WO2022172821A1 - 変倍光学系、光学機器、および変倍光学系の製造方法 - Google Patents

変倍光学系、光学機器、および変倍光学系の製造方法 Download PDF

Info

Publication number
WO2022172821A1
WO2022172821A1 PCT/JP2022/003964 JP2022003964W WO2022172821A1 WO 2022172821 A1 WO2022172821 A1 WO 2022172821A1 JP 2022003964 W JP2022003964 W JP 2022003964W WO 2022172821 A1 WO2022172821 A1 WO 2022172821A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
lens
variable
lens group
end state
Prior art date
Application number
PCT/JP2022/003964
Other languages
English (en)
French (fr)
Inventor
史哲 大竹
知之 幸島
貴博 石川
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2022580574A priority Critical patent/JPWO2022172821A1/ja
Priority to US18/272,576 priority patent/US20240248288A1/en
Priority to CN202280012052.3A priority patent/CN116868104A/zh
Publication of WO2022172821A1 publication Critical patent/WO2022172821A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144511Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1461Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length

Definitions

  • the present invention relates to a variable-magnification optical system, an optical device, and a method for manufacturing a variable-magnification optical system.
  • variable power optical systems suitable for photographic cameras, electronic still cameras, video cameras, etc.
  • Patent Document 1 variable-magnification optical system
  • a variable magnification optical system comprises a first lens group having a negative refractive power and a rear group having at least one lens group arranged in order from the object side along an optical axis, During zooming, the distance between adjacent lens groups changes, and the at least one lens group of the rear group includes a final lens group having a positive refractive power disposed closest to the image side of the rear group. and satisfies the following conditional expression. 0.15 ⁇ ft/fGE ⁇ 0.60 where ft is the focal length of the variable magnification optical system in the telephoto end state, fGE is the focal length of the final lens group
  • a variable magnification optical system comprises a first lens group having negative refractive power and a rear group having at least one lens group, arranged in order from the object side along an optical axis, During zooming, the distance between adjacent lens groups changes, satisfying the following conditional expression. 2.00 ⁇ TLt/IHw ⁇ 3.00 1.00 ⁇ (-f1)/fRw ⁇ 1.50 where TLt: the total length of the variable power optical system in the telephoto end state IHw: the maximum image height of the variable power optical system in the wide-angle end state f1: the focal length of the first lens group fRw: the rear group in the wide-angle end state Focal length
  • An optical apparatus is configured to include the variable power optical system.
  • a method for manufacturing a variable magnification optical system includes a first lens group having negative refractive power and a rear group having at least one lens group, which are arranged in order from the object side along an optical axis. wherein the distance between adjacent lens groups changes during zooming, and the at least one lens group of the rear group is positioned closest to the image side of the rear group.
  • Each lens is arranged in the lens barrel so as to satisfy the following conditional expression, including the final lens group having a positive refractive power. 0.15 ⁇ ft/fGE ⁇ 0.60 where ft is the focal length of the variable magnification optical system in the telephoto end state, fGE is the focal length of the final lens group
  • a method for manufacturing a variable magnification optical system comprises a first lens group having negative refractive power and a rear group having at least one lens group, which are arranged in order from the object side along the optical axis.
  • each lens is arranged in a lens barrel so that the distance between adjacent lens groups changes during variable power and satisfies the following conditional expression: .
  • TLt the total length of the variable power optical system in the telephoto end state
  • IHw the maximum image height of the variable power optical system in the wide-angle end state
  • f1 the focal length of the first lens group
  • fRw the rear group in the wide-angle end state
  • Focal length the total length of the variable power optical system in the telephoto end state
  • FIG. 1 is a diagram showing a lens configuration of a variable power optical system according to a first example
  • FIG. FIGS. 2A and 2B are diagrams of various aberrations in the wide-angle end state and the telephoto end state of the variable power optical system according to the first embodiment, respectively, when focusing on infinity.
  • FIG. 10 is a diagram showing a lens configuration of a variable-magnification optical system according to a second example
  • 4A and 4B are diagrams of various aberrations in the wide-angle end state and the telephoto end state of the variable power optical system according to the second embodiment, respectively, when focusing on infinity.
  • FIG. 11 is a diagram showing a lens configuration of a variable-magnification optical system according to a third example; 6A and 6B are diagrams of various aberrations in the wide-angle end state and the telephoto end state of the variable power optical system according to the third embodiment, respectively, when focusing on infinity.
  • FIG. 11 is a diagram showing a lens configuration of a variable-magnification optical system according to a fourth example; 8A and 8B are diagrams of various aberrations in the wide-angle end state and the telephoto end state of the variable power optical system according to the fourth embodiment, respectively, when focusing on infinity.
  • FIG. 11 is a diagram showing a lens configuration of a variable-magnification optical system according to a third example; 6A and 6B are diagrams of various aberrations in the wide-angle end state and the telephoto end state of the variable power optical system according to the third embodiment, respectively, when focusing on infinity.
  • FIG. 11 is a diagram showing a lens configuration of a variable-
  • FIG. 11 is a diagram showing a lens configuration of a variable-magnification optical system according to a fifth example
  • 10A and 10B are diagrams of various aberrations in the wide-angle end state and the telephoto end state of the variable power optical system according to the fifth embodiment, respectively, when focusing on infinity. It is a figure which shows the structure of the camera provided with the variable-magnification optical system which concerns on each embodiment.
  • 4 is a flow chart showing a method of manufacturing the variable magnification optical system according to the first embodiment
  • 9 is a flow chart showing a method of manufacturing a variable magnification optical system according to the second embodiment;
  • this camera 1 comprises a main body 2 and a photographing lens 3 attached to the main body 2.
  • the main body 2 includes an imaging device 4 , a main body control section (not shown) that controls the operation of the digital camera, and a liquid crystal screen 5 .
  • the taking lens 3 includes a variable magnification optical system ZL consisting of a plurality of lens groups, and a lens position control mechanism (not shown) that controls the position of each lens group.
  • the lens position control mechanism includes a sensor that detects the position of the lens group, a motor that moves the lens group back and forth along the optical axis, a control circuit that drives the motor, and the like.
  • variable magnification optical system ZL of the photographing lens 3 The light from the subject is condensed by the variable magnification optical system ZL of the photographing lens 3 and reaches the image plane I of the imaging device 4 .
  • the light from the subject reaching the image plane I is photoelectrically converted by the imaging device 4 and recorded as digital image data in a memory (not shown).
  • the digital image data recorded in the memory can be displayed on the liquid crystal screen 5 according to the user's operation.
  • This camera may be a mirrorless camera or a single-lens reflex type camera having a quick return mirror.
  • the variable power optical system ZL shown in FIG. 11 schematically shows a variable power optical system provided in the photographing lens 3, and the lens configuration of the variable power optical system ZL is not limited to this configuration. do not have.
  • a variable power optical system ZL(1) as an example of the variable power optical system (zoom lens) ZL according to the first embodiment includes, as shown in FIG. It is composed of a first lens group G1 having refractive power and a rear group GR having at least one lens group. During zooming, the distance between adjacent lens groups changes. At least one lens group of the rear group GR includes a final lens group GE having a positive refractive power and arranged closest to the image side of the rear group GR.
  • variable power optical system ZL satisfies the following conditional expression (1). 0.15 ⁇ ft/fGE ⁇ 0.60 (1) where ft is the focal length of the variable magnification optical system ZL in the telephoto end state fGE is the focal length of the final lens group GE
  • variable-magnification optical system ZL may be the variable-magnification optical system ZL(2) shown in FIG. 3, the variable-magnification optical system ZL(3) shown in FIG. It may be the system ZL(4) or the variable power optical system ZL(5) shown in FIG.
  • Conditional expression (1) defines an appropriate relationship between the focal length of the variable magnification optical system ZL and the focal length of the final lens group GE in the telephoto end state.
  • conditional expression (1) When the corresponding value of conditional expression (1) exceeds the upper limit, it becomes difficult to correct curvature of field. In addition, since the incident angle of light rays with respect to the image plane (imaging device) increases, it becomes difficult to suppress shading.
  • the upper limit of conditional expression (1) By setting the upper limit of conditional expression (1) to 0.55, 0.50, 0.47, 0.43, and further to 0.40, the effects of this embodiment can be made more reliable. can.
  • conditional expression (1) When the corresponding value of conditional expression (1) is below the lower limit, it becomes difficult to correct curvature of field and coma.
  • the lower limit of conditional expression (1) By setting the lower limit of conditional expression (1) to 0.20, 0.24, 0.27, 0.30, and further to 0.32, the effects of this embodiment can be made more reliable. can.
  • variable magnification optical system ZL(1) as an example of a variable power optical system (zoom lens) ZL according to the second embodiment includes, as shown in FIG. It is composed of a first lens group G1 having refractive power and a rear group GR having at least one lens group. During zooming, the distance between adjacent lens groups changes.
  • variable power optical system ZL satisfies the following conditional expressions (2) and (3). 2.00 ⁇ TLt/IHw ⁇ 3.00 (2) 1.00 ⁇ (-f1)/fRw ⁇ 1.50 (3)
  • TLt the total length of the variable power optical system ZL in the telephoto end state
  • IHw the maximum image height of the variable power optical system ZL in the wide-angle end state
  • f1 the focal length of the first lens group G1 fRw: the rear group GR in the wide-angle end state
  • variable power optical system ZL may be the variable power optical system ZL(2) shown in FIG. 3, the variable power optical system ZL(3) shown in FIG. 5, or the variable power optical system ZL(3) shown in FIG. It may be the system ZL(4) or the variable power optical system ZL(5) shown in FIG.
  • Conditional expression (2) defines an appropriate relationship between the total length of the variable power optical system ZL in the telephoto end state and the maximum image height of the variable power optical system ZL in the wide angle end state. By satisfying the conditional expression (2), it is possible to obtain a variable-magnification optical system that is small with respect to the size of the image plane (imaging device).
  • conditional expression (2) If the corresponding value of conditional expression (2) exceeds the upper limit, the total length of the variable power optical system ZL will increase, making it difficult to obtain good optical performance while miniaturizing the variable power optical system ZL.
  • the upper limit of conditional expression (2) By setting the upper limit of conditional expression (2) to 2.90, 2.80, 2.70, 2.65, and further to 2.60, the effects of this embodiment can be made more reliable. can.
  • conditional expression (2) If the corresponding value of conditional expression (2) is below the lower limit, the total length of the variable-magnification optical system ZL is too small, making it difficult to correct coma and curvature of field.
  • the lower limit of conditional expression (2) By setting the lower limit of conditional expression (2) to 2.10, 2.20, 2.30, 2.40, and further to 2.45, the effects of this embodiment can be made more reliable. can.
  • Conditional expression (3) defines an appropriate relationship between the focal length of the first lens group G1 and the focal length of the rear group GR in the wide-angle end state. By satisfying the conditional expression (3), it is possible to obtain good optical performance over the entire range of zooming while being compact.
  • conditional expression (3) When the corresponding value of conditional expression (3) exceeds the upper limit, it becomes difficult to correct spherical aberration and coma.
  • the upper limit of conditional expression (3) By setting the upper limit of conditional expression (3) to 1.45, 1.40, 1.36, 1.33, and further to 1.30, the effects of this embodiment can be made more reliable. can.
  • conditional expression (3) When the corresponding value of conditional expression (3) is below the lower limit, it becomes difficult to correct spherical aberration and curvature of field.
  • the lower limit of conditional expression (3) By setting the lower limit of conditional expression (3) to 1.05, 1.10, 1.12, 1.15, and further to 1.18, the effects of this embodiment can be made more reliable. can.
  • At least one lens group of the rear group GR includes a final lens group GE having a positive refractive power and disposed closest to the image side of the rear group GR. . This makes it possible to satisfactorily correct various aberrations.
  • variable power optical system ZL according to the first embodiment may satisfy the conditional expression (2) described above.
  • conditional expression (2) it is possible to obtain a variable-magnification optical system that is small with respect to the size of the image plane (imaging device), as in the second embodiment.
  • the upper limit of the conditional expression (2) to 2.90, 2.80, 2.70, 2.65, and further to 2.60
  • the effect of the first embodiment is made more reliable. can be done.
  • the lower limit of conditional expression (2) to 2.10, 2.20, 2.30, 2.40, and further to 2.45, the effects of the first embodiment can be made more reliable. can do.
  • variable power optical system ZL according to the first embodiment may satisfy the above conditional expression (3).
  • conditional expression (3) it is possible to obtain good optical performance over the entire range of zooming while maintaining a small size, as in the second embodiment.
  • the upper limit of conditional expression (3) to 1.45, 1.40, 1.36, 1.33, and further to 1.30, the effects of the first embodiment can be made more reliable. can be done.
  • the lower limit of conditional expression (3) to 1.05, 1.10, 1.12, 1.15, and further to 1.18, the effects of the first embodiment can be made more reliable. can do.
  • variable power optical system ZL according to the first embodiment and the second embodiment preferably satisfies the following conditional expression (4). 0.30 ⁇ Bfw/IHw ⁇ 0.60 (4)
  • Bfw back focus of the variable power optical system ZL in the wide-angle end state
  • IHw maximum image height of the variable power optical system ZL in the wide-angle end state
  • Conditional expression (4) defines an appropriate relationship between the back focus of the variable power optical system ZL in the wide-angle end state and the maximum image height of the variable power optical system ZL in the wide-angle end state.
  • conditional expression (4) If the corresponding value of conditional expression (4) exceeds the upper limit, the back focus of the variable-magnification optical system ZL is too long, making it difficult to correct curvature of field while reducing the size of the variable-magnification optical system ZL.
  • the upper limit of conditional expression (4) By setting the upper limit of conditional expression (4) to 0.56, 0.53, 0.50, 0.48, and further to 0.46, the effect of each embodiment can be made more reliable. can.
  • conditional expression (4) If the corresponding value of conditional expression (4) is less than the lower limit, the back focus of the variable-magnification optical system ZL is too short and interferes with the camera body, making it unsuitable for practical use.
  • the lower limit of conditional expression (4) By setting the lower limit of conditional expression (4) to 0.32, 0.35, 0.37, 0.40, and further to 0.42, the effect of each embodiment can be made more reliable. can.
  • variable power optical system ZL according to the first embodiment and the second embodiment preferably satisfies the following conditional expression (5). 0.50 ⁇ YLE1/IHw ⁇ 1.00 (5) YLE1: effective radius of the object-side lens surface of the lens closest to the image side of the variable-magnification optical system ZL IHw: maximum image height of the variable-magnification optical system ZL in the wide-angle end state
  • Conditional expression (5) is an appropriate relationship between the effective radius of the object-side lens surface of the lens closest to the image side of the variable-magnification optical system ZL and the maximum image height of the variable-magnification optical system ZL in the wide-angle end state. It defines Hereinafter, the lens arranged closest to the image side of the variable magnification optical system ZL may be referred to as the final lens. By satisfying the conditional expression (5), it is possible to ensure the amount of peripheral light.
  • conditional expression (5) If the corresponding value of conditional expression (5) exceeds the upper limit, the effective radius of the object-side lens surface of the final lens increases, making it difficult to reduce the size of the variable power optical system ZL and to obtain good optical performance. Become.
  • the upper limit of conditional expression (5) By setting the upper limit of conditional expression (5) to 0.95, 0.90, 0.85, 0.82, and further to 0.78, the effect of each embodiment can be made more reliable. can.
  • conditional expression (5) If the corresponding value of conditional expression (5) is below the lower limit, the effective diameter of the object-side lens surface of the final lens becomes small, making it difficult to ensure the amount of peripheral light.
  • the lower limit of conditional expression (5) By setting the lower limit of conditional expression (5) to 0.55, 0.60, 0.65, 0.68, and further to 0.72, the effect of each embodiment can be made more reliable. can.
  • variable power optical system ZL according to the first embodiment and the second embodiment preferably satisfies the following conditional expression (6). 0.80 ⁇ (-f1)/fw ⁇ 1.40 (6) where f1 is the focal length of the first lens group G1 fw is the focal length of the variable magnification optical system ZL in the wide-angle end state
  • Conditional expression (6) defines an appropriate relationship between the focal length of the first lens group G1 and the focal length of the variable magnification optical system ZL in the wide-angle end state.
  • conditional expression (6) When the corresponding value of conditional expression (6) exceeds the upper limit, the refractive power of the first lens group G1 is too weak, making it difficult to correct various aberrations while reducing the size of the variable magnification optical system ZL.
  • the upper limit of conditional expression (6) By setting the upper limit of conditional expression (6) to 1.35, 1.30, 1.27, 1.24, and further to 1.22, the effect of each embodiment can be made more reliable. can.
  • conditional expression (6) If the corresponding value of conditional expression (6) is below the lower limit, the refracting power of the first lens group G1 is too strong, making it difficult to correct coma.
  • the lower limit of conditional expression (6) By setting the lower limit of conditional expression (6) to 0.85, 0.90, 0.95, 1.00, and further to 1.05, the effect of each embodiment can be made more reliable. can.
  • At least one lens group of the rear group GR is a second lens group having positive refractive power disposed closest to the object side of the rear group GR. It is desirable to include G2 and satisfy the following conditional expression (7). 0.50 ⁇ f2/fw ⁇ 1.00 (7) where f2 is the focal length of the second lens group G2 fw is the focal length of the variable magnification optical system ZL in the wide-angle end state
  • Conditional expression (7) defines an appropriate relationship between the focal length of the second lens group G2 and the focal length of the variable magnification optical system ZL in the wide-angle end state.
  • conditional expression (7) If the corresponding value of conditional expression (7) exceeds the upper limit, the refractive power of the second lens group G2 is too weak, making it difficult to correct various aberrations while reducing the size of the variable magnification optical system ZL.
  • the upper limit of conditional expression (7) By setting the upper limit of conditional expression (7) to 0.95, 0.90, 0.87, and further 0.85, the effect of each embodiment can be made more reliable.
  • conditional expression (7) When the corresponding value of conditional expression (7) is below the lower limit, the refractive power of the second lens group G2 is too strong, making it difficult to correct spherical aberration.
  • the lower limit of conditional expression (7) By setting the lower limit of conditional expression (7) to 0.55, 0.60, 0.65, 0.70, and further to 0.73, the effect of each embodiment can be made more reliable. can.
  • At least one lens group of the rear group GR is a second lens group having positive refractive power disposed closest to the object side of the rear group GR. It is desirable to include G2 and satisfy the following conditional expression (8). 0.60 ⁇ f2/fRw ⁇ 1.20 (8) where f2: focal length of the second lens group G2 fRw: focal length of the rear group GR in the wide-angle end state
  • Conditional expression (8) defines an appropriate relationship between the focal length of the second lens group G2 and the focal length of the rear group GR in the wide-angle end state.
  • conditional expression (8) exceeds the upper limit, the refractive power of the second lens group G2 is too weak, making it difficult to correct field curvature.
  • the upper limit of conditional expression (8) is 1.15, 1.10, 1.05, 1.00, and further to 0.95, the effect of each embodiment can be made more reliable. can.
  • conditional expression (8) If the corresponding value of conditional expression (8) is below the lower limit, the refractive power of the second lens group G2 is too strong, making it difficult to correct spherical aberration.
  • the lower limit of conditional expression (8) By setting the lower limit of conditional expression (8) to 0.65, 0.70, 0.75, 0.78, and further to 0.82, the effect of each embodiment can be made more reliable. can.
  • variable power optical system ZL preferably satisfies the following conditional expression (9). 1.10 ⁇ ft/fw ⁇ 1.50 (9) where ft is the focal length of the variable-magnification optical system ZL in the telephoto end state, fw is the focal length of the variable-magnification optical system ZL in the wide-angle end state.
  • Conditional expression (9) defines an appropriate range for the variable magnification ratio of the variable magnification optical system ZL. By satisfying conditional expression (9), it is possible to satisfactorily correct various aberrations while maintaining a compact size.
  • conditional expression (9) exceeds the upper limit, the variable power ratio of the variable power optical system ZL increases, making it difficult to correct various aberrations while reducing the size of the variable power optical system ZL.
  • the upper limit of conditional expression (9) to 1.45, 1.40, 1.37, 1.33, and further to 1.30, the effect of each embodiment can be made more reliable. can.
  • conditional expression (9) If the corresponding value of conditional expression (9) is less than the lower limit, the zoom ratio of the zoom optical system ZL is too small, so that it is not useful as a zoom optical system (zoom lens).
  • the lower limit of conditional expression (9) By setting the lower limit of conditional expression (9) to 1.15, 1.18, 1.20, 1.22, and further to 1.25, the effect of each embodiment can be made more reliable. can.
  • variable power optical system ZL preferably satisfies the following conditional expression (10). -1.50 ⁇ (L1r2+L1r1)/(L1r2-L1r1) ⁇ -0.60 (10) where L1r1: the radius of curvature of the object-side lens surface of the lens closest to the object side in the variable power optical system ZL, L1r2: the radius of curvature of the image-side lens surface of the lens closest to the object side curvature radius
  • Conditional expression (10) defines an appropriate range for the shape factor of the lens arranged closest to the object side of the variable magnification optical system ZL. By satisfying the conditional expression (10), field curvature, distortion, spherical aberration, coma, etc. can be favorably corrected in spite of being small.
  • conditional expression (10) When the corresponding value of conditional expression (10) exceeds the upper limit, it becomes difficult to correct curvature of field and distortion.
  • the upper limit of conditional expression (10) By setting the upper limit of conditional expression (10) to ⁇ 0.65, ⁇ 0.70, ⁇ 0.75, and further ⁇ 0.80, the effect of each embodiment can be made more reliable. can.
  • conditional expression (10) When the corresponding value of conditional expression (10) is below the lower limit, it becomes difficult to correct spherical aberration and coma.
  • the lower limit of conditional expression (10) By setting the lower limit of conditional expression (10) to ⁇ 1.45, ⁇ 1.40, ⁇ 1.35, ⁇ 1.30, and further ⁇ 1.25, the effect of each embodiment can be more reliably realized. can be
  • variable power optical system ZL preferably satisfies the following conditional expression (11). ⁇ 0.50 ⁇ (LEr2+LEr1)/(LEr2 ⁇ LEr1) ⁇ 0.60 (11) where LEr1: the radius of curvature of the object-side lens surface of the lens closest to the image side in the variable-magnification optical system ZL, LEr2: the radius of curvature of the image-side lens surface of the lens closest to the image side of the variable-magnification optical system ZL. curvature radius
  • Conditional expression (11) defines an appropriate range for the shape factor of the lens (final lens) arranged closest to the image side of the variable magnification optical system ZL. By satisfying conditional expression (11), coma aberration and curvature of field can be favorably corrected while being compact.
  • conditional expression (11) When the corresponding value of conditional expression (11) exceeds the upper limit, it becomes difficult to correct coma.
  • the upper limit of conditional expression (11) By setting the upper limit of conditional expression (11) to 0.55, 0.50, 0.45, 0.40, and further to 0.38, the effect of each embodiment can be made more reliable. can.
  • conditional expression (11) When the corresponding value of conditional expression (11) falls below the lower limit, it becomes difficult to correct field curvature.
  • the lower limit of conditional expression (11) By setting the lower limit of conditional expression (11) to ⁇ 0.45, ⁇ 0.40, ⁇ 0.35, ⁇ 0.30, and further ⁇ 0.25, the effects of each embodiment can be more reliably realized. can be
  • variable power optical system ZL preferably has a diaphragm arranged between the first lens group G1 and the rear group GR. This makes it possible to suppress shading.
  • variable power optical system ZL according to the first embodiment and the second embodiment preferably satisfies the following conditional expression (12). 88.00° ⁇ 2 ⁇ w (12) where 2 ⁇ w: the total angle of view of the variable magnification optical system ZL in the wide-angle end state
  • Conditional expression (12) defines an appropriate range for the total angle of view of the variable magnification optical system ZL in the wide-angle end state. Satisfying conditional expression (12) is preferable because a variable power optical system with a wide angle of view can be obtained.
  • the lower limit of conditional expression (12) By setting the lower limit of conditional expression (12) to 90.00°, 92.00°, 94.00°, 96.00°, and further 98.00°, the effect of each embodiment can be obtained more reliably.
  • the upper limit of conditional expression (12) By setting the upper limit of conditional expression (12) to 114.00°, 110.00°, 107.00°, 104.00°, and further 102.00°, the effect of each embodiment can be more reliably achieved. can be
  • variable power optical system ZL preferably satisfies the following conditional expression (13). 0.01 ⁇ D1/TLw ⁇ 0.20 (13) where D1: the thickness of the first lens group G1 on the optical axis TLw: the total length of the variable magnification optical system ZL in the wide-angle end state
  • Conditional expression (13) defines an appropriate relationship between the thickness of the first lens group G1 on the optical axis and the total length of the variable magnification optical system ZL in the wide-angle end state.
  • conditional expression (13) When the corresponding value of conditional expression (13) exceeds the upper limit, it becomes difficult to correct various aberrations such as curvature of field and spherical aberration while maintaining compactness.
  • the upper limit of conditional expression (13) By setting the upper limit of conditional expression (13) to 0.19, 0.18, and further 0.17, the effect of each embodiment can be made more reliable.
  • conditional expression (13) When the corresponding value of conditional expression (13) is below the lower limit, it becomes difficult to correct various aberrations such as curvature of field and spherical aberration.
  • the lower limit of conditional expression (13) By setting the lower limit of conditional expression (13) to 0.03, 0.05, and further 0.10, the effect of each embodiment can be made more reliable.
  • variable power optical system ZL according to the first embodiment and the second embodiment preferably satisfies the following conditional expression (14). 0.10 ⁇ Bfw/fw ⁇ 0.60 (14) where Bfw: back focus of the variable-magnification optical system ZL in the wide-angle end state fw: focal length of the variable-magnification optical system ZL in the wide-angle end state
  • Conditional expression (14) defines the relationship between the back focus and the focal length of the variable power optical system ZL in the wide-angle end state.
  • the upper limit of conditional expression (14) is 0.58, 0.55, 0.53, and further 0.50, the effect of each embodiment can be made more reliable.
  • the lower limit of conditional expression (14) is 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, and further to 0.45, The effect can be made more reliable.
  • the first lens group G1 having negative refractive power and the rear group GR having at least one lens group are arranged in order from the object side along the optical axis (step ST1).
  • it is configured so that the distance between adjacent lens groups changes during zooming (step ST2).
  • the final lens group GE having positive refractive power is arranged closest to the image side of the rear group GR (step ST3).
  • each lens is arranged in the lens barrel so as to satisfy at least the conditional expression (1) (step ST4).
  • the first lens group G1 having negative refractive power and the rear group GR having at least one lens group are arranged in order from the object side along the optical axis (step ST11).
  • it is configured so that the distance between adjacent lens groups changes during zooming (step ST12).
  • each lens is arranged in the lens barrel so as to satisfy at least the conditional expressions (2) and (3) (step ST13). According to such a manufacturing method, it is possible to manufacture a variable-magnification optical system that is compact and yet has good optical performance.
  • variable-magnification optical system ZL according to the example of each embodiment will be described based on the drawings.
  • 1, 3, 5, 7, and 9 are cross-sections showing configurations and refractive power distributions of variable magnification optical systems ZL ⁇ ZL(1) to ZL(5) ⁇ according to first to fifth examples. It is a diagram.
  • the direction of movement of the focusing group along the optical axis when focusing on a short distance object from infinity is shown as It is indicated by an arrow together with the word "focus".
  • W wide-angle end state
  • T telephoto end state
  • each lens group is represented by a combination of symbol G and a number, and each lens is represented by a combination of symbol L and a number.
  • the lens groups and the like are represented independently using combinations of symbols and numerals for each embodiment. Therefore, even if the same reference numerals and symbols are used between the embodiments, it does not mean that they have the same configuration.
  • Tables 1 to 5 are shown below, of which Table 1 is the first embodiment, Table 2 is the second embodiment, Table 3 is the third embodiment, Table 4 is the fourth embodiment, and Table 5 is the third embodiment. It is a table
  • f is the focal length of the entire lens system
  • FNO is the F number
  • 2 ⁇ is the angle of view (unit is ° (degrees)
  • is the half angle of view
  • Ymax is the maximum image height.
  • TL indicates the distance obtained by adding BF to the distance from the foremost lens surface to the last lens surface on the optical axis when focusing on infinity
  • BF is the distance from the last lens surface on the optical axis when focusing on infinity.
  • the distance to plane I (back focus) is shown. Note that these values are shown for each of the zooming states of the wide-angle end (W) and the telephoto end (T).
  • IHw indicates the maximum image height of the variable magnification optical system in the wide-angle end state.
  • YLE1 indicates the effective radius of the object-side lens surface of the lens (last lens) arranged closest to the image side of the variable-magnification optical system.
  • fRw represents the focal length of the rear group in the wide-angle end state.
  • D1 represents the thickness of the first lens group on the optical axis.
  • the surface number indicates the order of the optical surfaces from the object side along the direction in which light rays travel
  • R is the radius of curvature of each optical surface (the surface whose center of curvature is located on the image side). is a positive value)
  • D is the distance on the optical axis from each optical surface to the next optical surface (or image plane)
  • nd is the refractive index for the d-line of the material of the optical member
  • ⁇ d is the optical Abbe's number based on the d-line of the material of the member
  • ED indicate the effective diameter (effective diameter) of each optical surface.
  • the radius of curvature “ ⁇ ” indicates a plane or an aperture, and (diaphragm S) indicates an aperture diaphragm S, respectively.
  • the description of the refractive index of air nd 1.00000 is omitted.
  • the optical surface is an aspherical surface, the surface number is marked with *, and the column of curvature radius R indicates the paraxial curvature radius.
  • the [Variable Spacing Data] table shows the surface spacing at surface number i for which the surface spacing is (Di) in the [Lens Specifications] table.
  • the [Variable Spacing Data] table shows the surface spacing in the infinity focused state, the surface spacing in the intermediate distance focused state, and the surface spacing in the close distance focused state.
  • the [Lens group data] table shows the starting surface (surface closest to the object side) and focal length of each lens group.
  • mm is generally used for the focal length f, radius of curvature R, surface spacing D, and other lengths in all specifications below, but the optical system is proportionally enlarged. Alternatively, it is not limited to this because equivalent optical performance can be obtained even if it is proportionally reduced.
  • FIG. 1 is a diagram showing the lens configuration of a variable magnification optical system according to the first embodiment.
  • the variable power optical system ZL(1) according to the first example includes a first lens group G1 having negative refractive power, an aperture stop S, and a positive refractive power, arranged in order from the object side along the optical axis. , a third lens group G3 having negative refractive power, and a fourth lens group G4 having positive refractive power.
  • W wide-angle end state
  • T telephoto end state
  • the second lens group G2 the third lens group G3, and the fourth lens group G4 move along the optical axis toward the object side.
  • each mating lens group changes.
  • the aperture stop S moves along the optical axis together with the second lens group G2, and the position of the first lens group G1 is fixed with respect to the image plane I.
  • the sign (+) or (-) attached to each lens group symbol indicates the refractive power of each lens group, and this is the same for all the following examples.
  • the first lens group G1 is composed of a biconcave negative lens L11 and a positive meniscus lens L12 with a convex surface facing the object side, which are arranged in order from the object side along the optical axis.
  • the negative lens L11 has aspheric lens surfaces on both sides.
  • the second lens group G2 includes a biconvex positive lens L21, a positive meniscus lens L22 with a convex surface facing the object side, and a positive meniscus lens with a concave surface facing the object side, which are arranged in order from the object side along the optical axis. It is composed of a cemented lens of a lens L23 and a negative meniscus lens L24 having a concave surface facing the object side.
  • the positive meniscus lens L22 has aspherical lens surfaces on both sides.
  • the negative meniscus lens L24 has an aspheric lens surface on the image side.
  • the third lens group G3 is composed of a negative meniscus lens L31 with a concave surface facing the object side. Both lens surfaces of the negative meniscus lens L31 are aspheric.
  • the fourth lens group G4 is composed of a biconvex positive lens L41.
  • An image plane I is arranged on the image side of the fourth lens group G4.
  • the second lens group G2, the third lens group G3, and the fourth lens group G4 constitute a rear group GR having positive refractive power as a whole.
  • the fourth lens group G4 corresponds to the final lens group GE arranged closest to the image side of the rear group GR.
  • the positive lens L41 of the fourth lens group G4 corresponds to the final lens.
  • the third lens group G3 moves along the optical axis toward the image side.
  • Table 1 lists the values of the specifications of the variable power optical system according to the first example. Note that the fifth surface is a virtual surface.
  • FIG. 2(A) is a diagram of various aberrations when focusing on infinity in the wide-angle end state of the variable power optical system according to the first example.
  • FIG. 2B is a diagram of various aberrations in the telephoto end state of the variable power optical system according to the first embodiment when focusing on infinity.
  • FNO indicates F number
  • Y indicates image height.
  • the spherical aberration diagram shows the F-number value corresponding to the maximum aperture
  • the astigmatism diagram and the distortion diagram show the maximum image height
  • the coma aberration diagram shows the value of each image height.
  • a solid line indicates a sagittal image plane, and a broken line indicates a meridional image plane.
  • aberration diagrams of each example shown below the same reference numerals as in the present example are used, and redundant description is omitted.
  • variable magnification optical system according to Example 1 has excellent imaging performance, with various aberrations well corrected from the wide-angle end state to the telephoto end state.
  • FIG. 3 is a diagram showing the lens configuration of the variable magnification optical system according to the second embodiment.
  • the variable power optical system ZL(2) according to the second embodiment includes a first lens group G1 having negative refractive power, an aperture stop S, and a positive refractive power, which are arranged in order from the object side along the optical axis. , a third lens group G3 having negative refractive power, and a fourth lens group G4 having positive refractive power.
  • the second lens group G2, the third lens group G3, and the fourth lens group G4 move along the optical axis toward the object side.
  • the spacing between each mating lens group changes.
  • the aperture stop S moves along the optical axis together with the second lens group G2, and the position of the first lens group G1 is fixed with respect to the image plane I.
  • the first lens group G1 is composed of a biconcave negative lens L11 and a positive meniscus lens L12 with a convex surface facing the object side, which are arranged in order from the object side along the optical axis.
  • the negative lens L11 is a hybrid type lens that is configured by providing a resin layer on the image side surface of a glass lens body.
  • the image-side surface of the resin layer is aspherical
  • the negative lens L11 is a compound aspherical lens.
  • surface number 1 is the object side surface of the lens body
  • surface number 2 is the image side surface of the lens body and the object side surface of the resin layer (surface where both are joined)
  • surface number 3 indicates the image-side surface of the resin layer.
  • the second lens group G2 includes a biconvex positive lens L21, a positive meniscus lens L22 with a convex surface facing the object side, and a positive meniscus lens with a concave surface facing the object side, which are arranged in order from the object side along the optical axis. It is composed of a cemented lens of a lens L23 and a negative meniscus lens L24 having a concave surface facing the object side.
  • the positive meniscus lens L22 has aspherical lens surfaces on both sides.
  • the negative meniscus lens L24 has an aspheric lens surface on the image side.
  • the third lens group G3 is composed of a negative meniscus lens L31 with a concave surface facing the object side. Both lens surfaces of the negative meniscus lens L31 are aspheric.
  • the fourth lens group G4 is composed of a biconvex positive lens L41.
  • An image plane I is arranged on the image side of the fourth lens group G4.
  • the second lens group G2, the third lens group G3, and the fourth lens group G4 constitute a rear group GR having positive refractive power as a whole.
  • the fourth lens group G4 corresponds to the final lens group GE arranged closest to the image side of the rear group GR.
  • the positive lens L41 of the fourth lens group G4 corresponds to the final lens.
  • the third lens group G3 moves along the optical axis toward the image side.
  • Table 2 lists the values of the specifications of the variable power optical system according to the second example. Note that the sixth surface is a virtual surface.
  • FIG. 4(A) is a diagram of various aberrations when focusing on infinity in the wide-angle end state of the variable power optical system according to the second embodiment.
  • FIG. 4B is a diagram of various aberrations in the telephoto end state of the variable power optical system according to the second embodiment when focusing on infinity. From the various aberration diagrams, it can be seen that the variable power optical system according to the second example has various aberrations well corrected from the wide-angle end state to the telephoto end state, and has excellent imaging performance.
  • FIG. 5 is a diagram showing the lens configuration of the variable magnification optical system according to the third embodiment.
  • the variable magnification optical system ZL(3) according to the third embodiment includes a first lens group G1 having negative refractive power, an aperture diaphragm S, and a positive refractive power, which are arranged in order from the object side along the optical axis. , a third lens group G3 having negative refractive power, and a fourth lens group G4 having positive refractive power.
  • the second lens group G2, the third lens group G3, and the fourth lens group G4 move along the optical axis toward the object side.
  • the spacing between each mating lens group changes.
  • the aperture stop S moves along the optical axis together with the second lens group G2, and the position of the first lens group G1 is fixed with respect to the image plane I.
  • the first lens group G1 includes a negative meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, and a negative meniscus lens L12 having a convex surface facing the object side, which are arranged in order from the object side along the optical axis. and a cemented lens with the positive meniscus lens L13. Both lens surfaces of the negative meniscus lens L11 are aspheric.
  • the second lens group G2 includes a positive meniscus lens L21 with a convex surface facing the object side, a positive meniscus lens L22 with a convex surface facing the object side, and a biconvex positive meniscus lens L22, arranged in order from the object side along the optical axis. It is composed of a cemented lens of a lens L23 and a negative meniscus lens L24 having a concave surface facing the object side.
  • the negative meniscus lens L24 has an aspheric lens surface on the image side.
  • the third lens group G3 is composed of a negative meniscus lens L31 with a concave surface facing the object side. Both lens surfaces of the negative meniscus lens L31 are aspheric.
  • the fourth lens group G4 is composed of a biconvex positive lens L41.
  • An image plane I is arranged on the image side of the fourth lens group G4.
  • the second lens group G2, the third lens group G3, and the fourth lens group G4 constitute a rear group GR having positive refractive power as a whole.
  • the fourth lens group G4 corresponds to the final lens group GE arranged closest to the image side of the rear group GR.
  • the positive lens L41 of the fourth lens group G4 corresponds to the final lens.
  • the third lens group G3 moves along the optical axis toward the image side.
  • Table 3 lists the values of the specifications of the variable power optical system according to the third example. Note that the sixth surface is a virtual surface.
  • FIG. 6(A) is a diagram of various aberrations in the wide-angle end state of the variable power optical system according to the third embodiment when focusing on infinity.
  • FIG. 6B is a diagram of various aberrations in the telephoto end state of the variable power optical system according to the third embodiment when focusing at infinity. From the various aberration diagrams, it can be seen that the variable magnification optical system according to the third example has various aberrations well corrected from the wide-angle end state to the telephoto end state, and has excellent imaging performance.
  • FIG. 7 is a diagram showing the lens configuration of a variable-magnification optical system according to the fourth embodiment.
  • the variable magnification optical system ZL(4) according to the fourth embodiment includes a first lens group G1 having negative refractive power, an aperture diaphragm S, and a positive refractive power, which are arranged in order from the object side along the optical axis. and a third lens group G3 having positive refractive power.
  • W wide-angle end state
  • T telephoto end state
  • the first lens group G1 first moves along the optical axis toward the image side, then toward the object side, and then moves to the second lens group G2.
  • the third lens group G3 moves along the optical axis toward the object side, and the distance between adjacent lens groups changes.
  • the aperture stop S moves along the optical axis together with the second lens group G2.
  • the first lens group G1 includes a negative meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, and a negative meniscus lens L12 having a convex surface facing the object side, which are arranged in order from the object side along the optical axis. and a cemented lens with the positive meniscus lens L13. Both lens surfaces of the negative meniscus lens L11 are aspheric.
  • the second lens group G2 includes a biconvex positive lens L21, a negative meniscus lens L22 with a convex surface facing the object side, and a positive meniscus lens with a convex surface facing the object side, arranged in order from the object side along the optical axis.
  • a negative meniscus lens L27 The positive meniscus lens L26 has aspheric lens surfaces on both sides. Both lens surfaces of the negative meniscus lens L27 are aspheric.
  • the third lens group G3 is composed of a biconvex positive lens L31.
  • An image plane I is arranged on the image side of the third lens group G3.
  • the second lens group G2 and the third lens group G3 constitute a rear group GR having positive refractive power as a whole.
  • the third lens group G3 corresponds to the final lens group GE arranged closest to the image side of the rear group GR.
  • the positive lens L31 of the third lens group G3 corresponds to the final lens.
  • Table 4 lists the values of the specifications of the variable power optical system according to the fourth example.
  • FIG. 8(A) is a diagram of various aberrations when focusing on infinity in the wide-angle end state of the variable power optical system according to the fourth example.
  • FIG. 8B is a diagram of various aberrations in the telephoto end state of the variable power optical system according to the fourth example when focusing on infinity. From the various aberration diagrams, it can be seen that the variable magnification optical system according to the fourth example has various aberrations well corrected from the wide-angle end state to the telephoto end state, and has excellent imaging performance.
  • FIG. 9 is a diagram showing the lens configuration of the variable power optical system according to the fifth embodiment.
  • the variable magnification optical system ZL(5) according to the fifth embodiment includes a first lens group G1 having negative refractive power, an aperture diaphragm S, and a positive refractive power, which are arranged in order from the object side along the optical axis. , a third lens group G3 having negative refractive power, and a fourth lens group G4 having positive refractive power.
  • the first lens group G1, the second lens group G2, the third lens group G3, and the fourth lens group G4 move along the optical axis to the object. side, and the distance between adjacent lens groups changes.
  • the aperture stop S moves along the optical axis together with the second lens group G2.
  • the first lens group G1 is composed of a biconcave negative lens L11 and a positive meniscus lens L12 having a convex surface facing the object side, which are arranged in order from the object side along the optical axis.
  • the negative lens L11 is a hybrid lens formed by providing a resin layer on the image-side surface of a lens body made of glass.
  • the image-side surface of the resin layer is aspherical
  • the negative lens L11 is a compound aspherical lens.
  • surface number 1 is the object side surface of the lens body
  • surface number 2 is the image side surface of the lens body and the object side surface of the resin layer (surface where both are joined)
  • surface number 3 indicates the image-side surface of the resin layer.
  • the second lens group G2 includes a biconvex positive lens L21, a positive meniscus lens L22 with a convex surface facing the object side, and a positive meniscus lens with a concave surface facing the object side, which are arranged in order from the object side along the optical axis. It is composed of a cemented lens of a lens L23 and a negative meniscus lens L24 having a concave surface facing the object side.
  • the positive meniscus lens L22 has aspherical lens surfaces on both sides.
  • the negative meniscus lens L24 has an aspheric lens surface on the image side.
  • the third lens group G3 is composed of a negative meniscus lens L31 with a concave surface facing the object side. Both lens surfaces of the negative meniscus lens L31 are aspheric.
  • the fourth lens group G4 is composed of a biconvex positive lens L41.
  • An image plane I is arranged on the image side of the fourth lens group G4.
  • the second lens group G2, the third lens group G3, and the fourth lens group G4 constitute a rear group GR having positive refractive power as a whole.
  • the fourth lens group G4 corresponds to the final lens group GE arranged closest to the image side of the rear group GR.
  • the positive lens L41 of the fourth lens group G4 corresponds to the final lens.
  • the third lens group G3 moves along the optical axis toward the image side.
  • Table 5 lists the values of the specifications of the variable power optical system according to the fifth example. Note that the sixth surface is a virtual surface.
  • FIG. 10(A) is a diagram of various aberrations when focusing on infinity in the wide-angle end state of the variable power optical system according to the fifth example.
  • FIG. 10B is a diagram of various aberrations in the telephoto end state of the variable magnification optical system according to the fifth embodiment when focusing at infinity. From the various aberration diagrams, it can be seen that the variable power optical system according to the fifth example has various aberrations well corrected from the wide-angle end state to the telephoto end state, and has excellent imaging performance.
  • Conditional expression (1) 0.15 ⁇ ft/fGE ⁇ 0.60
  • Conditional expression (2) 2.00 ⁇ TLt/IHw ⁇ 3.00
  • Conditional expression (3) 1.00 ⁇ (-f1)/fRw ⁇ 1.50
  • Conditional expression (4) 0.30 ⁇ Bfw/IHw ⁇ 0.60
  • Conditional expression (5) 0.50 ⁇ YLE1/IHw ⁇ 1.00
  • Conditional expression (6) 0.80 ⁇ (-f1)/fw ⁇ 1.40
  • Conditional expression (7) 0.50 ⁇ f2/fw ⁇ 1.00
  • Conditional expression (8) 0.60 ⁇ f2/fRw ⁇ 1.20
  • Conditional expression (9) 1.10 ⁇ ft/fw ⁇ 1.50
  • Conditional expression (10) -1.50 ⁇ (L1r2+L1r1)/(L1r2-L1r1) ⁇ -0.60
  • Conditional expression (11) ⁇ 0.50 ⁇ (LEr2+LEr1)/(LEr2 ⁇ LEr1)/(LEr2 ⁇ LEr
  • Conditional expression 1st embodiment 2nd embodiment 3rd embodiment (1) 0.336 0.327 0.373 (2) 2.519 2.508 2.543 (3) 1.201 1.263 1.222 (4) 0.442 0.436 0.444 (5) 0.759 0.755 0.740 (6) 1.118 1.200 1.102 (7) 0.812 0.837 0.767 (8) 0.872 0.881 0.850 (9) 1.272 1.272 1.272 (10) -0.962 -0.863 -1.117 (11) -0.186 -0.193 0.113 (12) 100.18 98.96 100.44 (13) 0.127 0.073 0.161 (14) 0.472 0.466 0.470 [Conditional Expression Corresponding Value] (Fourth and Fifth Examples) Conditional expression 4th embodiment 5th embodiment (1) 0.394 0.320 (2) 2.520 2.569 (3) 1.272 1.227 (4) 0.439 0.437 (5) 0.754 0.757 (6) 1.133 1.145 (7) 0.819 0.831 (8) 0.919
  • variable power optical system of the present embodiment Although three-group and four-group configurations have been shown as examples of the variable power optical system of the present embodiment, the present application is not limited to this, and other group configurations (for example, five groups, six groups, etc.) can be used for variable magnification.
  • An optical system can also be constructed. Specifically, a configuration in which a lens or lens group is added to the most object side or most image plane side of the variable power optical system of the present embodiment may be used.
  • the lens group refers to a portion having at least one lens separated by an air gap that changes during zooming.
  • a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to serve as a focusing lens group for focusing from an infinity object to a close object.
  • the focusing lens group can also be applied to autofocus, and is also suitable for motor drive (using an ultrasonic motor or the like) for autofocus.
  • Image blurring caused by camera shake is corrected by moving the lens group or partial lens group so that it has a component in the direction perpendicular to the optical axis, or rotating (oscillating) in the plane including the optical axis. It may be used as an anti-vibration lens group.
  • the lens surface may be spherical, flat, or aspherical.
  • a spherical or flat lens surface is preferable because it facilitates lens processing and assembly adjustment and prevents degradation of optical performance due to errors in processing and assembly adjustment. Also, even if the image plane is deviated, there is little deterioration in rendering performance, which is preferable.
  • the aspherical surface can be ground aspherical, glass-molded aspherical, which is formed into an aspherical shape from glass, or composite aspherical, which is formed into an aspherical shape from resin on the surface of glass. It doesn't matter which one.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • GRIN lens gradient index lens
  • the aperture stop is preferably arranged between the first lens group and the second lens group, but the role may be substituted by a lens frame without providing a member as the aperture stop.
  • Each lens surface may be coated with an antireflection film that has high transmittance over a wide wavelength range in order to reduce flare and ghost and achieve high-contrast optical performance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

変倍光学系(ZL)は、負の屈折力を有する第1レンズ群(G1)と、少なくとも1つのレンズ群を有する後群(GR)とからなり、変倍の際に、隣り合う各レンズ群の間隔が変化し、後群(GR)の少なくとも1つのレンズ群は、後群(GR)の最も像側に配置された正の屈折力を有する最終レンズ群(GE)を含み、以下の条件式を満足する。 0.15<ft/fGE<0.60 但し、ft:望遠端状態における変倍光学系(ZL)の焦点距離 fGE:最終レンズ群(GE)の焦点距離

Description

変倍光学系、光学機器、および変倍光学系の製造方法
 本発明は、変倍光学系、光学機器、および変倍光学系の製造方法に関する。
 従来から、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1を参照)。このような変倍光学系においては、小型にしつつ良好な光学性能を得ることが難しい。
国際公開第2020/012638号
 第1の本発明に係る変倍光学系は、光軸に沿って物体側から順に並んだ、負の屈折力を有する第1レンズ群と、少なくとも1つのレンズ群を有する後群とからなり、変倍の際に、隣り合う各レンズ群の間隔が変化し、前記後群の前記少なくとも1つのレンズ群は、前記後群の最も像側に配置された正の屈折力を有する最終レンズ群を含み、以下の条件式を満足する。
 0.15<ft/fGE<0.60
 但し、ft:望遠端状態における前記変倍光学系の焦点距離
    fGE:前記最終レンズ群の焦点距離
 第2の本発明に係る変倍光学系は、光軸に沿って物体側から順に並んだ、負の屈折力を有する第1レンズ群と、少なくとも1つのレンズ群を有する後群とからなり、変倍の際に、隣り合う各レンズ群の間隔が変化し、以下の条件式を満足する。
 2.00<TLt/IHw<3.00
 1.00<(-f1)/fRw<1.50
 但し、TLt:望遠端状態における前記変倍光学系の全長
    IHw:広角端状態における前記変倍光学系の最大像高
    f1:前記第1レンズ群の焦点距離
    fRw:広角端状態における前記後群の焦点距離
 本発明に係る光学機器は、上記変倍光学系を備えて構成される。
 第1の本発明に係る変倍光学系の製造方法は、光軸に沿って物体側から順に並んだ、負の屈折力を有する第1レンズ群と、少なくとも1つのレンズ群を有する後群とからなる変倍光学系の製造方法であって、変倍の際に、隣り合う各レンズ群の間隔が変化し、前記後群の前記少なくとも1つのレンズ群は、前記後群の最も像側に配置された正の屈折力を有する最終レンズ群を含み、以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置する。
 0.15<ft/fGE<0.60
 但し、ft:望遠端状態における前記変倍光学系の焦点距離
    fGE:前記最終レンズ群の焦点距離
 第2の本発明に係る変倍光学系の製造方法は、光軸に沿って物体側から順に並んだ、負の屈折力を有する第1レンズ群と、少なくとも1つのレンズ群を有する後群とからなる変倍光学系の製造方法であって、変倍の際に、隣り合う各レンズ群の間隔が変化し、以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置する。
 2.00<TLt/IHw<3.00
 1.00<(-f1)/fRw<1.50
 但し、TLt:望遠端状態における前記変倍光学系の全長
    IHw:広角端状態における前記変倍光学系の最大像高
    f1:前記第1レンズ群の焦点距離
    fRw:広角端状態における前記後群の焦点距離
第1実施例に係る変倍光学系のレンズ構成を示す図である。 図2(A)、図2(B)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、望遠端状態における無限遠合焦時の諸収差図である。 第2実施例に係る変倍光学系のレンズ構成を示す図である。 図4(A)、図4(B)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、望遠端状態における無限遠合焦時の諸収差図である。 第3実施例に係る変倍光学系のレンズ構成を示す図である。 図6(A)、図6(B)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、望遠端状態における無限遠合焦時の諸収差図である。 第4実施例に係る変倍光学系のレンズ構成を示す図である。 図8(A)、図8(B)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、望遠端状態における無限遠合焦時の諸収差図である。 第5実施例に係る変倍光学系のレンズ構成を示す図である。 図10(A)、図10(B)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、望遠端状態における無限遠合焦時の諸収差図である。 各実施形態に係る変倍光学系を備えたカメラの構成を示す図である。 第1実施形態に係る変倍光学系の製造方法を示すフローチャートである。 第2実施形態に係る変倍光学系の製造方法を示すフローチャートである。
 以下、本発明に係る好ましい実施形態について説明する。まず、各実施形態に係る変倍光学系を備えたカメラ(光学機器)を図11に基づいて説明する。このカメラ1は、図11に示すように、本体2と、本体2に装着される撮影レンズ3により構成される。本体2は、撮像素子4と、デジタルカメラの動作を制御する本体制御部(不図示)と、液晶画面5とを備える。撮影レンズ3は、複数のレンズ群からなる変倍光学系ZLと、各レンズ群の位置を制御するレンズ位置制御機構(不図示)とを備える。レンズ位置制御機構は、レンズ群の位置を検出するセンサと、レンズ群を光軸に沿って前後に移動させるモータと、モータを駆動する制御回路などにより構成される。
 被写体からの光は、撮影レンズ3の変倍光学系ZLにより集光されて、撮像素子4の像面I上に到達する。像面Iに到達した被写体からの光は、撮像素子4により光電変換され、デジタル画像データとして不図示のメモリに記録される。メモリに記録されたデジタル画像データは、ユーザの操作に応じて液晶画面5に表示することが可能である。なお、このカメラは、ミラーレスカメラでも、クイックリターンミラーを有した一眼レフタイプのカメラであっても良い。また、図11に示す変倍光学系ZLは、撮影レンズ3に備えられる変倍光学系を模式的に示したものであり、変倍光学系ZLのレンズ構成はこの構成に限定されるものではない。
 次に、第1実施形態に係る変倍光学系について説明する。第1実施形態に係る変倍光学系(ズームレンズ)ZLの一例としての変倍光学系ZL(1)は、図1に示すように、光軸に沿って物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、少なくとも1つのレンズ群を有する後群GRとから構成される。変倍の際に、隣り合う各レンズ群の間隔が変化する。後群GRの少なくとも1つのレンズ群は、後群GRの最も像側に配置された正の屈折力を有する最終レンズ群GEを含む。
 上記構成の下、第1実施形態に係る変倍光学系ZLは、以下の条件式(1)を満足する。
 0.15<ft/fGE<0.60 ・・・(1)
 但し、ft:望遠端状態における変倍光学系ZLの焦点距離
    fGE:最終レンズ群GEの焦点距離
 第1実施形態によれば、小型でありながら良好な光学性能を有する変倍光学系、およびこの変倍光学系を備えた光学機器を得ることが可能になる。第1実施形態に係る変倍光学系ZLは、図3に示す変倍光学系ZL(2)でも良く、図5に示す変倍光学系ZL(3)でも良く、図7に示す変倍光学系ZL(4)でも良く、図9に示す変倍光学系ZL(5)でも良い。
 条件式(1)は、望遠端状態における変倍光学系ZLの焦点距離と、最終レンズ群GEの焦点距離との適切な関係を規定するものである。条件式(1)を満足することで、小型でありながら像面湾曲を良好に補正することができる。
 条件式(1)の対応値が上限値を上回ると、像面湾曲を補正することが困難になる。また、像面(撮像素子)に対する光線の入射角が大きくなるため、シェーディングを抑えることが困難になる。条件式(1)の上限値を、0.55、0.50、0.47、0.43、さらに0.40に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(1)の対応値が下限値を下回ると、像面湾曲やコマ収差を補正することが困難になる。条件式(1)の下限値を、0.20、0.24、0.27、0.30、さらに0.32に設定することで、本実施形態の効果をより確実なものとすることができる。
 次に、第2実施形態に係る変倍光学系について説明する。第2実施形態に係る変倍光学系(ズームレンズ)ZLの一例としての変倍光学系ZL(1)は、図1に示すように、光軸に沿って物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、少なくとも1つのレンズ群を有する後群GRとから構成される。変倍の際に、隣り合う各レンズ群の間隔が変化する。
 上記構成の下、第2実施形態に係る変倍光学系ZLは、以下の条件式(2)および条件式(3)を満足する。
 2.00<TLt/IHw<3.00   ・・・(2)
 1.00<(-f1)/fRw<1.50 ・・・(3)
 但し、TLt:望遠端状態における変倍光学系ZLの全長
    IHw:広角端状態における変倍光学系ZLの最大像高
    f1:第1レンズ群G1の焦点距離
    fRw:広角端状態における後群GRの焦点距離
 第2実施形態によれば、小型でありながら良好な光学性能を有する変倍光学系、およびこの変倍光学系を備えた光学機器を得ることが可能になる。第2実施形態に係る変倍光学系ZLは、図3に示す変倍光学系ZL(2)でも良く、図5に示す変倍光学系ZL(3)でも良く、図7に示す変倍光学系ZL(4)でも良く、図9に示す変倍光学系ZL(5)でも良い。
 条件式(2)は、望遠端状態における変倍光学系ZLの全長と、広角端状態における変倍光学系ZLの最大像高との適切な関係を規定するものである。条件式(2)を満足することで、像面(撮像素子)の大きさに対して小型の変倍光学系を得ることができる。
 条件式(2)の対応値が上限値を上回ると、変倍光学系ZLの全長が大きくなるため、変倍光学系ZLを小型にしつつ良好な光学性能を得ることが困難になる。条件式(2)の上限値を、2.90、2.80、2.70、2.65、さらに2.60に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(2)の対応値が下限値を下回ると、変倍光学系ZLの全長が小さすぎるため、コマ収差や像面湾曲を補正することが困難になる。条件式(2)の下限値を、2.10、2.20、2.30、2.40、さらに2.45に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(3)は、第1レンズ群G1の焦点距離と、広角端状態における後群GRの焦点距離との適切な関係を規定するものである。条件式(3)を満足することで、小型でありながら変倍の範囲の全体に亘って良好な光学性能を得ることができる。
 条件式(3)の対応値が上限値を上回ると、球面収差やコマ収差を補正することが困難になる。条件式(3)の上限値を、1.45、1.40、1.36、1.33、さらに1.30に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(3)の対応値が下限値を下回ると、球面収差や像面湾曲を補正することが困難になる。条件式(3)の下限値を、1.05、1.10、1.12、1.15、さらに1.18に設定することで、本実施形態の効果をより確実なものとすることができる。
 第2実施形態に係る変倍光学系ZLにおいて、後群GRの少なくとも1つのレンズ群は、後群GRの最も像側に配置された正の屈折力を有する最終レンズ群GEを含むことが望ましい。これにより、諸収差を良好に補正することができる。
 また、第1実施形態に係る変倍光学系ZLは、上述の条件式(2)を満足してもよい。条件式(2)を満足することで、第2実施形態と同様、像面(撮像素子)の大きさに対して小型の変倍光学系を得ることができる。条件式(2)の上限値を、2.90、2.80、2.70、2.65、さらに2.60に設定することで、第1実施形態の効果をより確実なものとすることができる。また、条件式(2)の下限値を、2.10、2.20、2.30、2.40、さらに2.45に設定することで、第1実施形態の効果をより確実なものとすることができる。
 また、第1実施形態に係る変倍光学系ZLは、上述の条件式(3)を満足してもよい。条件式(3)を満足することで、第2実施形態と同様、小型でありながら変倍の範囲の全体に亘って良好な光学性能を得ることができる。条件式(3)の上限値を、1.45、1.40、1.36、1.33、さらに1.30に設定することで、第1実施形態の効果をより確実なものとすることができる。また、条件式(3)の下限値を、1.05、1.10、1.12、1.15、さらに1.18に設定することで、第1実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(4)を満足することが望ましい。
 0.30<Bfw/IHw<0.60 ・・・(4)
 但し、Bfw:広角端状態における変倍光学系ZLのバックフォーカス
    IHw:広角端状態における変倍光学系ZLの最大像高
 条件式(4)は、広角端状態における変倍光学系ZLのバックフォーカスと、広角端状態における変倍光学系ZLの最大像高との適切な関係を規定するものである。条件式(5)を満足することで、像面湾曲を良好に補正することができる。
 条件式(4)の対応値が上限値を上回ると、変倍光学系ZLのバックフォーカスが長すぎるため、変倍光学系ZLを小型にしつつ像面湾曲を補正することが困難になる。条件式(4)の上限値を、0.56、0.53、0.50、0.48、さらに0.46に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(4)の対応値が下限値を下回ると、変倍光学系ZLのバックフォーカスが短すぎるため、カメラの本体(ボディ)と干渉して実用に適さない。条件式(4)の下限値を、0.32、0.35、0.37、0.40、さらに0.42に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(5)を満足することが望ましい。
 0.50<YLE1/IHw<1.00 ・・・(5)
 但し、YLE1:変倍光学系ZLの最も像側に配置されたレンズにおける物体側のレンズ面の有効半径
    IHw:広角端状態における変倍光学系ZLの最大像高
 条件式(5)は、変倍光学系ZLの最も像側に配置されたレンズにおける物体側のレンズ面の有効半径と、広角端状態における変倍光学系ZLの最大像高との適切な関係を規定するものである。以降、変倍光学系ZLの最も像側に配置されたレンズを最終レンズと称する場合がある。条件式(5)を満足することで、周辺光量を確保することができる。
 条件式(5)の対応値が上限値を上回ると、最終レンズにおける物体側のレンズ面の有効半径が大きくなるため、変倍光学系ZLを小型にしつつ良好な光学性能を得ることが困難になる。条件式(5)の上限値を、0.95、0.90、0.85、0.82、さらに0.78に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(5)の対応値が下限値を下回ると、最終レンズにおける物体側のレンズ面の有効径が小さくなるため、周辺光量を確保することが困難になる。条件式(5)の下限値を、0.55、0.60、0.65、0.68、さらに0.72に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(6)を満足することが望ましい。
 0.80<(-f1)/fw<1.40 ・・・(6)
 但し、f1:第1レンズ群G1の焦点距離
    fw:広角端状態における変倍光学系ZLの焦点距離
 条件式(6)は、第1レンズ群G1の焦点距離と、広角端状態における変倍光学系ZLの焦点距離との適切な関係を規定するものである。条件式(6)を満足することで、小型でありながらコマ収差等の諸収差を良好に補正することができる。
 条件式(6)の対応値が上限値を上回ると、第1レンズ群G1の屈折力が弱すぎるため、変倍光学系ZLを小型にしつつ諸収差を補正することが困難になる。条件式(6)の上限値を、1.35、1.30、1.27、1.24、さらに1.22に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(6)の対応値が下限値を下回ると、第1レンズ群G1の屈折力が強すぎるため、コマ収差を補正することが困難になる。条件式(6)の下限値を、0.85、0.90、0.95、1.00、さらに1.05に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLにおいて、後群GRの少なくとも1つのレンズ群は、後群GRの最も物体側に配置された正の屈折力を有する第2レンズ群G2を含み、以下の条件式(7)を満足することが望ましい。
 0.50<f2/fw<1.00 ・・・(7)
 但し、f2:第2レンズ群G2の焦点距離
    fw:広角端状態における変倍光学系ZLの焦点距離
 条件式(7)は、第2レンズ群G2の焦点距離と、広角端状態における変倍光学系ZLの焦点距離との適切な関係を規定するものである。条件式(7)を満足することで、小型でありながら球面収差等の諸収差を良好に補正することができる。
 条件式(7)の対応値が上限値を上回ると、第2レンズ群G2の屈折力が弱すぎるため、変倍光学系ZLを小型にしつつ諸収差を補正することが困難になる。条件式(7)の上限値を、0.95、0.90、0.87、さらに0.85に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(7)の対応値が下限値を下回ると、第2レンズ群G2の屈折力が強すぎるため、球面収差を補正することが困難になる。条件式(7)の下限値を、0.55、0.60、0.65、0.70、さらに0.73に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLにおいて、後群GRの少なくとも1つのレンズ群は、後群GRの最も物体側に配置された正の屈折力を有する第2レンズ群G2を含み、以下の条件式(8)を満足することが望ましい。
 0.60<f2/fRw<1.20 ・・・(8)
 但し、f2:第2レンズ群G2の焦点距離
    fRw:広角端状態における後群GRの焦点距離
 条件式(8)は、第2レンズ群G2の焦点距離と、広角端状態における後群GRの焦点距離との適切な関係を規定するものである。条件式(8)を満足することで、小型でありながら像面湾曲や球面収差等の諸収差を良好に補正することができる。
 条件式(8)の対応値が上限値を上回ると、第2レンズ群G2の屈折力が弱すぎるため、像面湾曲を補正することが困難になる。条件式(8)の上限値を、1.15、1.10、1.05、1.00、さらに0.95に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(8)の対応値が下限値を下回ると、第2レンズ群G2の屈折力が強すぎるため、球面収差を補正することが困難になる。条件式(8)の下限値を、0.65、0.70、0.75、0.78、さらに0.82に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(9)を満足することが望ましい。
 1.10<ft/fw<1.50 ・・・(9)
 但し、ft:望遠端状態における変倍光学系ZLの焦点距離
    fw:広角端状態における変倍光学系ZLの焦点距離
 条件式(9)は、変倍光学系ZLの変倍比について、適切な範囲を規定するものである。条件式(9)を満足することで、小型でありながら諸収差を良好に補正することができる。
 条件式(9)の対応値が上限値を上回ると、変倍光学系ZLの変倍比が大きくなるため、変倍光学系ZLを小型にしつつ諸収差を補正することが困難になる。条件式(9)の上限値を、1.45、1.40、1.37、1.33、さらに1.30に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(9)の対応値が下限値を下回ると、変倍光学系ZLの変倍比が小さすぎるため、変倍光学系(ズームレンズ)としての用を成さない。条件式(9)の下限値を、1.15、1.18、1.20、1.22、さらに1.25に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(10)を満足することが望ましい。
 -1.50<(L1r2+L1r1)/(L1r2-L1r1)<-0.60 ・・・(10)
 但し、L1r1:変倍光学系ZLの最も物体側に配置されたレンズにおける物体側のレンズ面の曲率半径
    L1r2:変倍光学系ZLの最も物体側に配置されたレンズにおける像側のレンズ面の曲率半径
 条件式(10)は、変倍光学系ZLの最も物体側に配置されたレンズのシェイプファクターについて、適切な範囲を規定するものである。条件式(10)を満足することで、小型でありながら、像面湾曲、歪曲収差、球面収差、コマ収差等を良好に補正することができる。
 条件式(10)の対応値が上限値を上回ると、像面湾曲や歪曲収差を補正することが困難になる。条件式(10)の上限値を、-0.65、-0.70、-0.75、さらに-0.80に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(10)の対応値が下限値を下回ると、球面収差やコマ収差を補正することが困難になる。条件式(10)の下限値を、-1.45、-1.40、-1.35、-1.30、さらに-1.25に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(11)を満足することが望ましい。
 -0.50<(LEr2+LEr1)/(LEr2-LEr1)<0.60 ・・・(11)
 但し、LEr1:変倍光学系ZLの最も像側に配置されたレンズにおける物体側のレンズ面の曲率半径
    LEr2:変倍光学系ZLの最も像側に配置されたレンズにおける像側のレンズ面の曲率半径
 条件式(11)は、変倍光学系ZLの最も像側に配置されたレンズ(最終レンズ)のシェイプファクターについて、適切な範囲を規定するものである。条件式(11)を満足することで、小型でありながらコマ収差や像面湾曲を良好に補正することができる。
 条件式(11)の対応値が上限値を上回ると、コマ収差を補正することが困難になる。条件式(11)の上限値を、0.55、0.50、0.45、0.40、さらに0.38に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(11)の対応値が下限値を下回ると、像面湾曲を補正することが困難になる。条件式(11)の下限値を、-0.45、-0.40、-0.35、-0.30、さらに-0.25に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLは、第1レンズ群G1と後群GRとの間に配置された絞りを有することが望ましい。これにより、シェーディングを抑えることが可能になる。
 第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(12)を満足することが望ましい。
 88.00°<2ωw ・・・(12)
 但し、2ωw:広角端状態における変倍光学系ZLの全画角
 条件式(12)は、広角端状態における変倍光学系ZLの全画角について、適切な範囲を規定するものである。条件式(12)を満足することで、画角が広い変倍光学系が得られるので好ましい。条件式(12)の下限値を、90.00°、92.00°、94.00°、96.00°、さらに98.00°に設定することで、各実施形態の効果をより確実なものとすることができる。条件式(12)の上限値を、114.00°、110.00°、107.00°、104.00°、さらに102.00°に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(13)を満足することが望ましい。
 0.01<D1/TLw<0.20 ・・・(13)
 但し、D1:第1レンズ群G1の光軸上の厚さ
    TLw:広角端状態における変倍光学系ZLの全長
 条件式(13)は、第1レンズ群G1の光軸上の厚さと、広角端状態における変倍光学系ZLの全長との適切な関係を規定するものである。条件式(13)を満足することで、小型でありながら像面湾曲や球面収差等の諸収差を良好に補正することができる。
 条件式(13)の対応値が上限値を上回ると、小型を維持しつつ、像面湾曲や球面収差等の諸収差を補正することが困難になる。条件式(13)の上限値を、0.19、0.18、さらに0.17に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(13)の対応値が下限値を下回ると、像面湾曲や球面収差等の諸収差を補正することが困難になる。条件式(13)の下限値を、0.03、0.05、さらに0.10に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る変倍光学系ZLは、以下の条件式(14)を満足することが望ましい。
 0.10<Bfw/fw<0.60 ・・・(14)
 但し、Bfw:広角端状態における変倍光学系ZLのバックフォーカス
    fw:広角端状態における変倍光学系ZLの焦点距離
 条件式(14)は、広角端状態における変倍光学系ZLのバックフォーカスと焦点距離の関係を規定するものである。条件式(14)の上限値を、0.58、0.55、0.53、さらに0.50に設定することで、各実施形態の効果をより確実なものとすることができる。また、条件式(14)の下限値を、0.15、0.20、0.25、0.30、0.35、0.40、さらに0.45に設定することで、各実施形態の効果をより確実なものとすることができる。
 続いて、図12を参照しながら、第1実施形態に係る変倍光学系ZLの製造方法について概説する。まず、光軸に沿って物体側から順に、負の屈折力を有する第1レンズ群G1と、少なくとも1つのレンズ群を有する後群GRとを配置する(ステップST1)。次に、変倍の際に、隣り合う各レンズ群の間隔が変化するように構成する(ステップST2)。次に、後群GRの少なくとも1つのレンズ群のうち、正の屈折力を有する最終レンズ群GEを後群GRの最も像側に配置する(ステップST3)。そして、少なくとも上記条件式(1)を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST4)。このような製造方法によれば、小型でありながら良好な光学性能を有する変倍光学系を製造することが可能になる。
 続いて、図13を参照しながら、第2実施形態に係る変倍光学系ZLの製造方法について概説する。まず、光軸に沿って物体側から順に、負の屈折力を有する第1レンズ群G1と、少なくとも1つのレンズ群を有する後群GRとを配置する(ステップST11)。次に、変倍の際に、隣り合う各レンズ群の間隔が変化するように構成する(ステップST12)。そして、少なくとも上記条件式(2)および条件式(3)を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST13)。このような製造方法によれば、小型でありながら良好な光学性能を有する変倍光学系を製造することが可能になる。
 以下、各実施形態の実施例に係る変倍光学系ZLを図面に基づいて説明する。図1、図3、図5、図7、図9は、第1~第5実施例に係る変倍光学系ZL{ZL(1)~ZL(5)}の構成及び屈折力配分を示す断面図である。第1~第5実施例に係る変倍光学系ZL(1)~ZL(5)の断面図では、無限遠から近距離物体に合焦する際の合焦群の光軸に沿った移動方向を「合焦」という文字とともに矢印で示している。第1~第5実施例に係る変倍光学系ZL(1)~ZL(5)の断面図では、広角端状態(W)から望遠端状態(T)に変倍する際の各レンズ群の光軸に沿った移動方向を矢印で示している。
 これら図1、図3、図5、図7、図9において、各レンズ群を符号Gと数字の組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ群等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。
 以下に表1~表5を示すが、この内、表1は第1実施例、表2は第2実施例、表3は第3実施例、表4は第4実施例、表5は第5実施例における各諸元データを示す表である。各実施例では収差特性の算出対象として、d線(波長λ=587.6nm)、g線(波長λ=435.8nm)を選んでいる。
 [全体諸元]の表において、fはレンズ全系の焦点距離、FNОはFナンバー、2ωは画角(単位は°(度)で、ωが半画角である)、Ymaxは最大像高を示す。TLは無限遠合焦時の光軸上でのレンズ最前面からレンズ最終面までの距離にBFを加えた距離を示し、BFは無限遠合焦時の光軸上でのレンズ最終面から像面Iまでの距離(バックフォーカス)を示す。なお、これらの値は、広角端(W)、望遠端(T)の各変倍状態におけるそれぞれについて示している。
 また、[全体諸元]の表において、IHwは、広角端状態における変倍光学系の最大像高を示す。YLE1は、変倍光学系の最も像側に配置されたレンズ(最終レンズ)における物体側のレンズ面の有効半径を示す。fRwは、広角端状態における後群の焦点距離を示す。D1は、第1レンズ群の光軸上の厚さを示す。
 [レンズ諸元]の表において、面番号は光線の進行する方向に沿った物体側からの光学面の順序を示し、Rは各光学面の曲率半径(曲率中心が像側に位置する面を正の値としている)、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材料のd線に対する屈折率、νdは光学部材の材料のd線を基準とするアッベ数、EDは各光学面の有効径(有効直径)をそれぞれ示す。曲率半径の「∞」は平面又は開口を、(絞りS)は開口絞りSをそれぞれ示す。空気の屈折率nd=1.00000の記載は省略している。光学面が非球面である場合には面番号に*印を付して、曲率半径Rの欄には近軸曲率半径を示している。
 [非球面データ]の表には、[レンズ諸元]に示した非球面について、その形状を次式(A)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離(サグ量)を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、その記載を省略している。
 X(y)=(y2/R)/{1+(1-κ×y2/R21/2}+A4×y4+A6×y6+A8×y8+A10×y10 …(A)
 [可変間隔データ]の表には、[レンズ諸元]の表において面間隔が(Di)となっている面番号iでの面間隔を示す。また、[可変間隔データ]の表には、無限遠合焦状態での面間隔、中間距離合焦状態での面間隔、および至近距離合焦状態での面間隔を示す。
 [レンズ群データ]の表には、各レンズ群のそれぞれの始面(最も物体側の面)と焦点距離を示す。
 以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。
 ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。
 (第1実施例)
 第1実施例について、図1~図2および表1を用いて説明する。図1は、第1実施例に係る変倍光学系のレンズ構成を示す図である。第1実施例に係る変倍光学系ZL(1)は、光軸に沿って物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、開口絞りSと、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成される。広角端状態(W)から望遠端状態(T)に変倍する際、第2レンズ群G2と第3レンズ群G3と第4レンズ群G4とが光軸に沿って物体側へ移動し、隣り合う各レンズ群の間隔が変化する。また、変倍の際、開口絞りSは、第2レンズ群G2とともに光軸に沿って移動し、第1レンズ群G1は、像面Iに対して位置が固定される。各レンズ群記号に付けている符号(+)もしくは(-)は各レンズ群の屈折力を示し、このことは以下の全ての実施例でも同様である。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、から構成される。負レンズL11は、両側のレンズ面が非球面である。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、物体側に凹面を向けた正メニスカスレンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合レンズと、から構成される。正メニスカスレンズL22は、両側のレンズ面が非球面である。負メニスカスレンズL24は、像側のレンズ面が非球面である。
 第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL31から構成される。負メニスカスレンズL31は、両側のレンズ面が非球面である。
 第4レンズ群G4は、両凸形状の正レンズL41から構成される。第4レンズ群G4の像側に、像面Iが配置される。
 本実施例では、第2レンズ群G2と、第3レンズ群G3と、第4レンズ群G4とが、全体として正の屈折力を有する後群GRを構成する。そして、第4レンズ群G4が、後群GRの最も像側に配置された最終レンズ群GEに該当する。また、第4レンズ群G4の正レンズL41が、最終レンズに該当する。無限遠物体から近距離物体への合焦の際、第3レンズ群G3が光軸に沿って像側へ移動する。
 以下の表1に、第1実施例に係る変倍光学系の諸元の値を掲げる。なお、第5面は仮想面である。
(表1)
[全体諸元]
変倍比=1.272
IHw=19.629            YLE1=14.900
fRw=17.133              D1=6.256
         W      T
  f     18.400    23.400
FNO     5.720     5.720
 2ω    100.18     85.74
Ymax    19.629    21.050
 TL     49.452    49.452
 Bf     8.581    13.436
[レンズ諸元]
 面番号    R     D    nd   νd   ED
  1*   -357.725   1.200  1.693430  53.30
  2*     6.954   2.756
  3     12.294   2.300  1.900430  37.38
  4     28.572   (D4)
  5      ∞    1.000
  6      ∞    0.700            (絞りS)
  7     7.133   2.598  1.497000  81.61
  8    -41.896   0.221
  9*    12.222   1.449  1.531100  55.91
  10*    12.544   0.852
  11    -32.130   2.220  1.497000  81.61
  12    -6.730   0.900  1.860999  37.10
  13*   -21.076   (D13)
  14*   -10.583   1.200  1.882020  37.23
  15*   -14.489   (D15)
  16    111.344   3.056  1.953750  32.33   29.810
  17   -162.063   Bf               30.550
[非球面データ]
 第1面
 κ=2.000,A4=1.5424E-06,A6=-8.3988E-08,A8=-3.0649E-10,A10=4.4239E-12
 第2面
 κ=0.636,A4=-6.4400E-05,A6=-8.2111E-07,A8=-7.4721E-09,A10=-4.0071E-10
 第9面
 κ=1.000,A4=-1.7502E-04,A6=-4.9201E-07,A8=5.4360E-07,A10=-4.5297E-11
 第10面
 κ=1.000,A4=-2.7091E-04,A6=3.9890E-08,A8=4.1729E-07,A10=4.0626E-08
 第13面
 κ=1.000,A4=4.6801E-04,A6=1.0244E-05,A8=1.2203E-07,A10=-1.5857E-10
 第14面
 κ=0.986,A4=3.5436E-04,A6=-2.4094E-06,A8=7.1549E-09,A10=-6.6462E-11
 第15面
 κ=0.854,A4=3.2250E-04,A6=-1.9429E-06,A8=7.6924E-10,A10=1.5871E-11
[可変間隔データ]
 無限遠合焦状態
          W     M     T
 焦点距離    18.400   20.000   23.400
 物体距離     ∞     ∞     ∞
  D4      8.153    6.692    3.985
  D13      7.266    6.981    7.067
  D15      5.000    5.263    4.512
  Bf      8.581   10.063   13.436
 中間距離合焦状態
          W     M     T
  倍率     -0.025   -0.025   -0.025
 物体距離   730.527   795.834   934.488
  D4      8.153    6.692    3.985
  D13      7.978    7.693    7.823
  D15      4.289    4.552    3.756
  Bf      8.581   10.063   13.436
 至近距離合焦状態
          W     M     T
  倍率     -0.052   -0.056   -0.067
 物体距離   350.002   350.003   350.003
  D4      8.153    6.692    3.985
  D13      8.775    8.631    9.142
  D15      3.491    3.614    2.437
  Bf      8.581   10.063   13.436
[レンズ群データ]
 群   始面   焦点距離
 G1    1    -20.575
 G2    7    14.938
 G3    14    -52.001
 G4    16    69.580
 図2(A)は、第1実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図である。図2(B)は、第1実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図である。各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーの値を示し、非点収差図および歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。dはd線(波長λ=587.6nm)、gはg線(波長λ=435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用い、重複する説明は省略する。
 各諸収差図より、第1実施例に係る変倍光学系は、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第2実施例)
 第2実施例について、図3~図4および表2を用いて説明する。図3は、第2実施例に係る変倍光学系のレンズ構成を示す図である。第2実施例に係る変倍光学系ZL(2)は、光軸に沿って物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、開口絞りSと、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成される。広角端状態(W)から望遠端状態(T)に変倍する際、第2レンズ群G2と第3レンズ群G3と第4レンズ群G4とが光軸に沿って物体側へ移動し、隣り合う各レンズ群の間隔が変化する。また、変倍の際、開口絞りSは、第2レンズ群G2とともに光軸に沿って移動し、第1レンズ群G1は、像面Iに対して位置が固定される。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、から構成される。負レンズL11は、ガラス製レンズ本体の像側の面に樹脂層が設けられて構成されるハイブリッド型のレンズである。樹脂層の像側の面が非球面であり、負レンズL11は複合型の非球面レンズである。後述の[レンズ諸元]において、面番号1がレンズ本体の物体側の面、面番号2がレンズ本体の像側の面および樹脂層の物体側の面(両者が接合する面)、面番号3が樹脂層の像側の面を示す。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、物体側に凹面を向けた正メニスカスレンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合レンズと、から構成される。正メニスカスレンズL22は、両側のレンズ面が非球面である。負メニスカスレンズL24は、像側のレンズ面が非球面である。
 第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL31から構成される。負メニスカスレンズL31は、両側のレンズ面が非球面である。
 第4レンズ群G4は、両凸形状の正レンズL41から構成される。第4レンズ群G4の像側に、像面Iが配置される。
 本実施例では、第2レンズ群G2と、第3レンズ群G3と、第4レンズ群G4とが、全体として正の屈折力を有する後群GRを構成する。そして、第4レンズ群G4が、後群GRの最も像側に配置された最終レンズ群GEに該当する。また、第4レンズ群G4の正レンズL41が、最終レンズに該当する。無限遠物体から近距離物体への合焦の際、第3レンズ群G3が光軸に沿って像側へ移動する。
 以下の表2に、第2実施例に係る変倍光学系の諸元の値を掲げる。なお、第6面は仮想面である。
(表2)
[全体諸元]
変倍比=1.272
IHw=19.683            YLE1=14.870
fRw=17.483              D1=3.588
         W      T
  f     18.400    23.400
FNO     5.713     5.705
 2ω     98.96     85.62
Ymax    19.683    21.120
 TL     49.358    49.358
 Bf     8.579    12.361
[レンズ諸元]
 面番号    R     D    nd   νd   ED
  1    -129.182   1.000  1.741000  52.76
  2     9.532   0.050  1.560930  36.64
  3*     6.858   2.538
  4     13.334   2.300  1.902650  35.72
  5     47.321   (D5)
  6      ∞    1.000
  7      ∞    0.700            (絞りS)
  8     6.988   2.376  1.496997  81.61
  9    -53.107   0.374
  10*    15.475   1.767  1.531131  55.75
  11*    16.211   0.690
  12    -29.593   2.194  1.496997  81.61
  13    -6.685   0.900  1.882023  37.22
  14*   -20.145   (D14)
  15*   -10.562   1.200  1.882023  37.22
  16*   -14.452   (D16)
  17    113.759   3.010  1.953750  32.33   29.730
  18   -168.330   Bf               30.470
[非球面データ]
 第3面
 κ=0.481,A4=-1.0183E-04,A6=-1.2459E-06,A8=3.6115E-09,A10=-1.9727E-10
 第10面
 κ=1.000,A4=-3.4705E-04,A6=1.3896E-06,A8=-2.7121E-08,A10=2.4890E-08
 第11面
 κ=1.000,A4=-6.4815E-04,A6=-6.7139E-06,A8=9.0303E-08,A10=5.7656E-08
 第14面
 κ=1.000,A4=5.7814E-04,A6=1.3551E-05,A8=2.3393E-07,A10=-5.2514E-09
 第15面
 κ=0.741,A4=3.4284E-04,A6=-2.9692E-06,A8=9.9964E-09,A10=-1.3394E-10
 第16面
 κ=1.217,A4=3.4208E-04,A6=-2.1674E-06,A8=1.4380E-09,A10=2.0020E-11
[可変間隔データ]
 無限遠合焦状態
          W     M     T
 焦点距離    18.400   20.000   23.400
 物体距離     ∞     ∞     ∞
  D5      8.735    7.230    4.467
  D14      7.509    6.994    7.015
  D16      4.438    5.034    5.418
  Bf      8.579   10.003   12.361
 中間距離合焦状態
          W     M     T
  倍率     -0.025   -0.025   -0.025
 物体距離   730.410   795.845   934.378
  D5      8.735    7.230    4.467
  D14      8.242    7.713    7.763
  D16      3.705    4.315    4.670
  Bf      8.579   10.003   12.361
 至近距離合焦状態
          W     M     T
  倍率     -0.052   -0.056   -0.066
 物体距離   350.097   350.096   350.097
  D5      8.735    7.230    4.467
  D14      9.066    8.661    9.071
  D16      2.881    3.367    3.362
  Bf      8.579   10.003   12.361
[レンズ群データ]
 群   始面   焦点距離
 G1    1    -22.079
 G2    8    15.408
 G3    15    -52.012
 G4    17    71.547
 図4(A)は、第2実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図である。図4(B)は、第2実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第2実施例に係る変倍光学系は、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第3実施例)
 第3実施例について、図5~図6および表3を用いて説明する。図5は、第3実施例に係る変倍光学系のレンズ構成を示す図である。第3実施例に係る変倍光学系ZL(3)は、光軸に沿って物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、開口絞りSと、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成される。広角端状態(W)から望遠端状態(T)に変倍する際、第2レンズ群G2と第3レンズ群G3と第4レンズ群G4とが光軸に沿って物体側へ移動し、隣り合う各レンズ群の間隔が変化する。また、変倍の際、開口絞りSは、第2レンズ群G2とともに光軸に沿って移動し、第1レンズ群G1は、像面Iに対して位置が固定される。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合レンズと、から構成される。負メニスカスレンズL11は、両側のレンズ面が非球面である。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、両凸形状の正レンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合レンズと、から構成される。負メニスカスレンズL24は、像側のレンズ面が非球面である。
 第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL31から構成される。負メニスカスレンズL31は、両側のレンズ面が非球面である。
 第4レンズ群G4は、両凸形状の正レンズL41から構成される。第4レンズ群G4の像側に、像面Iが配置される。
 本実施例では、第2レンズ群G2と、第3レンズ群G3と、第4レンズ群G4とが、全体として正の屈折力を有する後群GRを構成する。そして、第4レンズ群G4が、後群GRの最も像側に配置された最終レンズ群GEに該当する。また、第4レンズ群G4の正レンズL41が、最終レンズに該当する。無限遠物体から近距離物体への合焦の際、第3レンズ群G3が光軸に沿って像側へ移動する。
 以下の表3に、第3実施例に係る変倍光学系の諸元の値を掲げる。なお、第6面は仮想面である。
(表3)
[全体諸元]
変倍比=1.272
IHw=19.477            YLE1=14.420
fRw=16.595              D1=7.964
         W      T
  f     18.400    23.400
FNO     5.713     5.717
 2ω    100.44     85.97
Ymax    19.477    20.710
 TL     49.532    49.532
 Bf     8.647    13.482
[レンズ諸元]
 面番号    R     D    nd   νd   ED
  1*    130.766   1.200  1.727926  49.17
  2*     7.203   2.864
  3     14.601   0.900  1.497820  82.57
  4     8.389   3.000  1.749341  42.57
  5     27.175   (D5)
  6      ∞    0.700
  7      ∞    0.500            (絞りS)
  8     8.814   1.749  1.496997  81.61
  9    112.334   0.442
  10    10.063   1.308  1.531131  55.75
  11    10.297   0.500
  12    33.074   3.477  1.496997  81.61
  13    -7.477   0.900  1.619518  36.33
  14*   -32.358   (D14)
  15*    -9.518   1.200  1.882023  37.22
  16*   -15.063   (D16)
  17    126.420   3.455  1.900430  37.37   28.830
  18   -100.736   Bf               29.800
[非球面データ]
 第1面
 κ=2.000,A4=1.0197E-06,A6=-8.9402E-08,A8=-2.7648E-10,A10=3.7893E-12
 第2面
 κ=1.000,A4=-2.6735E-05,A6=-6.0936E-07,A8=1.6250E-09,A10=-4.0421E-10
 第14面
 κ=1.000,A4=3.1906E-04,A6=4.8473E-06,A8=7.4277E-08,A10=3.2640E-09
 第15面
 κ=1.000,A4=2.4482E-04,A6=-2.4107E-06,A8=1.3351E-09,A10=-4.9608E-12
 第16面
 κ=1.333,A4=2.7878E-04,A6=-1.9504E-06,A8=8.1780E-09,A10=-8.9157E-12
[可変間隔データ]
 無限遠合焦状態
          W     M     T
 焦点距離    18.400   20.000   23.400
 物体距離     ∞     ∞     ∞
  D5      6.596    5.184    2.575
  D14      7.308    7.148    7.233
  D16      4.787    4.837    4.049
  Bf      8.647   10.169   13.482
 中間距離合焦状態
          W     M     T
  倍率     -0.026   -0.026   -0.026
 物体距離   700.012   749.998   890.028
  D5      6.596    5.184    2.575
  D14      7.760    7.609    7.712
  D16      4.335    4.376    3.570
  Bf      8.647   10.169   13.482
 至近距離合焦状態
          W     M     T
  倍率     -0.052   -0.056   -0.066
 物体距離   350.026   350.087   350.216
  D5      6.596    5.184    2.575
  D14      8.218    8.144    8.467
  D16      3.878    3.841    2.816
  Bf      8.647   10.169   13.482
[レンズ群データ]
 群   始面   焦点距離
 G1    1    -20.271
 G2    8    14.114
 G3    15    -32.619
 G4    17    62.714
 図6(A)は、第3実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図である。図6(B)は、第3実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第3実施例に係る変倍光学系は、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第4実施例)
 第4実施例について、図7~図8および表4を用いて説明する。図7は、第4実施例に係る変倍光学系のレンズ構成を示す図である。第4実施例に係る変倍光学系ZL(4)は、光軸に沿って物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、開口絞りSと、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成される。広角端状態(W)から望遠端状態(T)に変倍する際、第1レンズ群G1が光軸に沿って一旦像側へ移動してから物体側へ移動し、第2レンズ群G2と第3レンズ群G3とが光軸に沿って物体側へ移動し、隣り合う各レンズ群の間隔が変化する。また、変倍の際、開口絞りSは、第2レンズ群G2とともに光軸に沿って移動する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合レンズと、から構成される。負メニスカスレンズL11は、両側のレンズ面が非球面である。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL21と、物体側に凸面を向けた負メニスカスレンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合レンズと、両凸形状の正レンズL24と物体側に凹面を向けた負メニスカスレンズL25との接合レンズと、物体側に凹面を向けた正メニスカスレンズL26と、物体側に凹面を向けた負メニスカスレンズL27と、から構成される。正メニスカスレンズL26は、両側のレンズ面が非球面である。負メニスカスレンズL27は、両側のレンズ面が非球面である。
 第3レンズ群G3は、両凸形状の正レンズL31から構成される。第3レンズ群G3の像側に、像面Iが配置される。
 本実施例では、第2レンズ群G2と、第3レンズ群G3とが、全体として正の屈折力を有する後群GRを構成する。そして、第3レンズ群G3が、後群GRの最も像側に配置された最終レンズ群GEに該当する。また、第3レンズ群G3の正レンズL31が、最終レンズに該当する。無限遠物体から近距離物体への合焦の際、第1レンズ群G1と第2レンズ群G2とが互いに異なる軌跡(移動量)で光軸に沿って物体側へ移動する。
 以下の表4に、第4実施例に係る変倍光学系の諸元の値を掲げる。
(表4)
[全体諸元]
変倍比=1.272
IHw=19.626            YLE1=14.790
fRw=16.390              D1=7.881
         W      T
  f     18.400    23.400
FNO     5.709     5.715
 2ω    100.57     95.34
Ymax    19.626    21.600
 TL     49.499    49.462
 Bf     8.607    12.538
[レンズ諸元]
 面番号    R     D    nd   νd   ED
  1*    71.036   1.200  1.693430  53.30
  2*     7.423   3.005
  3     13.478   1.000  1.497820  82.57
  4     8.024   2.676  1.741855  43.59
  5     19.000   (D5)
  6      ∞    0.500            (絞りS)
  7     15.280   1.627  1.496997  81.61
  8    -33.660   0.200
  9     14.812   0.900  1.850000  27.03
  10     8.658   1.596  1.900430  37.37
  11    17.168   1.207
  12    41.240   2.803  1.496997  81.61
  13    -7.645   0.900  1.587634  41.38
  14    -37.583   0.500
  15*   -447.785   1.941  1.531131  55.75
  16*   -166.952   3.156
  17*   -10.496   1.200  1.882023  37.22
  18*   -18.856   (D18)
  19    162.352   3.705  1.900430  37.37   29.570
  20    -78.975   Bf               30.540
[非球面データ]
 第1面
 κ=2.000,A4=-5.3759E-06,A6=-3.2180E-07,A8=1.9522E-09,A10=-3.2146E-12
 第2面
 κ=0.692,A4=2.4610E-05,A6=-2.1145E-07,A8=-1.0420E-08,A10=-1.1155E-10
 第15面
 κ=1.000,A4=2.4812E-04,A6=-1.1561E-05,A8=6.9825E-07,A10=-8.7384E-09
 第16面
 κ=1.000,A4=3.2250E-04,A6=-1.5148E-05,A8=3.7657E-07,A10=-3.0591E-10
 第17面
 κ=2.000,A4=2.4715E-04,A6=-1.5123E-05,A8=1.3715E-07,A10=-3.6625E-09
 第18面
 κ=2.000,A4=2.5191E-04,A6=-8.2472E-06,A8=1.1360E-07,A10=-3.9580E-10
[可変間隔データ]
 無限遠合焦状態
          W     M     T
 焦点距離    18.400   20.000   23.400
 物体距離     ∞     ∞     ∞
  D5      6.923    5.437    2.955
  D18      5.855    5.855    5.855
  Bf      8.607    9.865   12.538
 中間距離合焦状態
          W     M     T
  倍率     -0.026   -0.026   -0.026
 物体距離   699.337   749.569   889.517
  D5      7.105    5.793    3.440
  D18      6.329    6.142    5.838
  Bf      8.607    9.865   12.538
 至近距離合焦状態
          W     M     T
  倍率     -0.123   -0.129   -0.139
 物体距離   147.150   147.227   147.589
  D5      7.948    7.042    5.553
  D18      7.766    7.293    5.814
  Bf      8.607    9.865   12.538
[レンズ群データ]
 群   始面   焦点距離
 G1    1    -20.847
 G2    7    15.067
 G3    19    59.438
 図8(A)は、第4実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図である。図8(B)は、第4実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第4実施例に係る変倍光学系は、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第5実施例)
 第5実施例について、図9~図10および表5を用いて説明する。図9は、第5実施例に係る変倍光学系のレンズ構成を示す図である。第5実施例に係る変倍光学系ZL(5)は、光軸に沿って物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、開口絞りSと、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成される。広角端状態(W)から望遠端状態(T)に変倍する際、第1レンズ群G1と第2レンズ群G2と第3レンズ群G3と第4レンズ群G4とが光軸に沿って物体側へ移動し、隣り合う各レンズ群の間隔が変化する。また、変倍の際、開口絞りSは、第2レンズ群G2とともに光軸に沿って移動する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、から構成される。負レンズL11は、ガラス製レンズ本体の像側の面に樹脂層が設けられて構成されるハイブリッド型のレンズである。樹脂層の像側の面が非球面であり、負レンズL11は複合型の非球面レンズである。後述の[レンズ諸元]において、面番号1がレンズ本体の物体側の面、面番号2がレンズ本体の像側の面および樹脂層の物体側の面(両者が接合する面)、面番号3が樹脂層の像側の面を示す。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、物体側に凹面を向けた正メニスカスレンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合レンズと、から構成される。正メニスカスレンズL22は、両側のレンズ面が非球面である。負メニスカスレンズL24は、像側のレンズ面が非球面である。
 第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL31から構成される。負メニスカスレンズL31は、両側のレンズ面が非球面である。
 第4レンズ群G4は、両凸形状の正レンズL41から構成される。第4レンズ群G4の像側に、像面Iが配置される。
 本実施例では、第2レンズ群G2と、第3レンズ群G3と、第4レンズ群G4とが、全体として正の屈折力を有する後群GRを構成する。そして、第4レンズ群G4が、後群GRの最も像側に配置された最終レンズ群GEに該当する。また、第4レンズ群G4の正レンズL41が、最終レンズに該当する。無限遠物体から近距離物体への合焦の際、第3レンズ群G3が光軸に沿って像側へ移動する。
 以下の表5に、第5実施例に係る変倍光学系の諸元の値を掲げる。なお、第6面は仮想面である。
(表5)
[全体諸元]
変倍比=1.272
IHw=19.701            YLE1=14.910
fRw=17.165              D1=6.219
         W      T
  f     18.400    23.400
FNO     5.710     5.708
 2ω     99.996    85.06
Ymax    19.701    21.020
 TL     49.709    50.616
 Bf     8.603    12.351
[レンズ諸元]
 面番号    R     D    nd   νd   ED
  1    -281.384   1.000  1.729160  54.61
  2     9.554   0.050  1.560930  36.64
  3*     6.796   2.869
  4     13.179   2.300  1.902650  35.72
  5     35.513   (D5)
  6      ∞    1.000
  7      ∞    0.700            (絞りS)
  8     6.899   3.043  1.496997  81.61
  9    -42.666   0.476
  10*    15.768   1.421  1.531131  55.75
  11*    16.691   0.700
  12    -25.255   2.160  1.496997  81.61
  13    -6.778   0.900  1.882023  37.22
  14*   -20.575   (D14)
  15*   -10.893   1.200  1.882023  37.22
  16*   -15.024   (D16)
  17    111.885   2.987  1.953750  32.33   29.840
  18   -182.140   Bf               30.530
[非球面データ]
 第3面
 κ=0.480,A4=-7.8376E-05,A6=-1.0021E-06,A8=4.2191E-09,A10=-2.0788E-10
 第10面
 κ=1.000,A4=-5.5094E-04,A6=-3.0360E-06,A8=6.0886E-08,A10=3.2465E-08
 第11面
 κ=1.000,A4=-8.3560E-04,A6=-8.8381E-06,A8=1.6661E-07,A10=7.8627E-08
 第14面
 κ=1.000,A4=5.8322E-04,A6=1.2048E-05,A8=2.4869E-07,A10=-1.0244E-08
 第15面
 κ=1.000,A4=3.4821E-04,A6=-2.5826E-06,A8=1.3777E-08,A10=-1.0716E-10
 第16面
 κ=1.000,A4=3.0694E-04,A6=-2.1817E-06,A8=4.7344E-09,A10=-5.5702E-12
[可変間隔データ]
 無限遠合焦状態
          W     M     T
 焦点距離    18.400   20.000   23.400
 物体距離     ∞     ∞     ∞
  D5      8.428    7.074    4.640
  D14      7.745    7.030    6.721
  D16      4.127    4.903    6.098
  Bf      8.603   10.160   12.351
 中間距離合焦状態
          W     M     T
  倍率     -0.025   -0.025   -0.025
 物体距離   730.163   795.653   934.123
  D5      8.428    7.074    4.640
  D14      8.494    7.749    7.444
  D16      3.378    4.183    5.374
  Bf      8.603   10.160   12.351
 至近距離合焦状態
          W     M     T
  倍率     -0.052   -0.056   -0.066
 物体距離   349.746   349.482   348.839
  D5      8.428    7.074    4.640
  D14      9.338    8.701    8.711
  D16      2.534    3.232    4.107
  Bf      8.603   10.160   12.351
[レンズ群データ]
 群   始面   焦点距離
 G1    1    -21.059
 G2    8    15.289
 G3    15    -52.000
 G4    17    73.033
 図10(A)は、第5実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図である。図10(B)は、第5実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第5実施例に係る変倍光学系は、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像性能を有していることがわかる。
 次に、[条件式対応値]の表を下記に示す。この表には、各条件式(1)~(14)に対応する値を、全実施例(第1~第5実施例)について纏めて示す。
 条件式(1)  0.15<ft/fGE<0.60
 条件式(2)  2.00<TLt/IHw<3.00
 条件式(3)  1.00<(-f1)/fRw<1.50
 条件式(4)  0.30<Bfw/IHw<0.60
 条件式(5)  0.50<YLE1/IHw<1.00
 条件式(6)  0.80<(-f1)/fw<1.40
 条件式(7)  0.50<f2/fw<1.00
 条件式(8)  0.60<f2/fRw<1.20
 条件式(9)  1.10<ft/fw<1.50
 条件式(10) -1.50<(L1r2+L1r1)/(L1r2-L1r1)<-0.60
 条件式(11) -0.50<(LEr2+LEr1)/(LEr2-LEr1)<0.60
 条件式(12) 88.00°<2ωw
 条件式(13) 0.01<D1/TLw<0.20
 条件式(14) 0.10<Bfw/fw<0.60
 [条件式対応値](第1~第3実施例)
  条件式  第1実施例  第2実施例  第3実施例
  (1)   0.336     0.327     0.373
  (2)   2.519     2.508     2.543
  (3)   1.201     1.263     1.222
  (4)   0.442     0.436     0.444
  (5)   0.759     0.755     0.740
  (6)   1.118     1.200     1.102
  (7)   0.812     0.837     0.767
  (8)   0.872     0.881     0.850
  (9)   1.272     1.272     1.272
 (10)   -0.962    -0.863    -1.117
 (11)   -0.186    -0.193     0.113
 (12)   100.18     98.96    100.44
 (13)   0.127     0.073     0.161
 (14)   0.472     0.466     0.470
 [条件式対応値](第4~第5実施例)
  条件式  第4実施例  第5実施例
  (1)   0.394     0.320
  (2)   2.520     2.569
  (3)   1.272     1.227
  (4)   0.439     0.437
  (5)   0.754     0.757
  (6)   1.133     1.145
  (7)   0.819     0.831
  (8)   0.919     0.891
  (9)   1.272     1.272
 (10)   -1.233    -0.934
 (11)   0.345    -0.239
 (12)   100.57    100.00
 (13)   0.159     0.125
 (14)   0.468     0.468
 上記各実施例によれば、小型でありながら明るくて良好な光学性能を有する変倍光学系を実現することができる。
 上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。
 以下の内容は、本実施形態の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
 本実施形態の変倍光学系の実施例として3群構成および4群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、5群、6群等)の変倍光学系を構成することもできる。具体的には、本実施形態の変倍光学系の最も物体側や最も像面側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
 単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等を用いた)モータ駆動にも適している。
 レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としても良い。
 レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。
 レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれでも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。
 開口絞りは、第1レンズ群と第2レンズ群との間に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。
 各レンズ面には、フレアやゴーストを軽減し、コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。
 G1 第1レンズ群          G2 第2レンズ群
 G3 第3レンズ群          G4 第4レンズ群
  I 像面               S 開口絞り

Claims (20)

  1.  光軸に沿って物体側から順に並んだ、負の屈折力を有する第1レンズ群と、少なくとも1つのレンズ群を有する後群とからなり、
     変倍の際に、隣り合う各レンズ群の間隔が変化し、
     前記後群の前記少なくとも1つのレンズ群は、前記後群の最も像側に配置された正の屈折力を有する最終レンズ群を含み、
     以下の条件式を満足する変倍光学系。
     0.15<ft/fGE<0.60
     但し、ft:望遠端状態における前記変倍光学系の焦点距離
        fGE:前記最終レンズ群の焦点距離
  2.  光軸に沿って物体側から順に並んだ、負の屈折力を有する第1レンズ群と、少なくとも1つのレンズ群を有する後群とからなり、
     変倍の際に、隣り合う各レンズ群の間隔が変化し、
     以下の条件式を満足する変倍光学系。
     2.00<TLt/IHw<3.00
     1.00<(-f1)/fRw<1.50
     但し、TLt:望遠端状態における前記変倍光学系の全長
        IHw:広角端状態における前記変倍光学系の最大像高
        f1:前記第1レンズ群の焦点距離
        fRw:広角端状態における前記後群の焦点距離
  3.  前記後群の前記少なくとも1つのレンズ群は、前記後群の最も像側に配置された正の屈折力を有する最終レンズ群を含む請求項2に記載の変倍光学系。
  4.  以下の条件式を満足する請求項1に記載の変倍光学系。
     2.00<TLt/IHw<3.00
     但し、TLt:望遠端状態における前記変倍光学系の全長
        IHw:広角端状態における前記変倍光学系の最大像高
  5.  以下の条件式を満足する請求項1または4に記載の変倍光学系。
     1.00<(-f1)/fRw<1.50
     但し、f1:前記第1レンズ群の焦点距離
        fRw:広角端状態における前記後群の焦点距離
  6.  以下の条件式を満足する請求項1~5のいずれか一項に記載の変倍光学系。
     0.30<Bfw/IHw<0.60
     但し、Bfw:広角端状態における前記変倍光学系のバックフォーカス
        IHw:広角端状態における前記変倍光学系の最大像高
  7.  以下の条件式を満足する請求項1~6のいずれか一項に記載の変倍光学系。
     0.50<YLE1/IHw<1.00
     但し、YLE1:前記変倍光学系の最も像側に配置されたレンズにおける物体側のレンズ面の有効半径
        IHw:広角端状態における前記変倍光学系の最大像高
  8.  以下の条件式を満足する請求項1~7のいずれか一項に記載の変倍光学系。
     0.80<(-f1)/fw<1.40
     但し、f1:前記第1レンズ群の焦点距離
        fw:広角端状態における前記変倍光学系の焦点距離
  9.  前記後群の前記少なくとも1つのレンズ群は、前記後群の最も物体側に配置された正の屈折力を有する第2レンズ群を含み、
     以下の条件式を満足する請求項1~8のいずれか一項に記載の変倍光学系。
     0.50<f2/fw<1.00
     但し、f2:前記第2レンズ群の焦点距離
        fw:広角端状態における前記変倍光学系の焦点距離
  10.  前記後群の前記少なくとも1つのレンズ群は、前記後群の最も物体側に配置された正の屈折力を有する第2レンズ群を含み、
     以下の条件式を満足する請求項1~9のいずれか一項に記載の変倍光学系。
     0.60<f2/fRw<1.20
     但し、f2:前記第2レンズ群の焦点距離
        fRw:広角端状態における前記後群の焦点距離
  11.  以下の条件式を満足する請求項1~10のいずれか一項に記載の変倍光学系。
     1.10<ft/fw<1.50
     但し、ft:望遠端状態における前記変倍光学系の焦点距離
        fw:広角端状態における前記変倍光学系の焦点距離
  12.  以下の条件式を満足する請求項1~11のいずれか一項に記載の変倍光学系。
     -1.50<(L1r2+L1r1)/(L1r2-L1r1)<-0.60
     但し、L1r1:前記変倍光学系の最も物体側に配置されたレンズにおける物体側のレンズ面の曲率半径
        L1r2:前記変倍光学系の最も物体側に配置されたレンズにおける像側のレンズ面の曲率半径
  13.  以下の条件式を満足する請求項1~12のいずれか一項に記載の変倍光学系。
     -0.50<(LEr2+LEr1)/(LEr2-LEr1)<0.60
     但し、LEr1:前記変倍光学系の最も像側に配置されたレンズにおける物体側のレンズ面の曲率半径
        LEr2:前記変倍光学系の最も像側に配置されたレンズにおける像側のレンズ面の曲率半径
  14.  前記第1レンズ群と前記後群との間に配置された絞りを有する請求項1~13のいずれか一項に記載の変倍光学系。
  15.  以下の条件式を満足する請求項1~14のいずれか一項に記載の変倍光学系。
     88.00°<2ωw
     但し、2ωw:広角端状態における前記変倍光学系の全画角
  16.  以下の条件式を満足する請求項1~15のいずれか一項に記載の変倍光学系。
     0.01<D1/TLw<0.20
     但し、D1:前記第1レンズ群の光軸上の厚さ
        TLw:広角端状態における前記変倍光学系の全長
  17.  以下の条件式を満足する請求項1~16のいずれか一項に記載の変倍光学系。
     0.10<Bfw/fw<0.60
     但し、Bfw:広角端状態における前記変倍光学系のバックフォーカス
        fw:広角端状態における前記変倍光学系の焦点距離
  18.  請求項1~17のいずれか一項に記載の変倍光学系を備えて構成される光学機器。
  19.  光軸に沿って物体側から順に並んだ、負の屈折力を有する第1レンズ群と、少なくとも1つのレンズ群を有する後群とからなる変倍光学系の製造方法であって、
     変倍の際に、隣り合う各レンズ群の間隔が変化し、
     前記後群の前記少なくとも1つのレンズ群は、前記後群の最も像側に配置された正の屈折力を有する最終レンズ群を含み、
     以下の条件式を満足するように、
     レンズ鏡筒内に各レンズを配置する変倍光学系の製造方法。
     0.15<ft/fGE<0.60
     但し、ft:望遠端状態における前記変倍光学系の焦点距離
        fGE:前記最終レンズ群の焦点距離
  20.  光軸に沿って物体側から順に並んだ、負の屈折力を有する第1レンズ群と、少なくとも1つのレンズ群を有する後群とからなる変倍光学系の製造方法であって、
     変倍の際に、隣り合う各レンズ群の間隔が変化し、
     以下の条件式を満足するように、
     レンズ鏡筒内に各レンズを配置する変倍光学系の製造方法。
     2.00<TLt/IHw<3.00
     1.00<(-f1)/fRw<1.50
     但し、TLt:望遠端状態における前記変倍光学系の全長
        IHw:広角端状態における前記変倍光学系の最大像高
        f1:前記第1レンズ群の焦点距離
        fRw:広角端状態における前記後群の焦点距離
PCT/JP2022/003964 2021-02-12 2022-02-02 変倍光学系、光学機器、および変倍光学系の製造方法 WO2022172821A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022580574A JPWO2022172821A1 (ja) 2021-02-12 2022-02-02
US18/272,576 US20240248288A1 (en) 2021-02-12 2022-02-02 Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
CN202280012052.3A CN116868104A (zh) 2021-02-12 2022-02-02 变倍光学系统、光学设备以及变倍光学系统的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021020692 2021-02-12
JP2021-020692 2021-02-12

Publications (1)

Publication Number Publication Date
WO2022172821A1 true WO2022172821A1 (ja) 2022-08-18

Family

ID=82838774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003964 WO2022172821A1 (ja) 2021-02-12 2022-02-02 変倍光学系、光学機器、および変倍光学系の製造方法

Country Status (4)

Country Link
US (1) US20240248288A1 (ja)
JP (1) JPWO2022172821A1 (ja)
CN (1) CN116868104A (ja)
WO (1) WO2022172821A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158316A (en) * 1980-05-10 1981-12-07 Minolta Camera Co Ltd Wide-angle zoom lens
JPS5719710A (en) * 1980-07-09 1982-02-02 Minolta Camera Co Ltd Zoom lens system capable of macrofocusing
US20110013071A1 (en) * 2009-07-17 2011-01-20 Largan Precision Co., Ltd. Imaging lens system
JP2012173298A (ja) * 2011-02-17 2012-09-10 Sony Corp ズームレンズおよび撮像装置
JP2019191307A (ja) * 2018-04-23 2019-10-31 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
WO2019235471A1 (ja) * 2018-06-05 2019-12-12 株式会社nittoh ズームレンズシステムおよび撮像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158316A (en) * 1980-05-10 1981-12-07 Minolta Camera Co Ltd Wide-angle zoom lens
JPS5719710A (en) * 1980-07-09 1982-02-02 Minolta Camera Co Ltd Zoom lens system capable of macrofocusing
US20110013071A1 (en) * 2009-07-17 2011-01-20 Largan Precision Co., Ltd. Imaging lens system
JP2012173298A (ja) * 2011-02-17 2012-09-10 Sony Corp ズームレンズおよび撮像装置
JP2019191307A (ja) * 2018-04-23 2019-10-31 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
WO2019235471A1 (ja) * 2018-06-05 2019-12-12 株式会社nittoh ズームレンズシステムおよび撮像装置

Also Published As

Publication number Publication date
JPWO2022172821A1 (ja) 2022-08-18
CN116868104A (zh) 2023-10-10
US20240248288A1 (en) 2024-07-25

Similar Documents

Publication Publication Date Title
JP5557092B2 (ja) ズームレンズ、光学機器、およびズームレンズの製造方法
JP5344291B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP5407363B2 (ja) 変倍光学系、撮像装置、変倍光学系の製造方法
JP5333906B2 (ja) ズームレンズおよび光学機器
JP7218813B2 (ja) 変倍光学系及び光学機器
JP7251636B2 (ja) 光学系および光学機器、並びに、変倍光学系および光学機器
JP5407365B2 (ja) 変倍光学系、撮像装置、変倍光学系の製造方法
JP5532402B2 (ja) ズームレンズおよび光学機器
WO2022172821A1 (ja) 変倍光学系、光学機器、および変倍光学系の製造方法
JP7211440B2 (ja) 変倍光学系および光学機器
JP5407364B2 (ja) 変倍光学系、撮像装置、変倍光学系の製造方法
WO2022219918A1 (ja) 変倍光学系、光学機器、および変倍光学系の製造方法
JP7218814B2 (ja) 変倍光学系および光学機器
WO2022264542A1 (ja) 変倍光学系、光学機器、および変倍光学系の製造方法
JP7459981B2 (ja) 光学系および光学機器
JP7552701B2 (ja) 変倍光学系および光学機器
JP7238701B2 (ja) 光学系および光学装置
JP7163974B2 (ja) 変倍光学系および光学機器
WO2024034309A1 (ja) 変倍光学系、光学機器、および変倍光学系の製造方法
JP7196937B2 (ja) 変倍光学系および光学機器
JP7207430B2 (ja) 変倍光学系および光学機器
JP7544209B2 (ja) 変倍光学系および光学機器
JP2022163899A (ja) 変倍光学系、光学機器、および変倍光学系の製造方法
JP7131633B2 (ja) 変倍光学系および光学機器
JP7218761B2 (ja) 変倍光学系および光学機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752649

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18272576

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022580574

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280012052.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752649

Country of ref document: EP

Kind code of ref document: A1