WO2022172406A1 - エレベーター装置 - Google Patents

エレベーター装置 Download PDF

Info

Publication number
WO2022172406A1
WO2022172406A1 PCT/JP2021/005298 JP2021005298W WO2022172406A1 WO 2022172406 A1 WO2022172406 A1 WO 2022172406A1 JP 2021005298 W JP2021005298 W JP 2021005298W WO 2022172406 A1 WO2022172406 A1 WO 2022172406A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
operating
stopper
car
safety device
Prior art date
Application number
PCT/JP2021/005298
Other languages
English (en)
French (fr)
Inventor
靖之 粉川
誠治 渡辺
郁香 水谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112021007084.3T priority Critical patent/DE112021007084T5/de
Priority to PCT/JP2021/005298 priority patent/WO2022172406A1/ja
Priority to JP2022581120A priority patent/JP7418895B2/ja
Priority to CN202180092761.2A priority patent/CN116783134A/zh
Publication of WO2022172406A1 publication Critical patent/WO2022172406A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/04Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/16Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well
    • B66B5/18Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well and applying frictional retarding forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/16Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well
    • B66B5/18Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well and applying frictional retarding forces
    • B66B5/22Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well and applying frictional retarding forces by means of linearly-movable wedges

Definitions

  • the present disclosure relates to an elevator device equipped with a safety device.
  • a conventional safety device has a safety mechanism, a reaction force generator, and a wedge lifting member.
  • the safety mechanism has a wedge.
  • the reaction force generator has a weight and an elastic body.
  • the weight is supported by an elastic body.
  • the weight rises with respect to the elevator according to an increase in acceleration accompanying the fall of the elevator.
  • the wedge is lifted up via a wedge lifting member by lifting the weight (see, for example, Patent Document 1).
  • the lifting body When the lifting body suddenly stops due to the hoist brake, the lifting body decelerates while vibrating.
  • the conventional safety device when the frequency of the lifting body is close to the natural frequency of the reaction force generator having the weight and the elastic body, the weight resonates and the vertical vibration of the weight is amplified. be.
  • the vertical vibration of the weight may cause the safety mechanism to malfunction during deceleration of the elevator.
  • the present disclosure has been made to solve the above-described problems, and aims to obtain an elevator device capable of suppressing malfunction of a safety device.
  • An elevator apparatus includes an elevator, a suspension that suspends the elevator, a drive sheave around which the suspension is wound, and a hoist brake that brakes the rotation of the drive sheave. Equipped with a hoist, a safety device provided on the lifting body, and an operating mechanism for operating the safety device, the operating mechanism comprising a stopper provided on the lifting body and an operating weight placed on the stopper , and an operating spring that applies an upward force to the operating weight.
  • the downward acceleration of the lifting body becomes excessive, the operating weight separates from the stopper, and the movement of the operating weight It is set to activate the safety device.
  • FIG. 1 is a configuration diagram schematically showing an elevator device according to Embodiment 1;
  • FIG. FIG. 2 is a front view showing a relationship between a car guide rail and a safety device in FIG. 1; 3 is a cross-sectional view taken along line III-III of FIG. 2;
  • FIG. FIG. 2 is a front view showing a state of the safety device of FIG. 1 during operation;
  • FIG. 5 is a cross-sectional view taken along line VV of FIG. 4;
  • FIG. 2 is a configuration diagram showing an enlarged view of the car of FIG. 1;
  • FIG. 7 is a configuration diagram showing a state in which the suspension shown in FIG. 6 is broken;
  • FIG. 7 is a graph showing the relationship between the vertical displacement of the operating weight and time when the stopper in FIG.
  • FIG. 7 is a configuration diagram showing a car in which dampers are used in place of the stoppers of FIG. 6; 7 is a graph showing the relationship between vertical displacement of the operating weight and time when a damper is used instead of the stopper of FIG. 6; 7 is a graph showing the relationship between the vertical displacement of the operating weight in the operating mechanism of FIG. 6 and time.
  • FIG. 7 is a graph showing a method of setting a vertical position where the stopper shown in FIG. 6 receives an operating weight;
  • FIG. 4 is a configuration diagram showing a car of an elevator device according to Embodiment 2;
  • FIG. FIG. 11 is a configuration diagram showing a car of an elevator device according to Embodiment 3;
  • FIG. 11 is a configuration diagram showing a car of an elevator device according to Embodiment 4; 16 is a graph showing the relationship between the vertical displacement of the operating weight in the operating mechanism of FIG. 15 and time.
  • FIG. 11 is a configuration diagram showing a car of an elevator device according to Embodiment 5;
  • FIG. 11 is a configuration diagram showing a car of an elevator device according to Embodiment 6;
  • FIG. 11 is a configuration diagram schematically showing an elevator device according to Embodiment 7;
  • FIG. 1 is a configuration diagram schematically showing an elevator device according to Embodiment 1.
  • a machine room 2 is provided above the hoistway 1 .
  • a hoisting machine 3 is installed in the machine room 2 .
  • a deflection wheel 4 is installed in the machine room 2.
  • the hoisting machine 3 has a drive sheave 6 , a hoisting machine motor (not shown), and a hoisting machine brake 7 .
  • a hoist motor rotates the drive sheave 6 .
  • the hoist brake 7 keeps the drive sheave 6 stationary.
  • the hoist brake 7 also brakes the rotation of the drive sheave 6 .
  • An electromagnetic brake is used as the hoist brake 7 .
  • a suspension 8 is wound around the drive sheave 6 and the deflector wheel 4 .
  • a plurality of ropes or a plurality of belts are used as the suspension body 8 .
  • a car 9 as an elevating body is connected to a first end of the suspension body 8 .
  • a counterweight 10 is connected to the second end of the suspension 8 .
  • the car 9 and the counterweight 10 are suspended in the hoistway 1 by the suspension 8. Also, the car 9 and the counterweight 10 are raised and lowered by rotating the drive sheave 6 .
  • the control device 5 controls the operation of the car 9 by controlling the hoisting machine 3 .
  • a pair of car guide rails 11 and a pair of counterweight guide rails 12 are installed in the hoistway 1 .
  • a pair of car guide rails 11 guides the car 9 to move up and down.
  • a pair of counterweight guide rails 12 guide the lifting and lowering of the counterweight 10 .
  • a car shock absorber 13 and a counterweight shock absorber 14 are installed in the pit 1a of the hoistway 1.
  • the pit 1a is a part of the hoistway 1 and is a part below the floor surface of the lowest floor.
  • a safety device 15 is mounted at the bottom of the car 9.
  • the emergency stop device 15 brings the car 9 to an emergency stop by gripping the pair of car guide rails 11 .
  • an elevator with a rated speed exceeding 45 m/min uses a step-by-step safety device.
  • An operating lever 16 is provided on the safety device 15 .
  • the safety device 15 is actuated by pulling up the actuating lever 16 .
  • An operating mechanism 17 is provided on the top of the car 9 .
  • the actuating mechanism 17 is connected to the actuating lever 16 via a lifting rod 18 . Further, the operating mechanism 17 operates the safety device 15 via the lifting rod 18 and the operating lever 16 when the downward acceleration of the car 9 becomes excessive. Excessive acceleration is acceleration that occurs when the suspension 8 breaks and the car 9 falls.
  • a speed detector 19 is provided in the car 9 .
  • Speed detector 19 generates a signal corresponding to the speed of car 9 .
  • a signal from the speed detector 19 is transmitted to the control device 5 via a control cable (not shown).
  • An excessive speed is set in the control device 5 .
  • the excessive speed is set to a speed higher than the rated speed of the car 9, for example, 1.3 times the rated speed.
  • a safety circuit (not shown) may be immediately cut off to cut off the power supply to the hoisting machine 3 .
  • An electric sensor, an optical sensor, a mechanical sensor, or the like can be used as the speed detector 19 .
  • an absolute value sensor for detecting the absolute value of displacement of the car 9 can be used.
  • a mechanical sensor has, for example, a detection rotor, a centrifugal mechanism, and an excessive speed detection switch.
  • the detection rotator rotates while contacting the car guide rail 11 .
  • the centrifugal mechanism is provided on the detection rotor and is displaced according to the rotation speed of the detection rotor.
  • the excessive speed detection switch is operated by the centrifugal mechanism when the speed of the car 9 becomes excessive. When the excessive speed detection switch is operated, power supply to the hoisting machine 3 is cut off.
  • FIG. 2 is a front view showing the relationship between the car guide rail 11 and the safety device 15 in FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2.
  • FIG. FIG. 4 is a front view showing the operating state of the safety device 15 of FIG. 5 is a cross-sectional view taken along line VV of FIG. 4.
  • FIG. 1 is a front view showing the relationship between the car guide rail 11 and the safety device 15 in FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2.
  • FIG. 4 is a front view showing the operating state of the safety device 15 of FIG. 5 is a cross-sectional view taken along line VV of FIG. 4.
  • the safety device 15 has a frame 21 and a pair of grips 22 .
  • One of the pair of gripping portions 22 corresponds to one of the pair of car guide rails 11 .
  • the other of the pair of gripping portions 22 corresponds to the other of the pair of car guide rails 11 .
  • the pair of grips 22 are provided on the frame 21 . 2-5, only one of the pair of grips 22 is shown.
  • Each gripping portion 22 has a pair of wedge members 23 , a pair of wedge guides 24 and a plurality of wedge guide springs 25 .
  • a pair of wedge members 23 are opposed to corresponding car guide rails 11 respectively.
  • Each wedge guide 24 is provided with an inclined surface 24a.
  • the inclined surface 24a approaches the car guide rail 11 as it goes upward.
  • Each wedge member 23 is vertically movable with respect to the frame 21 along the inclined surface 24 a of the corresponding wedge guide 24 .
  • the wedge guide spring 25 is provided between the frame 21 and the wedge guide 24 .
  • each wedge member 23 faces the corresponding car guide rail 11 with a gap therebetween, as shown in FIG. On the other hand, each wedge member 23 is pulled up when the safety device 15 is actuated. At this time, each wedge member 23 is guided by the inclined surface 24 a to approach the car guide rail 11 and come into contact with the car guide rail 11 .
  • each wedge member 23 When each wedge member 23 is further pulled up, each wedge member 23 moves upward while pressing the wedge guide 24 horizontally so as to contract the wedge guide spring 25 .
  • the frictional force generated between each car guide rail 11 and the corresponding gripping portion 22 increases according to the amount of rise of each wedge member 23 with respect to the frame 21 .
  • each car guide rail 11 is gripped by the corresponding gripping portion 22, and the car 9 is brought to an emergency stop.
  • FIG. 6 is a configuration diagram showing an enlarged view of the car 9 in FIG.
  • the operating mechanism 17 has a stopper 31 , an operating weight 32 and an operating spring 33 .
  • the stopper 31 is provided on the top of the car 9. Further, the stopper 31 has a support 31a and a stopper main body 31b.
  • the post 31a is erected on the top of the car 9. As shown in FIG.
  • the stopper main body 31b is provided at the upper end of the support 31a.
  • the operating weight 32 is normally placed on the stopper 31.
  • the position at which the stopper 31 receives the operating weight 32 can be adjusted vertically with respect to the car 9 .
  • the upper end of the lifting rod 18 is rotatably connected to the operating weight 32.
  • a lower end of the lifting rod 18 is rotatably connected to the operating lever 16 .
  • the operating spring 33 is provided between the car 9 and the operating weight 32. Also, the operating spring 33 is normally compressed by the weight of the operating weight 32 . Thereby, the operating spring 33 applies an upward force to the operating weight 32 .
  • the actuating mechanism 17 is set so that when the downward acceleration of the car 9 becomes excessive, the actuating weight 32 moves upward from the stopper 31, and the movement of the actuating weight 32 actuates the emergency stop device 15. It is
  • the stopper 31 supports part of the dead weight of the working weight 32. Further, even if the stopper 31 receives the weight of the operating weight 32, the stopper 31 neither displaces nor deforms in the vertical direction.
  • FIG. 7 is a configuration diagram showing a state in which the suspension body 8 in FIG. 6 is broken.
  • the pressing force of the operating weight 32 against the operating spring 33 disappears.
  • the operating spring 33 extends to its length when it becomes weightless, which is its natural length in this example.
  • the operating weight 32 moves upward relative to the car 9 and leaves the stopper 31 .
  • the actuating lever 16 is lifted via the lifting rod 18, and the safety device 15 is immediately actuated.
  • FIG. 8 is a graph showing the relationship between the vertical displacement of the operating weight 32 and time when the stopper 31 of FIG. 6 is removed.
  • the horizontal axis indicates time
  • the vertical axis indicates the displacement of the working weight 32 in the vertical direction.
  • the thick line C1 indicates the displacement of the actuating weight 32 when the suspension body 8 breaks.
  • a thin line C2 indicates the displacement of the operating weight 32 when the hoisting machine brake 7 is operated while the car 9 is running.
  • a straight line L1 indicated by a solid line indicates the stationary position of the working weight 32 after vibration damping.
  • the steady-state position of the working weight 32 corresponds to the position of the working weight 32 determined by the natural length of the working spring 33, ie the position of the working weight 32 when gravity is substantially absent.
  • the working weight 32 oscillates up and down from its steady position.
  • a dashed straight line L2 indicates a position where each wedge member 23 contacts the car guide rail 11 and the safety device 15 starts decelerating the car 9 .
  • the vibration frequency determined by the mass of the car 9 and the length of the suspension body 8 increases during the operation of the hoisting machine brake 7. may be close to the vibration frequency of the actuating weight 32 of .
  • the vibration of the operating weight 32 gradually increases, and there is a possibility that the emergency stop device 15 will malfunction before the car 9 stops.
  • FIG. 10 is a graph showing the relationship between the vertical displacement of the operating weight 32 and time when the damper 34 is used instead of the stopper 31 of FIG.
  • the wedge member 23 does not reach the position where it contacts the guide rail 11 . Therefore, malfunction of the safety device 15 is prevented.
  • the malfunction of the safety device 15 can be suppressed, and an emergency when the suspension body 8 breaks can be prevented.
  • the stopping device 15 can be activated quickly. The reason for this will be detailed below.
  • the operating weight 32 does not move at first, as indicated by the thin line C2 in FIG. This is because a part of the dead weight of the working weight 32 is supported by the stopper 31, so that the working weight 32 does not rise until the support reaction force of the stopper 31 becomes zero.
  • the support reaction force of the stopper 31 becomes 0 and the operating weight 32 starts to move upward.
  • the maximum amount of upward displacement of the operating weight 32 is kept lower than when the stopper 31 is not provided.
  • the time during which the operating weight 32 is lifted from the stopper 31 while the car 9 is being decelerated by the hoisting machine brake 7 is sufficiently shorter than the vibration period when the suspension body 8 is broken indicated by the thick line C1. Therefore, the motion of the working weight 32 does not become a periodic vibration like a sine wave. Therefore, even if the car 9 continues to vibrate due to the operation of the hoisting machine brake 7, the operating weight 32 does not resonate with the car 9, and the malfunction of the safety device 15 is suppressed more reliably.
  • the emergency stop device 15 can be activated early without depending on the speed of the car 9 when the suspension 8 is broken. can be stopped more safely.
  • the position at which the stopper 31 receives the operating weight 32 can be adjusted in the vertical direction. Therefore, the position at which the stopper 31 receives the operating weight 32 during normal operation can be easily adjusted for each elevator device. Therefore, malfunction of the safety device 15 can be suppressed more reliably.
  • the speed governor and the speed governor rope can be omitted, reducing the equipment cost and realizing space saving of the hoistway 1.
  • the governor rope will not get caught on the hoistway equipment during earthquakes and strong winds. This enables early recovery after an earthquake.
  • the operating mechanism 17 can be easily applied to a high-lift elevator device in which it is difficult to use a governor rope.
  • the natural frequency determined by the mass of the operating weight 32 and the rigidity of the operating spring 33 is the lowest vibration frequency among the vertical vibration frequencies generated in the car 9 by the operation of the hoist brake 7. It is preferably set to a number or less. This more reliably suppresses the operating weight 32 from resonating with the vibration of the car 9 .
  • the above minimum frequency is the frequency when the length of the part of the suspension body 8 extending upward from the car 9 is the longest.
  • the natural frequency is preferably set to be equal to or lower than the vertical vibration frequency of the car 9 when the hoist brake 7 is activated when the car 9 is located on the lowest floor. be.
  • FIG. 12 is a graph showing a method of setting the vertical position at which the stopper 31 of FIG. 6 receives the operating weight 32 .
  • the thick line C1, the thin line C2, and the straight line L1 are the same as in FIG.
  • a straight line L3 indicated by a dashed line is the average ascending position of the operating weight 32 when the hoisting machine brake 7 is operated.
  • the average ascending position is the position of the operating weight 32 obtained by excluding the vibration component of the operating weight 32 from the fluctuation of the vertical position of the operating weight 32 when the hoisting machine brake 7 is operated with the stopper 31 removed. .
  • the lift position of the operating weight 32 when the hoisting machine brake 7 is activated varies depending on the loading conditions of the car 9, the position of the car in the hoistway 1, etc. Position L3.
  • a straight line L4 indicated by a one-dot chain line is the vertical position where the operating weight 32 is received by the stopper 31.
  • the vertical position L4 at which the operating weight 32 is received by the stopper 31 is preferably set between the normal position L1 of the operating weight 32 when the suspension 8 is broken and the average ascending position L3.
  • the position of the straight line L2 should be set between the vertical position where the stopper 31 receives the operating weight 32 and the straight line L1. That is, the lifted distance of the operating lever 16 until each wedge member 23 contacts the guide rail 11 is longer than the distance from the normal position of the operating weight 32 to the normal position of the operating weight 32 when the suspension 8 is broken. , should be set to a short distance.
  • the safety device 15 can be operated more reliably without the operating weight 32 vibrating.
  • the strut 31a may be extendable so that the position at which the stopper 31 receives the operating weight 32 can be adjusted in the vertical direction.
  • the column 31a is provided with a locking mechanism (not shown), and the locking mechanism locks the expansion and contraction of the column 31a. By releasing the lock mechanism, the extension and contraction of the column 31a is permitted.
  • the stopper body 31b may be vertically movable with respect to the support 31a by rotating the stopper body 31b with respect to the support 31a.
  • the position at which the stopper 31 receives the operating weight 32 may be vertically adjustable.
  • FIG. 13 is a configuration diagram showing the car 9 of the elevator apparatus according to Embodiment 2, showing a state in which the safety device 15 is activated.
  • the operating mechanism 17 of the second embodiment has a low-resilience member 35 in addition to the configuration similar to that of the first embodiment.
  • the low-resilience member 35 is fixed to the upper surface of the stopper body 31b. Therefore, the low-resilience member 35 is normally interposed between the stopper 31 and the operating weight 32 .
  • a viscoelastic body having both elasticity and viscosity is used as the material of the low-resilience member 35 .
  • the viscoelastic body include rubber, urethane foam, polymer gel, and the like.
  • the impact resilience of the low-resilience member 35 is lower than that of the stopper 31 .
  • the impact resilience of the low-resilience member 35 is preferably 15% or less.
  • the impact resilience defined in "JIS K 6400-3" is the ratio obtained by dropping a steel ball with a mass of 16 kg from a height of 500 mm and dividing the maximum height of the rebounded steel ball by the drop height of 500 mm.
  • the configuration of the elevator device other than the low-resilience member 35 is the same as that of the first embodiment.
  • the operating weight 32 is suppressed from resonating with the vibration of the car 9 and rising significantly, and malfunction of the emergency stop device 15 when the hoisting machine brake 7 is operating can be suppressed more reliably.
  • the low-resilience member 35 may be provided on the operating weight 32 or may be provided on both the stopper 31 and the operating weight 32.
  • FIG. 14 is a configuration diagram showing the car 9 of the elevator system according to Embodiment 3, showing a state in which the safety device 15 is activated.
  • the stopper 31 of the third embodiment is composed only of the stopper main body 31b of the first embodiment.
  • a support spring 36 and a first damper 37 are interposed between the stopper 31 and the car 9 instead of the strut 31a of the first embodiment. That is, the actuation mechanism 17 of Embodiment 3 has a stopper 31 , an actuation weight 32 , an actuation spring 33 , a support spring 36 and a first damper 37 .
  • the rigidity of the support spring 36 is sufficiently higher than that of the operating spring 33.
  • a first damper 37 is provided in parallel with the support spring 36 between the stopper 31 and the car 9 .
  • the configuration of the elevator device other than the stopper 31, the support spring 36, and the first damper 37 is the same as that of the first embodiment.
  • the support spring 36 and the first damper 37 mitigate the impact when the working weight 32 collides with the stopper 31, and the jumping of the working weight 32 is suppressed. As a result, it is possible to more reliably suppress malfunction of the emergency stop device 15 when the hoisting machine brake 7 is actuated.
  • FIG. 15 is a configuration diagram showing the car 9 of the elevator system according to Embodiment 4, showing a state in which the safety device 15 is activated.
  • the operating mechanism 17 of the fourth embodiment has a second damper 38 in addition to the same configuration as that of the first embodiment.
  • the second damper 38 is arranged in parallel with the operating spring 33 between the operating weight 32 and the car 9 . Further, the second damper 38 has a damping force that suppresses lifting of the operating weight 32 from the stopper 31 when the hoisting machine brake 7 is operated.
  • the configuration of the elevator device other than the second damper 38 is the same as that of the first embodiment.
  • FIG. 16 is a graph showing the relationship between the vertical displacement of the operating weight 32 in the operating mechanism 17 of FIG. 15 and time.
  • the actuating weight 32 remains stationary on the stopper 31 without rising from the stopper 31 due to the damping force of the second damper 38 . Therefore, it is possible to more reliably suppress malfunction of the emergency stop device 15 when the hoisting machine brake 7 is actuated.
  • a second damper 38 may be added to the actuation mechanism 17 shown in the second and third embodiments.
  • FIG. 17 is a configuration diagram showing the car 9 of the elevator apparatus according to Embodiment 5, showing a state in which the safety device 15 is activated.
  • the actuation mechanism 17 of the fifth embodiment has a guide member 39 in addition to the configuration similar to that of the first embodiment.
  • the guide member 39 is erected on the car 9. Also, the guide member 39 passes through the operating weight 32 . Further, the guide member 39 guides the vertical movement of the operating weight 32 .
  • the configuration of the elevator device other than the guide member 39 is the same as that of the first embodiment.
  • the operating weight 32 can be smoothly moved upward when the suspension 8 is broken, and the safety device 15 can be operated more reliably.
  • a guide member 39 may be added to the operating mechanism 17 shown in the second to fourth embodiments.
  • the position, shape, and number of the guide members 39 are not limited to the above examples.
  • FIG. 18 is a configuration diagram showing the car 9 of the elevator apparatus according to Embodiment 6, showing a state in which the emergency stop device 15 is activated.
  • the working weight 32 of Embodiment 6 has a working weight body 32a and at least one adjustment weight 32b.
  • FIG. 18 shows two adjustment weights 32b.
  • each adjustment weight 32b is smaller than the mass of the working weight main body 32a.
  • Each adjustment weight 32b is retained on the working weight body 32a so that it does not fall off the working weight body 32a as the working weight body 32a is displaced.
  • the configuration of the elevator device other than the operating weight 32 is the same as that of the first embodiment.
  • the mass of the entire working weight 32 can be easily adjusted. Therefore, the natural frequency determined by the mass of the operating weight 32 and the rigidity of the operating spring 33 can be easily adjusted, and the resonance of the operating weight 32 with the vibration of the car 9 is suppressed more reliably. Therefore, malfunction of the safety device 15 when the safety device 15 is activated can be suppressed more reliably.
  • working weight 32 of the sixth embodiment may be applied to the second to fifth embodiments.
  • the speed detector 19 may be provided in the hoistway 1, the hoisting machine 3, or the counterweight 10.
  • FIG. 19 is a configuration diagram schematically showing an elevator device according to Embodiment 7.
  • the safety device 15 mounted on the car 9 is referred to as a first safety device 15 .
  • the operating lever 16 provided on the first safety device 15 is referred to as the first operating lever 16 .
  • the pull-up rod 18 connected to the first operating lever 16 is referred to as the first pull-up rod 18 .
  • a second safety device 41 is mounted below the counterweight 10 .
  • the second safety device 41 brings the counterweight 10 to an emergency stop by gripping the pair of counterweight guide rails 12 .
  • the configuration of the second safety device 41 is similar to that of the first safety device 15 . That is, as the second safety device 41, a stepped safety device is used.
  • a second operating lever 42 is provided on the second safety device 41 .
  • the second safety device 41 operates when the second operating lever 42 is pulled up.
  • An operating mechanism 17 is provided above the counterweight 10 .
  • the configuration of the actuation mechanism 17 is the same as the configuration of the actuation mechanism 17 of any one of the first to sixth embodiments or the configuration of the actuation mechanism 17 obtained by appropriately combining the first to sixth embodiments.
  • the operating mechanism 17 is connected to the second operating lever 42 via the second lifting rod 43 . Further, the operating mechanism 17 operates the second safety device 41 via the second lifting rod 43 and the second operating lever 42 when the downward acceleration of the counterweight 10 becomes excessive.
  • the lifting body of Embodiment 7 is a counterweight 10 .
  • a speed governor 51 is installed in the machine room 2.
  • the speed governor 51 monitors whether or not the car 9 is running at an excessive speed. Further, the speed governor 51 has a speed governor sheave 52, an excessive speed detection switch (not shown), and a rope catch (not shown).
  • a governor rope 53 is wound around the governor sheave 52 .
  • the speed governor rope 53 is laid in a loop in the hoistway 1 .
  • the speed governor rope 53 is connected to the first lifting rod 18 .
  • a tension wheel 54 is provided in the pit 1a.
  • a governor rope 53 is wound around the pulley 54 .
  • the speed governor 51 mechanically detects that the running speed of the car 9 has reached an excessive speed.
  • a first overspeed and a second overspeed are set in the speed governor 51 .
  • the first overspeed is a speed higher than the rated speed.
  • the second overspeed is a speed higher than the first overspeed.
  • the excessive speed detection switch When the travel speed of the car 9 reaches the first excessive speed, the excessive speed detection switch is operated. As a result, power supply to the hoisting machine 3 is cut off, the hoisting machine brake 7 is activated, and the car 9 is suddenly stopped.
  • Embodiments 1 to 6 The speed detector 19 used in Embodiments 1 to 6 is omitted in Embodiment 7.
  • Other configurations in the seventh embodiment are similar to those in the first embodiment.
  • the second safety device 41 may be mounted on the counterweight 10 .
  • the actuation mechanism 17 may be mounted on the counterweight 10 .
  • the above minimum frequency is the frequency when the car 9 is positioned on the top floor.
  • the speed governor 51, the speed governor rope 53, and the tension pulley 54 may be omitted, and the operating mechanism 17 may be mounted on the car 9 as well.
  • the excessive speed of the car 9 is detected by a speed detector 19, for example.
  • the operating mechanism 17 is provided on the top of the car 9 or the counterweight 10, but it may be provided on the side or bottom of the car 9 or the counterweight 10. .
  • the layout of the entire elevator device is not limited to the layouts shown in FIGS.
  • the roping scheme may be a 2:1 roping scheme.
  • the elevator device may be a machine room-less elevator, a double-deck elevator, a one-shaft multi-car elevator device, or the like.
  • the one-shaft multi-car system is a system in which an upper car and a lower car located directly below the upper car independently ascend and descend a common hoistway.

Abstract

エレベーター装置において、非常止め装置を作動させる作動機構は、ストッパーと、作動おもりと、作動ばねとを有している。ストッパーは、昇降体に設けられている。作動おもりは、ストッパーに載せられている。作動ばねは、上方向への力を作動おもりに付与している。作動機構は、昇降体の下向きの加速度が過大加速度となったときに、作動おもりがストッパーから離れ、作動おもりの動きによって非常止め装置を作動させる。

Description

エレベーター装置
 本開示は、非常止め装置を備えているエレベーター装置に関するものである。
 従来の非常止め装置は、非常止め機構と、反力発生器と、楔引き上げ部材とを有している。非常止め機構は、楔を有している。反力発生器は、おもりと、弾性体とを有している。おもりは、弾性体に支持されている。また、おもりは、昇降体の落下に伴う加速度の増加に応じて昇降体に対して上昇する。楔は、おもりの上昇により、楔引き上げ部材を介して引き上げられる(例えば、特許文献1参照)。
特開2004-345803号公報
 巻上機ブレーキによって昇降体が急停止する場合、昇降体は振動しながら減速する。これに対して、従来の非常止め装置では、昇降体の振動数が、おもりと弾性体とを有する反力発生器の固有振動数に近いと、おもりが共振し、おもりの上下振動が増幅される。そして、おもりの上下振動によって、昇降体の減速途中に非常止め機構が誤作動する恐れがある。
 本開示は、上記のような課題を解決するためになされたものであり、非常止め装置の誤作動を抑制することができるエレベーター装置を得ることを目的とする。
 本開示に係るエレベーター装置は、昇降体、昇降体を吊り下げている懸架体、懸架体が巻き掛けられている駆動シーブと、駆動シーブの回転を制動する巻上機ブレーキとを有している巻上機、昇降体に設けられている非常止め装置、及び非常止め装置を作動させる作動機構を備え、作動機構は、昇降体に設けられているストッパーと、ストッパーに載せられている作動おもりと、上方向への力を作動おもりに付与している作動ばねとを有しており、昇降体の下向きの加速度が過大加速度となったときに、作動おもりがストッパーから離れ、作動おもりの動きによって非常止め装置を作動させるように設定されている。
 本開示のエレベーター装置によれば、非常止め装置の誤作動を抑制することができる。
実施の形態1によるエレベーター装置を模式的に示す構成図である。 図1のかごガイドレールと非常止め装置との関係を示す正面図である。 図2のIII-III線に沿う断面図である。 図1の非常止め装置の作動時の状態を示す正面図である。 図4のV-V線に沿う断面図である。 図1のかごを拡大して示す構成図である。 図6の懸架体が破断した状態を示す構成図である。 図6のストッパーが取り除かれた場合における作動おもりの上下方向への変位と時間との関係を示すグラフである。 図6のストッパーの代わりにダンパーが用いられているかごを示す構成図である。 図6のストッパーの代わりにダンパーが用いられた場合における作動おもりの上下方向への変位と時間との関係を示すグラフである。 図6の作動機構における作動おもりの上下方向への変位と時間との関係を示すグラフである。 図6のストッパーが作動おもりを受ける上下方向の位置の設定方法を示すグラフである。 実施の形態2によるエレベーター装置のかごを示す構成図である。 実施の形態3によるエレベーター装置のかごを示す構成図である。 実施の形態4によるエレベーター装置のかごを示す構成図である。 図15の作動機構における作動おもりの上下方向への変位と時間との関係を示すグラフである。 実施の形態5によるエレベーター装置のかごを示す構成図である。 実施の形態6によるエレベーター装置のかごを示す構成図である。 実施の形態7によるエレベーター装置を模式的に示す構成図である。
 以下、実施の形態について、図面を参照して説明する。
 実施の形態1.
 図1は、実施の形態1によるエレベーター装置を模式的に示す構成図である。図において、昇降路1の上には、機械室2が設けられている。機械室2には、巻上機3、そらせ車4、及び制御装置5が設置されている。
 巻上機3は、駆動シーブ6と、図示しない巻上機モーターと、巻上機ブレーキ7とを有している。巻上機モーターは、駆動シーブ6を回転させる。巻上機ブレーキ7は、駆動シーブ6の静止状態を保持する。また、巻上機ブレーキ7は、駆動シーブ6の回転を制動する。巻上機ブレーキ7としては、電磁ブレーキが用いられている。
 駆動シーブ6及びそらせ車4には、懸架体8が巻き掛けられている。懸架体8としては、複数本のロープ又は複数本のベルトが用いられている。懸架体8の第1端部には、昇降体としてのかご9が接続されている。懸架体8の第2端部には、釣合おもり10が接続されている。
 かご9及び釣合おもり10は、懸架体8により昇降路1内に吊り下げられている。また、かご9及び釣合おもり10は、駆動シーブ6を回転させることによって昇降する。制御装置5は、巻上機3を制御することによって、かご9の運行を制御する。
 昇降路1内には、一対のかごガイドレール11と、一対の釣合おもりガイドレール12とが設置されている。一対のかごガイドレール11は、かご9の昇降を案内する。一対の釣合おもりガイドレール12は、釣合おもり10の昇降を案内する。
 昇降路1のピット1aには、かご緩衝器13と、釣合おもり緩衝器14とが設置されている。ピット1aは、昇降路1の一部であって、最下階床面よりも下方の部分である。
 かご9の下部には、非常止め装置15が搭載されている。非常止め装置15は、一対のかごガイドレール11を把持することによって、かご9を非常停止させる。非常止め装置15としては、次第ぎき式非常止め装置が用いられている。一般に、定格速度が45m/minを超えるエレベーターでは、次第ぎき式非常止め装置が用いられている。
 非常止め装置15には、作動レバー16が設けられている。非常止め装置15は、作動レバー16が引き上げられることによって作動する。
 かご9の上部には、作動機構17が設けられている。作動機構17は、引上棒18を介して、作動レバー16に連結されている。また、作動機構17は、かご9の下向きの加速度が過大加速度となったときに、引上棒18及び作動レバー16を介して、非常止め装置15を作動させる。過大加速度は、懸架体8が破断してかご9が落下するときに生じる加速度である。
 かご9には、速度検出器19が設けられている。速度検出器19は、かご9の速度に応じた信号を発生する。速度検出器19からの信号は、図示しない制御ケーブルを介して、制御装置5に送信される。制御装置5には、過大速度が設定されている。過大速度は、かご9の定格速度よりも高い速度、例えば定格速度の1.3倍に設定されている。
 かご9の速度が過大速度となると、制御装置5によって巻上機3への電力の供給が遮断される。これにより、巻上機ブレーキ7が作動し、駆動シーブ6の回転が制動され、かご9が急停止する。
 なお、速度検出器19による検出値が過大速度になると、図示しない安全回路が直ちに遮断されて、巻上機3への電力供給が遮断されてもよい。
 速度検出器19としては、電気式センサ、光学式センサ、機械式センサ等を用いることができる。また、速度検出器19としては、かご9の変位の絶対値を検出する絶対値センサを用いることができる。
 機械式センサは、例えば、検出回転体と、遠心機構と、過大速度検出スイッチとを有している。検出回転体は、かごガイドレール11に接触しながら回転する。遠心機構は、検出回転体に設けられており、検出回転体の回転速度に応じて変位する。過大速度検出スイッチは、かご9の速度が過大速度となったときに、遠心機構によって操作される。過大速度検出スイッチが操作されると、巻上機3への電力の供給が遮断される。
 図2は、図1のかごガイドレール11と非常止め装置15との関係を示す正面図である。図3は、図2のIII-III線に沿う断面図である。図4は、図1の非常止め装置15の作動時の状態を示す正面図である。図5は、図4のV-V線に沿う断面図である。
 非常止め装置15は、枠体21と、一対の把持部22とを有している。一対の把持部22のうちの一方は、一対のかごガイドレール11のうちの一方に対応している。一対の把持部22のうちの他方は、一対のかごガイドレール11のうちの他方に対応している。また、一対の把持部22は、枠体21に設けられている。図2~5では、一対の把持部22のうちの一方のみが示されている。
 各把持部22は、一対の楔部材23、一対の楔ガイド24、及び複数の楔ガイドばね25を有している。
 一対の楔部材23は、対応するかごガイドレール11にそれぞれ対向している。各楔ガイド24には、傾斜面24aが設けられている。傾斜面24aは、上方へ行くに従ってかごガイドレール11に近付いている。
 各楔部材23は、対応する楔ガイド24の傾斜面24aに沿って、枠体21に対して上下動可能である。楔ガイドばね25は、枠体21と楔ガイド24との間に設けられている。
 通常時には、各楔部材23は、図2に示すように、対応するかごガイドレール11に隙間を介して対向している。これに対して、非常止め装置15の作動時には、各楔部材23が引き上げられる。このとき、各楔部材23は、傾斜面24aに案内されてかごガイドレール11に近付いて行き、かごガイドレール11に接触する。
 各楔部材23がさらに引き上げられると、各楔部材23は、楔ガイドばね25を縮めるように楔ガイド24を水平方向へ押しながら上方へ移動する。各かごガイドレール11と、対応する把持部22との間に発生する摩擦力は、枠体21に対する各楔部材23の上昇量に応じて増大する。これにより、各かごガイドレール11は、対応する把持部22によって把持され、かご9が非常停止する。
 図6は、図1のかご9を拡大して示す構成図である。作動機構17は、ストッパー31、作動おもり32、及び作動ばね33を有している。
 ストッパー31は、かご9の上部に設けられている。また、ストッパー31は、支柱31aと、ストッパー本体31bとを有している。支柱31aは、かご9の上部に立てられている。ストッパー本体31bは、支柱31aの上端部に設けられている。
 作動おもり32は、通常時、ストッパー31に載せられている。ストッパー31が作動おもり32を受ける位置は、かご9に対して上下方向へ調整可能になっている。
 引上棒18の上端部は、作動おもり32に回転可能に連結されている。引上棒18の下端部は、作動レバー16に回転可能に連結されている。
 作動ばね33は、かご9と作動おもり32との間に設けられている。また、作動ばね33は、通常時、作動おもり32の自重によって圧縮されている。これにより、作動ばね33は、上方向への力を作動おもり32に付与している。
 作動機構17は、かご9の下向きの加速度が過大加速度となったときに、作動おもり32がストッパー31から上方向へ離れ、この作動おもり32の動きによって、非常止め装置15を作動させるように設定されている。
 通常時、ストッパー31は、作動おもり32の自重の一部を支持している。また、ストッパー31は、作動おもり32の自重を受けても、上下方向へ変位も変形もしない。
 図7は、図6の懸架体8が破断した状態を示す構成図である。懸架体8の破断により、かご9が実質的に自由落下すると、作動おもり32の自重による作動ばね33への押し付け力がなくなる。これにより、作動ばね33は、無重力となったときの長さ、この例では自然長の長さまで伸びる。
 このとき、作動おもり32は、かご9に対して相対的に上方へ動き、ストッパー31から離れる。これにより、引上棒18を介して作動レバー16が引き上げられ、非常止め装置15が直ちに作動する。
 一方、かご9の加速度が変動しない状態、即ちかご9が静止している状態及びかご9が一定速度で走行している状態では、作動おもり32がストッパー31に接触した状態が保たれる。
 ここで、図8は、図6のストッパー31が取り除かれた場合における作動おもり32の上下方向への変位と時間との関係を示すグラフである。図8において、横軸は時間を示し、縦軸は作動おもり32の上下方向への変位を示している。
 また、図8において、太線C1は、懸架体8が破断したときの作動おもり32の変位を示している。細線C2は、かご9の走行中に巻上機ブレーキ7が作動したときの作動おもり32の変位を示している。
 実線で示す直線L1は、作動おもり32の振動減衰後の定常位置を示している。作動おもり32の定常位置は、作動ばね33の自然長によって決まる作動おもり32の位置、即ち重力が実質的に作用しない場合の作動おもり32の位置に対応している。作動おもり32は、定常位置の上下に振動する。
 破線で示す直線L2は、各楔部材23がかごガイドレール11と接触し、非常止め装置15によるかご9の減速が開始される位置を示している。
 巻上機ブレーキ7が作動したとき、かご9に生じる減速度が大きいと、作動おもり32が大きく振動する。これにより、図8に示すように、細線C2が直線L2を超えると、各楔部材23がかごガイドレール11と接触し、非常止め装置15が誤作動する。
 また、巻上機ブレーキ7の作動により生じるかご9の平均減速度が小さい場合であっても、かご9の質量と懸架体8の長さとで決まる振動周波数が、巻上機ブレーキ7の作動中の作動おもり32の振動周波数に近接することがある。この場合、かご9の振動に共振することにより、作動おもり32の振動が次第に増大し、かご9が停止する前に非常止め装置15が誤作動する可能性がある。
 このような非常止め装置15の誤作動を防止するために、例えば図9に示すように、かご9と作動おもり32との間に、作動ばね33と並列に、減衰力の大きなダンパー34を設置する方法が考えられる。
 図10は、図6のストッパー31の代わりにダンパー34が用いられた場合における作動おもり32の上下方向への変位と時間との関係を示すグラフである。この場合、巻上機ブレーキ7の作動により、作動おもり32は上方へ移動するものの、楔部材23がガイドレール11と接触する位置までは到達しない。このため、非常止め装置15の誤作動が防止される。
 しかしながら、懸架体8が破断してから、各楔部材23がガイドレール11に接触するまでの時間が長くなる。このため、懸架体8が破断した瞬間におけるかご9の下降速度が大きいと、非常止め装置15が作動するときのかご9の速度が過大になる恐れがある。
 これに対して、図6及び図7に示したように、ストッパー31を用いた実施の形態1の構成によれば、非常止め装置15の誤作動を抑制しつつ、懸架体8の破断時に非常止め装置15を速やかに作動させることができる。以下に、その理由を詳述する。
 図11は、図6の作動機構17における作動おもり32の上下方向への変位と時間との関係を示すグラフである。ストッパー31が設置されていることにより、懸架体8が破断したときの作動おもり32の変位量Bは、図8に示した変位量Aよりも小さくなる。即ち、変位量Bは、B=A×(1-α)で表され、αの値は0<α<1である。
 ストッパー31が作動おもり32の自重を受けない場合は、α=0となる。この場合、作動おもり32の全自重を作動ばね33により支持することになり、作動おもり32の変位は図8で示す変位となる。
 ストッパー31が作動おもり32の全自重を受ける場合、α=1となる。この場合、作動ばね33は、全く作用しない。
 ストッパー31が存在する状態で、巻上機ブレーキ7が作動すると、図11の細線C2で示すように、最初は作動おもり32が動かない。これは、作動おもり32の自重の一部がストッパー31により支持されているため、ストッパー31の支持反力が0になるまでは、作動おもり32が浮き上がらないことによる。
 この後、かご9の振動が大きくなることにより、作動おもり32の加速度が増加すると、ストッパー31の支持反力が0となり、作動おもり32が上方向へ動き始める。しかし、作動おもり32の上方への最大変位量は、ストッパー31がない場合に比べて低く抑えられる。
 このため、巻上機ブレーキ7によるかご9の減速中における作動おもり32の位置は、各楔部材23がガイドレール11と接触する位置まで到達しない。従って、巻上機ブレーキ7の作動時における非常止め装置15の誤作動が抑制される。
 また、巻上機ブレーキ7によるかご9の減速中に作動おもり32がストッパー31から浮き上がっている時間は、太線C1で示す懸架体8の破断時の振動周期に比べて十分短い。このため、作動おもり32の動きは、正弦波のような周期的な振動とはならない。よって、巻上機ブレーキ7の作動によりかご9が振動し続けたとしても、作動おもり32がかご9と共振することがなく、非常止め装置15の誤作動がより確実に抑制される。
 以上のように、作動おもり32をストッパー31により支持する簡単な構成によって、懸架体8の破断時に、かご9の速度に依存せず、非常止め装置15を早期に作動させることができ、かご9をより安全に停止させることができる。
 また、巻上機ブレーキ7が作動したとき、非常止め装置15が誤作動することをより確実に抑制することができる。
 また、実施の形態1では、ストッパー31が作動おもり32を受ける位置が、上下方向へ調整可能になっている。このため、通常時にストッパー31が作動おもり32を受ける位置を、エレベーター装置毎に容易に調整することができる。従って、非常止め装置15の誤作動をより確実に抑制することができる。
 また、調速機及び調速機ロープを省略することができ、機器コストを削減するとともに、昇降路1の省スペース化を実現することができる。
 また、調速機ロープを省略することにより、地震時及び強風時に、調速機ロープが昇降路機器に引っ掛かることがなくなる。これにより、地震後の早期復帰が可能となる。
 また、調速機ロープを用いることが難しい高揚程のエレベーター装置にも、作動機構17を容易に適用することができる。
 なお、作動おもり32の質量と作動ばね33の剛性とで決まる固有振動数は、巻上機ブレーキ7の作動によりかご9に発生する上下方向振動の振動数のうち、最も振動数が低い最低振動数以下に設定されることが好適である。これにより、作動おもり32がかご9の振動に共振することがより確実に抑制される。
 上記の最低振動数は、懸架体8の一部であって、かご9から上方へ向かっている部分の長さが最も長くなっているときの振動数である。このため、上記の固有振動数は、かご9が最下階に位置するときに巻上機ブレーキ7が作動した場合におけるかご9の上下方向振動の振動数以下に設定されていることが好適である。
 また、図12は、図6のストッパー31が作動おもり32を受ける上下方向の位置の設定方法を示すグラフである。図12において、太線C1、細線C2、及び直線L1は、図8と同様である。
 破線で示す直線L3は、巻上機ブレーキ7が作動したときの作動おもり32の平均上昇位置である。平均上昇位置は、ストッパー31を取り除いた状態において、巻上機ブレーキ7が作動したときの作動おもり32の上下方向位置の変動から、作動おもり32の振動成分を除外した作動おもり32の位置である。巻上機ブレーキ7の作動時における作動おもり32の上昇位置は、かご9の積載条件、昇降路1内のかご位置等によって変化するが、最も上昇量が大きくなる条件での値を、平均上昇位置L3としている。
 1点鎖線で示す直線L4は、ストッパー31によって作動おもり32を受ける上下方向位置である。
 ストッパー31によって作動おもり32を受ける上下方向位置L4は、懸架体8が破断したときの作動おもり32の定常位置L1と、平均上昇位置L3との間に設定されていることが好適である。
 これにより、巻上機ブレーキ7の作動時に、作動おもり32がストッパー31から浮き上がる時間をより短時間に抑えることができ、非常止め装置15が誤作動することをより確実に抑制することができる。
 また、図11において、直線L2の位置は、ストッパー31が作動おもり32を受ける上下方向の位置から、直線L1までの間に設定されるべきである。即ち、各楔部材23がガイドレール11に接するまでの作動レバー16の引き上げ距離は、通常時の作動おもり32の位置から、懸架体8の破断時における作動おもり32の定常位置までの距離よりも、短い距離に設定されるべきである。
 これにより、懸架体8の破断時に、作動おもり32が振動しなくても、非常止め装置15をより確実に作動させることができる。
 なお、ストッパー31が作動おもり32を受ける位置を上下方向へ調整可能とするため、例えば、支柱31aは伸縮可能であってもよい。この場合、支柱31aには、図示しないロック機構が設けられており、ロック機構によって支柱31aの伸縮がロックされる。そして、ロック機構を解除することにより、支柱31aの伸縮が許容される。
 また、例えば、支柱31aに対してストッパー本体31bを回転させることによって、支柱31aに対してストッパー本体31bが上下方向へ移動可能となっていてもよい。
 また、例えば、図示しない複数枚のスペーサを用意し、ストッパー本体31b上に取り付けるスペーサの数を変更することによって、ストッパー31が作動おもり32を受ける位置を上下方向へ調整可能としてもよい。
 実施の形態2.
 次に、図13は、実施の形態2によるエレベーター装置のかご9を示す構成図であり、非常止め装置15が作動した状態を示している。実施の形態2の作動機構17は、実施の形態1と同様の構成に加えて、低反発部材35を有している。
 低反発部材35は、ストッパー本体31bの上面に固定されている。このため、低反発部材35は、通常時には、ストッパー31と作動おもり32との間に介在している。
 低反発部材35の材料としては、弾性と粘性とを併せ持つ粘弾性体が用いられている。粘弾性体としては、ゴム、発泡ウレタン、高分子ゲル等が挙げられる。
 また、低反発部材35の反発弾性は、ストッパー31の反発弾性よりも低い。具体的には、低反発部材35の反発弾性は、15%以下が好適である。「JIS K 6400-3」において定義される反発弾性は、500mmの高さから質量16kgの鋼球を落下させ、跳ね返った鋼球の最高の高さを落下高さ500mmで割った割合である。
 低反発部材35以外のエレベーター装置の構成は、実施の形態1と同様である。
 このようなエレベーター装置では、巻上機ブレーキ7の作動時に、作動おもり32がストッパー31から浮き上がると、その後に作動おもり32がストッパー31に衝突する。
 このとき、実施の形態2では、ストッパー31に低反発部材35が設けられているため、作動おもり32の跳ね上がりが抑制される。このため、ストッパー31からの跳ね上がりとストッパー31への衝突とを繰り返すような振動的な挙動が、作動おもり32に生じることが抑制される。
 これにより、作動おもり32がかご9の振動に共振して大きく上昇することが抑制され、巻上機ブレーキ7の作動時における非常止め装置15の誤作動をより確実に抑制することができる。
 なお、低反発部材35は、作動おもり32に設けても、ストッパー31と作動おもり32との両方に設けてもよい。
 実施の形態3.
 次に、図14は、実施の形態3によるエレベーター装置のかご9を示す構成図であり、非常止め装置15が作動した状態を示している。実施の形態3のストッパー31は、実施の形態1のストッパー本体31bのみにより構成されている。
 実施の形態3では、実施の形態1の支柱31aの代わりに、ストッパー31とかご9との間に、支持ばね36及び第1ダンパー37が介在している。即ち、実施の形態3の作動機構17は、ストッパー31、作動おもり32、作動ばね33、支持ばね36、及び第1ダンパー37を有している。
 支持ばね36の剛性は、作動ばね33の剛性よりも十分に高い。第1ダンパー37は、ストッパー31とかご9との間に、前記支持ばね36に対して並列に設けられている。
 ストッパー31、支持ばね36、及び第1ダンパー37以外のエレベーター装置の構成は、実施の形態1と同様である。
 このようなエレベーター装置では、作動おもり32がストッパー31に衝突した際の衝撃が支持ばね36及び第1ダンパー37によって緩和され、作動おもり32の跳ね上がりが抑制される。これにより、巻上機ブレーキ7の作動時における非常止め装置15の誤作動をより確実に抑制することができる。
 実施の形態4.
 次に、図15は、実施の形態4によるエレベーター装置のかご9を示す構成図であり、非常止め装置15が作動した状態を示している。実施の形態4の作動機構17は、実施の形態1と同様の構成に加えて、第2ダンパー38を有している。
 第2ダンパー38は、作動おもり32とかご9との間に、作動ばね33に対して並列に配置されている。また、第2ダンパー38は、巻上機ブレーキ7の作動時に、ストッパー31からの作動おもり32の浮き上がりを抑制する減衰力を有している。
 第2ダンパー38以外のエレベーター装置の構成は、実施の形態1と同様である。
 図16は、図15の作動機構17における作動おもり32の上下方向への変位と時間との関係を示すグラフである。懸架体8の破断時には、作動おもり32は、第2ダンパー38の減衰力により、1往復の振動の後、定常位置L1に近付いて行き、定常位置L1において静止する。
 一方、巻上機ブレーキ7の作動時には、作動おもり32は、第2ダンパー38の減衰力により、ストッパー31から浮き上がらずに、ストッパー31上において静止し続ける。従って、巻上機ブレーキ7の作動時における非常止め装置15の誤作動をより確実に抑制することができる。
 なお、実施の形態2、3に示した作動機構17に第2ダンパー38を追加してもよい。
 実施の形態5.
 次に、図17は、実施の形態5によるエレベーター装置のかご9を示す構成図であり、非常止め装置15が作動した状態を示している。実施の形態5の作動機構17は、実施の形態1同様の構成に加えて、ガイド部材39を有している。
 ガイド部材39は、かご9上に立てられている。また、ガイド部材39は、作動おもり32を貫通している。また、ガイド部材39は、作動おもり32の上下方向への移動を案内する。
 ガイド部材39以外のエレベーター装置の構成は、実施の形態1と同様である。
 このようなエレベーター装置では、懸架体8の破断時に作動おもり32をスムーズに上方へ移動させることができ、非常止め装置15をより確実に作動させることができる。
 なお、実施の形態2~4に示した作動機構17にガイド部材39を追加してもよい。
 また、ガイド部材39の位置、形状、及び数は、上記の例に限定されない。
 実施の形態6.
 次に、図18は、実施の形態6によるエレベーター装置のかご9を示す構成図であり、非常止め装置15が作動した状態を示している。実施の形態6の作動おもり32は、作動おもり本体32aと、少なくとも1つの調整おもり32bとを有している。図18には、2つの調整おもり32bが示されている。
 各調整おもり32bの質量は、作動おもり本体32aの質量よりも小さい。各調整おもり32bは、作動おもり本体32aが変位する際に作動おもり本体32aから落ちないように、作動おもり本体32a上に保持されている。
 作動おもり32以外のエレベーター装置の構成は、実施の形態1と同様である。
 このようなエレベーター装置では、作動おもり32全体の質量を容易に調整することができる。このため、作動おもり32の質量と作動ばね33の剛性とで決まる固有振動数を容易に調整することができ、作動おもり32がかご9の振動に共振することがより確実に抑制される。従って、非常止め装置15の作動時における非常止め装置15の誤作動をより確実に抑制することができる。
 なお、実施の形態6の作動おもり32は、実施の形態2~5に適用してもよい。
 また、実施の形態1~6において、速度検出器19は、昇降路1、巻上機3又は釣合おもり10に設けられていてもよい。
 実施の形態7.
 次に、図19は、実施の形態7によるエレベーター装置を模式的に示す構成図である。実施の形態7では、かご9に搭載されている非常止め装置15を、第1非常止め装置15と称する。また、第1非常止め装置15に設けられている作動レバー16を、第1作動レバー16と称する。また、第1作動レバー16に接続されている引上棒18を、第1引上棒18と称する。
 釣合おもり10の下部には、第2非常止め装置41が搭載されている。第2非常止め装置41は、一対の釣合おもりガイドレール12を把持することによって、釣合おもり10を非常停止させる。第2非常止め装置41の構成は、第1非常止め装置15と同様である。即ち、第2非常止め装置41としては、次第ぎき式非常止め装置が用いられている。
 第2非常止め装置41には、第2作動レバー42が設けられている。第2非常止め装置41は、第2作動レバー42が引き上げられることによって作動する。
 釣合おもり10の上部には、作動機構17が設けられている。作動機構17の構成は、実施の形態1~6のいずれかの作動機構17の構成、又は実施の形態1~6を適宜組み合わせた作動機構17の構成と同様である。
 作動機構17は、第2引上棒43を介して、第2作動レバー42に連結されている。また、作動機構17は、釣合おもり10の下向きの加速度が過大加速度となったときに、第2引上棒43及び第2作動レバー42を介して、第2非常止め装置41を作動させる。実施の形態7の昇降体は、釣合おもり10である。
 機械室2には、調速機51が設置されている。調速機51は、かご9の過大速度での走行の有無を監視する。また、調速機51は、調速機シーブ52と、図示しない過大速度検出スイッチと、図示しないロープキャッチとを有している。
 調速機シーブ52には、調速機ロープ53が巻き掛けられている。調速機ロープ53は、昇降路1内に環状に敷設されている。また、調速機ロープ53は、第1引上棒18に接続されている。ピット1aには、張り車54が設けられている。張り車54には、調速機ロープ53が巻き掛けられている。
 かご9が昇降すると、調速機ロープ53が循環移動する。これにより、調速機シーブ52は、かご9の走行速度に応じた回転速度で回転する。
 調速機51では、かご9の走行速度が過大速度に達したことが機械的に検出される。調速機51には、第1過大速度及び第2過大速度が設定されている。第1過大速度は、定格速度よりも高い速度である。第2過大速度は、第1過大速度よりも高い速度である。
 かご9の走行速度が第1過大速度に達すると、過大速度検出スイッチが操作される。これにより、巻上機3への給電が遮断され、巻上機ブレーキ7が作動して、かご9が急停止する。
 かご9の下降速度が第2過大速度に達すると、ロープキャッチにより調速機ロープ53が把持され、調速機ロープ53の循環が停止される。これにより、第1引上棒18及び第1作動レバー16を介して第1非常止め装置15が操作され、第1非常止め装置15が作動して、かご9が非常停止する。
 実施の形態1~6において用いられていた速度検出器19は、実施の形態7では省略されている。実施の形態7における他の構成は、実施の形態1と同様である。
 建物の構造によっては、釣合おもり10に第2非常止め装置41を搭載することが要求されることがある。このような場合、作動機構17は、釣合おもり10に搭載してもよい。これにより、第2非常止め装置41を作動させるための、調速機及び調速機ロープを省略することができ、機器コストを削減するとともに、昇降路1の省スペース化を実現することができる。
 なお、実施の形態7のように昇降体が釣合おもり10である場合、上記の最低振動数は、かご9が最上階に位置するときの振動数である。
 また、実施の形態7において、調速機51、調速機ロープ53、及び張り車54を省略し、かご9にも作動機構17を搭載してもよい。この場合、かご9の過大速度は、例えば速度検出器19により検出される。
 また、実施の形態1~7において、作動機構17は、かご9又は釣合おもり10の上部に設けられているが、かご9又は釣合おもり10の側部又は下部に設けられていてもよい。
 また、実施の形態1~7において、エレベーター装置全体のレイアウトは、図1、19のレイアウトに限定されるものではない。例えば、ローピング方式は、2:1ローピング方式であってもよい。
 また、エレベーター装置は、機械室レスエレベーター、ダブルデッキエレベーター、ワンシャフトマルチカー方式のエレベーター装置等であってもよい。ワンシャフトマルチカー方式は、上かごと、上かごの真下に配置された下かごとが、それぞれ独立して共通の昇降路を昇降する方式である。
 3 巻上機、6 駆動シーブ、7 巻上機ブレーキ、8 懸架体、9 かご(昇降体)、10 釣合おもり(昇降体)、15 非常止め装置、17 作動機構、31 ストッパー、32 作動おもり、32a 作動おもり本体、32b 調整おもり、33 作動ばね、35 低反発部材、36 支持ばね、37 第1ダンパー、38 第2ダンパー、39 ガイド部材。

Claims (9)

  1.  昇降体、
     前記昇降体を吊り下げている懸架体、
     前記懸架体が巻き掛けられている駆動シーブと、前記駆動シーブの回転を制動する巻上機ブレーキとを有している巻上機、
     前記昇降体に設けられている非常止め装置、及び
     前記非常止め装置を作動させる作動機構
     を備え、
     前記作動機構は、
     前記昇降体に設けられているストッパーと、
     前記ストッパーに載せられている作動おもりと、
     上方向への力を前記作動おもりに付与している作動ばねと
     を有しており、
     前記作動機構は、
     前記昇降体の下向きの加速度が過大加速度となったときに、前記作動おもりが前記ストッパーから離れ、前記作動おもりの動きによって前記非常止め装置を作動させるエレベーター装置。
  2.  前記ストッパーが前記作動おもりを受ける位置は、上下方向へ調整可能になっている請求項1記載のエレベーター装置。
  3.  前記作動おもりは、作動おもり本体と、前記作動おもり本体に付加されている少なくとも1つの調整おもりとを有している請求項1又は請求項2に記載のエレベーター装置。
  4.  前記作動おもりの質量と前記作動ばねの剛性とで決まる前記作動おもりの固有振動数は、前記巻上機ブレーキの作動により前記昇降体に発生する上下方向振動の振動数のうち、最も振動数が低い最低振動数以下に設定されている請求項1から請求項3までのいずれか1項に記載のエレベーター装置。
  5.  前記ストッパーを取り除いた状態において、前記巻上機ブレーキが作動したときの前記作動おもりの上下方向位置の変動から、前記作動おもりの振動成分を除外した前記作動おもりの位置を平均上昇位置としたとき、
     前記ストッパーが前記作動おもりを受ける上下方向の位置は、前記懸架体が破断したときの前記作動おもりの定常位置と、前記平均上昇位置との間に設定されている請求項1から請求項4までのいずれか1項に記載のエレベーター装置。
  6.  前記ストッパーと前記作動おもりとの間に設けられている低反発部材
     をさらに備えている請求項1から請求項5までのいずれか1項に記載のエレベーター装置。
  7.  前記ストッパーと前記昇降体との間に設けられている支持ばね、及び
     前記ストッパーと前記昇降体との間に、前記支持ばねに対して並列に設けられている第1ダンパー
     をさらに備え、
     前記支持ばねの剛性は、前記作動ばねの剛性よりも高い請求項1から請求項5までのいずれか1項に記載のエレベーター装置。
  8.  前記作動ばねに対して並列に配置されている第2ダンパー
     をさらに備えている請求項1から請求項7までのいずれか1項に記載のエレベーター装置。
  9.  前記昇降体に設けられており、前記作動おもりの上下方向への移動を案内するガイド部材
     をさらに備えている請求項1から請求項8までのいずれか1項に記載のエレベーター装置。
PCT/JP2021/005298 2021-02-12 2021-02-12 エレベーター装置 WO2022172406A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021007084.3T DE112021007084T5 (de) 2021-02-12 2021-02-12 Aufzugsvorrichtung
PCT/JP2021/005298 WO2022172406A1 (ja) 2021-02-12 2021-02-12 エレベーター装置
JP2022581120A JP7418895B2 (ja) 2021-02-12 2021-02-12 エレベーター装置
CN202180092761.2A CN116783134A (zh) 2021-02-12 2021-02-12 电梯装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/005298 WO2022172406A1 (ja) 2021-02-12 2021-02-12 エレベーター装置

Publications (1)

Publication Number Publication Date
WO2022172406A1 true WO2022172406A1 (ja) 2022-08-18

Family

ID=82838507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005298 WO2022172406A1 (ja) 2021-02-12 2021-02-12 エレベーター装置

Country Status (4)

Country Link
JP (1) JP7418895B2 (ja)
CN (1) CN116783134A (ja)
DE (1) DE112021007084T5 (ja)
WO (1) WO2022172406A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131445A (ja) * 1974-09-11 1976-03-17 Mitsubishi Electric Corp Erebeetasochi
JP2004345803A (ja) * 2003-05-22 2004-12-09 Toshiba Elevator Co Ltd 昇降体の非常止め装置、非常止め復帰装置及び非常止め復帰方法
WO2014097373A1 (ja) * 2012-12-17 2014-06-26 三菱電機株式会社 エレベータ装置
CN105293245A (zh) * 2015-12-11 2016-02-03 郭贤良 卷筒式电梯防坠装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131445A (ja) * 1974-09-11 1976-03-17 Mitsubishi Electric Corp Erebeetasochi
JP2004345803A (ja) * 2003-05-22 2004-12-09 Toshiba Elevator Co Ltd 昇降体の非常止め装置、非常止め復帰装置及び非常止め復帰方法
WO2014097373A1 (ja) * 2012-12-17 2014-06-26 三菱電機株式会社 エレベータ装置
CN105293245A (zh) * 2015-12-11 2016-02-03 郭贤良 卷筒式电梯防坠装置

Also Published As

Publication number Publication date
CN116783134A (zh) 2023-09-19
JP7418895B2 (ja) 2024-01-22
JPWO2022172406A1 (ja) 2022-08-18
DE112021007084T5 (de) 2023-12-07

Similar Documents

Publication Publication Date Title
KR101920546B1 (ko) 엘리베이터 장치
KR102276519B1 (ko) 엘리베이터 장치
JP6012596B2 (ja) エレベータ装置
KR101456403B1 (ko) 엘리베이터 장치
KR101617572B1 (ko) 엘리베이터 장치
JP5774220B2 (ja) エレベータ装置
JP5959668B2 (ja) エレベータ装置
KR102022894B1 (ko) 엘리베이터 장치
JP6062009B2 (ja) エレベータ装置
JP4575076B2 (ja) エレベータ装置
WO2022172406A1 (ja) エレベーター装置
WO2000055085A1 (fr) Dispositif de securite pour ascenseur
JP2006315796A (ja) マルチカーエレベータ装置
WO2016047314A1 (ja) エレベータ装置
KR100627540B1 (ko) 엘리베이터 장치
WO2022172407A1 (ja) エレベーター装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581120

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180092761.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112021007084

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925657

Country of ref document: EP

Kind code of ref document: A1