably 20 μm or more and 25 μm or less. By setting the thickness of the transparent protective film 35 within the above range, it is possible to maintain good flexibility, thinness, and light weight of the LED lighting sheets 20A and 20B, and good optical properties required for growing plants. In addition, it is possible to provide the LED lighting sheets 20A and 20B with sufficient waterproofness required for growing plants.
 透明保護膜35によるLED照明シート20A、20Bの耐水性としては、LED照明シート20A、20Bに対して植物育成用の水を散布した際に、LEDチップ21の劣化を抑制することが可能となる程度であれば特に限定されない。このような耐水性としては、IEC(国際電気標準会議)によって定められている防水・防塵の保護規格でIPX4以上を示すことが好ましい。IPX4以上の防水性は、あらゆる方向からの水の飛沫によってLEDチップ21に対して有害な影響が及ぼされない程度である。具体的には、LED照明シート20A、20Bの法線方向に対して±180°の全範囲に5分間、10L/分の水量で散水ノズルから散水した際、LEDチップ21に対して有害な影響が及ぼされない程度とされる。 The water resistance of the LED lighting sheets 20A and 20B by the transparent protective film 35 makes it possible to suppress deterioration of the LED chips 21 when water for growing plants is sprayed on the LED lighting sheets 20A and 20B. It is not particularly limited as long as it is a degree. As for such water resistance, it is preferable to exhibit IPX4 or more in the waterproof/dustproof protection standard defined by IEC (International Electrotechnical Commission). The waterproofness of IPX4 or higher is such that the LED chip 21 is not adversely affected by splashed water from all directions. Specifically, when water is sprinkled from the water nozzle at a water amount of 10 L / min for 5 minutes in the entire range of ± 180 ° with respect to the normal direction of the LED lighting sheets 20A and 20B, the LED chip 21 is adversely affected. to the extent that it does not affect
 (LED照明シートの製造方法)
 次に、本実施の形態によるLED照明シート20A、20Bの製造方法について、図10(a)-(h)を参照して説明する。
(Manufacturing method of LED lighting sheet)
Next, a method for manufacturing the LED lighting sheets 20A and 20B according to this embodiment will be described with reference to FIGS. 10(a) to 10(h).
 まず、基板フィルム31を準備する(図10(a))。次に、基板フィルム31の表面に、金属配線部32の材料となる銅箔等の金属箔32Aを積層する(図10(b))。金属箔32Aは、金属箔32Aを例えばウレタン系接着剤等の接着剤層33によって、基板フィルム31の表面に接着される。あるいは、金属箔32Aは、基板フィルム31の表面に電解メッキ方法や気相製膜法(スパッタリング、イオンプレーティング、電子ビーム蒸着、真空蒸着、化学蒸着等)により、直接形成しても良い。もしくは、金属箔32Aに基板フィルム31を直接溶着して形成しても良い。 First, the substrate film 31 is prepared (Fig. 10(a)). Next, on the surface of the substrate film 31, a metal foil 32A such as a copper foil, which is the material of the metal wiring portion 32, is laminated (FIG. 10(b)). The metal foil 32A is adhered to the surface of the substrate film 31 with an adhesive layer 33 such as a urethane-based adhesive. Alternatively, the metal foil 32A may be directly formed on the surface of the substrate film 31 by an electrolytic plating method or a vapor phase film forming method (sputtering, ion plating, electron beam deposition, vacuum deposition, chemical deposition, etc.). Alternatively, the substrate film 31 may be directly welded to the metal foil 32A.
 次に、金属箔32Aの表面に、金属配線部32に要求される形状にパターニングされたエッチングマスク37を形成する(図10(c))。このエッチングマスク37は、金属配線部32となる金属箔32Aの配線パターンに対応する部分がエッチング液によって腐食しないように設けられる。エッチングマスク37を形成する方法は特に限定されず、例えば、フォトレジストまたはドライフィルムを、フォトマスクを通して感光させた後に現像することによって形成しても良い。あるいは、インクジェットプリンター等の印刷技術により金属箔32Aの表面にエッチングマスクを形成してもよい。 Next, an etching mask 37 patterned into a shape required for the metal wiring portion 32 is formed on the surface of the metal foil 32A (FIG. 10(c)). The etching mask 37 is provided so that the portion corresponding to the wiring pattern of the metal foil 32A, which becomes the metal wiring portion 32, is not corroded by the etchant. The method of forming the etching mask 37 is not particularly limited, and for example, it may be formed by exposing a photoresist or dry film through a photomask and then developing it. Alternatively, an etching mask may be formed on the surface of the metal foil 32A using a printing technique such as an inkjet printer.
 次に、エッチングマスク37に覆われていない箇所に位置する金属箔32Aを浸漬液により除去する(図10(d))。これにより、金属箔32Aのうち、金属配線部32となる箇所以外の部分が除去される。 Next, the metal foil 32A located at the location not covered with the etching mask 37 is removed with an immersion liquid (FIG. 10(d)). As a result, portions of the metal foil 32A other than the portion that will become the metal wiring portion 32 are removed.
 その後、アルカリ性の剥離液を使用して、エッチングマスク37を除去する。これにより、エッチングマスク37が金属配線部32の表面から除去される(図10(e))。 After that, the etching mask 37 is removed using an alkaline stripping solution. Thereby, the etching mask 37 is removed from the surface of the metal wiring portion 32 (FIG. 10(e)).
 続いて、金属配線部32上に光反射性絶縁保護膜34を積層形成する(図10(f))。光反射性絶縁保護膜34の形成は、光反射性絶縁保護膜34を構成する材料樹脂組成物を均一に塗工できる塗工手段であれば特に限定されず、例えば、スクリーン印刷、オフセット印刷、ディップコータ、刷毛塗り等の方法を使用できる。または、光感光性を有する絶縁保護膜材料を全面に塗工し、必要な箇所のみフォトマスクを通して感光させた後に現像することによって光反射性絶縁保護膜34を形成しても良い。 Subsequently, a light-reflective insulating protective film 34 is laminated on the metal wiring portion 32 (FIG. 10(f)). The formation of the light-reflective insulating protective film 34 is not particularly limited as long as it is a coating means capable of uniformly applying the material resin composition constituting the light-reflective insulating protective film 34. Examples include screen printing, offset printing, and the like. Methods such as dip coater and brush coating can be used. Alternatively, the light-reflective insulating protective film 34 may be formed by coating the entire surface with a photosensitive insulating protective film material, exposing only necessary portions through a photomask, and developing the film.
 次に、金属配線部32上にLEDチップ21、レギュレータ45及びコネクタ44A、44Bを実装する(図10(g))。なお、図10(g)および後述する図10(h)においては、図面を明瞭にするために、レギュレータ45等の図示を省略している。この場合、LEDチップ21は、金属配線部32にハンダ部36を介するハンダ加工によって接合される。このハンダ加工による接合は、リフロー方式、あるいは、レーザー方式によることができ、または導電性樹脂による接合でも良い。 Next, the LED chip 21, the regulator 45, and the connectors 44A and 44B are mounted on the metal wiring portion 32 (Fig. 10(g)). In FIG. 10(g) and FIG. 10(h), which will be described later, illustration of the regulator 45 and the like is omitted for the sake of clarity. In this case, the LED chip 21 is joined to the metal wiring portion 32 by soldering via the solder portion 36 . The joining by soldering can be performed by a reflow method or a laser method, or by using a conductive resin.
 次いで、光反射性絶縁保護膜34、LEDチップ21、レギュレータ45及びコネクタ44A、44Bを覆うように透明保護膜35を形成する(図10(h))。この透明保護膜35は、透明樹脂組成物をスプレー処理により吹付けて形成する方法(以下、「スプレーコート法」という)、またはカーテンコート法により形成する方法により行うことが好ましい。スプレーコート法による透明保護膜35の形成は、例えば、アクリル系ポリウレタン樹脂を含むスプレーコート処理用の塗工液を、スプレー塗装機によってフレキシブル配線基板30上の所望の領域に噴霧して塗工膜を形成することにより行うことができる。カーテンコート法による透明保護膜35の形成は、例えば、アクリル系ポリウレタン樹脂を含むカーテンコート処理用の塗工液を、カーテン塗装機によってフレキシブル配線基板30上の所望の領域に滴下して塗工膜を形成することにより行うことができる。 Next, a transparent protective film 35 is formed so as to cover the light-reflective insulating protective film 34, the LED chip 21, the regulator 45, and the connectors 44A and 44B (FIG. 10(h)). This transparent protective film 35 is preferably formed by a method of spraying a transparent resin composition by spraying (hereinafter referred to as "spray coating method") or a method of forming by a curtain coating method. The transparent protective film 35 is formed by the spray coating method, for example, by spraying a coating liquid for spray coating containing an acrylic polyurethane resin onto a desired area on the flexible wiring board 30 with a spray coating machine to form a coating film. can be done by forming The transparent protective film 35 is formed by the curtain coating method, for example, by dropping a coating liquid for curtain coating containing an acrylic polyurethane resin onto a desired region on the flexible wiring substrate 30 using a curtain coating machine to form a coating film. can be done by forming
 なお、本実施の形態によるLED照明シート20A、20Bは、上述した方法に限らず、従来公知のLEDチップ用のフレキシブル配線基板や、これにLEDチップを実装してなる各種のLEDモジュールを製造する公知の方法により製造することもできる。 In addition, the LED lighting sheets 20A and 20B according to the present embodiment are not limited to the method described above. It can also be produced by a known method.
 次に、このような構成からなる本実施の形態の作用について述べる。具体的には、上述した植物育成施設90を用いて植物を育成する植物の栽培方法について説明する。 Next, the operation of this embodiment having such a configuration will be described. Specifically, a method of growing plants using the plant growing facility 90 described above will be described.
 まず、育苗期間用の第1の育成棚80Aを用いて植物を育苗する。この際、まず第1の育成棚80Aの培地に植物の種子をまき(播種し)、発芽後、植物が一定程度の大きさになるまで育成する(育苗工程)。この間、植物は第1のLED照明シート20Aにより、色温度が4500K以上5500K以下の光を照射され、育苗される。 First, plants are raised using the first growing shelf 80A for the seedling raising period. At this time, plant seeds are sown in the culture medium of the first growing shelf 80A, and after germination, the plants are grown until they reach a certain size (seedling raising step). During this time, the plants are irradiated with light having a color temperature of 4500K or more and 5500K or less by the first LED lighting sheet 20A, and seedlings are raised.
 植物が定植に適した大きさに達した場合、植物の定植を行う(定植工程)。この場合、第1の育成棚80Aで育成された植物の苗を、栽培期間用の第2の育成棚80Bの培地に移し替える。植物を定植した後の第1の育成棚80Aは、再び次の植物を育苗するために用いられる。 When the plants reach a size suitable for planting, plant them (planting process). In this case, the plant seedlings grown on the first growing shelf 80A are transferred to the culture medium of the second growing shelf 80B for the cultivation period. After planting the plants, the first growing shelf 80A is used again to grow the next plant.
 次いで、定植された植物は、栽培期間用の第2の育成棚80Bで引き続き育成される。この際、第2の育成棚80Bにおいて、植物が収穫に適した大きさになるまで育成する(栽培工程)。この間、植物は第2のLED照明シート20Bにより、色温度が2500K以上3500K以下の光を照射され、育苗される。 The planted plants are then continued to grow on the second growing shelf 80B for the cultivation period. At this time, the plant is grown on the second growing shelf 80B until it reaches a size suitable for harvesting (cultivating step). During this time, the plants are irradiated with light having a color temperature of 2500K or more and 3500K or less by the second LED lighting sheet 20B, and seedlings are raised.
 その後、第2の育成棚80Bで一定の大きさに育った植物は収穫される。植物を収穫した後の第2の育成棚80Bは、再び次の植物を栽培するために用いられる。 After that, the plants grown to a certain size on the second growing shelf 80B are harvested. The second growing shelf 80B after harvesting the plants is used again to grow the next plant.
 このように本実施の形態によれば、植物育成施設90において、第1の育成棚80Aは、色温度が4500K以上5500K以下の光を照射する第1のLED照明シート20Aを有する。第2の育成棚80Bは、色温度が2500K以上3500K以下の光を照射する第2のLED照明シート20Bを有する。これにより、植物の育成段階に応じて、植物を最適な光源下に移動して育成できる。このため、植物の育成量を増やすことができ、植物を良好な収量で得ることができる。とりわけ、育苗期間には、第1のLED照明シート20Aにより色温度が4500K以上5500K以下の光を植物に照射し、栽培期間には、第2のLED照明シート20Bにより色温度が2500K以上3500K以下の光を植物に照射する。これにより、植物を適切な光源下で育成できる。 Thus, according to the present embodiment, in the plant growing facility 90, the first growing shelf 80A has the first LED lighting sheet 20A that emits light with a color temperature of 4500K or more and 5500K or less. The second growing shelf 80B has a second LED lighting sheet 20B that emits light with a color temperature of 2500K or more and 3500K or less. As a result, the plant can be grown by moving it to an optimum light source according to the growing stage of the plant. Therefore, the amount of growing plants can be increased, and the plants can be obtained with a good yield. In particular, during the seedling raising period, the first LED lighting sheet 20A irradiates the plants with light having a color temperature of 4500 K or more and 5500 K or less, and during the cultivation period, the second LED lighting sheet 20B irradiates the plants with a color temperature of 2500 K or more and 3500 K or less. of light is applied to the plants. This allows plants to grow under an appropriate light source.
 本実施の形態によれば、育苗期間に、第1のLED照明シート20Aにより色温度が4500K以上5500K以下の光を植物に照射することにより、植物をコンパクトかつ頑丈に成長させることができる。これにより、育苗期間が完了した後、植物を定植するときに株が倒れることを抑え、定植の作業効率が低下することを抑えることができる。また定植時に株が倒れることを抑えることにより、植物の生長が停滞しないようにすることができる。また、コンパクトであるが故に、育苗期間を延長しても隣接する苗の重なりを抑制できる。また、育苗期間に、色温度が4500K以上5500K以下の光を植物に照射することにより、植物の成長のばらつきを低減できる。これにより、育成される植物の大きさや品質を一定の規格の範囲に収めて不適合品を減らすことができる。 According to the present embodiment, the first LED lighting sheet 20A irradiates the plant with light having a color temperature of 4500K or higher and 5500K or lower during the seedling-raising period, thereby allowing the plant to grow compactly and robustly. As a result, after the seedling-raising period is completed, it is possible to prevent the strains from collapsing when the plants are planted, and to prevent the work efficiency of planting from decreasing. In addition, by suppressing the collapse of the stock at the time of fixed planting, the growth of the plant can be prevented from stagnation. In addition, because of its compact size, it is possible to suppress overlapping of adjacent seedlings even if the seedling-raising period is extended. In addition, by irradiating the plants with light having a color temperature of 4500 K or more and 5500 K or less during the seedling-raising period, it is possible to reduce variations in the growth of the plants. As a result, the size and quality of plants to be grown can be kept within a certain standard range, and the number of nonconforming products can be reduced.
 また本実施の形態によれば、栽培期間に、第2のLED照明シート20Bにより色温度が2500K以上3500K以下の光を植物に照射することにより、植物の成長を早め、植物の栽培日数を減らすことができる。または、同じ栽培日数でも収量を増やすことができる。これにより、単位面積当たりの生産量を向上させることができる。一般に栽培期間は、植物が大きく育つ段階であるため、育苗期間と比較すると、植物育成施設に多くのスペースが必要となる。このため、同じ育成期間でも育苗日数の割合を多く、栽培日数の割合を少なくすることで、劇的に生産サイクルを向上させることができる。植物の成長を早め、栽培期間の日数を減らすことで、植物の生産サイクルを飛躍的に向上させることができる。これにより、植物の単位面積当たりの生産量を上げることができる。 Further, according to the present embodiment, during the cultivation period, the second LED lighting sheet 20B irradiates the plants with light having a color temperature of 2500 K or more and 3500 K or less, thereby accelerating the growth of the plants and reducing the number of days for cultivating the plants. be able to. Alternatively, the yield can be increased even with the same cultivation days. Thereby, the production amount per unit area can be improved. In general, the cultivation period is a stage in which plants grow to a large size, so compared to the seedling-raising period, a large amount of space is required in the plant-growing facility. Therefore, the production cycle can be dramatically improved by increasing the ratio of seedling-raising days and decreasing the ratio of cultivation days even during the same growing period. By accelerating plant growth and reducing the number of days in the cultivation period, the production cycle of plants can be dramatically improved. Thereby, the production amount per unit area of the plant can be increased.
 例えば、育苗スペースの体積:栽培スペースの体積=1:6の植物工場をモデルとして、生産効率について考える。育成方法A(育苗期間24日・栽培期間9日)、育成方法B(育苗期間26日・栽培期間7日)とし、どちらの育成方法でも同じ収量が得られるとする。その場合、収穫までに要した体積の比はA:B=(1×24+6×9):(1×26+6×7)であるから、A:B=1.14:1となり、同じ育成期間でも、育苗期間を2日延長、栽培期間を2日削減したことで、生産効率が14%向上したことになる。つまり、育成期間が同じでも、栽培日数の割合を少なくすることで、生産効率が劇的に向上する。 For example, let's consider the production efficiency of a model plant factory where the volume of the nursery space: the volume of the cultivation space = 1:6. The growing method A (seedling raising period: 24 days, cultivation period: 9 days) and the raising method B (seedling raising period: 26 days, cultivation period: 7 days) are assumed to yield the same yield. In that case, the volume ratio required for harvesting is A:B = (1 x 24 + 6 x 9): (1 x 26 + 6 x 7), so A:B = 1.14: 1. By extending the seedling raising period by 2 days and reducing the cultivation period by 2 days, the production efficiency was improved by 14%. In other words, even if the cultivation period is the same, production efficiency is dramatically improved by reducing the ratio of cultivation days.
 本実施の形態による植物育成施設90において、第1のLED照明シート20Aが照射する光の発光スペクトルは、0.54≦B/G≦0.72、かつ、0.59≦R/G≦0.77という関係を満たす。また第2のLED照明シート20Bが照射する光の発光スペクトルは、0.26≦B/G≦0.44、かつ、0.89≦R/G≦1.17という関係を満たす。これにより、育苗期間には、植物をコンパクトかつ頑丈に成長させることができ、定植の作業効率が低下することを抑えることができる。また栽培期間には、植物の成長を早め、植物の栽培日数を減らすことにより、単位面積当たりの植物の生産量を向上させることができる。 In the plant growing facility 90 according to the present embodiment, the emission spectrum of the light emitted from the first LED lighting sheet 20A is 0.54≦B/G≦0.72 and 0.59≦R/G≦0. .77. The emission spectrum of the light emitted from the second LED lighting sheet 20B satisfies the relationships of 0.26≦B/G≦0.44 and 0.89≦R/G≦1.17. As a result, during the seedling raising period, the plants can be grown compactly and robustly, and it is possible to prevent the work efficiency of fixed planting from deteriorating. In addition, during the cultivation period, by accelerating the growth of plants and reducing the number of days for plant cultivation, the production amount of plants per unit area can be improved.
 また本実施の形態によれば、LED照明シート20A、20Bの最も厚い部分における厚みが5mm以下であるので、植物の育成棚80A、80Bの上下の基板81間の距離を減らし、基板81の数を増やすことにより、単位面積あたりの植物の収量を増加できる。 Further, according to the present embodiment, since the thickness of the thickest portions of the LED lighting sheets 20A and 20B is 5 mm or less, the distance between the upper and lower substrates 81 of the plant growing shelves 80A and 80B is reduced, and the number of substrates 81 is reduced. can increase the plant yield per unit area.
 なお、上述した本実施の形態においては、LED照明装置が面状の光源シートである場合について説明したが、これに限られない。例えば、図示はしないが、LED照明装置は、直管型の照明装置であってもよい。 In addition, in the present embodiment described above, the case where the LED lighting device is a planar light source sheet has been described, but the present invention is not limited to this. For example, although not shown, the LED lighting device may be a straight tube lighting device.
 また、図11A及び図11Bに示すように、LED照明シート20A、20Bは、基板81の下面だけでなく、基板81の側面側にも配置しても良い。この側面側のLED照明シート20A、20Bは、上方に位置する基板81から、当該基板81の下方に位置する基板81に向けて垂下されている。この場合、図11Aに示すように、LED照明シート20A、20Bは、下方に位置する基板81まで達していても良い。あるいは、図11Bに示すように、LED照明シート20A、20Bは、下方に位置する基板81まで達することなく、上下の基板81間に位置する空間の上部側のみを覆うようにしても良い。このように、LED照明シート20A、20Bを、基板81の側面側にもさらに配置することにより、照度が弱くなりやすい基板81の周縁における光量を補い、LED照明シート20A、20Bの輝度を面内で均一にすることができる。この結果、植物の成長を面内で均一にでき、育成する植物の収量の向上を図ることができる。 Also, as shown in FIGS. 11A and 11B, the LED lighting sheets 20A and 20B may be arranged not only on the bottom surface of the substrate 81 but also on the side surfaces of the substrate 81. The LED lighting sheets 20A and 20B on the side faces hang down from the substrate 81 located above toward the substrate 81 located below the substrate 81 concerned. In this case, as shown in FIG. 11A, the LED lighting sheets 20A and 20B may reach the substrate 81 located below. Alternatively, as shown in FIG. 11B, the LED lighting sheets 20A and 20B may cover only the upper side of the space located between the upper and lower substrates 81 without reaching the substrates 81 located below. In this way, by further arranging the LED lighting sheets 20A and 20B on the side surface of the substrate 81, the amount of light at the periphery of the substrate 81, which tends to be weak, is compensated for, and the brightness of the LED lighting sheets 20A and 20B is increased in the plane. can be made uniform. As a result, the plant can grow uniformly in the plane, and the yield of the grown plant can be improved.
 [実施例]
 次に、本実施の形態における具体的実施例について説明する。
[Example]
Next, a specific example of this embodiment will be described.
 (LED照明シートの作成)
 LED照明シートA、LED照明シートB及びLED照明シートCをそれぞれ以下の通り作製した。このうちLED照明シートAは、照射する光の色温度が3000Kであり、LED照明シートBは、照射する光の色温度が4000Kであり、LED照明シートCは、照射する光の色温度が5000Kである。
(Creation of LED lighting sheet)
LED lighting sheet A, LED lighting sheet B, and LED lighting sheet C were produced as follows. Of these, the LED lighting sheet A emits light with a color temperature of 3000K, the LED lighting sheet B emits light with a color temperature of 4000K, and the LED lighting sheet C emits light with a color temperature of 5000K. is.
 (LED照明シートA:3000K)
 560mm×390mmサイズのフィルム基板(ポリエチレンナフタレート、厚さ50μm)の一方の表面に、金属配線部を形成するための銅箔(厚さ35μm)を積層し、その後、金属配線用の銅箔についてエッチング処理をして、金属配線部を構成した。そして、基板フィルム及び金属配線部上に、ウレタン系樹脂をベース樹脂とし、このベース樹脂に対して20質量%の割合で酸化チタンを添加してなる絶縁性インキを用いてスクリーン印刷により厚さ10μmの光反射性絶縁保護膜を形成した。次に、金属配線部に、複数のLEDチップ(「NFSW757G-V2」(日亜化学工業社製))を、X方向に40mmピッチ、Y方向に35mmピッチで、14個の列を10列、ハンダ加工により実装した。なお、このLEDチップは、上面発光タイプの発光素子であり、3.0mm(長さ)×3.0mm(幅)×0.65mm(高さ)のサイズの直方体の外形からなるものである。また、このLEDチップの光源色はそれぞれ電球色であり、それぞれの色温度が3000Kのものである。更に、上記の絶縁性保護膜及びLEDチップを被覆する透明保護膜を、スプレーコート法により形成した。以上の通り作製したLED照明シートをLED照明シートAとした。このLED照明シートAの照射する光の色温度は、3000Kであった。また400nm以上499nm以下の波長範囲の放射束をBとし、500nm以上599nm以下の波長範囲の放射束をGとし、600nm以上699nm以下の波長範囲の放射束をRとする。このとき、LED照明シートAが照射する光の発光スペクトルは、B/G=0.348、R/G=1.031という関係を満たしていた。
(LED lighting sheet A: 3000K)
On one surface of a 560 mm × 390 mm size film substrate (polyethylene naphthalate, thickness 50 μm), a copper foil (thickness 35 μm) for forming a metal wiring part is laminated, and then the copper foil for metal wiring An etching treatment was performed to form a metal wiring portion. Then, on the substrate film and the metal wiring portion, a 10 μm-thick ink is formed by screen printing using an insulating ink obtained by using a urethane-based resin as a base resin and adding titanium oxide at a rate of 20% by mass with respect to the base resin. A light-reflective insulating protective film was formed. Next, on the metal wiring portion, a plurality of LED chips ("NFSW757G-V2" (manufactured by Nichia Corporation)) are arranged in 10 rows of 14 rows at a pitch of 40 mm in the X direction and a pitch of 35 mm in the Y direction. Mounted by soldering. This LED chip is a top emission type light emitting element, and has a rectangular parallelepiped shape of 3.0 mm (length)×3.0 mm (width)×0.65 mm (height). The light source color of these LED chips is the color of an incandescent bulb, and the color temperature of each is 3000K. Furthermore, a transparent protective film covering the insulating protective film and the LED chip was formed by a spray coating method. The LED lighting sheet produced as described above was designated as LED lighting sheet A. The color temperature of the light emitted by this LED lighting sheet A was 3000K. Let B be the radiant flux in the wavelength range from 400 nm to 499 nm, G be the radiant flux in the wavelength range from 500 nm to 599 nm, and R be the radiant flux in the wavelength range from 600 nm to 699 nm. At this time, the emission spectrum of the light emitted by the LED lighting sheet A satisfied the relationships of B/G=0.348 and R/G=1.031.
 (LED照明シートB:4000K)
 LEDチップとして、色温度が4000Kのもの(「NFSW757G-V2」(日亜化学工業社製))を用いたこと、以外は、LED照明シートAと同様に作製したLED照明シートを、LED照明シートBとした。このLED照明シートBが照射する光の発光スペクトルは、B/G=0.494、R/G=0.815という関係を満たしていた。
(LED lighting sheet B: 4000K)
An LED lighting sheet produced in the same manner as LED lighting sheet A, except that an LED chip with a color temperature of 4000 K ("NFSW757G-V2" (manufactured by Nichia Corporation)) was used. B. The emission spectrum of the light emitted by this LED lighting sheet B satisfied the relationships of B/G=0.494 and R/G=0.815.
 (LED照明シートC:5000K)
 LEDチップとして、色温度が5000Kのもの(「NFSW757G-V2」(日亜化学工業社製))を用いたこと、以外は、LED照明シートAと同様に作製したLED照明シートを、LED照明シートCとした。このLED照明シートCが照射する光の発光スペクトルは、B/G=0.631、R/G=0.683という関係を満たしていた。
(LED lighting sheet C: 5000K)
An LED lighting sheet produced in the same manner as LED lighting sheet A, except that an LED chip with a color temperature of 5000 K ("NFSW757G-V2" (manufactured by Nichia Corporation)) was used. C. The emission spectrum of the light emitted by this LED lighting sheet C satisfied the relationships of B/G=0.631 and R/G=0.683.
 上記3種類のLED照明シートA、LED照明シートB及びLED照明シートCの光学特性は以下のとおりである。 The optical properties of the three types of LED lighting sheet A, LED lighting sheet B, and LED lighting sheet C are as follows.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (育苗期間における色温度の影響)
 次に、育苗期間における、LED照明シートから照射される光の色温度の影響を下記のように調査した。
(Influence of color temperature during seedling raising period)
Next, the influence of the color temperature of the light emitted from the LED lighting sheet during the seedling-raising period was investigated as follows.
 (実施例1)
 育苗期間にLED照明シートC(5000K)を用い、栽培期間にLED照明シートA(3000K)を用いて、植物(リーフレタス)を育成した。この間、まずLED照明シートC(5000K)及びLED照明シートA(3000K)を、それぞれ育苗期間用の育成棚及び栽培期間用の育成棚にそれぞれ設置した。次いで、植物(リーフレタス)の種子を育苗期間用の育成棚に播種し、播種から24日が経過した後、育苗期間を終了した。次に、植物を栽培期間用の育成棚に定植し、栽培期間用の育成棚を用いて引き続き植物を栽培した。その後、播種から34日が経過した時点で植物を収穫した。
(Example 1)
A plant (leaf lettuce) was grown using LED lighting sheet C (5000K) during the seedling raising period and using LED lighting sheet A (3000K) during the cultivation period. During this period, the LED lighting sheet C (5000K) and the LED lighting sheet A (3000K) were first placed on the growing shelf for the seedling raising period and the growing shelf for the cultivation period, respectively. Then, plant (leaf lettuce) seeds were sown on a growing shelf for the seedling raising period, and the seedling raising period was completed 24 days after the sowing. Next, the plants were planted on the cultivating shelves for the cultivation period, and the plants were continuously cultivated using the cultivating racks for the cultivation period. Plants were then harvested 34 days after sowing.
 (比較例1)
 育苗期間にLED照明シートB(4000K)を用い、栽培期間にLED照明シートA(3000K)を用いたこと、以外は、実施例1と同様にして植物を育成し、収穫した。
(Comparative example 1)
Plants were grown and harvested in the same manner as in Example 1, except that LED lighting sheet B (4000K) was used during the seedling raising period and LED lighting sheet A (3000K) was used during the cultivation period.
 (比較例2)
 育苗期間にLED照明シートA(3000K)を用い、栽培期間にLED照明シートA(3000K)を用いたこと、以外は、実施例1と同様にして植物を育成し、収穫した。
(Comparative example 2)
Plants were grown and harvested in the same manner as in Example 1, except that the LED lighting sheet A (3000K) was used during the seedling raising period and the LED lighting sheet A (3000K) was used during the cultivation period.
 実施例1、比較例1及び比較例2のそれぞれについて、定植時の植物の葉の厚み(μm)、定植時の植物の生体重(g)、定植時の植物の草丈(cm)を測定した(図12参照)。また、播種から24日(定植時)、27日、31日、34日(収穫時)における植物の生体重(g)を測定して比較した(図13参照)。この生体重の測定は、植物の地上部生体重を株毎に計測し、平均することで算出した。表2には、収穫時における植物の地上部生体重と、収穫時における植物の地上部生体重のばらつき(標準偏差)を示す。 For each of Example 1, Comparative Example 1, and Comparative Example 2, the leaf thickness (μm) at the time of planting, the fresh weight (g) of the plant at the time of planting, and the plant height (cm) at the time of planting were measured. (See FIG. 12). In addition, the fresh weight (g) of the plants was measured and compared on the 24th day (at the time of planting), 27th day, 31st day, and 34th day (at the time of harvesting) after seeding (see FIG. 13). The fresh weight was calculated by measuring the fresh weight of the above-ground part of the plant for each strain and averaging the results. Table 2 shows the above-ground fresh weight of plants at the time of harvest and the variation (standard deviation) of the above-ground fresh weight of the plants at the time of harvest.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図12に示すように、定植時における生体重及び草丈はそれぞれ、実施例1の植物が最も小さく、次いで比較例1の植物が小さく、比較例2の植物が最も大きかった。一方、定植時における葉の厚みは、実施例1の植物が最も厚く、次いで比較例2の植物が厚く、比較例1の植物が最も薄かった。このように、育苗期間にLED照明シートC(5000K)を用いたことにより、植物をコンパクトかつ頑丈な苗に成長させることができた。 As shown in FIG. 12, the plant of Example 1 had the smallest fresh weight and plant height at the time of planting, followed by the plant of Comparative Example 1, and the plant of Comparative Example 2 was the largest. On the other hand, the thickness of the leaves at the time of planting was the thickest in the plant of Example 1, the thickest in the plant of Comparative Example 2, and the thinnest in the plant of Comparative Example 1. Thus, by using the LED lighting sheet C (5000K) during the seedling-raising period, the plants could be grown into compact and strong seedlings.
 図13及び表2に示すように、収穫時における生体重は、実施例1の植物と、比較例1の植物と、比較例2の植物との間で大きく異なることはなかった。このように、育苗期間にLED照明シートC(5000K)を用いたことにより、定植時に生体重が小さい場合であっても、栽培期間にLED照明シートA(3000K)を用いることにより、植物の成長を促進できた。  As shown in Fig. 13 and Table 2, the fresh weight at the time of harvest did not differ significantly among the plants of Example 1, Comparative Example 1, and Comparative Example 2. In this way, by using the LED lighting sheet C (5000K) during the seedling raising period, even if the fresh weight is small at the time of planting, the use of the LED lighting sheet A (3000K) during the cultivation period allows the plant to grow. was able to promote
 また上記表2に示すように、収穫時における生体重のばらつきは、実施例1の植物が最も小さく、次いで比較例1の植物が小さく、比較例2の植物が最も大きかった。このように、育苗期間にLED照明シートC(5000K)を用いたことにより、収穫時における生体重のばらつきを低減できた。 Also, as shown in Table 2 above, the variation in fresh weight at the time of harvest was the smallest for the plant of Example 1, followed by the second smallest for the plant of Comparative Example 1, and the largest for the plant of Comparative Example 2. Thus, by using the LED lighting sheet C (5000K) during the seedling-raising period, it was possible to reduce the variation in fresh weight at the time of harvesting.
 (栽培期間における色温度の影響)
 次に、栽培期間における、LED照明シートから照射される光の色温度の影響を下記のように調査した。
(Influence of color temperature during cultivation period)
Next, the influence of the color temperature of the light emitted from the LED lighting sheet during the cultivation period was investigated as follows.
 (実施例2)
 上述した実施例1と同様に、育苗期間にLED照明シートC(5000K)を用い、栽培期間にLED照明シートA(3000K)を用いて、植物(リーフレタス)を実際に育苗した。
(Example 2)
Similar to Example 1 described above, a plant (leaf lettuce) was actually raised using the LED lighting sheet C (5000K) during the seedling raising period and using the LED lighting sheet A (3000K) during the cultivation period.
 (比較例3)
 育苗期間にLED照明シートC(5000K)を用い、栽培期間にLED照明シートB(4000K)を用いたこと、以外は、実施例2と同様にして植物を育成し、収穫した。
(Comparative Example 3)
Plants were grown and harvested in the same manner as in Example 2 except that LED lighting sheet C (5000K) was used during the seedling raising period and LED lighting sheet B (4000K) was used during the cultivation period.
 (比較例4)
 育苗期間にLED照明シートC(5000K)を用い、栽培期間にLED照明シートC(5000K)を用いたこと、以外は、実施例2と同様にして植物を育成し、収穫した。
(Comparative Example 4)
Plants were grown and harvested in the same manner as in Example 2 except that the LED lighting sheet C (5000K) was used during the seedling raising period and the LED lighting sheet C (5000K) was used during the cultivation period.
 実施例2、比較例3及び比較例4のそれぞれについて、播種から24日(定植時)、27日、31日、34日(収穫時)における植物の生体重(g)を測定して比較した(図14参照)。この生体重の測定は、植物の地上部生体重を株毎に計測し、平均することで算出した。表3には、収穫時における植物の地上部生体重を示す。 For Example 2, Comparative Example 3, and Comparative Example 4, the fresh weight (g) of the plants was measured and compared on days 24 (at the time of planting), 27 days, 31 days, and 34 days (at the time of harvest) after seeding. (See FIG. 14). The fresh weight was calculated by measuring the fresh weight of the above-ground part of the plant for each strain and averaging the results. Table 3 shows the above-ground fresh weight of the plants at harvest.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図14及び表3に示すように、収穫時における生体重は、実施例2の植物が最も大きく、次いで比較例3の植物が大きく、比較例4の植物が最も小さかった。このように、栽培期間にLED照明シートA(3000K)を用いることにより、植物の成長を促進できた。  As shown in Fig. 14 and Table 3, the fresh weight at the time of harvest was the largest for the plant of Example 2, the second largest for the plant of Comparative Example 3, and the smallest for the plant of Comparative Example 4. Thus, by using the LED lighting sheet A (3000K) during the cultivation period, the growth of plants could be promoted.
 (栽培期間を短縮した場合の生体重の変化)
 次に、栽培期間を短縮した場合における、植物の生体重に及ぼす影響を下記のように調査した。
(Change in live weight when the cultivation period is shortened)
Next, the effect of shortening the cultivation period on the fresh weight of plants was investigated as follows.
 (実施例3)
 育苗期間にLED照明シートC(5000K)を用い、栽培期間にLED照明シートA(3000K)を用いて、植物(リーフレタス)を育成した。この際、まずLED照明シートC(5000K)及びLED照明シートA(3000K)を、それぞれ育苗期間用の育成棚及び栽培期間用の育成棚にそれぞれ設置した。次いで、植物(リーフレタス)を育苗期間用の育成棚に播種した。次に、植物を栽培期間用の育成棚に定植し、栽培期間用の育成棚を用いて引き続き植物を栽培した。
(Example 3)
A plant (leaf lettuce) was grown using LED lighting sheet C (5000K) during the seedling raising period and using LED lighting sheet A (3000K) during the cultivation period. At this time, first, the LED lighting sheet C (5000K) and the LED lighting sheet A (3000K) were placed on the growing shelf for the seedling raising period and the growing shelf for the cultivation period, respectively. The plants (leaf lettuce) were then sown in growing racks for the growing period. Next, the plants were planted on the cultivating shelves for the cultivation period, and the plants were continuously cultivated using the cultivating racks for the cultivation period.
 (比較例5)
 育苗期間にLED照明シートC(5000K)を用い、栽培期間にLED照明シートC(5000K)を用いたこと、以外は、実施例3と同様にして植物を育成し、収穫した。
(Comparative Example 5)
Plants were grown and harvested in the same manner as in Example 3, except that the LED lighting sheet C (5000K) was used during the seedling raising period and the LED lighting sheet C (5000K) was used during the cultivation period.
 (比較例6)
 育苗期間にLED照明シートA(3000K)を用い、栽培期間にLED照明シートA(3000K)を用いたこと、以外は、実施例3と同様にして植物を育成し、収穫した。
(Comparative Example 6)
Plants were grown and harvested in the same manner as in Example 3, except that the LED lighting sheet A (3000K) was used during the seedling raising period and the LED lighting sheet A (3000K) was used during the cultivation period.
 実施例3の植物について、育苗期間及び栽培期間の日数を変化させて3水準(水準1~水準3)栽培した。すなわち、水準1は、育苗期間を24日とし、栽培期間を9日とした(育成期間33日)。水準2は、育苗期間を25日とし、栽培期間を8日とした(育成期間33日)。水準3は、育苗期間を26日とし、栽培期間を7日とした(育成期間33日)。また、比較例5の植物について、育苗期間を24日とし、栽培期間を9日として栽培した(育成期間33日)。実施例3(水準1~水準3)及び比較例5のそれぞれについて、収穫時における植物の生体重(g)を測定して比較した。また、実施例3(水準1~水準3)及び比較例6のそれぞれについて、定植時における植物の投影葉面積(ピクセル(px))を測定して比較した。この結果を表4に示す。 The plants of Example 3 were cultivated at 3 levels (level 1 to level 3) by changing the number of days of the seedling raising period and the cultivation period. That is, in Level 1, the seedling raising period was set to 24 days, and the cultivation period was set to 9 days (33 days for the growing period). For Level 2, the seedling raising period was 25 days and the cultivation period was 8 days (33 days of growing period). For Level 3, the seedling raising period was 26 days and the cultivation period was 7 days (33 days of growing period). In addition, the plant of Comparative Example 5 was cultivated with a seedling raising period of 24 days and a cultivation period of 9 days (33 days of cultivation period). For Example 3 (Levels 1 to 3) and Comparative Example 5, the fresh weight (g) of the plants at harvest was measured and compared. In addition, for each of Example 3 (Levels 1 to 3) and Comparative Example 6, the projected leaf area (pixels (px)) of plants at the time of planting was measured and compared. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、収穫時における生体重は、実施例3(水準1~3)の植物は比較例5の植物よりも大きかった。また、実施例3の水準1~3の間で、生体重は大きく変化しなかった。このように、栽培期間にLED照明シートA(3000K)を用いた場合、栽培期間を短くしても同程度の収量を得ることができた。また、実施例3(水準1~3)の植物は比較例6の植物よりも生体重のばらつきが低減できていることが分かる。このように、栽培期間にLED照明シートC(5000K)を用いた場合、植物の成長のばらつきを低減できることがわかる。また、定植時における投影葉面積は、実施例3(水準1~3)の植物は比較例6の植物よりも狭かった。すなわち、育苗期間にLED照明シートC(5000K)を用いることにより、コンパクトな苗にすることができ、それ故、育苗日数を延ばせることが分かった。 As shown in Table 4, the live weight of the plants of Example 3 (levels 1 to 3) at the time of harvest was greater than that of the plants of Comparative Example 5. Moreover, between levels 1 to 3 in Example 3, the live weight did not change significantly. Thus, when the LED lighting sheet A (3000K) was used during the cultivation period, a similar yield could be obtained even if the cultivation period was shortened. In addition, it can be seen that the plants of Example 3 (levels 1 to 3) have reduced variation in fresh weight compared to the plants of Comparative Example 6. Thus, it can be seen that when the LED lighting sheet C (5000K) is used during the cultivation period, variations in plant growth can be reduced. In addition, the projected leaf area at the time of planting was smaller in the plants of Example 3 (levels 1 to 3) than in the plants of Comparative Example 6. That is, it was found that by using the LED lighting sheet C (5000K) during the seedling-raising period, the seedlings can be made compact, and therefore the number of seedling-raising days can be extended.
 上記実施の形態および変形例に開示されている複数の構成要素を必要に応じて適宜組合せることも可能である。あるいは、上記実施の形態および変形例に示される全構成要素から幾つかの構成要素を削除してもよい。
 
It is also possible to appropriately combine a plurality of constituent elements disclosed in the above embodiments and modifications as necessary. Alternatively, some components may be deleted from all the components shown in the above embodiments and modifications.

Claims (12)

  1.  第1の育成領域と第2の育成領域とを有する植物育成施設であって、
     前記第1の育成領域は、色温度が4500K以上5500K以下の光を照射する第1の照明装置を有し、
     前記第2の育成領域は、色温度が2500K以上3500K以下の光を照射する第2の照明装置を有する、植物育成施設。
    A plant growing facility having a first growing area and a second growing area,
    The first growth region has a first lighting device that emits light having a color temperature of 4500K or more and 5500K or less,
    A plant growing facility, wherein the second growing area has a second lighting device that emits light having a color temperature of 2500K or more and 3500K or less.
  2.  400nm以上499nm以下の波長範囲の放射束をBとし、
     500nm以上599nm以下の波長範囲の放射束をGとし、
     600nm以上699nm以下の波長範囲の放射束をRとしたとき、
     前記第1の照明装置が照射する光の発光スペクトルは、0.54≦B/G≦0.72、かつ、0.59≦R/G≦0.77という関係を満たし、
     前記第2の照明装置が照射する光の発光スペクトルは、0.26≦B/G≦0.44、かつ、0.89≦R/G≦1.17という関係を満たす、請求項1に記載の植物育成施設。
    Let B be the radiant flux in the wavelength range of 400 nm or more and 499 nm or less,
    Let G be the radiant flux in the wavelength range of 500 nm or more and 599 nm or less,
    When the radiant flux in the wavelength range of 600 nm or more and 699 nm or less is R,
    The emission spectrum of the light emitted by the first lighting device satisfies the relationships 0.54 ≤ B/G ≤ 0.72 and 0.59 ≤ R/G ≤ 0.77,
    2. The emission spectrum of the light emitted by the second lighting device according to claim 1, satisfying the relationships of 0.26≦B/G≦0.44 and 0.89≦R/G≦1.17. plant growing facility.
  3.  前記第1の照明装置は、育苗用の照明装置であり、
     前記第2の照明装置は、栽培用の照明装置である、請求項1又は2に記載の植物育成施設。
    The first lighting device is a lighting device for raising seedlings,
    The plant growing facility according to claim 1 or 2, wherein said second lighting device is a lighting device for cultivation.
  4.  植物の栽培方法であって、
     色温度が4500K以上5500K以下の光を前記植物に照明する育苗工程と、
     色温度が2500K以上3500K以下の光を前記植物に照明する栽培工程と、を有する植物の栽培方法。
    A method for cultivating a plant,
    A seedling raising step of illuminating the plant with light having a color temperature of 4500 K or more and 5500 K or less;
    and a cultivation step of illuminating the plant with light having a color temperature of 2500K or more and 3500K or less.
  5.  400nm以上499nm以下の波長範囲の放射束をBとし、
     500nm以上599nm以下の波長範囲の放射束をGとし、
     600nm以上699nm以下の波長範囲の放射束をRとしたとき、
     前記育苗工程で用いる光の発光スペクトルは、0.54≦B/G≦0.72、かつ、0.59≦R/G≦0.77という関係を満たし、
     前記栽培工程で用いる光の発光スペクトルは、0.26≦B/G≦0.44、かつ、0.89≦R/G≦1.17という関係を満たす、請求項4に記載の植物の栽培方法。
    Let B be the radiant flux in the wavelength range of 400 nm or more and 499 nm or less,
    Let G be the radiant flux in the wavelength range of 500 nm or more and 599 nm or less,
    When the radiant flux in the wavelength range of 600 nm or more and 699 nm or less is R,
    The emission spectrum of light used in the seedling raising step satisfies the relationships of 0.54 ≤ B/G ≤ 0.72 and 0.59 ≤ R/G ≤ 0.77,
    Cultivation of the plant according to claim 4, wherein the emission spectrum of the light used in the cultivation step satisfies the relationships of 0.26 ≤ B/G ≤ 0.44 and 0.89 ≤ R/G ≤ 1.17. Method.
  6.  前記育苗工程と、前記栽培工程との間に、前記植物の定植を行う定植工程を含む、請求項4又は5に記載の植物の栽培方法。 The plant cultivation method according to claim 4 or 5, comprising a fixed planting step of planting the plant between the seedling raising step and the cultivation step.
  7.  複数のLEDチップが配置された、植物育成用のLED照明装置であって、
     前記LEDチップからの光の色温度は、4500K以上5500K以下であり、
     400nm以上499nm以下の波長範囲の放射束をBとし、
     500nm以上599nm以下の波長範囲の放射束をGとし、
     600nm以上699nm以下の波長範囲の放射束をRとしたとき、
     前記LEDチップが照射する光の発光スペクトルは、0.54≦B/G≦0.72、かつ、0.59≦R/G≦0.77という関係を満たす、植物育成用のLED照明装置。
    An LED lighting device for growing plants, in which a plurality of LED chips are arranged,
    The color temperature of the light from the LED chip is 4500K or more and 5500K or less,
    Let B be the radiant flux in the wavelength range of 400 nm or more and 499 nm or less,
    Let G be the radiant flux in the wavelength range of 500 nm or more and 599 nm or less,
    When the radiant flux in the wavelength range of 600 nm or more and 699 nm or less is R,
    An LED lighting device for growing plants, wherein the emission spectrum of the light emitted from the LED chip satisfies the relationships of 0.54≦B/G≦0.72 and 0.59≦R/G≦0.77.
  8.  最も厚い部分における厚みが5mm以下であり、
     基板フィルムと、前記基板フィルムの表面に形成された金属配線部とを備え、前記複数のLEDチップは、前記金属配線部に実装されている、請求項7に記載の植物育成用のLED照明装置。
    The thickness at the thickest part is 5 mm or less,
    8. The LED lighting device for growing plants according to claim 7, comprising a substrate film and a metal wiring portion formed on the surface of said substrate film, wherein said plurality of LED chips are mounted on said metal wiring portion. .
  9.  育苗用の照明装置である、請求項7又は8に記載の植物育成用のLED照明装置。 The LED lighting device for growing plants according to claim 7 or 8, which is a lighting device for growing seedlings.
  10.  植物の育成棚用の棚板であって、
     基板と、
     前記基板に取り付けられた、請求項7乃至9のいずれか一項に記載の植物育成用のLED照明装置を備えた、植物の育成棚用の棚板。
    A shelf board for growing plants,
    a substrate;
    A shelf board for a plant growing shelf, comprising the LED lighting device for plant growing according to any one of claims 7 to 9 attached to the substrate.
  11.  植物の育成棚であって、
     棚板を備え、
     前記棚板は、基板の下面側に取り付けられた、請求項7乃至9のいずれか一項に記載の植物育成用のLED照明装置を備えた、植物の育成棚。
    A plant growing shelf,
    Equipped with a shelf board,
    10. A plant growing shelf comprising the LED lighting device for plant growing according to any one of claims 7 to 9, wherein the shelf board is attached to the lower surface side of a substrate.
  12.  前記植物育成用のLED照明装置は、前記棚板の側面側にも更に配置されている、請求項11記載の植物の育成棚。
     
    12. The plant growing shelf according to claim 11, wherein said plant growing LED lighting device is further arranged on a side surface of said shelf board.
PCT/JP2022/004864 2021-02-10 2022-02-08 Plant growing facility, plant cultivation method, led lighting device for plant growth, shelf plate for plant growth shelf, and shelf for plant growth WO2022172909A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021020051A JP7362681B2 (en) 2021-02-10 2021-02-10 Plant cultivation facilities, plant cultivation methods, LED lighting devices for plant cultivation, shelves for plant cultivation shelves, and plant cultivation shelves
JP2021-020051 2021-02-10

Publications (1)

Publication Number Publication Date
WO2022172909A1 true WO2022172909A1 (en) 2022-08-18

Family

ID=82837843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004864 WO2022172909A1 (en) 2021-02-10 2022-02-08 Plant growing facility, plant cultivation method, led lighting device for plant growth, shelf plate for plant growth shelf, and shelf for plant growth

Country Status (3)

Country Link
JP (2) JP7362681B2 (en)
TW (1) TW202245591A (en)
WO (1) WO2022172909A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018569A1 (en) * 2022-07-20 2024-01-25 Tsubu株式会社 Plant cultivation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070435A1 (en) * 2010-11-25 2012-05-31 シャープ株式会社 Light emitting device, led light source for plant cultivation, and plant factory
JP2012239417A (en) * 2011-05-19 2012-12-10 Ushio Inc Light source apparatus for raising plant
JP2013066394A (en) * 2011-09-21 2013-04-18 Central Research Institute Of Electric Power Industry Seedling-raising method and seedling-raising facility
WO2020153448A1 (en) * 2019-01-24 2020-07-30 大日本印刷株式会社 Led illumination sheet for animal and plant cultivation, led illumination module for animal and plant cultivation, shelf plate for cultivation shelf for animals and plants, cultivation shelf for animals and plants, animal and plant cultivation factory, and led illumination device for animal and plant cultivation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115869U (en) * 1981-01-13 1982-07-17
US20130187180A1 (en) * 2012-01-24 2013-07-25 Hsing Chen Light emitting diode for plant growth
US20190140015A1 (en) * 2017-11-09 2019-05-09 The Green Sunshine Company, LLC Horticultural lighting devices and methods
US10667467B2 (en) * 2018-01-24 2020-06-02 Nano And Advanced Materials Institute Limited Light control device for stimulating plant growth and method thereof
WO2020114463A1 (en) * 2018-12-07 2020-06-11 海迪科(南通)光电科技有限公司 Packaging body and preparation method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070435A1 (en) * 2010-11-25 2012-05-31 シャープ株式会社 Light emitting device, led light source for plant cultivation, and plant factory
JP2012239417A (en) * 2011-05-19 2012-12-10 Ushio Inc Light source apparatus for raising plant
JP2013066394A (en) * 2011-09-21 2013-04-18 Central Research Institute Of Electric Power Industry Seedling-raising method and seedling-raising facility
WO2020153448A1 (en) * 2019-01-24 2020-07-30 大日本印刷株式会社 Led illumination sheet for animal and plant cultivation, led illumination module for animal and plant cultivation, shelf plate for cultivation shelf for animals and plants, cultivation shelf for animals and plants, animal and plant cultivation factory, and led illumination device for animal and plant cultivation

Also Published As

Publication number Publication date
TW202245591A (en) 2022-12-01
JP2022188266A (en) 2022-12-20
JP7362681B2 (en) 2023-10-17
JP2022122672A (en) 2022-08-23

Similar Documents

Publication Publication Date Title
WO2020153448A1 (en) Led illumination sheet for animal and plant cultivation, led illumination module for animal and plant cultivation, shelf plate for cultivation shelf for animals and plants, cultivation shelf for animals and plants, animal and plant cultivation factory, and led illumination device for animal and plant cultivation
JP7051725B2 (en) LED lighting sheet for growing animals and plants, LED lighting module for growing animals and plants, shelf board for growing shelves for animals and plants, shelf for growing animals and plants, and plant for growing animals and plants.
JP6780715B2 (en) LED lighting device for growing animals and plants, LED lighting module for growing animals and plants, shelf board for growing shelves for animals and plants, growing shelves for animals and plants, and plant for growing animals and plants.
WO2022172909A1 (en) Plant growing facility, plant cultivation method, led lighting device for plant growth, shelf plate for plant growth shelf, and shelf for plant growth
TWI802782B (en) LED lighting sheets for animal and plant breeding, LED lighting modules for animal and plant breeding, shed panels for animal and plant breeding sheds, animal and plant breeding sheds and animal and plant breeding factories
JP6969657B2 (en) LED lighting sheet for growing animals and plants, LED lighting module for growing animals and plants, shelf board for growing shelves for animals and plants, shelf for growing animals and plants, and plant for growing animals and plants.
JP7118904B2 (en) Animal and plant growing LED lighting sheet, animal and plant growing LED lighting module, animal and plant growing shelf plate, animal and plant growing shelf, and animal and plant growing factory
JP7288610B2 (en) Animal and plant growing LED lighting sheet, animal and plant growing LED lighting module, animal and plant growing shelf plate, animal and plant growing shelf, and animal and plant growing factory
JP7248002B2 (en) Animal and plant growing LED lighting module, animal and plant growing shelf, and animal and plant growing factory
JP2022021922A (en) Led illumination module for growing plants and animals, shelf for growing plants and animals and factory for growing plants and animals
JP7385832B2 (en) LED lighting sheets for growing animals and plants, LED lighting modules for growing animals and plants, shelves for growing shelves for animals and plants, shelves for growing animals and plants, and plants for growing animals and plants
JP7051732B2 (en) LED lighting modules for growing animals and plants, shelves for growing animals and plants, and plants and animals growing factories
TWI837289B (en) LED lighting sheets for animal and plant breeding, LED lighting modules for animal and plant breeding, shed boards for animal and plant breeding, animal and plant breeding sheds, animal and plant breeding factories, and LED lighting devices for animal and plant breeding
JP2021022572A (en) Led lighting device for animal/plant growth, led lighting module for animal/plant growth, shelf board for animal/plant growth shelf, animal/plant growth shelf, and animal/plant growth factory
JP7404769B2 (en) LED lighting sheet assembly for animal and plant growing shelves, animal and plant growing shelves, and animal and plant growing factories
JP7501197B2 (en) LED lighting sheet for cultivating animals and plants, LED lighting module for cultivating animals and plants, shelf board for cultivating shelves for animals and plants, cultivating shelves for animals and plants, and plant and animal cultivating factory
JP2023034266A (en) Led sheet, shelf board for shelf for raising animal and plant, shelf for raising animal and plant, and plant for raising animal and plant
JP7340166B2 (en) LED lighting sheets for growing animals and plants, LED lighting modules for growing animals and plants, shelves for growing shelves for animals and plants, shelves for growing animals and plants, and plants for growing animals and plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752732

Country of ref document: EP

Kind code of ref document: A1