WO2022170659A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2022170659A1
WO2022170659A1 PCT/CN2021/081012 CN2021081012W WO2022170659A1 WO 2022170659 A1 WO2022170659 A1 WO 2022170659A1 CN 2021081012 W CN2021081012 W CN 2021081012W WO 2022170659 A1 WO2022170659 A1 WO 2022170659A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
signal
layer
azimuth angle
signal trace
Prior art date
Application number
PCT/CN2021/081012
Other languages
English (en)
French (fr)
Inventor
杨汉宁
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US17/288,851 priority Critical patent/US11963428B2/en
Publication of WO2022170659A1 publication Critical patent/WO2022170659A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8793Arrangements for polarized light emission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel and a display device.
  • OLED Organic Light Emitting Display
  • LCD Liquid Crystal Display
  • OLED Organic Light Emitting Display
  • LCD Liquid Crystal Display
  • the metal electrodes inside the display panel will reflect this part of the incident light, resulting in problems such as low display contrast and color shift.
  • the present application provides a display panel and a display device to alleviate the technical problem of poor uniform black uniformity in existing OLED products.
  • An embodiment of the present application provides a display panel, which includes a display panel body and a polarizer arranged in a light-emitting direction of the display panel body, wherein the reflection area of the metal layer of the display panel body at a first azimuth angle is greater than that at a first azimuth angle.
  • the display panel body includes a substrate, the metal layer is disposed on the substrate, and the metal layer includes a first source and drain layer and a second source and drain layer.
  • the first source and drain layers are disposed on the substrate, and include at least one first signal trace arranged along the direction of the second azimuth angle.
  • the second source-drain layer is disposed on the first source-drain layer, and includes at least one second signal trace arranged in parallel with the first signal trace.
  • the orthographic projection of the second signal trace on the substrate and the orthographic projection of the first signal trace on the substrate at least partially overlap, so that the metal layer is at the first azimuth angle
  • the reflective area is larger than the reflective area at the second azimuth.
  • the second signal wiring includes a first sub-signal wiring and a second sub-signal wiring which are arranged along a direction parallel to the second azimuth angle.
  • the second signal wiring includes a first sub-signal wiring and a second sub-signal wiring arranged along a direction parallel to the second azimuth angle, and the first sub-signal wiring At least one of a sub-signal trace and the second sub-signal trace is provided with a protrusion.
  • the first signal wiring includes a third sub-signal wiring and a fourth sub-signal wiring which are arranged in a direction parallel to the second azimuth angle.
  • the first signal wiring is arranged corresponding to the first sub-signal wiring or the second sub-signal wiring.
  • the width of the second signal trace is equal to the width of the first signal trace.
  • the orthographic projection of the first signal wiring on the substrate coincides with the orthographic projection of the second signal wiring on the substrate.
  • the number of the second signal lines is greater than or equal to the number of the first signal lines.
  • the polarizer includes a linear polarization layer and a phase compensation layer, and the phase compensation layer is located on a side of the linear polarization layer facing the display panel body.
  • the phase compensation layer includes a half-wave plate and a quarter-wave plate arranged in layers.
  • the phase retardation coefficient of the half-wave plate ranges from 100 nanometers to 300 nanometers
  • the phase retardation coefficient of the quarter-wave plate ranges from 50 nanometers to 200 nanometers.
  • the phase compensation layer includes a quarter-wave plate and a C-type phase compensation layer arranged in layers.
  • the phase retardation coefficient of the quarter-wave plate ranges from 50 nanometers to 200 nanometers
  • the phase retardation coefficient of the C-type phase compensation layer ranges from 0 nanometers to 200 nanometers.
  • An embodiment of the present application further provides a display device, which includes a display panel, the display panel includes a display panel body and a polarizer arranged in a light-emitting direction of the display panel body, and the metal layer of the display panel body is on the first
  • the reflection area at one azimuth angle is greater than the reflection area at the second azimuth angle; the extinction property of the polarizer at the first azimuth angle is greater than the extinction property at the second azimuth angle.
  • the display panel body includes a substrate, the metal layer is disposed on the substrate, and the metal layer includes a first source and drain layer and a second source and drain layer.
  • the first source and drain layers are disposed on the substrate, and include at least one first signal trace arranged along the direction of the second azimuth angle.
  • the second source-drain layer is disposed on the first source-drain layer, and includes at least one second signal trace arranged in parallel with the first signal trace.
  • the orthographic projection of the second signal trace on the substrate and the orthographic projection of the first signal trace on the substrate at least partially overlap, so that the metal layer is at the first azimuth angle
  • the reflective area is larger than the reflective area at the second azimuth.
  • the width of the second signal trace is equal to the width of the first signal trace.
  • the polarizer includes a linear polarization layer and a phase compensation layer, and the phase compensation layer is located on a side of the linear polarization layer facing the display panel body.
  • the phase compensation layer includes a half-wave plate and a quarter-wave plate arranged in layers.
  • the phase compensation layer includes a quarter-wave plate and a C-type phase compensation layer arranged in layers.
  • the polarizer in the display panel and display device provided by the present application includes a linear polarizing layer and a phase compensation layer, so that the extinction property of the polarizer at the first azimuth angle is greater than that at the second azimuth angle, so as to improve the display panel in specific The reflectivity and color shift at the azimuth angle; at the same time, the display panel body adopts a double-layer source and drain layer design, the signal traces of each source and drain layer are arranged along the direction of the second azimuth angle, and the second source and drain layers are arranged in the direction of the second azimuth angle.
  • the second signal trace of the layer and the orthographic projection of the first signal trace of the first source and drain layer on the substrate at least partially overlap, so that the second signal trace covers the area of the first signal trace at different azimuth angles
  • Different metal reflection areas are formed, so that the metal reflection area of the display panel body at the first azimuth angle is larger than the metal reflection area at the second azimuth angle, so as to compensate the extinction performance of the polarizer at the second azimuth angle, and then
  • the reflectivity and color shift of the display panel at various azimuth angles are made close, the uniformity of the integrated black of the display panel is improved, and the technical problem of poor uniformity of the integrated black of the existing OLED products is solved.
  • FIG. 1 is a schematic cross-sectional structure diagram of a display panel provided by an embodiment of the present application.
  • FIG. 2 is a schematic top-view structure diagram of a display panel provided by an embodiment of the present application.
  • FIG. 3 is a schematic cross-sectional structure diagram of a polarizer provided by an embodiment of the present application.
  • FIG. 4 is a schematic top-view structural comparison diagram of the arrangement of the first signal wiring and the arrangement of the second signal wiring according to an embodiment of the present application.
  • FIG. 5 is a schematic cross-sectional structural diagram of the first signal wiring and the second signal wiring provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a spatial positional relationship between a first signal wiring and a second signal wiring according to an embodiment of the present application.
  • FIG. 7 is another schematic cross-sectional structure diagram of a display panel provided by an embodiment of the present application.
  • FIG. 8 is another schematic cross-sectional structure diagram of the polarizer provided by the embodiment of the present application.
  • FIG. 9 is a schematic top-view structure diagram of a second signal wiring provided in an embodiment of the present application.
  • FIG. 10 is another schematic cross-sectional structure diagram of a display panel provided by an embodiment of the present application.
  • FIG. 11 is another schematic top-view structure diagram of the second signal wiring according to an embodiment of the present application.
  • FIG. 1 is a schematic cross-sectional structure diagram of a display panel provided by an embodiment of the present application
  • FIG. 2 is a top-view structural schematic diagram of the display panel provided by an embodiment of the present application.
  • the display panel 100 includes a display panel body 1 and a polarizer 2 disposed in a light emitting direction of the display panel body 1 .
  • the reflection area of the metal layer 3 of the display panel body 1 at the first azimuth angle is greater than the reflection area at the second azimuth angle.
  • the extinction property of the polarizer 2 at the first azimuth angle is greater than that at the second azimuth angle.
  • the first azimuth angle includes 0 degrees and 180 degrees
  • the second azimuth angle includes 90 degrees and 270 degrees, wherein 0 degrees and 180 degrees are in the horizontal direction X of the display panel 100, and 90 degrees and 180 degrees are in the horizontal direction X of the display panel 100.
  • 270 degrees is in the vertical direction Y of the display panel 100 , so the direction of the first azimuth angle is the horizontal direction X, and the direction of the second azimuth angle is the vertical direction Y.
  • the display panel body 1 includes a substrate 10 on which the metal layer 3 is disposed.
  • the metal layer 3 includes a first source-drain layer 31 and a second source-drain layer 32 , but the present application is not limited thereto, and the metal layer 3 in the present application may also be the display panel body 1 other metal layers.
  • the first source-drain layer 31 is disposed on the substrate 10 and includes at least one first signal trace 311 arranged along the direction of the second azimuth angle, that is, the first signal trace 311 Arranged along the vertical direction Y.
  • the second source-drain layer 32 is disposed on the second source-drain layer 32 and includes at least one second signal trace 321 arranged in parallel with the first signal trace 311 .
  • the orthographic projection of the second signal trace 321 on the substrate 10 and the orthographic projection of the first signal trace 311 on the substrate 10 at least partially overlap, so that the metal layer 3 is located where the metal layer 3 is located.
  • the reflection area at the first azimuth angle is greater than the reflection area at the second azimuth angle.
  • the polarizer 2 is disposed in the light-emitting direction of the display panel body 1 .
  • the polarizer 2 can absorb part of the ambient light to prevent the ambient light from being emitted by the display panel body 1 .
  • the inner metal lines are reflected to reduce the reflectivity and improve the contrast ratio of the display panel 100 .
  • the extinction property of the polarizer 2 at the first azimuth angle is greater than the extinction property at the second azimuth angle.
  • the extinction property refers to the ability of the polarizer 2 to absorb external ambient light. The extinction of the polarizer 2 The more robust it is, the more external ambient light it can absorb, resulting in lower reflectivity.
  • the display panel body 1 adopts the design of double-layer source-drain layers, the signal traces of each source-drain layer are arranged along the direction of the second azimuth angle, and the second source-drain layer 32
  • the orthographic projections of the two signal traces 321 and the first signal traces 311 of the first source-drain layer 31 on the substrate 10 at least partially overlap, so as to compensate for the extinction performance of the polarizer 2 at the second azimuth angle, thereby enabling the display panel
  • the reflectivity and color shift of the 100 at various azimuth angles are close, which improves the overall black uniformity of the display panel 100 .
  • FIG. 3 is a schematic cross-sectional structure diagram of a polarizer provided by an embodiment of the present application.
  • the polarizer 2 includes a linear polarizing layer 24 and a phase compensation layer 25 , and the phase compensation layer 25 is located on the side of the linear polarizing layer 24 facing the display panel body 1 .
  • the polarizer 2 further includes a first protective layer 26 located on the side of the linear polarizing layer 24 away from the phase compensation layer 25 , and a first protective layer 26 located between the linear polarizing layer 24 and the phase compensation layer 25 .
  • the second protective layer 27 and the pressure sensitive adhesive (PSA) layer 28 located on the side of the phase compensation layer 25 away from the linear polarizing layer 24 .
  • PSA pressure sensitive adhesive
  • the materials of the first protective layer 26 and the second protective layer 27 include Triacetyl Cellulose (TAC), which are used to protect the linear polarizing layer 24 and improve the mechanical properties of the linear polarizing layer 24.
  • TAC Triacetyl Cellulose
  • the linear polarizing layer 24 is prevented from retracting.
  • the linear polarizing layer 24 is the PVA layer, which is made of polyvinyl alcohol and mainly functions to polarize light.
  • the pressure-sensitive adhesive layer 28 is disposed on one side of the phase compensation layer 25, and mainly plays the role of adhesive connection.
  • the phase compensation layer 25 includes a stacked half-wave plate 252 and a quarter-wave plate 251 , and the half-wave plate 252 is located on the side of the quarter-wave plate 251 facing the linear polarization layer 24 .
  • the half-wave plate 252, ie, a half-wave plate, is used to rotate polarized light to generate phase retardation.
  • the quarter-wave plate 251 can convert linearly polarized light into circularly polarized light, so as to realize the anti-reflection performance of the polarizer 2 .
  • the phase retardation coefficient of the half-wave plate 252 ranges from 100 nanometers to 300 nanometers
  • the phase retardation coefficient of the quarter-wave plate 251 ranges from 50 nanometers to 200 nanometers.
  • the extinction ability of the polarizer 2 for large viewing angles at different azimuth angles will be different, and the extinction at the first azimuth angle is greater than that at the second azimuth. Matting at the corners. That is, at 0° and 180° azimuth angles, the extinction ability for large viewing angles is stronger, and the reflectivity and color shift are lower; at 90° and 270° azimuth angles, the extinction ability for large viewing angles is weak, and the reflectivity and color shift are weak. higher.
  • the polarizer 2 is disposed in the light-emitting direction of the display panel body 1 , and by disposing the phase compensation layer 25 , the reflectivity and color shift of the display panel 100 at a specific azimuth angle can be improved.
  • the light emitting direction of the display panel body 1 refers to the side of the display panel body 1 that can display a picture.
  • the display panel body 1 further includes an active layer 20 and a gate layer 40 located between the substrate 10 and the first source/drain layer 31 , and a gate layer 40 located between the substrate 10 and the first source/drain layer 31 .
  • the substrate 10 may be a rigid substrate or a flexible substrate; when the substrate 10 is a rigid substrate, it may include a rigid substrate such as a glass substrate; when the substrate 10 is a flexible substrate, it may include polyimide (Polyimide) , PI) film, ultra-thin glass film and other flexible substrates.
  • a rigid substrate such as a glass substrate
  • a flexible substrate when the substrate 10 is a flexible substrate, it may include polyimide (Polyimide) , PI) film, ultra-thin glass film and other flexible substrates.
  • a buffer layer (not shown) is further disposed between the substrate 10 and the active layer 20, and the buffer layer can prevent unwanted impurities or contaminants (such as moisture, oxygen, etc.) from The substrate 10 diffuses into devices that may be damaged by these impurities or contaminants, while also providing a flat top surface.
  • the active layer 20 is disposed on the buffer layer, and the active layer 20 includes a channel region 21 and a source doped region 22 and a drain doped region 23 located on both sides of the channel region 21 .
  • the gate insulating layer 11 covers the active layer 20 and the buffer layer, the gate layer 40 is disposed on the gate insulating layer 11 , and the gate pattern of the gate layer 40 is It is provided corresponding to the channel region 21 of the active layer 20 .
  • the first interlayer insulating layer 12 covers the gate layer 40 and the gate insulating layer 11 , and the first source and drain layers 31 are disposed on the first interlayer insulating layer 12 .
  • the first source-drain layer 31 includes a first source electrode 312 , a first drain electrode 313 and a first signal trace 311 , the first signal trace 311 is connected with the first source electrode 312 and the first The drain electrode 313 is arranged in the same layer.
  • the first source electrode 312 is connected to the source doped region 22 through the via hole of the first interlayer insulating layer 12
  • the first drain electrode 313 is connected to the source doped region 22 through another hole of the first interlayer insulating layer 12 .
  • a via hole is connected to the drain doped region 23 .
  • the second interlayer insulating layer 13 covers the first source/drain layer 31 and the first interlayer insulating layer 12 , and the second source/drain layer 32 is disposed on the second interlayer insulating layer on layer 13.
  • the second source-drain layer 32 includes a second source electrode 322 and a second signal trace 321 , and the second signal trace 321 and the second source electrode 322 are disposed in the same layer.
  • the second source electrode 322 is connected to the first source electrode 312 through the via hole of the second interlayer insulating layer 13 .
  • the present application is not limited thereto, and the second source electrode 322 of the present application may also be connected to the first drain electrode 313 .
  • FIG. 4 is a schematic top-view structural comparison of the first signal wiring and the second signal wiring arrangement according to an embodiment of the present application.
  • the first signal traces 311 and the second signal traces 321 are both arranged on the substrate 10 along the direction of the second azimuth angle, that is, the first signal traces 311 and the second signal traces
  • the traces 321 are all arranged along the vertical direction Y, and the orthographic projection of the second signal trace 321 on the substrate 10 and the orthographic projection of the first signal trace 311 on the substrate 10 are at least partially The overlapping enables the second signal trace 321 to shield part of the first signal trace 311 .
  • the surface shapes of the first signal traces 311 and the second signal traces 321 include a rectangle, etc., and the surface shapes of the first signal traces 311 and the second signal traces 321 are set.
  • a regular shape such as a rectangle can reduce the difficulty of the process.
  • the cross-sectional shape of the first signal trace 311 and the second signal trace 321 includes a rectangle, a trapezoid, etc.
  • the cross-sectional shape shown in FIG. 1 is a rectangle.
  • the sides 3214 of the trapezoid will also reflect the ambient light, so the bottom of the trapezoid will reflect the ambient light.
  • the width L1 of the second signal trace 321 is equal to the width L2 of the first signal trace 311 , of course, the present application is not limited to this, the width of the second signal trace 321 in the present application L1 may also not be equal to the width L2 of the first signal trace 311 .
  • the orthographic projection of the first signal traces 311 on the substrate 10 coincides with the orthographic projection of the second signal traces 321 on the substrate 10 , so that the second signal traces 321 are paired with The shielding effect of the first signal trace 311 is better.
  • the number of the second signal wirings 321 is greater than or equal to the number of the first signal wirings 311 .
  • the first signal traces 311 are set corresponding to part of the second signal traces 321 ;
  • the first signal traces 311 and the second signal traces 321 are set correspondingly, as shown in FIG.
  • the number of the first signal traces 311 is equal to the number of the second signal traces 321 , and the orthographic projections of the two on the substrate 10 are coincident.
  • both the first signal line 311 and the second signal line 321 may be data signal lines and/or power lines, and the first signal line 311 and the second signal line 321 One of the lines 321 is the data signal line, and the other is the power line.
  • the first signal trace 311 and the second signal trace 321 are located in the The orthographic projections on the substrate 10 overlap, so that the second signal traces 321 have different areas of shielding the first signal traces 311 at different azimuth angles, forming different metal reflection areas, so that the display panel body 1 is in the first
  • the metal reflection area at the azimuth angle is larger than the metal reflection area at the second azimuth angle, so as to compensate the extinction of the polarizer 2 at the second azimuth angle.
  • FIG. 6 is a schematic diagram of the spatial positional relationship between the first signal wiring and the second signal wiring according to an embodiment of the present application.
  • the comparison between the metal reflection area of the display panel body at the azimuth angle of 180 degrees and the metal reflection area at the azimuth angle of 270 degrees is used as an example for illustration.
  • the external ambient light is directed to the first signal trace 311 and the second signal trace 321 at a preset angle a with the first signal trace 311 and the second signal trace 321.
  • the second signal traces 321 shield part of the first signal traces 311, so that the first signal traces 311 shielded by the second signal traces 321 will not be irradiated by external ambient light, so the metal at the 180-degree azimuth angle
  • the reflection area includes the surface of the second signal trace and the area of the first signal trace which is not blocked by the second signal trace.
  • the ambient light still shoots towards the first signal trace 311 and the second signal trace 321 at a preset angle a with the first signal trace 311 and the second signal trace 321.
  • the second signal trace 321 shields part of the first signal trace 311, so that the first signal trace 311 shielded by the second signal trace 321 will not be irradiated by the ambient light.
  • the metal reflection area includes the surface of the second signal trace and the area of the first signal trace which is not blocked by the second signal trace.
  • both the first signal traces 311 and the second signal traces 321 are arranged at intervals along the direction of the second azimuth angle, that is, they are arranged at intervals in the vertical direction, therefore at an azimuth angle of 270 degrees, the second signal traces are not affected by the second signal.
  • the area of the first signal trace 311 blocked by the trace 321 is smaller than the area of the first signal trace 311 not blocked by the second signal trace 321 at an azimuth angle of 180 degrees.
  • the shielding effect of the second signal trace 321 at the azimuth angle of 0 degrees is the same as that at the azimuth angle of 180 degrees, and the shielding effect of the second signal trace 321 at the azimuth angle of 90 degrees is the same as that at the azimuth angle of 270 degrees. . Therefore, the metal reflection area of the display panel body 1 at the first azimuth angle is larger than the metal reflection area at the second azimuth angle.
  • the "same layer arrangement" in this application means that in the preparation process, the film layers formed of the same material are patterned to obtain at least two different features, then the at least two different features are the same as Layer settings.
  • the second signal traces 321 and the second source electrodes 322 in this embodiment are obtained by patterning the same conductive film layer, and the second signal traces 321 and the second source electrodes 322 are disposed in the same layer.
  • the planarization layer 14 covers the second source-drain layer 32 and the second interlayer insulating layer 13 , and the light-emitting functional layer 50 is disposed on the planarization layer 14 .
  • the light-emitting functional layer 50 includes a pixel electrode 51 , a pixel definition layer 52 , a light-emitting material layer 53 , and a cathode layer 54 .
  • the pixel electrode 51 is connected to the second source electrode 322 through the via hole of the planarization layer 14 , the pixel definition layer 52 covers the pixel electrode 51 and the planarization layer 14 , and the The pixel definition layer 52 is patterned to form pixel openings, and the pixel openings expose a part of the pixel electrodes 51 to define an area where the luminescent material is disposed.
  • the luminescent material layer 53 is formed of luminescent material printed in the pixel openings of the pixel definition layer 52 , and the cathode layer 54 covers the luminescent material layer 53 and the pixel definition layer 52 .
  • the light-emitting material layer 53 emits light under the combined action of the pixel electrode 51 and the cathode layer 54 , thereby realizing the pixel display of the display panel body 1 .
  • the pixel electrode 51 may be a transparent electrode or a reflective electrode. If the pixel electrode 51 is a transparent electrode, the pixel electrode 51 may be formed of, for example, indium tin oxide (ITO), indium zinc oxide (IZO), ZnO, or In2O3. If the pixel electrode 51 is a reflective electrode, the pixel electrode 51 may include, for example, a reflective layer formed of Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr or a combination thereof and a reflective layer formed of ITO , IZO, ZnO or In2O3 layers. However, the pixel electrode 51 is not limited thereto, and the pixel electrode 51 may be formed of various materials, and may also be formed in a single-layer or multi-layer structure.
  • the cathode layer 54 is formed of a transparent conductive material to improve the light transmittance of the luminescent material layer 53.
  • the cathode layer 54 can be made of a metal with low work function (such as Li, Ca, LiF/Ca, LiF/Al, Al, Ag, Mg or a combination thereof) and a transparent conductive layer formed of ITO, IZO, ZnO or In2O3.
  • the pixel electrode 51 is a reflective electrode, the light utilization rate of the light-emitting material layer 53 can be further improved.
  • the light-emitting functional layer 50 may further include a hole injection layer (HIL) and a hole transport layer (HTL) disposed between the light-emitting material layer 53 and the pixel electrode 51; An electron injection layer (EIL) and an electron transport layer (ETL) between the light-emitting material layer 53 and the cathode layer 54 .
  • HIL hole injection layer
  • HTL hole transport layer
  • EIL electron injection layer
  • ETL electron transport layer
  • the display panel body 1 may further include an encapsulation layer 60 disposed on the light-emitting functional layer 50, the encapsulation layer 60 may be encapsulated by a thin film, and the thin film encapsulation may be composed of a first inorganic encapsulation layer, an organic encapsulation layer,
  • the second inorganic encapsulation layer has three layers of thin films stacked in sequence to form a layered structure or a multi-layered layered structure, which is used to protect the light-emitting material layer 53 of the light-emitting functional layer 50 and prevent the light-emitting material layer 53 from failing due to water and oxygen intrusion.
  • the display panel 100 of the present application may further include a touch function layer (not shown) disposed between the polarizer 2 and the display panel body 1 , and the touch function layer is directly disposed on the On the encapsulation layer 60, a DOT touch control solution is adopted to realize the touch control function.
  • a touch function layer (not shown) disposed between the polarizer 2 and the display panel body 1 , and the touch function layer is directly disposed on the On the encapsulation layer 60, a DOT touch control solution is adopted to realize the touch control function.
  • the present application is not limited to this, and the display panel 100 of the present application may also adopt an external touch control solution.
  • FIG. 7 is a schematic diagram of another cross-sectional structure of a display panel provided by an embodiment of the present application
  • FIG. 8 is another cross-sectional view of a polarizer provided by an embodiment of the present application
  • FIG. 9 is a schematic top-view structure diagram of the second signal wiring according to an embodiment of the present application.
  • the second signal trace 321 includes a first sub-signal trace 3211 and a second sub-signal trace 3212 arranged in a direction parallel to the second azimuth angle.
  • the signal wiring 311 is arranged corresponding to the first sub-signal wiring 3211 or the second sub-signal wiring 3212 .
  • the polarizer 2 of the display panel 101 is arranged in the light-emitting direction of the display panel body 1 , and the polarizer 2 includes a linear polarizing layer 24 and a phase compensation layer 25 , and the phase compensation layer 25 is located in the The linear polarizing layer 24 faces the side of the display panel body 1 .
  • the phase compensation layer 25 includes a quarter-wave plate 251 and a C-type phase compensation layer 253 which are arranged in layers.
  • phase retardation coefficient of the quarter-wave plate 251 ranges from 50 nanometers to 200 nanometers
  • phase retardation coefficient of the C-type phase compensation layer 253 ranges from 0 nanometers to 200 nanometers.
  • the extinction ability of the polarizer 2 for large viewing angles at different azimuth angles will be different, and the extinction for large viewing angles at 0° and 180° azimuth angle. Stronger ability, lower reflectivity and color shift; weaker extinction ability for large viewing angles at 90° and 270° azimuth angles, higher reflectivity and color shift.
  • the first signal traces 311 and the second signal traces 321 are both arranged along the direction of the second azimuth angle, that is, the first signal traces 311 and the second signal traces 321 are both arranged in the direction of the second azimuth angle.
  • the first signal wiring 311 is set corresponding to the first sub-signal wiring 3211 of the second signal wiring 321 .
  • the width of the first sub-signal wiring 3211 is equal to the width of the first signal wiring 311.
  • the present application is not limited to this, the width of the first sub-signal wiring 3211 in the present application is It may also not be equal to the width of the first signal trace 311 .
  • the orthographic projection of the first signal trace 311 on the substrate 10 coincides with the orthographic projection of the first sub-signal trace 3211 on the substrate 10 , so the second signal trace 321
  • the shielding effect on the first signal trace 311 is better.
  • the number of the second signal traces 321 is greater than or equal to the number of the first signal traces 311 to ensure that the second signal traces 321 can well shield the first signal traces 311.
  • both the first signal line 311 and the second signal line 321 may be data signal lines and/or power lines, and the first signal line 311 and the second signal line 321 One of the lines 321 is the data signal line, and the other is the power line.
  • both the first sub-signal wiring 3211 and the second sub-signal wiring 3212 may be a data signal wiring and/or a power wiring .
  • first signal trace 311 and the second signal trace 321 By arranging the first signal trace 311 and the second signal trace 321 along the direction of the second azimuth angle, and the first signal trace 311 and the first sub-signal trace 3211 are located at the same
  • the orthographic projections on the substrate 10 overlap, so that the second signal traces 321 have different areas of shielding the first signal traces 311 at different azimuth angles, forming different metal reflection areas, so that the display panel 101 is in the first
  • the metal reflection area at the azimuth angle is larger than the metal reflection area at the second azimuth angle, so as to compensate the extinction performance of the polarizer 2 at the second azimuth angle.
  • FIG. 10 is another schematic cross-sectional structure diagram of the display panel provided by the embodiment of the present application
  • FIG. 11 is the schematic diagram of the second signal wiring provided by the embodiment of the present application. Another schematic top view.
  • the second signal trace 321 includes a first sub-signal trace 3211 and a second sub-signal trace 3212 arranged in a direction parallel to the second azimuth angle, and the first sub-signal trace 3211 and the second sub-signal trace 3212 At least one of a sub-signal trace 3211 and the second sub-signal trace 3212 is provided with a protrusion 3213, and the first signal trace 311 includes a third Sub-signal routing 3111 and fourth sub-signal routing 3112.
  • the first sub-signal wiring 3211 is set corresponding to the third sub-signal wiring 3111
  • the second sub-signal wiring 3212 is set corresponding to the fourth sub-signal wiring 3112 .
  • the width of the third sub-signal trace 3111 is equal to the width of the first sub-signal trace 3211
  • the width of the fourth sub-signal trace 3112 is equal to the width of the second sub-signal trace 3212 . width.
  • the orthographic projection of the first sub-signal wiring 3211 on the substrate 10 coincides with the orthographic projection of the third sub-signal wiring 3111 on the substrate 10
  • the orthographic projection of 3212 on the substrate 10 coincides with the orthographic projection of the fourth sub-signal trace 3112 on the substrate 10 .
  • the number of the second signal wirings 321 is greater than or equal to the number of the first signal wirings 311 .
  • both the first signal line 311 and the second signal line 321 may be data signal lines and/or power lines, and the first signal line 311 and the second signal line 321 One of the lines 321 is the data signal line, and the other is the power line.
  • both the first sub-signal line 3211 and the second sub-signal line 3212 may be a data signal line and/or a power line .
  • both the third sub-signal line 3111 and the fourth sub-signal line 3112 may be a data signal line and/or a power line .
  • first signal trace 311 and the second signal trace 321 By arranging the first signal trace 311 and the second signal trace 321 along the direction of the second azimuth, and the first signal trace 311 and the second signal trace 321 are located in the The orthographic projections on the substrate 10 overlap, so that the second signal traces 321 have different areas of shielding the first signal traces 311 at different azimuth angles, forming different metal reflection areas, so that the display panel 102 is in the first orientation.
  • the metal reflection area at the corner is larger than the metal reflection area at the second azimuth angle, so as to compensate the extinction performance of the polarizer 2 at the second azimuth angle.
  • the first sub-signal trace 3211 and the second sub-signal trace 3212 may include a third sub-signal trace 3111 and a fourth sub-signal trace 3112 arranged in a direction parallel to the second azimuth angle, the first sub-signal trace 3211 and the third sub-signal trace 3111
  • the sub-signal wiring 3111 is correspondingly arranged, and the second sub-signal wiring 3212 is arranged correspondingly to the fourth sub-signal wiring 3112 .
  • the first signal trace 311 may also include a third sub-signal trace arranged in a direction parallel to the second azimuth angle.
  • the fourth sub-signal line 3112 is provided with a protrusion 3213, the first sub-signal line 3211 Corresponding to the third sub-signal wiring 3111 , the second sub-signal wiring 3212 is corresponding to the fourth sub-signal wiring 3112 .
  • the second signal trace 321 includes a first sub-signal trace 3211 and a second sub-signal trace 3212 disposed along a direction parallel to the second azimuth angle, and the first sub-signal trace
  • the first signal trace 311 and the first sub-signal trace 3211 or the second sub-signal trace 3212 corresponding settings.
  • An embodiment of the present application further provides a display device, which includes the display panel of one of the foregoing embodiments, a device such as a circuit board bound to the display panel, and a cover plate covering the display panel.
  • the present application provides a display panel and a display device.
  • the display panel includes a display panel body and a polarizer arranged in a light-emitting direction of the display panel body.
  • the polarizer includes a linear polarizing layer and a phase compensation layer, so that the polarizer is at a first azimuth angle.
  • the extinction property on the upper surface is greater than the extinction property at the second azimuth angle, so as to improve the reflectivity and color shift of the display panel at a specific azimuth angle.
  • the display panel body adopts a double-layer source-drain layer design, the signal traces of each source-drain layer are arranged along the direction of the second azimuth angle, and the second signal traces of the second source-drain layer are connected to the first
  • the orthographic projections of the first signal traces of the source and drain layers on the substrate at least partially overlap, so that the areas of the second signal traces shielding the first signal traces at different azimuth angles are different, and different metal reflection areas are formed to form different metal reflection areas.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请提供一种显示面板和显示装置,其中显示面板包括:显示面板本体(1)及设置在显示面板本体(1)的出光方向上的偏光片(2);显示面板本体(1)的金属层(3)在第一方位角的反射面积大于在第二方位角的反射面积,偏光片(2)在第一方位角的消光性大于在第二方位角的消光性;金属层(3)可以补偿偏光片(2)在第二方位角的消光性能,使显示面板在各个方位角下的反射率和色偏接近,提高了显示面板的一体黑均匀性。

Description

显示面板和显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板和显示装置。
背景技术
有机发光二极管显示(Organic Light Emitting Display,OLED)相较于液晶显示(Liquid Crystal Display,LCD),具备高色域、高对比度、可柔性及可穿戴等优点,逐渐成为显示行业的发展趋势。但当外界光入射到OLED显示面板时,显示面板内部的金属电极会反射该部分入射光,从而导致显示对比度低、色偏等问题。为了消除外界光对显示效果的影响,通常需要在OLED显示面板上贴附偏光片。
随着显示技术的发展以及人们对产品显示品质要求的提高,具有更小反射率及色偏的OLED产品倍受期待。而为实现大视角下的低反射及色偏(即大视角一体黑),目前行业内主要通过改善偏光片的参数来改善OLED产品的一体黑性能,但改善效果有限,使改善后OLED产品的一体黑均匀性仍旧较差。
因此,现有OLED产品存在的一体黑均匀性差的技术问题需要解决。
技术问题
本申请提供一种显示面板和显示装置,以缓解现有OLED产品存在的一体黑均匀性差的技术问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请实施例提供一种显示面板,其包括显示面板本体和设置在所述显示面板本体的出光方向上的偏光片,所述显示面板本体的金属层在第一方位角的反射面积大于在第二方位角的反射面积;所述偏光片在所述第一方位角的消光性大于在所述第二方位角的消光性。
在本申请实施例提供的显示面板中,所述显示面板本体包括基板,所述金属层设置于所述基板上,所述金属层包括第一源漏极层和第二源漏极层。所述第一源漏极层设置在所述基板上,包括沿所述第二方位角的方向排布的至少一条第一信号走线。所述第二源漏极层,设置在所述第一源漏极层上,包括与所述第一信号走线平行排布的至少一条第二信号走线。其中,所述第二信号走线在所述基板上的正投影与所述第一信号走线在所述基板上的正投影至少部分重叠,以使所述金属层在所述第一方位角的反射面积大于在所述第二方位角的反射面积。
在本申请实施例提供的显示面板中,所述第二信号走线包括沿平行于所述第二方位角的方向设置的第一子信号走线和第二子信号走线。
在本申请实施例提供的显示面板中,所述第二信号走线包括沿平行于所述第二方位角的方向设置的第一子信号走线和第二子信号走线,且所述第一子信号走线和所述第二子信号走线中的至少一个设置有突出部。
在本申请实施例提供的显示面板中,所述第一信号走线包括沿平行于所述第二方位角的方向设置的第三子信号走线和第四子信号走线。
在本申请实施例提供的显示面板中,所述第一信号走线与所述第一子信号走线或所述第二子信号走线对应设置。
在本申请实施例提供的显示面板中,所述第二信号走线的宽度等于所述第一信号走线的宽度。
在本申请实施例提供的显示面板中,所述第一信号走线在所述基板上的正投影与所述第二信号走线在所述基板上的正投影重合。
在本申请实施例提供的显示面板中,所述第二信号走线的数量大于或等于所述第一信号走线的数量。
在本申请实施例提供的显示面板中,所述偏光片包括线偏振层和相位补偿层,所述相位补偿层位于所述线偏振层面向所述显示面板本体的一侧。
在本申请实施例提供的显示面板中,所述相位补偿层包括层叠设置的半波片和四分之一波片。
在本申请实施例提供的显示面板中,所述半波片的相位迟滞系数范围为100纳米至300纳米,所述四分之一波片的相位迟滞系数范围为50纳米至200纳米。
在本申请实施例提供的显示面板中,所述相位补偿层包括层叠设置的四分之一波片和C型相位补偿层。
在本申请实施例提供的显示面板中,所述四分之一波片的相位迟滞系数范围为50纳米至200纳米,所述C型相位补偿层的相位迟滞系数范围为0纳米至200纳米。
本申请实施例还提供一种显示装置,其包括显示面板,所述显示面板包括显示面板本体和设置在所述显示面板本体的出光方向上的偏光片,所述显示面板本体的金属层在第一方位角的反射面积大于在第二方位角的反射面积;所述偏光片在所述第一方位角的消光性大于在所述第二方位角的消光性。
在本申请实施例提供的显示装置中,所述显示面板本体包括基板,所述金属层设置于所述基板上,所述金属层包括第一源漏极层和第二源漏极层。所述第一源漏极层设置在所述基板上,包括沿所述第二方位角的方向排布的至少一条第一信号走线。所述第二源漏极层,设置在所述第一源漏极层上,包括与所述第一信号走线平行排布的至少一条第二信号走线。其中,所述第二信号走线在所述基板上的正投影与所述第一信号走线在所述基板上的正投影至少部分重叠,以使所述金属层在所述第一方位角的反射面积大于在所述第二方位角的反射面积。
在本申请实施例提供的显示装置中,所述第二信号走线的宽度等于所述第一信号走线的宽度。
在本申请实施例提供的显示装置中,所述偏光片包括线偏振层和相位补偿层,所述相位补偿层位于所述线偏振层面向所述显示面板本体的一侧。
在本申请实施例提供的显示装置中,所述相位补偿层包括层叠设置的半波片和四分之一波片。
在本申请实施例提供的显示装置中,所述相位补偿层包括层叠设置的四分之一波片和C型相位补偿层。
有益效果
本申请提供的显示面板和显示装置中偏光片包括线偏振层和相位补偿层,使偏光片在第一方位角上的消光性大于在第二方位角上的消光性,以改善显示面板在特定方位角下的反射率及色偏;同时显示面板本体采用双层源漏极层设计,每层源漏极层的信号走线均沿第二方位角的方向排布,且第二源漏极层的第二信号走线与第一源漏极层的第一信号走线在基板上的正投影至少部分重叠,使第二信号走线在不同的方位角下遮蔽第一信号走线的面积不同,形成不同的金属反射面积,以使得显示面板本体在第一方位角上的金属反射面积大于第二方位角上的金属反射面积,以补偿偏光片在第二方位角上的消光性能,进而使显示面板在各个方位角下的反射率和色偏接近,提高了显示面板的一体黑均匀性,解决了现有OLED产品存在的一体黑均匀性差的技术问题。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的显示面板的一种剖面结构示意图。
图2为本申请实施例提供的显示面板的俯视结构示意图。
图3为本申请实施例提供的偏光片的一种剖面结构示意图。
图4为本申请实施例提供的第一信号走线和第二信号走线排布的俯视结构对比示意图。
图5为本申请实施例提供的第一信号走线和第二信号走线的一种截面结构示意图。
图6为本申请实施例提供的第一信号走线和第二信号走线的空间位置关系示意图。
图7为本申请实施例提供的显示面板的另一种剖面结构示意图。
图8为本申请实施例提供的偏光片的另一种剖面结构示意图。
图9为本申请实施例提供的第二信号走线的一种俯视结构示意图。
图10为本申请实施例提供的显示面板的又一种剖面结构示意图。
图11为本申请实施例提供的第二信号走线的另一种俯视结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。在附图中,为了清晰理解和便于描述,夸大了一些层和区域的厚度。即附图中示出的每个组件的尺寸和厚度是任意示出的,但是本申请不限于此。
请结合参照图1和图2,图1为本申请实施例提供的显示面板的一种剖面结构示意图,图2为本申请实施例提供的显示面板的俯视结构示意图。显示面板100包括显示面板本体1及设置在所述显示面板本体1的出光方向上的偏光片2。所述显示面板本体1的金属层3在第一方位角的反射面积大于在第二方位角的反射面积。所述偏光片2在第一方位角上的消光性大于在第二方位角上的消光性。
可选地,所述第一方位角包括0度和180度,所述第二方位角包括90度和270度,其中0度和180度在所述显示面板100的水平方向X,90度和270度在所述显示面板100的竖直方向Y,故所述第一方位角的方向即水平方向X,所述第二方位角的方向即竖直方向Y。
具体地,所述显示面板本体1包括基板10,所述金属层3设置于所述基板10上。可选地,所述金属层3包括第一源漏极层31和第二源漏极层32,但本申请不限于此,本申请的所述金属层3还可以为所述显示面板本体1上的其他金属层。
所述第一源漏极层31设置在所述基板10上,且包括沿所述第二方位角的方向排布的至少一条第一信号走线311,也即所述第一信号走线311沿竖直方向Y排布。所述第二源漏极层32设置在所述第二源漏极层32上,包括与所述第一信号走线311平行排布的至少一条第二信号走线321。其中,所述第二信号走线321在所述基板10上的正投影与所述第一信号走线311在所述基板10上的正投影至少部分重叠,以使所述金属层3在所述第一方位角的反射面积大于在所述第二方位角的反射面积。
所述偏光片2设置在所述显示面板本体1的出光方向上,当外界环境光入射到显示面板100时,所述偏光片2能够吸收部分外界环境光,避免外界环境光被显示面板本体1内部的金属线反射,以降低反射率,提高显示面板100的对比度。所述偏光片2在第一方位角上的消光性大于在第二方位角上的消光性,所述消光性是指所述偏光片2吸收外部环境光的能力,所述偏光片2的消光性越强,可以吸收更多的外部环境光,进而可实现更低的反射率。
在本实施例中,显示面板本体1采用双层源漏极层设计,每层源漏极层的信号走线均沿第二方位角的方向排布,且第二源漏极层32的第二信号走线321与第一源漏极层31的第一信号走线311在基板10上的正投影至少部分重叠,以补偿偏光片2在第二方位角上的消光性能,进而使显示面板100在各个方位角下的反射率和色偏接近,提高显示面板100的一体黑均匀性。
在一种实施例中,请结合参照图1和图3,图3为本申请实施例提供的偏光片的一种剖面结构示意图。所述偏光片2包括线偏振层24和相位补偿层25,所述相位补偿层25位于所述线偏振层24面向所述显示面板本体1的一侧。当然地,所述偏光片2还包括位于所述线偏振层24远离所述相位补偿层25一侧的第一保护层26、位于所述线偏振层24和所述相位补偿层25之间的第二保护层27以及位于所述相位补偿层25远离所述线偏振层24一侧的压敏胶(Pressure Sensitive Adhesive,PSA)层28。
所述第一保护层26和所述第二保护层27的材料包括三醋酸纤维素(Triacetyl Cellulose,TAC),用于保护所述线偏振层24,提升所述线偏振层24的机械性能,防止所述线偏振层24回缩。所述线偏振层24即PVA层,由聚乙烯醇制成,主要起到偏振光的作用。所述压敏胶层28设置于所述相位补偿层25的一侧,主要起粘贴连接作用。
所述相位补偿层25包括层叠设置的半波片252和四分之一波片251,所述半波片252位于所述四分之一波片251面向所述线偏振层24的一侧。所述半波片252也即二分之一波片,用于使偏振光旋转,产生相位延迟。所述四分之一波片251能够把线偏振光转换成圆偏振光,实现所述偏光片2的抗反射性能。可选地,所述半波片252的相位迟滞系数范围为100纳米至300纳米,所述四分之一波片251的相位迟滞系数范围为50纳米至200纳米。
所述偏光片2由于在不同方位角下的折射率的差异,会导致偏光片2在不同方位角下对大视角的消光能力有差异,在第一方位角上的消光性大于在第二方位角上的消光性。也即在0°和180°方位角下对大视角的消光能力更强,反射率及色偏较低;在90°和270°方位角下对大视角的消光能力较弱,反射率及色偏较高。
所述偏光片2设置在所述显示面板本体1的出光方向上,并通过设置相位补偿层25,能够改善显示面板100在特定方位角下的反射率及色偏。所述显示面板本体1的出光方向是指所述显示面板本体1能够显示画面的一侧。
具体地,请继续参照图1,所述显示面板本体1还包括位于所述基板10与所述第一源漏极层31之间的有源层20和栅极层40、位于所述第二源漏极层32上的发光功能层50以及位于各层之间的绝缘层,例如位于所述有源层20和所述栅极层40之间的栅极绝缘层11,位于所述栅极层40与所述第一源漏极层31之间的第一层间绝缘层12、位于所述第一源漏极层31与所述第二源漏极层32之间的第二层间绝缘层13、位于所述第二源漏极层32与所述发光功能层50之间的平坦化层14。
可选地,所述基板10可以为刚性基板或柔性基板;所述基板10为刚性基板时,可包括玻璃基板等硬性基板;所述基板10为柔性基板时,可包括聚酰亚胺(Polyimide,PI)薄膜、超薄玻璃薄膜等柔性基板。
可选地,所述基板10与所述有源层20之间还设置有缓冲层(图未示),所述缓冲层可以防止不期望的杂质或污染物(例如湿气、氧气等)从所述基板10扩散至可能因这些杂质或污染物而受损的器件中,同时还可以提供平坦的顶表面。
所述有源层20设置在所述缓冲层上,所述有源层20包括沟道区21以及位于所述沟道区21两侧的源极掺杂区22和漏极掺杂区23。
所述栅极绝缘层11覆盖在所述有源层20以及所述缓冲层上,所述栅极层40设置在所述栅极绝缘层11上,且所述栅极层40的栅极图案与所述有源层20的沟道区21对应设置。
所述第一层间绝缘层12覆盖在所述栅极层40以及所述栅极绝缘层11上,所述第一源漏极层31设置在所述第一层间绝缘层12上。所述第一源漏极层31包括第一源极312、第一漏极313以及第一信号走线311,所述第一信号走线311与所述第一源极312和所述第一漏极313同层设置。所述第一源极312通过所述第一层间绝缘层12的过孔与所述源极掺杂区22连接,所述第一漏极313通过所述第一层间绝缘层12的另一过孔与所述漏极掺杂区23连接。
所述第二层间绝缘层13覆盖在所述第一源漏极层31以及所述第一层间绝缘层12上,所述第二源漏极层32设置在所述第二层间绝缘层13上。所述第二源漏极层32包括第二源极322以及第二信号走线321,所述第二信号走线321与所述第二源极322同层设置。所述第二源极322通过所述第二层间绝缘层13的过孔与所述第一源极312连接。当然地,本申请不限于此,本申请的所述第二源极322还可与所述第一漏极313连接。
请结合参照图1和图4,图4为本申请实施例提供的第一信号走线和第二信号走线排布的俯视结构对比示意图。所述第一信号走线311和所述第二信号走线321均沿所述第二方位角的方向排布在基板10上,也即所述第一信号走线311和所述第二信号走线321均沿竖直方向Y排布,且所述第二信号走线321在所述基板10上的正投影与所述第一信号走线311在所述基板10上的正投影至少部分重叠,使所述第二信号走线321能够遮蔽部分所述第一信号走线311。
可选地,所述第一信号走线311和所述第二信号走线321的表面形状包括矩形等,把所述第一信号走线311和所述第二信号走线321的表面形状设置为矩形等规则的形状可以降低工艺难度。
可选地,所述第一信号走线311和所述第二信号走线321的截面形状包括矩形、梯形等,如图1示出的截面形状为矩形。
可选地,请参照图5,当所述第一信号走线311和所述第二信号走线321的截面形状为梯形时,梯形的侧边3214也会反射外界环境光,故梯形的底角b越小,反射率越低。
可选地,所述第二信号走线321的宽度L1等于所述第一信号走线311的宽度L2,当然地,本申请不限于此,本申请的所述第二信号走线321的宽度L1也可以不等于所述第一信号走线311的宽度L2。
进一步地,所述第一信号走线311在所述基板10上的正投影与所述第二信号走线321在所述基板10上的正投影重合,如此所述第二信号走线321对所述第一信号走线311的遮蔽效果更好。
可选地,所述第二信号走线321的数量大于或等于所述第一信号走线311的数量。当所述第二信号走线321的数量大于所述第一信号走线311的数量时,所述第一信号走线311与部分的所述第二信号走线321对应设置;当所述第二信号走线321的数量等于所述第一信号走线311的数量时,所述第一信号走线311与所述第二信号走线321对应设置,如图4示出的,所述第一信号走线311的数量与所述第二信号走线321的数量相等,且两者在所述基板10的正投影重合。
可选地,所述第一信号走线311和所述第二信号走线321均可以为数据信号走线和/或电源线,且所述第一信号走线311和所述第二信号走线321其中之一为所述数据信号走线,另一个为所述电源线。
通过把所述第一信号走线311和所述第二信号走线321均沿第二方位角的方向设置,且所述第二信号走线321与所述第一信号走线311在所述基板10上的正投影重合,使所述第二信号走线321在不同的方位角下遮蔽第一信号走线311的面积不同,形成不同的金属反射面积,以使得显示面板本体1在第一方位角上的金属反射面积大于第二方位角上的金属反射面积,以补偿偏光片2在第二方位角上的消光性。
下面将具体描述使显示面板本体1在第一方位角上的金属反射面积大于第二方位角上的金属反射面积的实现原理:
请参照图6,图6为本申请实施例提供的第一信号走线和第二信号走线的空间位置关系示意图。在图6中,以所述显示面板本体在180度的方位角上的金属反射面积与在270度的方位角上的金属反射面积对比为例说明。
在180度的方位角上,外界环境光以与第一信号走线311和第二信号走线321呈预设夹角a射向第一信号走线311和第二信号走线321,由于第二信号走线321遮蔽部分所述第一信号走线311,使被第二信号走线321遮蔽的第一信号走线311部分不会被外界环境光照射,故在180度方位角上的金属反射面积包括第二信号走线的表面及未被所述第二信号走线遮挡的第一信号走线的面积。
在270度的方位角上,外界环境光仍以与第一信号走线311和第二信号走线321呈预设夹角a射向第一信号走线311和第二信号走线321,由于第二信号走线321遮蔽部分所述第一信号走线311,使被第二信号走线321遮蔽的第一信号走线311部分不会被外界环境光照射,故在270度方位角上的金属反射面积包括第二信号走线的表面及未被所述第二信号走线遮挡的第一信号走线的面积。
由于第一信号走线311和第二信号走线321均沿第二方位角的方向间隔排布,也即沿竖直方向间隔排布,故在270度的方位角上,未被第二信号走线321遮挡的第一信号走线311的面积小于180度方位角上未被第二信号走线321遮挡的第一信号走线311的面积。同样地,在0度方位角上第二信号走线321的遮挡效果和在180度方位角上相同,在90度方位角上第二信号走线321的遮挡效果和在270度方位角上相同。故显示面板本体1在第一方位角上的金属反射面积大于第二方位角上的金属反射面积。
需要说明的是,本申请中的“同层设置”是指在制备工艺中,将相同材料形成的膜层进行图案化处理得到至少两个不同的特征,则所述至少两个不同的特征同层设置。比如,本实施例的第二信号走线321与第二源极322由同一导电膜层进行图案化处理后得到,则第二信号走线321与第二源极322同层设置。
所述平坦化层14覆于所述第二源漏极层32以及所述第二层间绝缘层13上,所述发光功能层50设置于所述平坦化层14上。所述发光功能层50包括像素电极51、像素定义层52、发光材料层53、阴极层54。所述像素电极51通过所述平坦化层14的过孔与所述第二源极322连接,所述像素定义层52覆于所述像素电极51以及所述平坦化层14上,且所述像素定义层52图案化形成有像素开口,所述像素开口裸露出部分所述像素电极51,以定义出发光材料的设置区域。所述发光材料层53是由打印在所述像素定义层52的像素开口内的发光材料形成,所述阴极层54覆盖所述发光材料层53以及所述像素定义层52。所述发光材料层53在所述像素电极51和所述阴极层54的共同作用下发光,进而实现显示面板本体1的像素显示。
所述像素电极51可以是透明电极或反射电极。如果所述像素电极51是透明电极,则所述像素电极51可以由例如氧化铟锡(ITO)、氧化铟锌(IZO)、ZnO或In2O3 形成。如果所述像素电极51是反射电极,则所述像素电极51例如可以包括由Ag、 Mg、Al、Pt、Pd、Au、Ni、Nd、Ir、Cr或它们的组合形成的反射层以及由 ITO、IZO、ZnO或In2O3 形成的层。然而,像素电极51不限于此,像素电极51可以由各种材料形成,并且也可以形成为单层或多层结构。
所述阴极层54采用透明导电材料形成,以提高所述发光材料层53的光的透过率,例如所述阴极层54可以由逸出功低的金属(如Li、Ca、LiF/Ca、LiF/Al、 Al、Ag、Mg或它们的组合)形成的层以及由ITO、IZO、ZnO或In2O3形成的透明导电层。所述像素电极51为反射电极时,可进一步提高所述发光材料层53的光的利用率。
当然的,所述发光功能层50还可包括设置于所述发光材料层53与所述像素电极51之间的空穴注入层(HIL)、空穴传输层(HTL);以及设置于所述发光材料层53与所述阴极层54之间的电子注入层(EIL)、电子传输层(ETL)。
所述显示面板本体1还可包括设置于所述发光功能层50上的封装层60,所述封装层60可以采用薄膜封装,所述薄膜封装可以为由第一无机封装层、有机封装层、第二无机封装层三层薄膜依次层叠形成的叠层结构或更多层的叠层结构,用于保护所述发光功能层50的发光材料层53,避免水氧入侵导致发光材料层53失效。
可选地,本申请的显示面板100还可包括设置于所述偏光片2与所述显示面板本体1之间的触控功能层(图未示),所述触控功能层直接设置在所述封装层60上,采用DOT触控方案,以实现触控功能。当然的,本申请不限于此,本申请的显示面板100也可以采用外挂式触控方案。
在一种实施例中,请参照图7至图9,图7为本申请实施例提供的显示面板的另一种剖面结构示意图,图8为本申请实施例提供的偏光片的另一种剖面结构示意图,图9为本申请实施例提供的第二信号走线的一种俯视结构示意图。与上述实施例不同的是,所述第二信号走线321包括沿平行于所述第二方位角的方向设置的第一子信号走线3211和第二子信号走线3212,所述第一信号走线311与所述第一子信号走线3211或所述第二子信号走线3212对应设置。
具体地,所述显示面板101的偏光片2设置在所述显示面板本体1的出光方向上,所述偏光片2包括线偏振层24和相位补偿层25,所述相位补偿层25位于所述线偏振层24面向所述显示面板本体1的一侧。所述相位补偿层25包括层叠设置的四分之一波片251和C型相位补偿层253。
可选地,所述四分之一波片251的相位迟滞系数范围为50纳米至200纳米,所述C型相位补偿层253的相位迟滞系数范围为0纳米至200纳米。
所述偏光片2由于在不同方位角下的折射率的差异,会导致偏光片2在不同方位角下对大视角的消光能力有差异,在0°和180°方位角下对大视角的消光能力更强,反射率及色偏较低;在90°和270°方位角下对大视角的消光能力较弱,反射率及色偏较高。
所述第一信号走线311和所述第二信号走线321均沿所述第二方位角的方向排布,也即所述第一信号走线311和所述第二信号走线321均沿竖直方向Y排布,且所述第二信号走线321在所述基板10上的正投影与所述第一信号走线311在所述基板10上的正投影至少部分重叠,使所述第二信号走线321能够遮蔽部分所述第一信号走线311。可选地,如图7所示,所述第一信号走线311与所述第二信号走线321的第一子信号走线3211对应设置。
可选地,所述第一子信号走线3211的宽度等于所述第一信号走线311的宽度,当然地,本申请不限于此,本申请的所述第一子信号走线3211的宽度也可以不等于所述第一信号走线311的宽度。
进一步地,所述第一信号走线311在所述基板10上的正投影与所述第一子信号走线3211在所述基板10上的正投影重合,如此所述第二信号走线321对所述第一信号走线311的遮蔽效果更好。
可选地,所述第二信号走线321的数量大于或等于所述第一信号走线311的数量,以保证所述第二信号走线321能够很好的遮蔽所述第一信号走线311。
可选地,所述第一信号走线311和所述第二信号走线321均可以为数据信号走线和/或电源线,且所述第一信号走线311和所述第二信号走线321其中之一为所述数据信号走线,另一个为所述电源线。当所述第二信号走线321为数据信号走线和电源线时,所述第一子信号走线3211和所述第二子信号走线3212均可以为数据信号走线和/或电源线。
通过把所述第一信号走线311和所述第二信号走线321均沿第二方位角的方向设置,且所述第一信号走线311与所述第一子信号走线3211在所述基板10上的正投影重合,使所述第二信号走线321在不同的方位角下遮蔽第一信号走线311的面积不同,形成不同的金属反射面积,以使得显示面板101在第一方位角上的金属反射面积大于第二方位角上的金属反射面积,以补偿偏光片2在第二方位角上的消光性能。其他说明请参照上述实施例,在此不再赘述。
在一种实施例中,请结合参照图10和图11,图10为本申请实施例提供的显示面板的又一种剖面结构示意图,图11为本申请实施例提供的第二信号走线的另一种俯视结构示意图。与上述实施例不同的是,所述第二信号走线321包括沿平行于所述第二方位角的方向设置的第一子信号走线3211和第二子信号走线3212,且所述第一子信号走线3211和所述第二子信号走线3212中的至少一个设置有突出部3213,所述第一信号走线311包括沿平行于所述第二方位角的方向设置的第三子信号走线3111和第四子信号走线3112。
可选地,所述第一子信号走线3211与所述第三子信号走线3111对应设置,所述第二子信号走线3212与所述第四子信号走线3112对应设置。
可选地,所述第三子信号走线3111的宽度等于所述第一子信号走线3211的宽度,所述第四子信号走线3112的宽度等于所述第二子信号走线3212的宽度。
进一步地,所述第一子信号走线3211在所述基板10上的正投影与所述第三子信号走线3111在所述基板10上的正投影重合,所述第二子信号走线3212在所述基板10上的正投影与所述第四子信号走线3112在所述基板10上的正投影重合。
可选地,所述第二信号走线321的数量大于或等于所述第一信号走线311的数量。
可选地,所述第一信号走线311和所述第二信号走线321均可以为数据信号走线和/或电源线,且所述第一信号走线311和所述第二信号走线321其中之一为所述数据信号走线,另一个为所述电源线。当所述第二信号走线321为数据信号走线和电源线时,所述第一子信号走线3211和所述第二子信号走线3212均可以为数据信号走线和/或电源线。当所述第一信号走线311为数据信号走线和电源线时,所述第三子信号走线3111和所述第四子信号走线3112均可以为数据信号走线和/或电源线。
通过把所述第一信号走线311和所述第二信号走线321均沿第二方位角的方向设置,且所述第一信号走线311与所述第二信号走线321在所述基板10上的正投影重合,使所述第二信号走线321在不同的方位角下遮蔽第一信号走线311的面积不同,形成不同的金属反射面积,以使得显示面板102在第一方位角上的金属反射面积大于第二方位角上的金属反射面积,以补偿偏光片2在第二方位角上的消光性能。其他说明请参照上述实施例,在此不再赘述。
在其他一些实施例中,当所述第二信号走线321包括沿平行于所述第二方位角的方向设置有第一子信号走线3211和第二子信号走线3212时,所述第一信号走线311可包括沿平行于所述第二方位角的方向设置的第三子信号走线3111和第四子信号走线3112,所述第一子信号走线3211与所述第三子信号走线3111对应设置,所述第二子信号走线3212与所述第四子信号走线3112对应设置。
或者,当所述第二信号走线321包括沿平行于所述第二方位角的方向设置有第一子信号走线3211和第二子信号走线3212,且所述第一子信号走线3211和所述第二子信号走线3212中的至少一个设置有突出部3213时,所述第一信号走线311也可包括沿平行于所述第二方位角的方向设置第三子信号走线3111和第四子信号走线3112,且所述第三子信号走线3111和所述第四子信号走线3112中的至少一个设置有突出部3213,所述第一子信号走线3211与所述第三子信号走线3111对应设置,所述第二子信号走线3212与所述第四子信号走线3112对应设置。
或者,当所述第二信号走线321包括沿平行于所述第二方位角的方向设置有第一子信号走线3211和第二子信号走线3212,且所述第一子信号走线3211和所述第二子信号走线3212中的至少一个设置有突出部3213时,所述第一信号走线311与所述第一子信号走线3211或所述第二子信号走线3212对应设置。其他说明请参照上述实施例,在此不再赘述。
本申请实施例还提供一种显示装置,其包括前述实施例其中之一的显示面板、绑定于所述显示面板的电路板等器件以及覆盖在所述显示面板上的盖板等。
根据上述实施例可知:
本申请提供一种显示面板和显示装置,显示面板包括显示面板本体及设置在显示面板本体的出光方向上的偏光片,偏光片包括线偏振层和相位补偿层,使得偏光片在第一方位角上的消光性大于在第二方位角上的消光性,以改善显示面板在特定方位角下的反射率及色偏。同时显示面板本体采用双层源漏极层设计,每层源漏极层的信号走线均沿第二方位角的方向排布,且第二源漏极层的第二信号走线与第一源漏极层的第一信号走线在基板上的正投影至少部分重叠,使第二信号走线在不同的方位角下遮蔽第一信号走线的面积不同,形成不同的金属反射面积,以使得显示面板在第一方位角上的金属反射面积大于第二方位角上的金属反射面积,以补偿偏光片在第二方位角上的消光性能,进而使显示面板在各个方位角下的反射率和色偏接近,提高了显示面板的一体黑均匀性,解决了现有OLED产品存在的一体黑均匀性差的问题。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种显示面板,其包括:
    显示面板本体,所述显示面板本体的金属层在第一方位角的反射面积大于在第二方位角的反射面积;以及
    设置在所述显示面板本体的出光方向上的偏光片,所述偏光片在所述第一方位角的消光性大于在所述第二方位角的消光性。
  2. 根据权利要求1所述的显示面板,其中,所述显示面板本体包括基板,所述金属层设置于所述基板上,所述金属层包括:
    第一源漏极层,设置在所述基板上,包括沿所述第二方位角的方向排布的至少一条第一信号走线;以及
    第二源漏极层,设置在所述第一源漏极层上,包括与所述第一信号走线平行排布的至少一条第二信号走线;
    其中,所述第二信号走线在所述基板上的正投影与所述第一信号走线在所述基板上的正投影至少部分重叠,以使所述金属层在所述第一方位角的反射面积大于在所述第二方位角的反射面积。
  3. 根据权利要求2所述的显示面板,其中,所述第二信号走线包括沿平行于所述第二方位角的方向设置的第一子信号走线和第二子信号走线。
  4. 根据权利要求2所述的显示面板,其中,所述第二信号走线包括沿平行于所述第二方位角的方向设置的第一子信号走线和第二子信号走线,且所述第一子信号走线和所述第二子信号走线中的至少一个设置有突出部。
  5. 根据权利要求4所述的显示面板,其中,所述第一信号走线包括沿平行于所述第二方位角的方向设置的第三子信号走线和第四子信号走线。
  6. 根据权利要求3或4所述的显示面板,其中,所述第一信号走线与所述第一子信号走线或所述第二子信号走线对应设置。
  7. 根据权利要求1至4任一项所述的显示面板,其中,所述第二信号走线的宽度等于所述第一信号走线的宽度。
  8. 根据权利要求7所述的显示面板,其中,所述第一信号走线在所述基板上的正投影与所述第二信号走线在所述基板上的正投影重合。
  9. 根据权利要求1至4任一项所述的显示面板,其中,所述第二信号走线的数量大于或等于所述第一信号走线的数量。
  10. 根据权利要求1所述的显示面板,其中,所述偏光片包括线偏振层和相位补偿层,所述相位补偿层位于所述线偏振层面向所述显示面板本体的一侧。
  11. 根据权利要求10所述的显示面板,其中,所述相位补偿层包括层叠设置的半波片和四分之一波片。
  12. 根据权利要求11所述的显示面板,其中,所述半波片的相位迟滞系数范围为100纳米至300纳米,所述四分之一波片的相位迟滞系数范围为50纳米至200纳米。
  13. 根据权利要求10所述的显示面板,其中,所述相位补偿层包括层叠设置的四分之一波片和C型相位补偿层。
  14. 根据权利要求13所述的显示面板,其中,所述四分之一波片的相位迟滞系数范围为50纳米至200纳米,所述C型相位补偿层的相位迟滞系数范围为0纳米至200纳米。
  15. 一种显示装置,其包括显示面板,所述显示面板包括:
    显示面板本体,所述显示面板本体的金属层在第一方位角的反射面积大于在第二方位角的反射面积;以及
    设置在所述显示面板本体的出光方向上的偏光片,所述偏光片在所述第一方位角的消光性大于在所述第二方位角的消光性。
  16. 根据权利要求15所述的显示装置,其中,所述显示面板本体包括基板,所述金属层设置于所述基板上,所述金属层包括:
    第一源漏极层,设置在所述基板上,包括沿所述第二方位角的方向排布的至少一条第一信号走线;以及
    第二源漏极层,设置在所述第一源漏极层上,包括与所述第一信号走线平行排布的至少一条第二信号走线;
    其中,所述第二信号走线在所述基板上的正投影与所述第一信号走线在所述基板上的正投影至少部分重叠,以使所述金属层在所述第一方位角的反射面积大于在所述第二方位角的反射面积。
  17. 根据权利要求16所述的显示装置,其中,所述第二信号走线的宽度等于所述第一信号走线的宽度。
  18. 根据权利要求15所述的显示装置,其中,所述偏光片包括线偏振层和相位补偿层,所述相位补偿层位于所述线偏振层面向所述显示面板本体的一侧。
  19. 根据权利要求18所述的显示装置,其中,所述相位补偿层包括层叠设置的半波片和四分之一波片。
  20. 根据权利要求18所述的显示装置,其中,所述相位补偿层包括层叠设置的四分之一波片和C型相位补偿层。
PCT/CN2021/081012 2021-02-10 2021-03-16 显示面板和显示装置 WO2022170659A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/288,851 US11963428B2 (en) 2021-02-10 2021-03-16 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110185420.1A CN112993194B (zh) 2021-02-10 2021-02-10 显示面板和显示装置
CN202110185420.1 2021-02-10

Publications (1)

Publication Number Publication Date
WO2022170659A1 true WO2022170659A1 (zh) 2022-08-18

Family

ID=76393104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081012 WO2022170659A1 (zh) 2021-02-10 2021-03-16 显示面板和显示装置

Country Status (3)

Country Link
US (1) US11963428B2 (zh)
CN (1) CN112993194B (zh)
WO (1) WO2022170659A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122286A (zh) * 2021-11-05 2022-03-01 武汉华星光电半导体显示技术有限公司 显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003167246A (ja) * 2001-12-04 2003-06-13 Seiko Epson Corp 液晶装置用基板およびその製造方法、液晶装置、投射型表示装置
CN103207426A (zh) * 2013-03-28 2013-07-17 京东方科技集团股份有限公司 一种偏光片及显示装置
CN107003555A (zh) * 2014-12-03 2017-08-01 夏普株式会社 液晶显示装置
CN107221551A (zh) * 2017-05-16 2017-09-29 上海天马有机发光显示技术有限公司 一种有机发光显示面板、其制作方法及显示装置
US10135034B1 (en) * 2016-03-04 2018-11-20 Apple Inc. Display device with pixel-integrated black matrix and elliptical polarizer
CN109477926A (zh) * 2016-08-08 2019-03-15 日本瑞翁株式会社 光学各向异性层叠体、偏振片及图像显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4184189B2 (ja) * 2003-08-13 2008-11-19 株式会社 日立ディスプレイズ 発光型表示装置
JP5588626B2 (ja) * 2008-08-04 2014-09-10 富士フイルム株式会社 光学フィルム、偏光板、光学補償フィルム、反射防止フィルムおよび液晶表示装置
JP4547641B2 (ja) * 2008-09-22 2010-09-22 ソニー株式会社 位相差板の製造方法
KR102225931B1 (ko) * 2014-11-21 2021-03-10 엘지디스플레이 주식회사 유기전계발광표시장치
CN107132715A (zh) * 2017-03-27 2017-09-05 浙江舜宇光学有限公司 遮光片及镜头
CN210626700U (zh) * 2019-10-29 2020-05-26 南昌欧菲精密光学制品有限公司 低反射结构、镜筒、镜片、隔件、摄像模块和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003167246A (ja) * 2001-12-04 2003-06-13 Seiko Epson Corp 液晶装置用基板およびその製造方法、液晶装置、投射型表示装置
CN103207426A (zh) * 2013-03-28 2013-07-17 京东方科技集团股份有限公司 一种偏光片及显示装置
CN107003555A (zh) * 2014-12-03 2017-08-01 夏普株式会社 液晶显示装置
US10135034B1 (en) * 2016-03-04 2018-11-20 Apple Inc. Display device with pixel-integrated black matrix and elliptical polarizer
CN109477926A (zh) * 2016-08-08 2019-03-15 日本瑞翁株式会社 光学各向异性层叠体、偏振片及图像显示装置
CN107221551A (zh) * 2017-05-16 2017-09-29 上海天马有机发光显示技术有限公司 一种有机发光显示面板、其制作方法及显示装置

Also Published As

Publication number Publication date
CN112993194B (zh) 2022-05-17
CN112993194A (zh) 2021-06-18
US20230200190A1 (en) 2023-06-22
US11963428B2 (en) 2024-04-16

Similar Documents

Publication Publication Date Title
US11048365B2 (en) Display device including mesh lines overlapping contact holes
WO2020133714A1 (zh) 显示面板及显示模组、电子装置
US11402954B2 (en) Flexible touch control display module
CN109461838B (zh) 一种显示基板及其制备方法、显示面板和显示装置
US20210336231A1 (en) Display panel and electronic device
WO2021217800A1 (zh) 一种显示面板
US10705636B2 (en) Display panel and display device
US9599869B2 (en) Display apparatus
KR102278876B1 (ko) 표시 장치 및 이의 제조 방법
WO2021196377A1 (zh) 一种显示面板及制程方法
KR20210103037A (ko) 표시 장치 및 전자 기기
TW201519433A (zh) 有機發光二極體觸控顯示裝置
CN113013360B (zh) 显示面板和显示装置
WO2023000387A1 (zh) 显示面板和显示装置
KR20180045108A (ko) 디스플레이 장치
KR20170060216A (ko) 유기발광 디스플레이 장치
TW201621580A (zh) 觸控偏光結構及觸控顯示裝置
CN113054131A (zh) 显示面板、显示装置及显示面板的制作方法
WO2022170659A1 (zh) 显示面板和显示装置
TW202024685A (zh) 光學構件及影像顯示裝置
KR20160084005A (ko) 액정 디스플레이 장치
WO2023087367A1 (zh) 显示面板和电子装置
WO2020118930A1 (zh) 显示面板以及显示面板的制备方法
US20220165986A1 (en) Display panel, manufacturing method thereof, and display device
US11882736B2 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925315

Country of ref document: EP

Kind code of ref document: A1