WO2022170663A1 - 基于连续纤维与普通纤维的轻量化部件制作方法及制品 - Google Patents

基于连续纤维与普通纤维的轻量化部件制作方法及制品 Download PDF

Info

Publication number
WO2022170663A1
WO2022170663A1 PCT/CN2021/082030 CN2021082030W WO2022170663A1 WO 2022170663 A1 WO2022170663 A1 WO 2022170663A1 CN 2021082030 W CN2021082030 W CN 2021082030W WO 2022170663 A1 WO2022170663 A1 WO 2022170663A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic polymer
polymer material
outer layer
fibers
lightweight
Prior art date
Application number
PCT/CN2021/082030
Other languages
English (en)
French (fr)
Inventor
杨军
杨威
彭超义
郭春杰
李晓晔
Original Assignee
博戈橡胶塑料(株洲)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博戈橡胶塑料(株洲)有限公司 filed Critical 博戈橡胶塑料(株洲)有限公司
Priority to DE212021000506.3U priority Critical patent/DE212021000506U1/de
Priority to DE112021006058.9T priority patent/DE112021006058T5/de
Publication of WO2022170663A1 publication Critical patent/WO2022170663A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/003Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/081Combinations of fibres of continuous or substantial length and short fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/36Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and impregnating by casting, e.g. vacuum casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/72Encapsulating inserts having non-encapsulated projections, e.g. extremities or terminal portions of electrical components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/86Incorporated in coherent impregnated reinforcing layers, e.g. by winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/001Suspension arms, e.g. constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C7/00Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads
    • F16C7/02Constructions of connecting-rods with constant length
    • F16C7/026Constructions of connecting-rods with constant length made of fibre reinforced resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/014Constructional features of suspension elements, e.g. arms, dampers, springs with reinforcing nerves or branches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/10Constructional features of arms
    • B60G2206/11Constructional features of arms the arm being a radius or track or torque or steering rod or stabiliser end link
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/70Materials used in suspensions
    • B60G2206/71Light weight materials
    • B60G2206/7101Fiber-reinforced plastics [FRP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/70Materials used in suspensions
    • B60G2206/71Light weight materials
    • B60G2206/7104Thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/81Shaping
    • B60G2206/8101Shaping by casting
    • B60G2206/81012Shaping by casting by injection moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/85Filament winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/02Plastics; Synthetic resins, e.g. rubbers comprising fillers, fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/60Polyamides [PA]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/05Vehicle suspensions, e.g. bearings, pivots or connecting rods used therein

Definitions

  • the present invention relates to a method for making lightweight parts and products thereof, in particular to a method and product for making lightweight parts based on continuous fibers and common fibers, the method for making lightweight parts based on continuous fibers and common fibers and the products thereof.
  • the product uses the outer layer of continuous fiber reinforced thermoplastic polymer material as an insert, and then is mixed with ordinary long fiber or short fiber thermoplastic polymer material to form a lightweight component, which not only has good lightweight effect, but also can greatly improve the performance of lightweight components. Fatigue performance.
  • thermosetting plastics In the current lightweight component structure of "replacing steel with plastic", there are two ways to use thermosetting plastics to make and use thermoplastics to make lightweight parts; among them, thermosetting plastics are used to make lightweight parts, because thermosetting plastics are used to make lightweight parts. Plastics that are no longer plastic and can not be recycled after being heated again are relatively unenvironmental, so their development trend is not optimistic; while thermoplastics can be repeatedly heated to soften and cool to harden plastics, which can be recycled and are more environmentally friendly. Saving materials is the development direction implemented today.
  • thermoplastics are used to make lightweight parts, and most of them are directly made of ordinary fibers by injection molding, extrusion molding, or molding.
  • a skeleton is made, and then the continuous fiber composite material is wound on the skeleton, or the continuous fiber composite material is wound to make a skeleton, and the skeleton is used as a reinforcement to obtain a lightweight component by injection molding thermoplastics.
  • the application number is CN 201520561731.3 and the name is "Lightweight connecting rod for rail vehicles".
  • the applicant is a Chinese invention patent of Zhuzhou Times New Material Technology Co., Ltd.
  • the patent discloses a lightweight connecting rod for rail vehicles, including
  • the rod body and the nodes installed at both ends of the rod body are characterized in that the rod body is a polymer composite material with epoxy resin as the matrix and high-strength fiber as the reinforcing agent.
  • the rod body is formed by a winding process or a molding process.
  • the weight of the rod body is 8kg ⁇ 12kg, the tensile load is more than 200kN, and the length is 200mm ⁇ 500mm.
  • the high-strength fibers can be selected from glass fibers and carbon fibers.
  • the size of the skeleton formed by the high-strength fiber wire wiring depends on the cross-sectional area and strength requirements of the rod body. If the cross-sectional area is large and the strength requirements are high, the size of the rod body skeleton is large, and the amount of high-strength fiber wire is large. After the skeleton is dried, it is put into the mold of the rod body and the epoxy resin liquid is injected into the mold, and the rod body is obtained by the compression molding process. In the hole, the manufacturing of the connecting rod is completed.
  • a connecting rod assembly which includes a spherical hinge, a rod body and a joint, the joint is made of composite material, the rod body is made of metal or continuous fiber reinforced composite material, the rod body and the joint are connected, the spherical hinge It is installed in the joint, and the rod body and the joint are integrally injection-molded or fixedly connected, so that the end of the rod body is connected with the joint.
  • thermoplastic composite materials in forming auto parts include long fiber reinforced thermoplastic composite materials and continuous fiber reinforced thermoplastic composite materials.
  • the continuous fiber reinforcement is first heated, and the continuous fiber reinforcement has a three-dimensional fabric structure; then the skeleton structure is reinforced by pre-forming the base of the support rod by hot pressing; the skeleton structure of the pre-shaped support rod base is reinforced and then preheated , the preheating temperature is 180°C-240°C, and it is placed in the mold; then the pre-prepared long-fiber reinforced thermoplastic composite material is heated and plasticized, and is compounded with the previously placed support rod base reinforced skeleton structure by injection molding.
  • the injection temperature is 230°C-260°C
  • the injection pressure is 40-90 bar
  • the injection speed is 20%-150%
  • the back pressure is 2-5Mpa to obtain the support rod base.
  • the purpose of the present invention is to propose a new method for making lightweight parts and lightweight parts in view of the deficiencies in the improvement of existing lightweight parts; the new method for making lightweight parts and the lightweight parts can be The bearing capacity of lightweight components is further improved, and the lightweight effect is remarkable and the structure is reasonable.
  • the technical solution proposed by the present invention is: a method for making lightweight components based on continuous fibers and ordinary fibers, using thermoplastic polymer materials as matrix materials, first using thermoplastic composite materials containing continuous fibers The outer layer of the continuous fiber thermoplastic polymer material is made by the winding method, and then the outer layer of the thermoplastic polymer material is put into the molding mold of the lightweight part, and the outer layer of the continuous fiber thermoplastic polymer material is closely attached to the inner wall of the molding mold. , to form a central cavity, by filling the central cavity with thermoplastic polymer materials containing ordinary fibers, and compounding the thermoplastic polymer materials of ordinary fibers and the outer layer of continuous fiber thermoplastic polymer materials to form lightweight components.
  • thermoplastic polymer material is used as the matrix material
  • thermoplastic polymer material is used as the main material, which is mixed with continuous fibers and ordinary fibers to produce a lightweight thermoplastic polymer material outer layer and thermoplastic polymer material inner body part
  • the outer layer of thermoplastic polymer material in the lightweight component is made by mixing continuous fibers with thermoplastic polymer material
  • the inner body part of the lightweight component is made by mixing ordinary long fibers and/or short fibers with thermoplastic polymer material.
  • the outer layer of the continuous fiber thermoplastic polymer material and the inner part of the thermoplastic polymer material are thermoplastic polymer materials with the same physical properties, so as to ensure that the outer layer of the thermoplastic polymer material and the material of the thermoplastic polymer material are within the same physical properties.
  • thermoplastic polymer material prepreg containing continuous fibers
  • thermoplastic polymer material prepreg containing continuous fibers
  • thermoplastic polymer material containing continuous fibers The polymer material prepreg is made into a strip-shaped polymer composite material containing continuous fibers; and the strip-shaped polymer composite material containing continuous fibers is used to make a thermoplastic polymer material outer layer of a lightweight component by winding.
  • thermoplastic polymer material outer layer of the lightweight component made by winding is to determine the structural shape of the thermoplastic polymer material outer layer according to the structural shape of the lightweight component; and then according to the thermoplastic polymer material outer layer
  • the structure and shape are used to make a winding mold. After heating the strip-shaped polymer composite material containing continuous fibers, it is wound on the winding mold in a layer-by-layer manner. After reaching the required thickness, it is compressed and formed by the winding mold. The outer layer of thermoplastic polymer material is formed.
  • the outer layer of the thermoplastic polymer material is a closed frame structure wound by a polymer composite material with continuous fibers, and is wound and formed into a polygonal or annular closed structure frame.
  • the compression molding by the winding mold refers to first heating the polymer composite material containing continuous fibers so as to be wound on the winding mold, and after the winding is completed, the frame of the outer layer of the thermoplastic polymer material is formed, and then the polymer composite material is wound by winding.
  • the shaping block of the mold shapes the frame of the outer layer of the thermoplastic polymer material, so that the frame of the outer layer of the thermoplastic polymer material achieves the required structural shape and forms the outer layer of the thermoplastic polymer material.
  • the continuous fiber is a unidirectional or multiaxial continuous fiber reinforced thermoplastic tape material
  • the thermoplastic tape material is reinforced with a unidirectional or multiaxial continuous fiber, and is wound to form a continuous layer according to the determined lay-up structure.
  • Fiber-reinforced thermoplastic polymer material outer layer as the outer layer of lightweight components.
  • thermoplastic polymer material containing ordinary fibers is filled in the outer layer of the thermoplastic polymer material except for the outer layer of the thermoplastic polymer material in the molding die of the lightweight component. and make the thermoplastic polymer material of ordinary fiber and the outer layer of thermoplastic polymer material fully fused together to form the outer layer of thermoplastic polymer material as a reinforced structural part, and the thermoplastic polymer material of ordinary fiber as the inner part. Lightweight parts for body parts.
  • the filling of the thermoplastic polymer material containing ordinary fibers into the inner body part except the outer layer of the thermoplastic polymer material includes injection molding or compression molding. During the molding process, the thermoplastic polymer of the ordinary fibers is controlled by controlling the temperature. The polymer material and the outer layer of the thermoplastic polymer material can be fully fused together.
  • the outer layer of molecular material, and the outer layer of thermoplastic polymer material made by mixing continuous fibers and thermoplastic polymer materials is used as a reinforcing structure in lightweight components; the inner surface of the outer layer of thermoplastic polymer materials is made of ordinary fibers and thermoplastic polymer materials.
  • the inner part of the thermoplastic polymer material prepared by mixing is fused to form a lightweight component through the outer layer of the thermoplastic polymer material containing continuous fibers and the inner part of the thermoplastic polymer material containing ordinary fibers.
  • the outer layer of the thermoplastic polymer material is a unidirectional or multi-axial continuous fiber reinforced thermoplastic tape material, and according to the determined lay-up structure, a continuous fiber reinforced thermoplastic preform is formed by winding, and the It acts as an exterior reinforcement structure for lightweight components.
  • thermoplastic polymer material of the continuous fiber of the outer layer of the thermoplastic polymer material and the thermoplastic polymer material of the ordinary fiber are of the same type, so as to ensure that the two can be fused together during compounding.
  • a lightweight component is formed with the outer layer of thermoplastic polymer material as the reinforced structure.
  • the outer layer of the thermoplastic polymer material is a closed frame structure wound by a polymer composite material with continuous fibers, and is wound into a polygonal or annular frame.
  • the outer layer of thermoplastic polymer material determines the structure and shape of the outer layer of thermoplastic polymer material according to the structure and shape of the lightweight component; Layer the winding mold with the same shape on the inner surface, and then heat the strip-shaped polymer composite material containing continuous fibers, and wrap it on the winding mold in a layer-by-layer manner. After shaping, the outer layer of thermoplastic polymer material formed by cooling .
  • the rod body is made of composite materials, and the outer layer and the interior of the rod body are respectively made of different fiber resin materials.
  • the ordinary fiber composite material is poured inside, and the outer layer is well integrated with the interior, which not only has a significant lightweight effect, but also greatly improves the structural strength of the body, fully meeting the development needs of lightweight and electrified commercial vehicles.
  • the present invention uses continuous fibers and short fibers to be mixed with thermoplastic composite materials to obtain different parts of lightweight components, which can make full use of the different characteristics of continuous fibers and short fibers to match different parts of lightweight components, and improve lightweight components. carrying capacity;
  • the present invention uses the continuous fiber composite material to make the outermost surface layer of the lightweight component, which can utilize the fiber tensile strength of the continuous fiber to improve the tensile strength of the lightweight component, so that the overall tensile strength of the lightweight component is improved;
  • the structure of the present invention adopts the unidirectional or multiaxial continuous fiber reinforced thermoplastic tape material and the short fiber reinforced nylon 6 or nylon 66 (6:8 ratio) to combine the edge, and the injection molding edge layer structure is designed to further increase the The interface fusion strength of different materials enables the structure to bear a larger load, and the structure weighs less under the same conditions. At the same time, injection molding is easy to fully automate production.
  • the outer layer and inner body of the present invention are made of the same thermoplastic composite material, short fiber reinforced nylon 6 or nylon 66 high pressure injection molding complex reinforcing rib structure, different composite materials but the same matrix resin, by controlling the process temperature, make it natural. It is fused into one body without bonding and the strength of the fusion interface is high.
  • Embodiment 1 is a schematic perspective view of the structure of Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of the three-dimensional structure of the peripheral layer according to the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a spherical hinge structure according to Embodiment 1 of the present invention.
  • Fig. 4 is the structural schematic diagram of the metal steel sleeve according to the first embodiment of the present invention.
  • FIG. 5 is a three-dimensional schematic diagram of the structure of the manufacturing mold according to the first embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a core structure for making a mold according to Embodiment 1 of the present invention.
  • Fig. 7 is the product structure schematic diagram of the second embodiment of the present invention.
  • Fig. 8 is the product structure schematic diagram of the third embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the product structure of the fourth embodiment of the present invention.
  • the present invention relates to a continuous fiber reinforced lightweight thermoplastic composite thrust rod, including a rubber metal spherical hinge 1 , a composite rod body 2 and a metal steel sleeve 3 .
  • the composite material rod body 2 comprises a rod body inner part 21 and a rod body outer layer 22, and the rod body inner part 21 and the rod body outer layer 22 are respectively made of unidirectional or multiaxial continuous fiber reinforced thermoplastic belt material and short fiber reinforced nylon 6 or nylon 66
  • the metal steel sleeve 3 and the composite material rod body 2 are combined together, and the rubber metal ball hinge 1 is press-fitted into the metal steel sleeve 3 by pressure.
  • the outer layer 22 of the rod body is closed, wrapped and wrapped around the inner part 21 of the rod body by unidirectional or multi-axial continuous fiber reinforced thermoplastic tape material as the main bearing outer layer; the structure is shown in FIG. 2 .
  • the rubber metal ball hinge 1 is composed of a mandrel 11, a rubber vulcanized body 12, and an outer sleeve 13.
  • the mandrel 11 is arranged in the outer sleeve 13, the axis of the mandrel 11 and the axis of the outer sleeve 13 coincide, and the rubber is passed between the mandrel 11 and the outer sleeve 13.
  • the vulcanized body 12 is connected; the structure is shown in FIG. 3 .
  • the inner part 21 of the rod body is a lightweight structure of short fiber reinforced nylon 6 or nylon 66 through injection molding, forming a complex meshed reinforcing rib structure, which plays a role of connection and reinforcement, and the inner part 21 of the rod body is in the injection molding.
  • the peripheral layers 22 are fused together to form an integrated structure.
  • the metal steel sleeve 3 is compounded with the outer layer 22 of the rod body and the inner part 21 of the rod body, and the contact part between the metal steel sleeve 3 and the outer layer 22 of the rod body is limited to the angle a of the outer ring of the metal steel sleeve 3, which is 0- Within the range of 180 degrees, the remaining parts are combined with the inner part 21 of the rod body; the structure is shown in FIG. 4 .
  • the production mold 4 for the outer layer of the thrust rod includes a mold seat 41, and a mold core 42 and a shaping block 43 are installed on the mold seat 41; the mold core 42 passes through the mold.
  • the core base 46 is fixed at the middle position of the mold base 41, and one end of the mold core 42 is provided with a movable end 44 (as shown in FIG. 6 ); Under the push of , move closer to the mold core 42, and carry out the shaping of the outer layer;
  • peripheral layer material select unidirectional or multiaxial continuous fiber reinforced thermoplastic tape material, mix continuous fiber and thermoplastic polymer material together to form thermoplastic polymer material prepreg containing continuous fiber, and follow the The width of the thrust rod body is cut to form a strip of unidirectional or multiaxial continuous fiber reinforced thermoplastic tape material;
  • the strip-shaped unidirectional or multi-axial continuous fiber reinforced thermoplastic strip material is wound layer by layer on the core 42 of the mold for making the outer layer of the thrust rod after heating to achieve the required Then cut the outer layer of the wound thrust rod through the shaping machine 43 to achieve the required shape; during shaping, as the shaping machine 43 moves closer to the mold core 42, the movable end 44 on the mold core 42 It will gradually shrink inward to ensure that the outer layer of the thrust rod will not be stretched too much during the shaping process; after shaping, the required outer layer 22 of the rod body will be formed;
  • continuous fiber reinforced thermoplastic sheet is used to make the outer layer of the thrust rod, and the inner core part of the rod made of short fiber reinforced nylon 6 or nylon 66 is wrapped, which can greatly improve the anti-stretching, anti-compression and anti-torsion performance of the thrust rod. Not only does it have better interfacial fusion strength, process formability and fatigue performance, but it is also a thermoplastic resin, which can be recycled later, and the injection molding process is also easier to achieve automated production.
  • the rubber-metal ball hinge adopts the subsequent press-fitting process and is assembled into the composite material rod body. The rubber-metal ball hinge can be replaced, and the follow-up maintenance cost of the structure is low.
  • the injection molding edge layer structure is designed to further increase the interface fusion of different materials
  • the strength of the structure makes the load that the structure can bear larger, and the weight of the structure is lighter under the same conditions. At the same time, injection molding is easy to be fully automated.
  • Fig. 7 shows a graph of the test result of the structural strength characteristic test of the invention. It can be seen from the graph that the curve 51 is the tensile strength curve of an ordinary lightweight composite material thrust rod, and the curve 52 is the test tensile strength curve of the embodiment of the present invention. , the illustration shows that the present invention can withstand a larger ultimate load, and the ultimate tensile strength of the thrust rod can be increased by nearly 35KN compared with the ordinary lightweight composite material thrust rod; under the same conditions, it has stronger structural strength and has a wider range of trial models.
  • the present invention also relates to a method for making lightweight components based on continuous fibers and ordinary fibers.
  • the thermoplastic polymer material is used as the matrix material, and the thermoplastic composite material containing continuous fibers is first used to pass the winding method.
  • the outer layer of the continuous fiber thermoplastic polymer material is made, and then the outer layer of the thermoplastic polymer material is put into the molding mold of the lightweight part, and the outer layer of the continuous fiber thermoplastic polymer material is closely attached to the inner wall of the molding mold to form a central cavity , by filling the central cavity with thermoplastic polymer material containing ordinary fibers, and compounding the thermoplastic polymer material of ordinary fibers with the outer layer of continuous fiber thermoplastic polymer material to form a lightweight component.
  • thermoplastic polymer material is used as the matrix material
  • thermoplastic polymer material is used as the main material, which is mixed with continuous fibers and ordinary fibers to produce a lightweight thermoplastic polymer material outer layer and thermoplastic polymer material inner body part
  • the outer layer of thermoplastic polymer material in the lightweight component is made by mixing continuous fibers with thermoplastic polymer material
  • the inner body part of the lightweight component is made by mixing ordinary long fibers and/or short fibers with thermoplastic polymer material.
  • the outer layer of the continuous fiber thermoplastic polymer material and the inner part of the thermoplastic polymer material are thermoplastic polymer materials with the same physical properties, so as to ensure that the outer layer of the thermoplastic polymer material and the material of the thermoplastic polymer material are within the same physical properties.
  • thermoplastic polymer material prepreg containing continuous fibers
  • thermoplastic polymer material prepreg containing continuous fibers
  • thermoplastic polymer material containing continuous fibers The polymer material prepreg is made into a strip-shaped polymer composite material containing continuous fibers; and the strip-shaped polymer composite material containing continuous fibers is used to make a thermoplastic polymer material outer layer of a lightweight component by winding.
  • thermoplastic polymer material outer layer of the lightweight component made by winding is to determine the structural shape of the thermoplastic polymer material outer layer according to the structural shape of the lightweight component; and then according to the thermoplastic polymer material outer layer
  • the structure and shape are used to make a winding mold. After heating the strip-shaped polymer composite material containing continuous fibers, it is wound on the winding mold in a layer-by-layer manner. After reaching the required thickness, it is compressed and formed by the winding mold. The outer layer of thermoplastic polymer material is formed.
  • the outer layer of the thermoplastic polymer material is a closed frame structure wound by a polymer composite material with continuous fibers, and is wound and formed into a polygonal or annular closed structure frame.
  • the compression molding by the winding mold refers to first heating the polymer composite material containing continuous fibers so as to be wound on the winding mold, and after the winding is completed, the frame of the outer layer of the thermoplastic polymer material is formed, and then the polymer composite material is wound by winding.
  • the shaping block of the mold shapes the frame of the outer layer of the thermoplastic polymer material, so that the frame of the outer layer of the thermoplastic polymer material achieves the required structural shape and forms the outer layer of the thermoplastic polymer material.
  • the continuous fiber is a unidirectional or multiaxial continuous fiber reinforced thermoplastic tape material
  • the thermoplastic tape material is reinforced with a unidirectional or multiaxial continuous fiber, and is wound to form a continuous layer according to the determined lay-up structure.
  • Fiber-reinforced thermoplastic polymer material outer layer as the outer layer of lightweight components.
  • thermoplastic polymer material containing ordinary fibers is filled in the outer layer of the thermoplastic polymer material except for the outer layer of the thermoplastic polymer material in the molding die of the lightweight component. and make the thermoplastic polymer material of ordinary fiber and the outer layer of thermoplastic polymer material fully fused together to form the outer layer of thermoplastic polymer material as a reinforced structural part, and the thermoplastic polymer material of ordinary fiber as the inner part. Lightweight parts for body parts.
  • thermoplastic polymer material containing ordinary fibers into the inner body part other than the outer layer of the thermoplastic polymer material includes injection molding or compression molding, and by controlling the process temperature during the molding process, the thermoplastic polymer of the ordinary fibers is made high.
  • the molecular material and the outer layer of the thermoplastic polymer material can be fully fused together.
  • this embodiment involves a continuous fiber reinforced lightweight thermoplastic composite thrust rod, including rubber Metal spherical hinge 201 and composite material rod body 202 .
  • the rubber metal ball hinge 201 is composed of a mandrel 211, a rubber vulcanized body 212, and a casing 213.
  • the mandrel is arranged in the casing, the axis of the mandrel and the casing coincide, and the mandrel and the casing are connected by rubber vulcanization.
  • the composite material rod body 202 is composed of a peripheral layer 221 composed of a unidirectional or multiaxial continuous fiber reinforced thermoplastic tape material, and a short fiber reinforced nylon 6 or nylon 66 (wherein, when nylon 6 and nylon 66 are mixed, a combination of nylon 6 and nylon 66 is used.
  • the inner part 222 of the rod body composed of the ratio of 6:8), the continuous fiber reinforced thermoplastic sheet 223 of a specific layered structure and the metal steel sleeve 224;
  • the continuous fiber reinforced thermoplastic sheet of a specific lay-up structure is horizontally arranged at the middle surface of the structure, and is assembled in the groove of the steel sleeve with a clearance fit, forming an I-shaped section with the outer layer of the continuous fiber material wrapped and wound on the outside, providing Better anti-compression and anti-torsion performance
  • short fiber reinforced nylon 6 or nylon 66 plays the role of connection and reinforcement through injection molding of complex reinforcing rib structure.
  • the composite material rod body For the production of the composite material rod body, basically according to the method of the first embodiment, first use the unidirectional or multi-axial continuous fiber reinforced thermoplastic tape material and the continuous fiber reinforced thermoplastic sheet of the specific lay-up structure to make the preform, and use it as the peripheral layer, together with the metal steel sleeve, is pre-buried in the mold, and subjected to a high-pressure molding process, and then nylon 6 or nylon 66 is reinforced with short fibers (wherein, when nylon 6 and nylon 66 are mixed, the ratio of nylon 6 and nylon 66 is 6: 8) Injection molding and wrapping, the matrix resin of the three different composite materials is consistent, and the three different materials are naturally fused together by controlling the process temperature, which has better interface fusion strength, process formability and fatigue performance, and All are thermoplastic resins, which can be recycled later, and the injection molding process is also easier to achieve automated production.
  • the rubber-metal ball hinge adopts the subsequent press-fitting process and is assembled into the composite material rod body. The rubber-metal
  • the principle of the second embodiment is the same as that of the best embodiment, except that the combined structure is slightly different. It can be seen from FIG. 8 that this embodiment relates to a kind of automobile balance bar connecting rod stabilizer bar based on polymer composite materials.
  • the lower straight arm lifting lug of the boom includes a lower straight arm lifting lug 301 and a rubber ball hinge 302, wherein there are two rubber ball hinges 302, which are respectively arranged on the two corners of the lower straight arm; the point is that the rubber ball hinge 302 is the combined spherical hinge of the combination structure of the metal sleeve 303, the rubber body 304 and the mandrel sleeve 305; the lower straight arm lifting lug 301 is made of polymer composite materials, wherein the outer layer of the lower straight arm lifting lug 301 is The outer layer 311 made of continuous fiber winding, the inner surface of the outer layer 311 is a lightweight material long fiber reinforced nylon 6 or nylon 66 (wherein, when nylon 6 and nylon 66 are mixed, the ratio of
  • the manufacturing method of the lower straight arm lifting lug of the automobile balance bar connecting rod stabilizer hanger is basically the same as that of the first embodiment, except that the manufacturing mold used needs to be designed separately according to the shape of the lower straight arm lifting lug of the automobile balance rod connecting rod stabilizer hanger.
  • the principle of the fourth embodiment is the same as that of the best embodiment, except that the combined structure is slightly different.
  • It is a torsion arm of a passenger car cab stabilizer bar based on polymer composite materials, as shown in Figure 9; including The stabilizer bar torsion arm body 401 and the rubber-metal spherical hinge 402, of which there are two rubber-metal spherical hinges 402, which are respectively arranged at both ends of the stabilizer bar torsion arm body 401; the rubber-metal spherical hinge 402 is provided with a metal sleeve 403
  • the said stabilizer bar torsion arm body 401 is made of polymer composite material, and the metal sleeve 403 and the stabilizer bar torsion arm body 401 are compounded together, and the rubber metal spherical hinge 402 is press-fitted on the metal sleeve 403 ;
  • Described stabilizer bar torsion arm rod body 401 is a cylindrical or polygonal rod
  • the manufacturing method of the torsion arm of the stabilizer bar of the passenger car cab is basically the same as that of the first embodiment, except that the used manufacturing mold needs to be designed separately according to the shape of the torsion arm of the stabilizer bar of the passenger car cab. Moreover, by designing the production mold and the injection mold into one body, the metal sleeves are directly placed on both ends of the mold core, the continuous fiber composite material is directly wound on the metal sleeves, and then directly sent to the injection molding machine for injection molding of the internal parts Forming, the entire process is fully automated.
  • the rod body is made of composite materials, and the outer layer and the interior of the rod body are respectively made of different fiber resin materials.
  • the ordinary fiber composite material is poured inside, and the outer layer is well integrated with the interior, which not only has a significant lightweight effect, but also greatly improves the structural strength of the body, fully meeting the development needs of lightweight and electrified commercial vehicles.
  • the present invention uses continuous fibers and short fibers to be mixed with thermoplastic composite materials to obtain different parts of lightweight components, which can make full use of the different characteristics of continuous fibers and short fibers to match different parts of lightweight components to improve lightweight components. carrying capacity;
  • the present invention uses the continuous fiber composite material to make the outermost surface layer of the lightweight component, which can utilize the fiber tensile strength of the continuous fiber to improve the tensile strength of the lightweight component, so that the overall tensile strength of the lightweight component is improved;
  • the structure of the present invention adopts unidirectional or multiaxial continuous fiber reinforced thermoplastic belt material and short fiber reinforced nylon 6 or nylon 66 (6:8 ratio) to combine the edge, design the injection molding edge layer structure, and further increase the
  • the interface fusion strength of different materials enables the structure to bear a larger load, and the structure weighs less under the same conditions.
  • injection molding is easy to fully automate production.
  • the outer layer of the present invention and the inner body part adopt the same thermoplastic composite material, short fiber reinforced nylon 6 or nylon 66 high pressure injection molding complex reinforcing rib structure, different composite materials but the same matrix resin, according to the conventional control process temperature, It is naturally integrated into one, without bonding and the fusion interface has high strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

一种基于连续纤维与普通纤维的轻量化部件制作方法及制品,以热塑性高分子材料为基体材料,先利用含有连续纤维增强热塑性复合材料通过绕制方法制作出连续纤维热塑性高分子材料外围层(22,221),再将连续纤维热塑性高分子材料外围层(22,221)放入成型模具中,并让连续纤维热塑性高分子材料外围层(22,221)紧贴在成型模具的内壁,形成中部空腔,通过往中部空腔中填充含有普通纤维的热塑性高分子材料,并让普通纤维的热塑性高分子材料与热塑性高分子材料外围层复合在一起,形成轻量化部件。该方法通过将连续纤维与普通纤维与热塑性高分子材料分别形成轻量化部件的外围(22,221)和内体(412)不同部分,再将两部分复合制得轻量化部件,不仅轻量化效果显著,而且可以大幅提升轻量化部件的综合性能。

Description

基于连续纤维与普通纤维的轻量化部件制作方法及制品 技术领域
本发明涉及一种轻量化部件的制作方法及其制品,尤其是指一种基于连续纤维与普通纤维的轻量化部件制作方法及制品,该种基于连续纤维与普通纤维的轻量化部件制作方法及制品以连续纤维增强热塑性高分子材料外围层作为嵌件,再与普通长纤维或短纤维的热塑性高分子材料混合形成的轻量化部件,不仅具有轻量化效果好,而且可以大大提高轻量化部件的疲劳性能。
背景技术
“轻量化”这一概念最先起源于赛车运动,它的作用其实不难理解,重量轻了,可以带来更好的操控性,发动机输出的动力能够产生更高的加速度;随着“节能环保”和“高效低耗”越来越成为了广泛关注的技术发展趋势,“轻量化”已经广泛应用到汽车领域,以及各行各业;“轻量化”目前已经成为一种完善技术方案的热名词,在各行各业逐步推行起来。“轻量化”的主要指导思想是:在确保稳定提升性能的基础上,节能化设计各总成零部件,持续优化部件结构。
虽说“轻量化”有很多技术方案,然而“以塑代钢”已经成为了目前“轻量化”的一个主要的手段;在节能减排压力下,“以塑代钢”的概念在汽车业广为流传。据美国化学工业学会的资料显示,目前汽车塑料零部件的重量总和还不及汽车总重量的十分之一,因此,可以扩展应用的空间还非常广阔;所谓“以塑代钢”就是为了使零部件进行轻量化,采用塑料制品取代以前的金属制品。在现在的“以塑代钢”的轻量化部件结构中,分为采用热固性塑料来制作和采用热塑性塑料来制作轻量化部件两种方式;其中,采用热固性塑料来制作轻量化部件,由于热固性塑料再次受热不再具有可塑性且不能再回收利用的塑料,比较不环保,所以其发展趋势不被看好;而采用热塑性塑料能反复加热软化和冷却变硬的塑料,它可以再回收利用,比较环保,节省材料,是当今所推行的发展方向。
可是目前采用热塑性塑料制作轻量化部件,多为直接采用普通纤维以注塑成型,或挤出成型,或模压成型方式制得轻量化部件;也有采用连续纤维制作轻量化部件的,但几乎都是先制成骨架,然后在骨架上缠绕连续纤维复合材料,或用连续纤维复合材料缠绕制得骨架, 再以骨架为增强件通过注塑热塑性塑料制得轻量化部件。这些轻量化部件的制作方法,都仍然存在一个强度不够的问题;如果以连续纤维作为骨架,在骨架与轻量化部件其它部分结合处容易形成强度薄弱环节;如果以其他材料作为骨架,在骨架上进行缠绕连续纤维复合材料,形成轻量化部件,具有骨架材料与连续纤维复合材料性能不一致,容易出现分裂和应力不一致的问题,也会导致轻量化部件性能受到影响;因此,很有必要对此加以改进。
通过专利检索没发现有与本发明相同技术的专利文献报道,与本发明有一定关系的专利主要有以下几个:
1、申请号为CN 201520561731.3,名称为“轨道车辆用轻量化连杆”,申请人为株洲时代新材料科技股份有限公司的中国发明专利,该专利公开了一种轨道车辆用轻量化连杆,包括杆体和装在杆体两端的节点,其特征在于所述的杆体为以环氧树脂为基体高强纤维为增强剂的高子分复合材质,所述的杆体采用缠绕工艺或模压工艺成型,杆体的重量为8kg~12kg、拉伸载荷大于200kN,长度为200mm~500mm。该专利提到先用浸润了环氧树脂的高强纤维丝布线形成与杆体1结构相同的骨架,所述的高强纤维可选用玻璃纤维和碳纤维。其中高强纤维丝布线形成的骨架的尺寸随杆体的横截面积和强度要求而定,横截面积大强度要求高则杆体骨架的尺寸大,高强纤维丝的用量就多。骨架烘干后放入杆体的模具中并向模具中注入环氧树脂液体,通过压模工艺制得杆体,杆体制造成型后,将节点通过过盈压装压入杆体1两端的节点压装孔中,完成连杆的制造。
2、申请号为CN 201921571308.6,名称为“分体式复合轻量化连杆总成”,申请人为博戈橡胶塑料(株洲)有限公司的中国实用新型专利,该专利公开了一种分体式复合轻量化连杆总成,其包括球铰、杆体和接头,所述接头采用复合材料制成,所述杆体采用金属或连续纤维增强复合材料制成,所述杆体和所述接头连接,所述球铰安装在所述接头内,且所述杆体和所述接头一体注塑成型或固定连接,使得所述杆体的端部与所述接头连接。
3、申请号为CN 201510735238.3,名称为“纤维增强热塑性复合材料在成型制备汽车零部件中的应用”,申请人为株洲时代工程塑料科技有限责任公司的中国发明专利,该专利公开了一种纤维增强热塑性复合材料在成型制备汽车零部件中的应用,纤维增强热塑性复合材料包 括长纤维增强热塑性复合材料和连续纤维增强热塑性复合材料。该专利公开了先加热连续纤维增强体,所述连续纤维增强体为三维织物结构;再通过热压预成型支撑杆底座增强骨架结构;将预成型得到的支撑杆底座增强骨架结构再进行预热,预热温度为180℃-240℃,并放置于模具中;再将预先备好的长纤维增强热塑性复合材料加热塑化,通过注塑的方式与前述放置好的支撑杆底座增强骨架结构复合,注塑温度为230℃-260℃,注塑压力为40~90bar,注塑速度为20%~150%,背压为2~5Mpa,得到支撑杆底座。
技术问题
通过对上述这些专利的仔细分析,虽然已经有专利提出了利用连续纤维复合材料来制作轻量化部件的方法及制品,也提出了一些改进技术方案,但通过仔细分析,这些专利都仍是采用连续纤维增强热塑性复合材料先制作成骨架,再注塑复合材料的方法来进行推力杆等轻量化部件的改进,而都又存在一些不足,缺乏系统地考虑,主要是现有的都是采用骨架的方式来实现轻量化,但这样和容易造成骨架与受力部分的结合部出现应力集中的状况,因此前面所提出的问题仍然存在,所以仍有待进一步加以研究改进。
本发明的目的在于针对现有轻量化部件改进所存在的不足,提出一种新的制作轻量化部件的方法及轻量化部件;该种新的新的制作轻量化部件的方法及轻量化部件可以进一步提高轻量化部件的承载能力,而且轻量化效果显著,结构合理。
解决技术方案
为了实现本发明的发明目的,本发明所提出的解决技术方案是:一种基于连续纤维与普通纤维的轻量化部件制作方法,以热塑性高分子材料为基体材料,先利用含有连续纤维的热塑性复合材料通过绕制方法制作出连续纤维热塑性高分子材料外围层,再将热塑性高分子材料外围层放入轻量化部件成型模具中,并让连续纤维热塑性高分子材料外围层紧贴在成型模具的内壁,形成中部空腔,通过往中部空腔中填充含有普通纤维的热塑性高分子材料,并让普通纤维的热塑性高分子材料与连续纤维热塑性高分子材料外围层复合在一起,形成轻量化部件。
进一步地,所述的以热塑性高分子材料为基体材料是以热塑性材料作为主体材料,分别 与连续纤维和普通纤维进行混合制作轻量化的热塑性高分子材料外围层和热塑性高分子材料内体部分;其中,采用连续纤维与热塑性高分子材料混合制作轻量化部件中热塑性高分子材料外围层;采用普通长纤维和/或短纤维与热塑性高分子材料混合制作轻量化部件的内体部分。
进一步地,所述的连续纤维热塑性高分子材料外围层和热塑性高分子材料内体部分为相同物理性能的热塑性高分子材料,以保证在热塑性高分子材料的外围层与热塑性高分子材的料内体部分复合在一起时,两者能相互熔融结合在一起。
进一步地,所述的利用连续纤维制作出热塑性高分子材料外围层是将连续纤维与热塑性高分子材料混合在一起,形成含有连续纤维的热塑性高分子材料预浸料;再用含有连续纤维的热塑性高分子材料预浸料制作成条状的含有连续纤维的高分子复合材料;再用条状的含有连续纤维的高分子复合材料以缠绕的方式制作出轻量化部件的热塑性高分子材料外围层。
进一步地,所述的以缠绕的方式制作出轻量化部件的热塑性高分子材料外围层是根据轻量化部件的结构形状确定热塑性高分子材料外围层的结构形状;再根据热塑性高分子材料外围层的结构形状制作出缠绕模具,再将条状的含有连续纤维的高分子复合材料加热后,按照一层一层的方式缠绕到缠绕模具上,达到所需要的厚度后,通过缠绕模具压紧成型,形成热塑性高分子材料外围层。
进一步地,所述的热塑性高分子材料外围层为具有连续纤维的高分子复合材料绕制的封闭框架结构,绕制成型后为一个多边形或环形的封闭结构框架。
进一步地,所述的通过缠绕模具压紧成型是指先将含有连续纤维的高分子复合材料加热,以便缠绕到缠绕模具上,在缠绕完毕后,形成热塑性高分子材料外围层的框架,再通过缠绕模具的定型块对热塑性高分子材料外围层的框架进行整形,使得热塑性高分子材料外围层的框架达到所需的结构形状,形成热塑性高分子材料外围层。
进一步地,所述的连续纤维为单向或多轴向连续纤维增强热塑性带状材料,以单向或多轴向连续纤维增强热塑性带状材料,按照所确定的铺层结构,经过缠绕形成连续纤维增强热塑性高分子材料外围层,并将其作为轻量化部件的外表层。
进一步地,所述的通过往中部空腔中填充含有普通纤维的热塑性高分子材料是在轻量化 部件的成型模具中,将含有普通纤维的热塑性高分子材料填充到除热塑性高分子材料外围层之外的其它部分,并使得普通纤维的热塑性高分子材料与热塑性高分子材料外围层能充分融合在一起,形成以热塑性高分子材料外围层为增强结构件,以普通纤维的热塑性高分子材料为内体部分的轻量化部件。
进一步地,所述的将含有普通纤维的热塑性高分子材料填充到除热塑性高分子材料外围层之外的内体部分包括注塑或模压成型,在成型过程中通过控制工艺温度,使普通纤维的热塑性高分子材料与热塑性高分子材料外围层能充分融合在一起。
一种利用权利要求1所述基于连续纤维与普通纤维的轻量化部件制作方法制作的制品,制品为轻量化部件,轻量化部件中至少包括以连续纤维与热塑性高分子材料混合制成的热塑性高分子材料外围层,并且将连续纤维与热塑性高分子材料混合制成的热塑性高分子材料外围层作为轻量化部件中的增强结构件;热塑性高分子材料外围层内面为以普通纤维与热塑性高分子材料混合制得的热塑性高分子材料内部部分,通过含有连续纤维的热塑性高分子材料外围层与含有普通纤维的热塑性高分子材料内部部分相互融合形成轻量化部件。
进一步地,所述的热塑性高分子材料外围层是以单向或多轴向连续纤维增强热塑性带状材料,按照所确定的铺层结构,经过缠绕形成连续纤维增强热塑性的预成型件,并将其作为轻量化部件的外表增强结构件。
进一步地,所述的热塑性高分子材料外围层的连续纤维的热塑性高分子材料与普通纤维的热塑性高分子材料为相同类的材料,以确保两者在复合时能相互融合在一起,通过相互融合形成以热塑性高分子材料外围层为增强结构的轻量化部件。
进一步地,所述的热塑性高分子材料外围层为具有连续纤维的高分子复合材料绕制的封闭框架结构,绕制成型后为一个多边形或环形的框架。
进一步地,所述的热塑性高分子材料外围层是根据轻量化部件的结构形状确定热塑性高分子材料外围层的结构形状;再根据热塑性高分子材料外围层的结构形状制作出与热塑性高分子材料外围层内面形状相同的缠绕模具,再将条状的含有连续纤维的高分子复合材料加热后,按照一层一层的方式缠绕到缠绕模具上,经过定型后,冷却形成的热塑性高分子材料外 围层。
有益效果
本发明的有益效果在于:
本发明的推力杆总成通过采用复合材料制作杆体,并采用杆体的外层与内部分别采用不同的纤维树脂材料,通过先采用连续纤维复合材料预制轻量化部件的外围层,再向轻量化部件内部浇注普通纤维复合材料,并让外围层与内部很好融合在一起,不仅轻量化效果显著,还可以大幅提升本体的结构强度,完全满足商用车轻量化、电动化的发展需求。
1、本发明使用连续纤维与短纤维增分别与热塑性复合材料混合制得轻量化部件的不同部分,可以充分利用连续纤维与短纤维不同的特点与轻量化部件不同部分进行匹配,提高轻量化部件的承载能力;
2、本发明采用连续纤维复合材料制作轻量化部件的最外面的表层,可以利用连续纤维的纤维抗拉能力,提升轻量化部件的抗拉强度,使得轻量化部件的整体抗拉强度提升;
3、本发明结构上采用单向或多轴向连续纤维增强热塑性带状材料与短纤维增强尼龙6或尼龙66(6:8配比)结合的边缘处,设计注塑包边层结构,进一步增加不同材料界面融合强度,使得结构所能承受的载荷更大,同等条件下结构重量更轻,同时注塑成型易于全自动化生产。
4、本发明外表层与内体部分采用相同的热塑性复合材料,短纤维增强尼龙6或尼龙66高压注塑成型复杂加强筋结构,不同的复合材料但基体树脂一致,通过控制工艺温度,使其天然融合成一体,无须粘接且融合界面强度高。
附图说明
图1是本发明实施例一的结构立体示意图;
图2是本发明实施例一的外围层立体结构示意图;
图3是本发明实施例一的球铰结构示意图;
图4是本发明实施例一的金属钢套结构示意图;
图5是本发明实施例一的制作模具结构立体示意图;
图6是本发明实施例一的制作模具的模芯结构示意图;
图7是本发明实施例二的制品结构示意图;
图8是本发明实施例三的制品结构示意图;
图9是本发明实施例四的制品结构示意图。
本发明的最佳实施方式
下面结合附图对本发明最佳实施方式做进一步阐述。
通过附图1可以看出,本发明涉及一种连续纤维增强轻量化热塑性复合材料推力杆,包括橡胶金属球铰1、复合材料杆体2和金属钢套3。其中,复合材料杆体2包括杆体内部部分21和杆体外围层22,杆体内部部分21和杆体外围层22分别由单向或多轴向连续纤维增强热塑性带状材料和短纤维增强尼龙6或尼龙66制成,且通过注塑复合在一起;金属钢套3与复合材料杆体2复合在一起,橡胶金属球铰1通过压力压装在金属钢套3内。
所述的杆体外围层22采用单向或多轴向连续纤维增强热塑性带状材料封闭包裹缠绕在杆体内部部分21外侧,作为主要承载外围层;结构如附图2所示。
所述橡胶金属球铰1由芯轴11、橡胶硫化体12、外套13组成,芯轴11设置在外套13内,芯轴11轴线和外套13轴线重合,芯轴11和外套13之间通过橡胶硫化体12连接;结构如附图3所示。
所述的杆体内部部分21为短纤维增强尼龙6或尼龙66通过注塑成型的轻量化结构,成型复杂网格化加强筋结构,起联结补强作用,且杆体内部部分21在注塑成型时与杆体外围层22融合在一起,形成一体化结构件。
所述的金属钢套3与杆体外围层22和杆体内部部分21复合在一起,且金属钢套3与杆体外围层22之间的接触部分限定在金属钢套3外圈的a角度为0-180度的范围内,其余部分为与杆体内部部分21复合在一起;结构如附图4所示。
本实施例的推力杆制作方法如下:
1、先制作推力杆外围层制作模具:如附图5所示,推力杆外围层制作模具4包括一个模具座41,模具座41上安装有模芯42和整形块43;模芯42通过模芯底座46固定在模具座41的中间 位置,且模芯42的一端设置有活动端44(见附图6所示);整形块43分四个方向包围模芯42,并可在驱动装置45的推动下,向模芯42靠拢,进行外围层的整形;
2、外围层材料预处理:选择单向或多轴向连续纤维增强热塑性带状材料,将连续纤维与热塑性高分子材料混合在一起,形成含有连续纤维的热塑性高分子材料预浸料,并按照推力杆杆体的宽度进行裁剪,形成条状的单向或多轴向连续纤维增强热塑性带状材料;
3、制作推力杆外围层:将条状的单向或多轴向连续纤维增强热塑性带状材料,经过加热后一层一层缠绕在推力杆外围层制作模具的模芯42上,达到所需要的厚度后进行剪断;再通过整形快43对缠绕成的推力杆外围层进行整形,达到所需要的形状;整形时,随着整形快43向模芯42靠拢,模芯42上的活动端44将逐步向内收缩,以保证推力杆外围层在整形过程中不会产生过大的拉伸;整形后形成所需要的杆体外围层22;
4、制作轻量化推力杆:将制作好的杆体外围层22置于注塑模具中,并将杆体外围层22紧靠注塑模具的外层,保持杆体外围层22的温度适合与杆体内部部分21复合融合;再向注塑模具中注塑短纤维增强尼龙6和/或尼龙66,其中,尼龙6与尼龙66混合时采用尼龙6与尼龙66的配比为6:8,形成网格状的杆体内部部分21,并保证杆体内部部分21在注塑过程中与杆体外围层22很好融合在一起,且注塑采用包边层结构,由杆体内部部分21注塑时对杆体外围层22形成包边结构;最终形成连续纤维增强轻量化热塑性复合材料推力杆。
本实施例采用连续纤维增强热塑性板材制作推力杆的外围层,并包裹短纤维增强尼龙6或尼龙66制作的杆体内芯部分,可以大幅提升推力杆的抗拉伸、抗压缩、抗扭转性能,不仅具有更好的界面融合强度、工艺成型性以及疲劳性能,并且均为热塑性树脂,后续可回收利用,注塑工艺也更易于实现自动化生产。橡胶金属球铰采用后续压装工序,装配到复合材料杆体中,橡胶金属球铰可替换,结构后续维护成本低。结构上在单向或多轴向连续纤维增强热塑性带状材料与短纤维增强尼龙6或尼龙66(6:8配比)结合的边缘处,设计注塑包边层结构,进一步增加不同材料界面融合强度,使得结构所能承受的载荷更大,同等条件下结构重量更轻,同时注塑成型易于全自动化生产。
图7展示了该发明结构强度特性试验测试结果曲线图,通过曲线图可以看出,曲线51为普通轻量化复合材料推力杆拉伸强度曲线,曲线52为本发明实施例的测试拉伸强度曲线,图示说明本发明可承受更大的极限载荷,相对普通的轻量化复合材料推力杆极限拉伸强度可以提高近35KN;同等条件下具有更强的结构强度,试用的车型更广。
通过最佳实施方式,可以看出本发明还涉及一种基于连续纤维与普通纤维的轻量化部件制作方法,以热塑性高分子材料为基体材料,先利用含有连续纤维的热塑性复合材料通过绕制方法制作出连续纤维热塑性高分子材料外围层,再将热塑性高分子材料外围层放入轻量化部件成型模具中,并让连续纤维热塑性高分子材料外围层紧贴在成型模具的内壁,形成中部空腔,通过往中部空腔中填充含有普通纤维的热塑性高分子材料,并让普通纤维的热塑性高分子材料与连续纤维热塑性高分子材料外围层复合在一起,形成轻量化部件。
进一步地,所述的以热塑性高分子材料为基体材料是以热塑性材料作为主体材料,分别与连续纤维和普通纤维进行混合制作轻量化的热塑性高分子材料外围层和热塑性高分子材料内体部分;其中,采用连续纤维与热塑性高分子材料混合制作轻量化部件中热塑性高分子材料外围层;采用普通长纤维和/或短纤维与热塑性高分子材料混合制作轻量化部件的内体部分。
进一步地,所述的连续纤维热塑性高分子材料外围层和热塑性高分子材料内体部分为相同物理性能的热塑性高分子材料,以保证在热塑性高分子材料的外围层与热塑性高分子材的料内体部分复合在一起时,两者能相互熔融结合在一起。
进一步地,所述的利用连续纤维制作出热塑性高分子材料外围层是将连续纤维与热塑性高分子材料混合在一起,形成含有连续纤维的热塑性高分子材料预浸料;再用含有连续纤维的热塑性高分子材料预浸料制作成条状的含有连续纤维的高分子复合材料;再用条状的含有连续纤维的高分子复合材料以缠绕的方式制作出轻量化部件的热塑性高分子材料外围层。
进一步地,所述的以缠绕的方式制作出轻量化部件的热塑性高分子材料外围层是根据轻量化部件的结构形状确定热塑性高分子材料外围层的结构形状;再根据热塑性高分子材料外围层的结构形状制作出缠绕模具,再将条状的含有连续纤维的高分子复合材料加热后,按照一层一层的方式缠绕到缠绕模具上,达到所需要的厚度后,通过缠绕模具压紧成型,形成热 塑性高分子材料外围层。
进一步地,所述的热塑性高分子材料外围层为具有连续纤维的高分子复合材料绕制的封闭框架结构,绕制成型后为一个多边形或环形的封闭结构框架。
进一步地,所述的通过缠绕模具压紧成型是指先将含有连续纤维的高分子复合材料加热,以便缠绕到缠绕模具上,在缠绕完毕后,形成热塑性高分子材料外围层的框架,再通过缠绕模具的定型块对热塑性高分子材料外围层的框架进行整形,使得热塑性高分子材料外围层的框架达到所需的结构形状,形成热塑性高分子材料外围层。
进一步地,所述的连续纤维为单向或多轴向连续纤维增强热塑性带状材料,以单向或多轴向连续纤维增强热塑性带状材料,按照所确定的铺层结构,经过缠绕形成连续纤维增强热塑性高分子材料外围层,并将其作为轻量化部件的外表层。
进一步地,所述的通过往中部空腔中填充含有普通纤维的热塑性高分子材料是在轻量化部件的成型模具中,将含有普通纤维的热塑性高分子材料填充到除热塑性高分子材料外围层之外的其它部分,并使得普通纤维的热塑性高分子材料与热塑性高分子材料外围层能充分融合在一起,形成以热塑性高分子材料外围层为增强结构件,以普通纤维的热塑性高分子材料为内体部分的轻量化部件。
进一步地,述的将含有普通纤维的热塑性高分子材料填充到除热塑性高分子材料外围层之外的内体部分包括注塑或模压成型,在成型过程中通过控制工艺温度,使普通纤维的热塑性高分子材料与热塑性高分子材料外围层能充分融合在一起。
本发明实施方式
实施例一
实施例一的原理与最佳实施方式是一样的,只是组合结构上稍微有所不同,通过附图7可以看出,本实施例涉及一种连续纤维增强轻量化热塑性复合材料推力杆,包括橡胶金属球铰201和复合材料杆体202。橡胶金属球铰201由芯轴211、橡胶硫化体212、外套213组成,芯轴设置在外套内,芯轴轴线和外套轴线重合,芯轴和外套之间通过橡胶硫化连接。复合材料杆体202由单向或多轴向连续纤维增强热塑性带状材料构成的外围层221、短纤维增强尼 龙6或尼龙66(其中,尼龙6与尼龙66混合时采用尼龙6与尼龙66的配比为6:8)构成的杆体内部部分222、特定铺层结构的连续纤维增强热塑性板材223和金属钢套224组成;单向或多轴向连续纤维增强热塑性带状材料封闭包裹缠绕在结构外侧作为主要承载外围层;特定铺层结构的连续纤维增强热塑性板材水平设置在结构中面处,间隙配合装配在钢套凹槽内,与外侧包裹缠绕的连续纤维材料外围层组成工字形截面,提供更好的抗压缩、抗扭转性能,短纤维增强尼龙6或尼龙66通过注塑成型复杂加强筋结构起联结补强作用。对于复合材料杆体的制作,基本按照实施例一的方式,先用单向或多轴向连续纤维增强热塑性带状材料和特定铺层结构的连续纤维增强热塑性板材制作预成型件,将其作为外围层,连同金属钢套一起预埋在模具中,进行高压模压工艺,然后用短纤维增强尼龙6或尼龙66(其中,尼龙6与尼龙66混合时采用尼龙6与尼龙66的配比为6:8)注塑并包裹,三种不同复合材料的基体树脂保持一致,通过控制工艺温度,使三种不同的材料天然的融合在一起,具有更好的界面融合强度、工艺成型性以及疲劳性能,并且均为热塑性树脂,后续可回收利用,注塑工艺也更易于实现自动化生产。橡胶金属球铰采用后续压装工序,装配到复合材料杆体中,橡胶金属球铰可替换,结构后续维护成本低。
实施例二
实施例二的原理与最佳实施方式也是一样的,只是组合结构上稍微有所不同,通过附图8可以看出,本实施例涉及一种基于高分子复合材料制作汽车平衡杆连接杆稳定杆吊杆下直臂吊耳,包括下直臂吊耳301和橡胶球铰302,其中橡胶球铰302为两个,分别设置在下直臂二个角上;其点在于,所述的橡胶球铰302为金属套303与橡胶体304和芯轴套305结合结构的组合球铰;所述的下直臂吊耳301为高分子复合材料制作而成,其中下直臂吊耳301的外围层为连续纤维缠绕制作成的外围层311,外围层311内面为轻量化材料长纤维增强尼龙6或尼龙66(其中,尼龙6与尼龙66混合时采用尼龙6与尼龙66的配比为6:8),通过注塑形成的轻量化内部部分312;外围层311与轻量化内部部分312通过注塑完全融合在一起。
汽车平衡杆连接杆稳定杆吊杆下直臂吊耳制作方法与实施例一基本一样,只是所采用的 制作模具需要根据汽车平衡杆连接杆稳定杆吊杆下直臂吊耳的形状另外设计。
实施例三
实施例四的原理与最佳实施方式也是一样的,只是组合结构上稍微有所不同,为一种基于高分子复合材料制作乘用车驾驶室稳定杆扭转臂,如附图9所示;包括稳定杆扭转臂杆体401和橡胶金属球铰402,其中橡胶金属球铰402为2个,分别设置在稳定杆扭转臂杆体401的两端;所述的橡胶金属球铰402为带有金属套403结构的组合球铰;所述的稳定杆扭转臂杆体401为高分子复合材料制作的杆体,且金属套403与稳定杆扭转臂杆体401复合在一起,橡胶金属球铰402压装在金属套403;所述的稳定杆扭转臂杆体401为连续纤维与普通长纤维和/或短纤维混合制作的高分子材料制作的圆筒形状或多边形状的杆体,其中先由连续纤维与热塑性高分子材料复合制作出圆筒形状或多边形状的杆体外表层411,再在杆体外表层内通过注塑填充长纤维和/或短纤维与热塑性高分子材料复合形成杆体内体部分412,最终形成一种圆筒形状或多边形状的稳定杆扭转臂。
乘用车驾驶室稳定杆扭转臂制作方法与实施例一基本一样,只是所采用的制作模具需要根据乘用车驾驶室稳定杆扭转臂的形状另外设计。而且可以通过将制作模具与注塑模具设计成一体,先直接将金属套放置在模芯的两端,直接在金属套上缠绕连续纤维复合材料,整理成型后直接送入注塑机进行内部部分的注塑成型,实现整个过程的完全自动化作业。
上述所列实施例,只是结合附图对本发明的技术方案进行清楚、完整的描述;显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例,而且本说明书中所引用的如“上”、“下”、“前”、“后”、“中间”等用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。同时,说明书附图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容所能涵盖的范围内。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其 它实施例,都属于本发明保护的范围。
工业实用性
本发明的推力杆总成通过采用复合材料制作杆体,并采用杆体的外层与内部分别采用不同的纤维树脂材料,通过先采用连续纤维复合材料预制轻量化部件的外围层,再向轻量化部件内部浇注普通纤维复合材料,并让外围层与内部很好融合在一起,不仅轻量化效果显著,还可以大幅提升本体的结构强度,完全满足商用车轻量化、电动化的发展需求。主要有以下一些优点:
1.本发明使用连续纤维与短纤维增分别与热塑性复合材料混合制得轻量化部件的不同部分,可以充分利用连续纤维与短纤维不同的特点与轻量化部件不同部分进行匹配,提高轻量化部件的承载能力;
2.本发明采用连续纤维复合材料制作轻量化部件的最外面的表层,可以利用连续纤维的纤维抗拉能力,提升轻量化部件的抗拉强度,使得轻量化部件的整体抗拉强度提升;
3.本发明结构上采用单向或多轴向连续纤维增强热塑性带状材料与短纤维增强尼龙6或尼龙66(6:8配比)结合的边缘处,设计注塑包边层结构,进一步增加不同材料界面融合强度,使得结构所能承受的载荷更大,同等条件下结构重量更轻,同时注塑成型易于全自动化生产。
4.本发明外表层与内体部分采用相同的热塑性复合材料,短纤维增强尼龙6或尼龙66高压注塑成型复杂加强筋结构,不同的复合材料但基体树脂一致,按照常规的通过控制工艺温度,使其天然融合成一体,无须粘接且融合界面强度高。

Claims (15)

  1. 基于连续纤维与普通纤维的轻量化部件制作方法,其特征在于:以热塑性高分子材料为基体材料,先利用含有连续纤维的热塑性复合材料通过绕制方法制作出连续纤维热塑性高分子材料外围层,再将热塑性高分子材料外围层放入轻量化部件成型模具中,并让连续纤维热塑性高分子材料外围层紧贴在成型模具的内壁,形成中部空腔,通过往中部空腔中填充含有普通纤维的热塑性高分子材料,并让普通纤维的热塑性高分子材料与连续纤维热塑性高分子材料外围层复合在一起,形成轻量化部件。
  2. 如权利要求1所述的基于连续纤维与普通纤维的轻量化部件制作方法,其特征在于:所述的以热塑性高分子材料为基体材料是以热塑性材料作为主体材料,分别与连续纤维和普通纤维进行混合制作轻量化的热塑性高分子材料外围层和热塑性高分子材料内体部分;其中,采用连续纤维与热塑性高分子材料混合制作轻量化部件中热塑性高分子材料外围层;采用普通长纤维和/或短纤维与热塑性高分子材料混合制作轻量化部件的内体部分。
  3. 如权利要求2所述的基于连续纤维与普通纤维的轻量化部件制作方法,其特征在于:所述的连续纤维热塑性高分子材料外围层和热塑性高分子材料内体部分为相同物理性能的热塑性高分子材料,以保证在热塑性高分子材料的外围层与热塑性高分子材的料内体部分复合在一起时,两者能相互熔融结合在一起。
  4. 如权利要求1所述的基于连续纤维与普通纤维的轻量化部件制作方法,其特征在于:所述的利用连续纤维制作出热塑性高分子材料外围层是将连续纤维与热塑性高分子材料混合在一起,形成含有连续纤维的热塑性高分子材料预浸料;再用含有连续纤维的热塑性高分子材料预浸料制作成条状的含有连续纤维的高分子复合材料;再用条状的含有连续纤维的高分子复合材料以缠绕的方式制作出轻量化部件的热塑性高分子材料外围层。
  5. 如权利要求4所述的基于连续纤维与普通纤维的轻量化部件制作方法,其特征在于:所述的以缠绕的方式制作出轻量化部件的热塑性高分子材料外围层是根据轻量化部件的结构形状确定热塑性高分子材料外围层的结构形状;再根据热塑性高分子材料外围层的结构形状制作出缠绕模具,再将条状的含有连续纤维的高分子复合材料加热后,按照一层一层的方式缠绕到缠绕模具上,达到所需要的厚度后,通过缠绕模具压紧成型,形成热塑性高分子材料外围 层。
  6. 如权利要求5所述的基于连续纤维与普通纤维的轻量化部件制作方法,其特征在于:所述的热塑性高分子材料外围层为具有连续纤维的高分子复合材料绕制的封闭框架结构,绕制成型后为一个多边形或环形的封闭结构框架。
  7. 如权利要求5所述的基于连续纤维与普通纤维的轻量化部件制作方法,其特征在于:所述的通过缠绕模具压紧成型是指先将含有连续纤维的高分子复合材料加热,以便缠绕到缠绕模具上,在缠绕完毕后,形成热塑性高分子材料外围层的框架,再通过缠绕模具的定型块对热塑性高分子材料外围层的框架进行整形,使得热塑性高分子材料外围层的框架达到所需的结构形状,形成热塑性高分子材料外围层。
  8. 如权利要求5所述的基于连续纤维与普通纤维的轻量化部件制作方法,其特征在于:所述的连续纤维为单向或多轴向连续纤维增强热塑性带状材料,以单向或多轴向连续纤维增强热塑性带状材料,按照所确定的铺层结构,经过缠绕形成连续纤维增强热塑性高分子材料外围层,并将其作为轻量化部件的外表层。
  9. 如权利要求1所述的基于连续纤维与普通纤维的轻量化部件制作方法,其特征在于:所述的通过往中部空腔中填充含有普通纤维的热塑性高分子材料是在轻量化部件的成型模具中,将含有普通纤维的热塑性高分子材料填充到除热塑性高分子材料外围层之外的其它部分,并使得普通纤维的热塑性高分子材料与热塑性高分子材料外围层能充分融合在一起,形成以热塑性高分子材料外围层为增强结构件,以普通纤维的热塑性高分子材料为内体部分的轻量化部件。
  10. 如权利要求9所述的基于连续纤维与普通纤维的轻量化部件制作方法,其特征在于:所述的将含有普通纤维的热塑性高分子材料填充到除热塑性高分子材料外围层之外的内体部分包括注塑或模压成型,在成型过程中通过控制工艺温度,使普通纤维的热塑性高分子材料与热塑性高分子材料外围层能充分融合在一起。
  11. 一种利用权利要求1所述基于连续纤维与普通纤维的轻量化部件制作方法制作的制品,制品为轻量化部件,轻量化部件中至少包括以连续纤维与热塑性高分子材料混合制成的热塑 性高分子材料外围层,并且将连续纤维与热塑性高分子材料混合制成的热塑性高分子材料外围层作为轻量化部件中的增强结构件;热塑性高分子材料外围层内面为以普通纤维与热塑性高分子材料混合制得的热塑性高分子材料内部部分,通过含有连续纤维的热塑性高分子材料外围层与含有普通纤维的热塑性高分子材料内部部分相互融合形成轻量化部件。
  12. 如权利要求11所述的基于连续纤维与普通纤维的轻量化部件制作的制品,其特征在于:所述的热塑性高分子材料外围层是以单向或多轴向连续纤维增强热塑性带状材料,按照所确定的铺层结构,经过缠绕形成连续纤维增强热塑性的预成型件,并将其作为轻量化部件的外表增强结构件。
  13. 如权利要求12所述的基于连续纤维与普通纤维的轻量化部件制作的制品,其特征在于:所述的热塑性高分子材料外围层的连续纤维的热塑性高分子材料与普通纤维的热塑性高分子材料为相同类的材料,以确保两者在复合时能相互融合在一起,通过相互融合形成以热塑性高分子材料外围层为增强结构的轻量化部件。
  14. 如权利要求12所述的基于连续纤维与普通纤维的轻量化部件制作的制品,其特征在于:所述的热塑性高分子材料外围层为具有连续纤维的高分子复合材料绕制的封闭框架结构,绕制成型后为一个多边形或环形的框架。
  15. 如权利要求14所述的基于连续纤维与普通纤维的轻量化部件制作的制品,其特征在于:所述的热塑性高分子材料外围层是根据轻量化部件的结构形状确定热塑性高分子材料外围层的结构形状;再根据热塑性高分子材料外围层的结构形状制作出与热塑性高分子材料外围层内面形状相同的缠绕模具,再将条状的含有连续纤维的高分子复合材料加热后,按照一层一层的方式缠绕到缠绕模具上,经过定型后,冷却形成的热塑性高分子材料外围层。
PCT/CN2021/082030 2021-02-09 2021-03-22 基于连续纤维与普通纤维的轻量化部件制作方法及制品 WO2022170663A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE212021000506.3U DE212021000506U1 (de) 2021-02-09 2021-03-22 Leichtbauteil auf der Basis von Endlosfasern und gewöhnlichen Fasern
DE112021006058.9T DE112021006058T5 (de) 2021-02-09 2021-03-22 Verfahren zur Herstellung von Leichtbauteilen auf der Basis von Endlosfasern und gewöhnlichen Fasern und dessen Produkt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110176566.X 2021-02-09
CN202110176566.XA CN113021939B (zh) 2021-02-09 2021-02-09 基于连续纤维与普通纤维的轻量化部件制作方法及制品

Publications (1)

Publication Number Publication Date
WO2022170663A1 true WO2022170663A1 (zh) 2022-08-18

Family

ID=76460758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082030 WO2022170663A1 (zh) 2021-02-09 2021-03-22 基于连续纤维与普通纤维的轻量化部件制作方法及制品

Country Status (3)

Country Link
CN (1) CN113021939B (zh)
DE (2) DE212021000506U1 (zh)
WO (1) WO2022170663A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3126640A1 (fr) 2021-09-03 2023-03-10 Safran Outillage pour l’enroulement d’une texture fibreuse et procédé d’enroulement associé
CN113815376B (zh) * 2021-10-29 2023-07-28 博戈橡胶塑料(株洲)有限公司 轻量化大载荷的商用车稳定杆吊杆总成及其制备方法
CN115071162A (zh) * 2022-06-20 2022-09-20 广州金发碳纤维新材料发展有限公司 一种纤维增强防撞梁及其制备工艺和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5617788B2 (ja) * 2011-07-27 2014-11-05 株式会社豊田自動織機 繊維強化複合材料
WO2018124354A1 (ko) * 2016-12-30 2018-07-05 서강대학교산학협력단 금속판재스킨으로 덮인 섬유강화플라스틱 복합재료의 제조방법 및 그에 따라 제조된 경량 구조물용 복합재료 부품
CN109109339A (zh) * 2018-07-12 2019-01-01 凌云工业股份有限公司上海凌云汽车研发分公司 热塑性树脂基复合材料的制备和增强防撞构件的方法
CN110757722A (zh) * 2019-09-16 2020-02-07 中广核俊尔(浙江)新材料有限公司 一种热塑性连续纤维增强复合材料制件的成型方法
CN111572059A (zh) * 2020-05-13 2020-08-25 株洲时代工程塑料科技有限责任公司 一种连续玻纤增强热塑性复合材料及其制备方法
CN111791513A (zh) * 2020-07-20 2020-10-20 株洲时代新材料科技股份有限公司 轻量化球铰用复合芯轴的制作方法、轻量化球铰
CN112123815A (zh) * 2020-09-08 2020-12-25 华南农业大学 异形空心碳管管体及其制备工艺与异形碳纤维半轴总成

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2543054B1 (fr) * 1983-03-22 1986-02-28 Renault Procede de fabrication d'une bielle en materiau composite pour moteur, notamment de vehicule automobile
EP2110302A1 (en) * 2003-06-11 2009-10-21 CAMPAGNOLO S.r.l. Bicycle component
CN101352928B (zh) * 2008-09-05 2010-12-01 沈阳航空工业学院 聚芳醚砜酮树脂基复合材料的在线浸渍缠绕成型方法
JP4973745B2 (ja) * 2010-02-01 2012-07-11 トヨタ自動車株式会社 連続繊維プリプレグの成形方法
CN104023952A (zh) * 2011-12-07 2014-09-03 纳幕尔杜邦公司 使用单向纤维强化带材制成的复合制品
FR3006725B1 (fr) * 2013-06-05 2015-06-19 Hutchinson Bielle composite, son procede de fabrication et structure de plafond ou de plancher aeronautique l'incorporant.
DE102013214673A1 (de) * 2013-07-26 2015-01-29 Bayerische Motoren Werke Aktiengesellschaft Radführender Lenker aus faserverstärktem thermoplastischen Werkstoff
CN103434141B (zh) * 2013-08-15 2015-09-23 北京卫星制造厂 一种碳纤维复合材料盒状加筋结构的成型方法
DE102014103701B3 (de) * 2014-03-18 2015-05-21 Holger Faupel Kurbelarm für ein Fahrrad-Tretkurbelsystem und Herstellungsverfahren dafür
CN108284622B (zh) * 2017-12-13 2020-06-23 江南工业集团有限公司 复合材料缠绕管形件的成型工艺
CN109228399A (zh) * 2018-10-16 2019-01-18 深圳市创旭腾新材料科技有限公司 一种热固性复合材料短切纤维与连续纤维的一体成型方法
CN109910208B (zh) * 2019-04-23 2021-04-02 哈尔滨工业大学 一种芯模及其制备方法与复合材料异型管成型方法
US11167508B2 (en) * 2019-07-30 2021-11-09 Spirit Aerosystems, Inc. System and method for fabricating and curing large composite structures

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5617788B2 (ja) * 2011-07-27 2014-11-05 株式会社豊田自動織機 繊維強化複合材料
WO2018124354A1 (ko) * 2016-12-30 2018-07-05 서강대학교산학협력단 금속판재스킨으로 덮인 섬유강화플라스틱 복합재료의 제조방법 및 그에 따라 제조된 경량 구조물용 복합재료 부품
CN109109339A (zh) * 2018-07-12 2019-01-01 凌云工业股份有限公司上海凌云汽车研发分公司 热塑性树脂基复合材料的制备和增强防撞构件的方法
CN110757722A (zh) * 2019-09-16 2020-02-07 中广核俊尔(浙江)新材料有限公司 一种热塑性连续纤维增强复合材料制件的成型方法
CN111572059A (zh) * 2020-05-13 2020-08-25 株洲时代工程塑料科技有限责任公司 一种连续玻纤增强热塑性复合材料及其制备方法
CN111791513A (zh) * 2020-07-20 2020-10-20 株洲时代新材料科技股份有限公司 轻量化球铰用复合芯轴的制作方法、轻量化球铰
CN112123815A (zh) * 2020-09-08 2020-12-25 华南农业大学 异形空心碳管管体及其制备工艺与异形碳纤维半轴总成

Also Published As

Publication number Publication date
DE112021006058T5 (de) 2023-11-23
CN113021939A (zh) 2021-06-25
CN113021939B (zh) 2022-04-22
DE212021000506U1 (de) 2023-08-30

Similar Documents

Publication Publication Date Title
WO2022170663A1 (zh) 基于连续纤维与普通纤维的轻量化部件制作方法及制品
CN101491947B (zh) 麻机织物增强复合材料板材的制造工艺
CN109291477A (zh) 热塑性连续玻纤预浸带径轴双向增强复合管及其制备方法
CN110566569A (zh) 一种带橡胶金属球铰的轻量化接头制作方法
KR20190005754A (ko) 자동차의 휠 서스펜션을 위한 베어링 부시 제조 방법, 베어링 부시 및 컨트롤암
WO2023070990A1 (zh) 轻量化大载荷的商用车稳定杆吊杆总成及其制备方法
CN107867336A (zh) 一种悬臂梁支撑装置及其制造方法
CN113043527B (zh) 一种轻量化复合材料推力杆制作方法
CN216002108U (zh) 一种轻量化大载荷的商用车稳定杆吊杆总成
CN105128352A (zh) 复合材料集成结构和复合材料集成结构的制造方法
CN205058640U (zh) 复合材料集成结构
CN206145409U (zh) 一种轻质高强的纤维复材
CN113043528B (zh) 一种控制臂成型方法及控制臂
CN109353025A (zh) 一种热塑性短纤维复材舱体成型工艺及结构
CN109109345A (zh) 一种汽车用复合材料前板簧hp-rtm制造工艺
CN109625098A (zh) 一种集成式车身后地板及其制造方法
CN214874078U (zh) 一种轻量化复合材料推力杆
CN109109344A (zh) 一种汽车用复合材料板簧的制造工艺
CN110576561B (zh) 一种带橡胶金属球铰的轻量化连杆制作方法
CN202158100U (zh) 一种复合材料法兰
JPH0257401A (ja) 樹脂ホイール
JPS62104717A (ja) ゴムブツシユ付プラスチツクロツドの製法
CN108995253A (zh) 一种泡沫芯薄层复合材料杆件的制作
CN112757624A (zh) 一种四足机器人大腿连续碳纤维fdm 3d打印方法
CN111823487A (zh) 一种挤出与注射复合成型免充气轮胎及其加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925319

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112021006058

Country of ref document: DE

Ref document number: 212021000506

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925319

Country of ref document: EP

Kind code of ref document: A1