WO2022170468A1 - 电子雾化装置及其微波控制方法 - Google Patents

电子雾化装置及其微波控制方法 Download PDF

Info

Publication number
WO2022170468A1
WO2022170468A1 PCT/CN2021/076222 CN2021076222W WO2022170468A1 WO 2022170468 A1 WO2022170468 A1 WO 2022170468A1 CN 2021076222 W CN2021076222 W CN 2021076222W WO 2022170468 A1 WO2022170468 A1 WO 2022170468A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
frequency
feedback
circuit
control circuit
Prior art date
Application number
PCT/CN2021/076222
Other languages
English (en)
French (fr)
Inventor
杜靖
熊玉明
卜桂华
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to JP2023547584A priority Critical patent/JP2024507478A/ja
Priority to KR1020237029683A priority patent/KR20230142555A/ko
Priority to EP21925149.3A priority patent/EP4285761A4/en
Priority to PCT/CN2021/076222 priority patent/WO2022170468A1/zh
Publication of WO2022170468A1 publication Critical patent/WO2022170468A1/zh
Priority to US18/363,778 priority patent/US20240016215A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/664Aspects related to the power supply of the microwave heating apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/686Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • H05B6/802Apparatus for specific applications for heating fluids
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors

Definitions

  • the invention relates to the field of aerosol generating devices, and more particularly, to an electronic atomization device using microwave heating and a microwave control method thereof.
  • the existing aerosol generating device uses an electric current to heat the heating sheet, and after the heating sheet is heated, the aerosol is directly heated to generate the matrix, thereby generating the aerosol.
  • the heating element is in direct contact with the aerosol-generating substrate, and the aerosol will produce residues on the heating element during the high-temperature atomization process, which is not easy to clean. Long-term accumulation will affect the heating efficiency of the heating element, thereby reducing the use of the aerosol generating device. Longevity, bad user experience.
  • the technical problem to be solved by the present invention is to provide an electronic atomization device and a microwave control method thereof in view of the above-mentioned defects of the prior art.
  • the technical solution adopted by the present invention to solve the technical problem is: constructing an electronic atomization device for heating the atomized aerosol to generate a matrix, including:
  • Atomization chamber for containing the aerosol-generating substrate
  • a microwave generating circuit for generating microwaves at a preset microwave frequency
  • a microwave transmitting antenna connected to the microwave generating circuit, and transmitting microwaves in a frequency sweep within a preset microwave frequency range, so as to transmit microwaves to the atomizing cavity to heat the aerosol-generating substrate;
  • a feedback collection circuit configured to collect feedback signals corresponding to the preset microwave frequency microwaves emitted by the microwave transmitting antenna
  • a microwave control circuit which is respectively connected to the microwave generation circuit and the feedback acquisition circuit; the microwave control circuit is used to determine the preset microwave frequency, and controls the microwave generation circuit to operate according to the preset microwave frequency The frequency generates microwaves, and the microwave control circuit selects the microwave emission frequency according to the feedback signal to maintain or correct the preset microwave frequency.
  • the feedback signal is a feedback current value
  • the feedback acquisition circuit is a current acquisition circuit
  • the feedback signal is a feedback voltage value
  • the feedback acquisition circuit is a voltage acquisition circuit
  • the feedback signal is a feedback capacitance value
  • the feedback acquisition circuit is a capacitance acquisition circuit
  • the feedback signal is a feedback temperature value
  • the feedback acquisition circuit is a temperature acquisition circuit.
  • the feedback signal is reverse microwave power
  • the feedback acquisition circuit is a microwave reverse power detector
  • the microwave reverse power detector is used to detect the reverse microwave power received by the microwave transmitting antenna.
  • the electronic atomization device of the present invention further includes a microwave forward power detector connected to the microwave control circuit, and the microwave forward power detector is used for collecting microwave transmission power.
  • the electronic atomizing device of the present invention further comprises a power amplifier, the output end of the microwave generating circuit is connected to the first input end of the power amplifier, and the output end of the power amplifier is connected to the microwave transmitting antenna;
  • the microwave control circuit is connected to the power amplifier, and the microwave control circuit adjusts the power amplifier according to the feedback signal.
  • the electronic atomization device of the present invention further includes a power conditioner, the microwave control circuit is connected to the input end of the power conditioner, and the output end of the power conditioner is connected to the second input end of the power amplifier , the microwave control circuit adjusts the power regulator according to the feedback signal.
  • the present invention also provides a heat-not-burn electronic atomization device, comprising:
  • Atomization chamber for containing the aerosol-generating substrate
  • a circuit board comprising a microwave generation circuit, a feedback acquisition circuit and a microwave control circuit; the microwave control circuit is respectively connected to the microwave generation circuit and the feedback acquisition circuit; the microwave generation circuit is used for generating microwaves at a preset microwave frequency;
  • a microwave transmitting antenna connected to the microwave generating circuit, and transmitting microwaves in a frequency sweep within a preset microwave frequency range, so as to transmit microwaves to the atomizing cavity to heat the aerosol-generating substrate;
  • the feedback collection circuit collects the feedback signal corresponding to the preset microwave frequency microwave emitted by the microwave transmitting antenna; the microwave control circuit is used to determine the preset microwave frequency, and controls the microwave generation circuit to perform the preset microwave frequency according to the preset microwave frequency. It is assumed that the microwave frequency generates microwaves, and the microwave control circuit selects the microwave emission frequency according to the feedback signal to maintain or correct the preset microwave frequency.
  • the feedback signal is a feedback current value
  • the feedback acquisition circuit is a current acquisition circuit
  • the feedback signal is a feedback voltage value
  • the feedback acquisition circuit is a voltage acquisition circuit
  • the feedback signal is a feedback capacitance value
  • the feedback acquisition circuit is a capacitance acquisition circuit
  • the feedback signal is a feedback temperature value
  • the feedback acquisition circuit is a temperature acquisition circuit.
  • the feedback signal is reverse microwave power
  • the feedback acquisition circuit is a microwave reverse power detector
  • the microwave reverse power detector is used to detect the reverse microwave power received by the microwave transmitting antenna.
  • the heat-not-burn electronic atomization device of the present invention further comprises a microwave forward power detector connected to the microwave control circuit, and the microwave forward power detector is used for collecting microwave emission power.
  • the heat-not-burn electronic atomization device of the present invention further includes a power amplifier, the output end of the microwave generating circuit is connected to the first input end of the power amplifier, and the output end of the power amplifier is connected to the microwave transmitter an antenna; the microwave control circuit is connected to the power amplifier, and the microwave control circuit adjusts the power amplifier according to the feedback signal.
  • the heat-not-burn electronic atomization device of the present invention further comprises a power conditioner, the microwave control circuit is connected to the input end of the power conditioner, and the output end of the power conditioner is connected to the first power amplifier of the power amplifier. With two input ends, the microwave control circuit adjusts the power regulator according to the feedback signal.
  • the heat-not-burn electronic atomization device of the present invention further includes a microwave condensing device, and the microwave transmitting antenna is located in the microwave concentrating device, and the microwave condensing device is used for concentrating at least part of the microwaves emitted by the microwave transmitting antenna. to the atomizing chamber.
  • the inner layer of the microwave condensing device is a microwave reflection layer.
  • the outer layer of the microwave gathering device is a microwave shielding layer.
  • the present invention also provides a microwave control method, which is applied to the above-mentioned electronic atomization device, and the method includes:
  • the microwave control circuit controls the microwave generation circuit to generate microwaves, so that the microwave transmitting antenna sweeps the microwaves within a preset microwave frequency range to emit microwaves, and the microwaves are used to heat the aerosol-generating matrix in the atomizing cavity;
  • the feedback collection circuit collects the feedback signal corresponding to the microwave, and sends the feedback signal to the microwave control circuit;
  • the microwave control circuit selects the microwave transmission frequency according to the feedback signal.
  • the microwave control circuit selecting the microwave transmission frequency according to the feedback signal includes: the microwave control circuit selects the microwave transmission frequency and the microwave transmission frequency according to the feedback signal. transmit power.
  • the feedback signal in the step S2 is the reverse microwave power
  • the microwave control circuit selecting the microwave transmission frequency according to the feedback signal includes: the microwave control circuit selecting the microwave transmission frequency corresponding to the minimum value of the reverse microwave power.
  • the method before the step S1, the method further includes:
  • the microwave control circuit receives a microwave frequency selection instruction
  • the microwave control circuit receives an instruction that the aerosol generation substrate is installed.
  • the microwave control circuit receives a suction instruction
  • the microwave control circuit presets a suction time at every interval.
  • the present invention uses microwaves to directly heat the aerosol to generate a matrix, and adjusts the microwave emission frequency by sweeping the frequency, which has high heating efficiency and prolongs the service life of the equipment.
  • FIG. 1 is a schematic structural diagram of an electronic atomization device provided by an embodiment
  • FIG. 2 is a schematic structural diagram of an electronic atomization device provided by an embodiment
  • FIG. 3 is a schematic structural diagram of an electronic atomization device provided by an embodiment
  • FIG. 4 is a schematic structural diagram of an electronic atomization device provided by an embodiment
  • FIG. 5 is a schematic structural diagram of an electronic atomization device provided by an embodiment
  • FIG. 6 is a schematic structural diagram of a heat-not-burn electronic atomization device provided by another embodiment
  • FIG. 7 is a schematic structural diagram of a heat-not-burn electronic atomization device provided by another embodiment
  • FIG. 8 is a flowchart of a microwave control method provided by another embodiment.
  • the electronic atomizing device of this embodiment is used to heat and atomize an aerosol-generating substrate, and the aerosol-generating substrate may be solid tobacco, liquid e-liquid, or the like.
  • the electronic atomization device comprises an atomization cavity, a microwave control circuit, a microwave generation circuit, a microwave transmitting antenna and a feedback acquisition circuit, and the atomization cavity is used to accommodate the aerosol generation matrix; the microwave control circuit is respectively connected to the microwave generation circuit and the feedback acquisition circuit, The microwave generating circuit is connected to the microwave transmitting antenna.
  • the working process of the electronic atomization device is as follows: the microwave control circuit determines a preset microwave frequency, and controls the microwave generating circuit to generate microwaves according to the preset microwave frequency.
  • the microwave transmitting antenna swept frequency within a preset microwave frequency range to emit microwaves, and at least part of the microwaves are concentrated in the atomizing cavity to heat the aerosol-generating substrate. It should be noted that the microwave transmitting antenna needs to scan the microwave frequency within the preset microwave frequency range to transmit microwaves through the microwave control circuit, and the microwave control circuit scans the preset microwave frequency range to determine the preset microwave frequency, for example, from the preset microwave frequency range.
  • the minimum frequency of the microwave frequency is gradually increased to the maximum frequency of the preset microwave frequency range, or the frequency is gradually increased from the minimum frequency of the preset microwave frequency range to the maximum frequency of the preset microwave frequency range at preset frequency intervals, or the frequency is increased from the preset minimum frequency to the maximum frequency of the preset microwave frequency range.
  • the maximum frequency of the microwave frequency range is gradually reduced to the minimum frequency of the preset microwave frequency range, or the frequency is gradually reduced from the maximum frequency of the preset microwave frequency range to the minimum frequency of the preset microwave frequency range at preset frequency intervals.
  • the preset microwave frequency range includes at least two preset microwave frequency points, and each preset microwave frequency point is sequentially sent to the microwave generating circuit in a preset order.
  • the feedback acquisition circuit collects the feedback signal corresponding to the preset microwave frequency microwave emitted by the microwave transmission antenna after the microwave transmission antenna transmits the microwave, and transmits the feedback signal to the microwave control circuit, and the microwave control circuit selects the microwave transmission frequency to maintain or correct according to the feedback signal.
  • the microwave frequency that is, selecting a suitable microwave emission frequency so that the aerosol-generating substrate in the atomizing chamber can achieve the optimal atomization state.
  • the microwave emission frequency that the aerosol generating substrate absorbs the most is selected as the optimal microwave emission frequency, and the electronic atomizer device emits microwaves at the optimal microwave emission frequency until the next microwave frequency sweep.
  • microwaves are used to directly heat the aerosol to generate the matrix, and the microwave emission frequency is adjusted by sweeping the frequency, so that the heating efficiency is high and the service life of the equipment is prolonged.
  • the feedback signal is a feedback current value
  • the feedback acquisition circuit is a current acquisition circuit
  • the current acquisition circuit uses the induced current value generated by the target object under the action of microwaves as the feedback current value.
  • the feedback signal is a feedback voltage value
  • the feedback acquisition circuit is a voltage acquisition circuit
  • the voltage acquisition circuit uses the induced voltage value generated by the target object under the action of microwaves as the feedback voltage value.
  • the feedback signal is a feedback capacitance value
  • the feedback acquisition circuit is a capacitance acquisition circuit
  • the capacitance acquisition circuit uses the inductive capacitance value generated by the target object under the action of microwaves as the feedback capacitance value.
  • the feedback signal is a feedback temperature value
  • the feedback acquisition circuit is a temperature acquisition circuit
  • the temperature acquisition circuit collects the temperature value of the target object under the action of microwaves.
  • the target object may be an aerosol-generating substrate
  • the temperature acquisition circuit collects the temperature value of the aerosol-generating substrate under the action of microwaves.
  • the feedback signal is reverse microwave power
  • the feedback acquisition circuit is a microwave reverse power detector.
  • the microwave transmitting antenna is used as the receiving end of the unabsorbed microwave
  • the microwave reverse power detector detects the reverse microwave power received by the microwave transmitting antenna
  • the microwave transmitting antenna absorbs part of the microwave that is not absorbed by the aerosol generating matrix
  • the microwave reverse power The detector detects the microwave power absorbed by the microwave transmitting antenna to obtain the reverse microwave power.
  • the microwave control circuit selects the optimal microwave emission frequency according to the reverse microwave power. For example, the microwave control circuit selects the microwave emission frequency corresponding to the minimum value of the reverse microwave power, or the microwave control circuit selects the reverse microwave. The microwave emission frequency in the range near the microwave emission frequency corresponding to the minimum power value.
  • the electronic atomization device of this embodiment further includes a microwave forward power detector connected to the microwave control circuit, and the microwave forward power detector is used to collect microwave transmission power.
  • the microwave control circuit can select the optimal microwave transmission frequency according to the microwave transmission power and the reverse microwave power. For example, select the optimal microwave transmission frequency according to the ratio of the reverse microwave power and the microwave transmission power, and select the ratio of the reverse microwave power and the microwave transmission power.
  • the microwave emission frequency corresponding to the minimum time.
  • the electronic atomization device of this embodiment further includes a power amplifier, the output end of the microwave generating circuit is connected to the first input end of the power amplifier, and the output end of the power amplifier is connected to the microwave The transmitting antenna; the microwave control circuit is connected to the power amplifier, and the microwave control circuit adjusts the power amplifier according to the feedback signal. Understandably, the microwave control circuit can control the magnification of the power amplifier.
  • the electronic atomizing device of this embodiment further includes a power conditioner, the microwave control circuit is connected to the input end of the power conditioner, and the output end of the power conditioner is connected to the power amplifier. At the second input end, the microwave control circuit adjusts the power regulator according to the feedback signal.
  • the power amplifier and the power conditioner can be two independent electronic components, or can be an integrated electronic component, and the integrated electronic component can realize the two functions of the power amplifier and the power conditioner.
  • the microwave control circuit adjusts the power amplifier and the power regulator at the same time according to the feedback signal, so as to realize a wider range of microwave transmission power adjustment.
  • the electronic atomizing device of this embodiment is a heat-not-burn electronic atomizing device.
  • the heat-not-burn electronic atomization device includes an aerosol generating substrate 10, a substrate holder 20, an atomizing cavity 30, a microwave transmitting antenna 40, a circuit board 50, a power supply battery 60 and The housing 70, wherein the substrate holder 20 is used for placing and fixing the aerosol generating substrate 10, the microwave generating circuit, the feedback acquisition circuit and the microwave control circuit are integrated on the circuit board 50, and the power supply battery 60 is used for heating not burning electronic atomization The device is powered, and the circuit board 50 and power supply battery 60 are located within the housing 70 .
  • the matrix holder 20 uses a material that can penetrate microwaves to avoid absorbing microwaves.
  • the microwave transmitting antenna 40 has various installation positions, which will be described in this embodiment as an example.
  • the microwave transmitting antenna 40 is located at the bottom of the atomizing cavity 30 and is installed close to the housing 70 .
  • the fog electronic atomizing device further includes a microwave gathering device 80 , and the microwave transmitting antenna 40 is located in the microwave gathering device 80 .
  • the microwave transmitting antenna 40 emits microwaves, and the microwave focusing device 80 gathers at least part of the microwaves emitted by the microwave transmitting antenna 40 to the position of the aerosol generating substrate 10 in the atomizing cavity 30 to heat the aerosol generating substrate 10 .
  • the inner layer of the microwave concentrating device 80 is a microwave reflecting layer, and using the microwave reflecting layer can better condense the microwaves into the atomizing cavity 30, improve the utilization rate of microwaves, and improve the heating efficiency.
  • the outer layer of the microwave concentrating device 80 is a microwave shielding layer, which can absorb the unused microwaves and prevent the microwaves from scattering outside the heat-not-burn electronic atomizer device and causing microwave pollution.
  • the microwave emitting antenna 40 is wound around the atomizing cavity 30 or the substrate fixing frame 20, and the microwave emitting antenna 40 emits microwaves. Most of the microwaves emitted in this way have been concentrated in the atomizing cavity 30, that is, concentrated in the aerosol-generating substrate. 10 , part of the microwaves radiated to the surroundings are reflected by the microwave concentrating device 80 and then re-condensed on the aerosol-generating substrate 10 , so as to heat the aerosol-generating substrate 10 .
  • the microwave control method of this embodiment is applied to the electronic atomizing device of the above-mentioned embodiment. Specifically, the microwave control method includes the following steps:
  • the microwave control circuit controls the microwave generating circuit to generate microwaves, so that the microwave transmitting antenna scans the frequency to transmit microwaves within a preset microwave frequency range, and the microwaves are used to heat the aerosol-generating matrix in the atomizing cavity.
  • the microwave control circuit determines a preset microwave frequency, and controls the microwave generation circuit to generate microwaves according to the preset microwave frequency.
  • the microwave transmitting antenna swept frequency within a preset microwave frequency range to emit microwaves, and at least part of the microwaves are concentrated in the atomizing cavity to heat the aerosol-generating substrate.
  • the microwave transmitting antenna needs to scan the microwave frequency within the preset microwave frequency range to transmit microwaves through the microwave control circuit, and the microwave control circuit scans the preset microwave frequency range to determine the preset microwave frequency, for example, from the preset microwave frequency range.
  • the minimum frequency of the microwave frequency is gradually increased to the maximum frequency of the preset microwave frequency range, or the frequency is gradually increased from the minimum frequency of the preset microwave frequency range to the maximum frequency of the preset microwave frequency range at preset frequency intervals, or the frequency is increased from the preset minimum frequency to the maximum frequency of the preset microwave frequency range.
  • the maximum frequency of the microwave frequency range is gradually reduced to the minimum frequency of the preset microwave frequency range, or the frequency is gradually reduced from the maximum frequency of the preset microwave frequency range to the minimum frequency of the preset microwave frequency range at preset frequency intervals.
  • the preset microwave frequency range includes at least two preset microwave frequency points, and each preset microwave frequency point is sequentially sent to the microwave generating circuit in a preset order.
  • the feedback acquisition circuit collects the feedback signal corresponding to the microwave, and sends the feedback signal to the microwave control circuit. Specifically, the feedback acquisition circuit collects the feedback signal corresponding to the preset microwave frequency microwave emitted by the microwave transmission antenna after the microwave transmission antenna transmits the microwave, and transmits the feedback signal to the microwave control circuit.
  • the microwave control circuit selects the microwave transmission frequency according to the feedback signal. Specifically, after the sweep-frequency emission of microwaves is completed, the microwave control circuit selects the microwave emission frequency to maintain or correct the preset microwave frequency according to the feedback signal, that is, to select an appropriate microwave emission frequency so that the aerosol-generating matrix in the atomization cavity can achieve the optimal mist. state. Alternatively, the microwave emission frequency that the aerosol generating substrate absorbs the most is selected as the optimal microwave emission frequency, and the electronic atomizer device emits microwaves at the optimal microwave emission frequency until the next microwave frequency sweep.
  • microwaves are used to directly heat the aerosol to generate the matrix, and the microwave emission frequency is adjusted by sweeping the frequency, so that the heating efficiency is high and the service life of the equipment is prolonged.
  • the microwave control circuit selecting the microwave transmission frequency according to the feedback signal includes: the microwave control circuit selects the microwave transmission frequency and the microwave transmission power according to the feedback signal, and simultaneously adjusts the microwave transmission frequency and the microwave transmission power, To achieve optimal atomization of the aerosol-generating substrate in the atomization chamber.
  • the feedback signal in step S2 is the reverse microwave power.
  • the microwave control circuit selecting the microwave transmitting frequency according to the feedback signal includes: selecting the microwave transmitting frequency corresponding to the minimum value of the reverse microwave power by the microwave control circuit.
  • the microwave heating heat-not-burn electronic atomizer may cause errors in the microwave gathering device during the production process, and the error may cause the preset microwave emission frequency to be not the optimal microwave emission frequency.
  • the preset microwave transmission frequency needs to be calibrated.
  • the method further includes: S101, the microwave control circuit receives a microwave frequency selection instruction, and the microwave frequency selection instruction can be generated by a physical button or a virtual button or the like. Of course, this step can be done at the factory or when the user uses it for the first time.
  • the method further includes: S102, the microwave control circuit receives the installation completion instruction of the aerosol generation substrate, that is, after the user newly installs or replaces the aerosol generation substrate, generates the installation completion instruction of the aerosol generation substrate,
  • the method further includes: S103, microwave
  • the control circuit receives the suction command, and the user generates the suction command every time the user takes a suction.
  • the method further includes: S104, microwave The control circuit presets the suction time at every interval.
  • RAM random access memory
  • ROM read only memory
  • EEPROM electrically programmable ROM
  • EEPly erasable programmable ROM registers
  • hard disk removable disk
  • CD-ROM compact disc-read only memory

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

一种电子雾化装置及其微波控制方法。电子雾化装置包括:用于收容气溶胶生成基质的雾化腔;用于按预设微波频率生成微波的微波生成电路;用于发射微波的微波发射天线;用于采集微波发射天线发射的预设微波频率微波对应的反馈信号的反馈采集电路;以及微波控制电路,微波控制电路分别连接微波生成电路和反馈采集电路;微波控制电路用于确定预设微波频率,控制微波生成电路按预设微波频率生成微波,微波控制电路根据反馈信号选择微波发射频率维持或修正预设微波频率。使用微波直接加热气溶胶生成基质,且通过扫频调整微波发射频率,加热效率高,延长设备使用寿命。

Description

电子雾化装置及其微波控制方法 技术领域
本发明涉及气溶胶产生装置领域,更具体地说,涉及采用微波加热的电子雾化装置及其微波控制方法。
背景技术
现有气溶胶产生装置使用电流加热发热片,发热片发热后直接加热气溶胶生成基质,从而产生气溶胶。这种加热方式中发热片和气溶胶生成基质直接接触,气溶胶在高温雾化过程会产生残留物在加热片上,不易清洁,长期积累会影响加热片的加热效率,进而降低气溶胶产生装置的使用寿命,用户体验不好。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种电子雾化装置及其微波控制方法。
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种电子雾化装置,用于加热雾化气溶胶生成基质,包括:
雾化腔,用于收容气溶胶生成基质;
微波生成电路,用于按预设微波频率生成微波;
微波发射天线,与所述微波生成电路连接,在预设微波频率范围内扫频发射微波,用于向雾化腔发射微波以加热所述气溶胶生成基质;
反馈采集电路,用于采集所述微波发射天线发射的所述预设微波频率微波对应的反馈信号;和
微波控制电路,所述微波控制电路分别连接所述微波生成电路和所述反馈采集电路;所述微波控制电路用于确定所述预设微波频率,控制所述微波生成电路按所述预设微波频率生成微波,所述微波控制电路根据所述反馈信号选择微波发射频率维持或修正所述预设微波频率。
进一步,在本发明所述的电子雾化装置中,所述反馈信号为反馈电流值,所述反馈采集电路为电流采集电路;或
所述反馈信号为反馈电压值,所述反馈采集电路为电压采集电路;或
所述反馈信号为反馈电容值,所述反馈采集电路为电容采集电路;或
所述反馈信号为反馈温度值,所述反馈采集电路为温度采集电路。
进一步,在本发明所述的电子雾化装置中,所述反馈信号为反向微波功率,所述反馈采集电路为微波反向功率检测器。
进一步,在本发明所述的电子雾化装置中,所述微波反向功率检测器用于检测所述微波发射天线接收的反向微波功率。
进一步,本发明所述的电子雾化装置还包括与所述微波控制电路连接的微波正向功率检测器,所述微波正向功率检测器用于采集微波发射功率。
进一步,本发明所述的电子雾化装置还包括功率放大器,所述微波生成电路的输出端连接所述功率放大器的第一输入端,所述功率放大器的输出端连接所述微波发射天线;所述微波控制电路连接所述功率放大器,所述微波控制电路根据所述反馈信号调整所述功率放大器。
进一步,本发明所述的电子雾化装置还包括功率调节器,所述微波控制电路连接所述功率调节器的输入端,所述功率调节器的输出端连接所述功率放大器的第二输入端,所述微波控制电路根据所述反馈信号调整所述功率调节器。
另外,本发明还提供一种加热不燃烧电子雾化装置,包括:
雾化腔,用于收容气溶胶生成基质;
电路板,包括微波生成电路、反馈采集电路和微波控制电路;所述微波控制电路分别连接所述微波生成电路和所述反馈采集电路;所述微波生成电路用于按预设微波频率生成微波;
微波发射天线,与所述微波生成电路连接,在预设微波频率范围内扫频发射微波,用于向雾化腔发射微波以加热所述气溶胶生成基质;
所述反馈采集电路采集所述微波发射天线发射的所述预设微波频率微波对应的反馈信号;所述微波控制电路用于确定所述预设微波频率,控制所述微波生成电路按所述预设微波频率生成微波,所述微波控制电路根据所述反馈信号选择微波发射频率维持或修正所述预设微波频率。
进一步,在本发明所述的加热不燃烧电子雾化装置中,所述反馈信号为反馈电流值,所述反馈采集电路为电流采集电路;或
所述反馈信号为反馈电压值,所述反馈采集电路为电压采集电路;或
所述反馈信号为反馈电容值,所述反馈采集电路为电容采集电路;或
所述反馈信号为反馈温度值,所述反馈采集电路为温度采集电路。
进一步,在本发明所述的加热不燃烧电子雾化装置中,所述反馈信号为反向微波功率,所述反馈采集电路为微波反向功率检测器。
进一步,在本发明所述的加热不燃烧电子雾化装置中,所述微波反向功率检测器用于检测所述微波发射天线接收的反向微波功率。
进一步,本发明所述的加热不燃烧电子雾化装置还包括与所述微波控制电路连接的微波正向功率检测器,所述微波正向功率检测器用于采集微波发射功率。
进一步,本发明所述的加热不燃烧电子雾化装置还包括功率放大器,所述微波生成电路的输出端连接所述功率放大器的第一输入端,所述功率放大器的输出端连接所述微波发射天线;所述微波控制电路连接所述功率放大器,所述微波控制电路根据所述反馈信号调整所述功率放大器。
进一步,本发明所述的加热不燃烧电子雾化装置还包括功率调节器,所述微波控制电路连接所述功率调节器的输入端,所述功率调节器的输出端连接所述功率放大器的第二输入端,所述微波控制电路根据所述反馈信号调整所述功率调节器。
进一步,本发明所述的加热不燃烧电子雾化装置还包括微波聚集装置,微波发射天线位于所述微波聚集装置内,所述微波聚集装置用于将所述微波发射天线发射的至少部分微波聚集至雾化腔。
进一步,在本发明所述的加热不燃烧电子雾化装置中,所述微波聚集装置的内层为微波反射层。
进一步,在本发明所述的加热不燃烧电子雾化装置中,所述微波聚集装置的外层为微波屏蔽层。
另外,本发明还提供一种微波控制方法,应用于如上述电子雾化装置中,所述方法包括:
S1、微波控制电路控制微波生成电路生成微波,使微波发射天线在预设微波频率范围内扫频发射微波,所述微波用于加热雾化腔中的气溶胶生成基质;
S2、反馈采集电路采集所述微波对应的反馈信号,将所述反馈信号发送至所述微波控制电路;
S3、扫频发射微波结束后,所述微波控制电路根据所述反馈信号选择微波发射频率。
进一步,在本发明所述的微波控制方法中,所述步骤S3中所述微波控制电路根据所述反馈信号选择微波发射频率包括:所述微波控制电路根据所述反馈信号选择微波发射频率和微波发射功率。
进一步,在本发明所述的微波控制方法中,所述步骤S2中所述反馈信号为反向微波功率;
所述步骤S3中所述微波控制电路根据所述反馈信号选择微波发射频率包括:所述微波控制电路选择所述反向微波功率最小值所对应的微波发射频率。
进一步,在本发明所述的微波控制方法中,在所述步骤S1之前还包括:
S101、所述微波控制电路接收到微波频率选择指令;或
S102、所述微波控制电路接收到气溶胶生成基质安装完毕指令;或
S103、所述微波控制电路接收到抽吸指令;或
S104、所述微波控制电路每间隔预设抽吸时间。
有益效果
实施本发明的一种电子雾化装置及其微波控制方法,具有以下有益效果:本发明使用微波直接加热气溶胶生成基质,且通过扫频调整微波发射频率,加热效率高,延长设备使用寿命。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是一实施例提供的一种电子雾化装置的结构示意图;
图2是一实施例提供的一种电子雾化装置的结构示意图;
图3是一实施例提供的一种电子雾化装置的结构示意图;
图4是一实施例提供的一种电子雾化装置的结构示意图;
图5是一实施例提供的一种电子雾化装置的结构示意图;
图6是另一实施例提供的一种加热不燃烧电子雾化装置的结构示意图;
图7是另一实施例提供的一种加热不燃烧电子雾化装置的结构示意图;
图8是另一实施例提供的一种微波控制方法的流程图。
本发明的最佳实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
在一优选实施例中,参考图1,本实施例的电子雾化装置用于加热雾化气溶胶生成基质,气溶胶生成基质可为固体烟草、液态烟油等。该电子雾化装置包括雾化腔、微波控制电路、微波生成电路、微波发射天线和反馈采集电路,雾化腔用于收容气溶胶生成基质;微波控制电路分别连接微波生成电路和反馈采集电路,微波生成电路连接微波发射天线。
该电子雾化装置的工作过程为:微波控制电路确定预设微波频率,控制微波生成电路按预设微波频率生成微波。微波发射天线在预设微波频率范围内扫频发射微波,至少部分微波聚集在雾化腔以加热气溶胶生成基质。需要说明的是,微波发射天线在预设微波频率范围内扫频发射微波需要通过微波控制电路实现,微波控制电路在预设微波频率范围扫频确定预设微波频率,例如从预设微波频率范围的最小频率逐渐增大频率至预设微波频率范围的最大频率,或从预设微波频率范围的最小频率按照预设频率间隔逐渐增大频率至预设微波频率范围的最大频率,或从预设微波频率范围的最大频率逐渐减小频率至预设微波频率范围的最小频率,或从预设微波频率范围的最大频率按照预设频率间隔逐渐减小频率至预设微波频率范围的最小频率。又例如,预设微波频率范围内包括至少两个预设微波频率点,按照预设顺序依次发送每个预设微波频率点至微波生成电路。
进一步,反馈采集电路在微波发射天线发射微波后采集微波发射天线发射的预设微波频率微波对应的反馈信号,将反馈信号传输至微波控制电路,微波控制电路根据反馈信号选择微波发射频率维持或修正预设微波频率,即选择合适的微波发射频率以使雾化腔中的气溶胶生成基质达到最佳雾化状态。作为选择,选择气溶胶生成基质吸收最多的微波发射频率作为最优微波发射频率,电子雾化装置以该最优微波发射频率发射微波,直至下一次微波扫频。
本实施例使用微波直接加热气溶胶生成基质,且通过扫频调整微波发射频率,加热效率高,延长设备使用寿命。
在一实施例的电子雾化装置中,反馈信号为反馈电流值,反馈采集电路为电流采集电路,电流采集电路将目标对象在微波作用下产生的感应电流值作为反馈电流值。
在一实施例的电子雾化装置中,反馈信号为反馈电压值,反馈采集电路为电压采集电路,电压采集电路将目标对象在微波作用下产生的感应电压值作为反馈电压值。
在一实施例的电子雾化装置中,反馈信号为反馈电容值,反馈采集电路为电容采集电路,电容采集电路将目标对象在微波作用下产生的感应电容值作为反馈电容值。
在一实施例的电子雾化装置中,反馈信号为反馈温度值,反馈采集电路为温度采集电路,温度采集电路采集目标对象在微波作用下的温度值。作为选择,目标对象可为气溶胶生成基质,温度采集电路采集气溶胶生成基质在微波作用下的温度值。
在一实施例的电子雾化装置中,参考图2,反馈信号为反向微波功率,反馈采集电路为微波反向功率检测器。微波发射后,并非所有微波都会被气溶胶生成基质吸收,部分未被吸收的微波被反向微波功率检测,得到反向微波功率。作为选择,微波发射天线作为未吸收微波的接收端,微波反向功率检测器检测微波发射天线接收的反向微波功率,微波发射天线吸收部分未被气溶胶生成基质吸收的微波,微波反向功率检测器检测微波发射天线吸收微波的功率得到反向微波功率。进一步,得到反向微波功率后,微波控制电路根据反向微波功率选择最优微波发射频率,例如微波控制电路选择反向微波功率最小值所对应的微波发射频率,或微波控制电路选择反向微波功率最小值所对应的微波发射频率附近范围的微波发射频率。
在一实施例的电子雾化装置中,参考图3,本实施例的电子雾化装置还包括与微波控制电路连接的微波正向功率检测器,微波正向功率检测器用于采集微波发射功率。微波控制电路可根据微波发射功率和反向微波功率选择最优微波发射频率,例如根据反向微波功率和微波发射功率的比值选择最优微波发射频率,选择反向微波功率和微波发射功率的比值最小时对应的微波发射频率。
在一实施例的电子雾化装置中,参考图4,本实施例的电子雾化装置还包括功率放大器,微波生成电路的输出端连接功率放大器的第一输入端,功率放大器的输出端连接微波发射天线;微波控制电路连接功率放大器,微波控制电路根据反馈信号调整功率放大器。可以理解的,微波控制电路可控制功率放大器的放大倍数。
在一实施例的电子雾化装置中,参考图5,本实施例的电子雾化装置还包括功率调节器,微波控制电路连接功率调节器的输入端,功率调节器的输出端连接功率放大器的第二输入端,微波控制电路根据反馈信号调整功率调节器。可以理解的,功率放大器和功率调节器可以为两个独立电子元件,也可为集成电子元件,该集成电子元件可实现功率放大器和功率调节器两种功能。作为选择,微波控制电路根据反馈信号同时调整功率放大器和功率调节器,实现微波更大范围的发射功率调整。
在一优选实施例中,本实施例的电子雾化装置是加热不燃烧电子雾化装置。参考图6和图7,在该实施例中,加热不燃烧电子雾化装置包括气溶胶生成基质10、基质固定架20、雾化腔30、微波发射天线40、电路板50、供电电池60和壳体70,其中基质固定架20用于放置和固定气溶胶生成基质10,微波生成电路、反馈采集电路和微波控制电路集成在电路板50上,供电电池60用于为加热不燃烧电子雾化装置供电,电路板50和供电电池60位于壳体70内。可以理解,基质固定架20使用微波能够穿透的材质,以避免吸收微波。微波发射天线40具有多种安装位置,本实施例举例进行说明。
图6中,微波发射天线40位于雾化腔30底部,靠近壳体70安装,雾电子雾化装置还包括微波聚集装置80,微波发射天线40位于微波聚集装置80内。微波发射天线40发出微波,微波聚集装置80将微波发射天线40发射的至少部分微波聚集至雾化腔30中气溶胶生成基质10所在位置,以加热气溶胶生成基质10。作为选择,微波聚集装置80的内层为微波反射层,使用微波反射层能更好的将微波聚集至雾化腔30,提高微波利用率,提高加热效率。进一步,微波聚集装置80的外层为微波屏蔽层,屏蔽层能吸收未被利用的微波,防止微波散射到加热不燃烧电子雾化装置外,产生微波污染。
图7中,微波发射天线40缠绕在雾化腔30或基质固定架20上,微波发射天线40发出微波,该方式发射的微波多数已集中在雾化腔30内,即集中在气溶胶生成基质10上,部分向周围发散的微波经微波聚集装置80反射后重新聚集在气溶胶生成基质10,以加热气溶胶生成基质10。
在一优选实施例中,参考图8,本实施例的微波控制方法应用于如上述实施例的电子雾化装置中。具体的,该微波控制方法包括下述步骤:
S1、微波控制电路控制微波生成电路生成微波,使微波发射天线在预设微波频率范围内扫频发射微波,微波用于加热雾化腔中的气溶胶生成基质。具体的,微波控制电路确定预设微波频率,控制微波生成电路按预设微波频率生成微波。微波发射天线在预设微波频率范围内扫频发射微波,至少部分微波聚集在雾化腔以加热气溶胶生成基质。需要说明的是,微波发射天线在预设微波频率范围内扫频发射微波需要通过微波控制电路实现,微波控制电路在预设微波频率范围扫频确定预设微波频率,例如从预设微波频率范围的最小频率逐渐增大频率至预设微波频率范围的最大频率,或从预设微波频率范围的最小频率按照预设频率间隔逐渐增大频率至预设微波频率范围的最大频率,或从预设微波频率范围的最大频率逐渐减小频率至预设微波频率范围的最小频率,或从预设微波频率范围的最大频率按照预设频率间隔逐渐减小频率至预设微波频率范围的最小频率。又例如,预设微波频率范围内包括至少两个预设微波频率点,按照预设顺序依次发送每个预设微波频率点至微波生成电路。
S2、反馈采集电路采集微波对应的反馈信号,将反馈信号发送至微波控制电路。具体的,反馈采集电路在微波发射天线发射微波后采集微波发射天线发射的预设微波频率微波对应的反馈信号,将反馈信号传输至微波控制电路。
S3、扫频发射微波结束后,微波控制电路根据反馈信号选择微波发射频率。具体的,扫频发射微波结束后,微波控制电路根据反馈信号选择微波发射频率维持或修正预设微波频率,即选择合适的微波发射频率以使雾化腔中的气溶胶生成基质达到最佳雾化状态。作为选择,选择气溶胶生成基质吸收最多的微波发射频率作为最优微波发射频率,电子雾化装置以该最优微波发射频率发射微波,直至下一次微波扫频。
本实施例使用微波直接加热气溶胶生成基质,且通过扫频调整微波发射频率,加热效率高,延长设备使用寿命。
在一实施例的微波控制方法中,步骤S3中微波控制电路根据反馈信号选择微波发射频率包括:微波控制电路根据反馈信号选择微波发射频率和微波发射功率,同时调整微波发射频率和微波发射功率,使雾化腔中的气溶胶生成基质达到最佳雾化状态。
在一实施例的实施例的微波控制方法中,步骤S2中反馈信号为反向微波功率。微波发射后,并非所有微波都会被气溶胶生成基质吸收,部分未被吸收的微波被反向微波功率检测,得到反向微波功率。对应的,步骤S3中微波控制电路根据反馈信号选择微波发射频率包括:微波控制电路选择反向微波功率最小值所对应的微波发射频率。
一实施例的微波控制方法中,微波加热加热不燃烧电子雾化装置在生产过程中会导致微波聚集装置存在误差,该误差可能导致出厂时预设的微波发射频率并非最优微波发射频率,因此需要对预设微波发射频率进行校准。在步骤S1之前还包括:S101、微波控制电路接收到微波频率选择指令,微波频率选择指令可由实体按键或虚拟按键等产生。当然,该步骤可在出厂时完成,也可在用户首次使用时完成。
一实施例的微波控制方法中,因每种气溶胶生成基质对应的微波频率不同,即每种气溶胶生成基质共振发热的微波频率不同,为达到最好的加热效果,在步骤S1之前还包括:S102、微波控制电路接收到气溶胶生成基质安装完毕指令,即在用户新安装或更换气溶胶生成基质后,产生气溶胶生成基质安装完毕指令,
一实施例的微波控制方法中,随着气溶胶生成基质的消耗,气溶胶生成基质需要加热的位置不断变化,为使微波能准确加热气溶胶生成基质,在步骤S1之前还包括:S103、微波控制电路接收到抽吸指令,用户每次抽吸时产生抽吸指令。
一实施例的微波控制方法中,随着气溶胶生成基质的消耗,气溶胶生成基质需要加热的位置不断变化,为使微波能准确加热气溶胶生成基质,在步骤S1之前还包括:S104、微波控制电路每间隔预设抽吸时间。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据此实施,并不能限制本发明的保护范围。凡跟本发明权利要求范围所做的均等变化与修饰,均应属于本发明权利要求的涵盖范围。

Claims (21)

  1. 一种电子雾化装置,用于加热雾化气溶胶生成基质,其特征在于,包括:
    雾化腔,用于收容气溶胶生成基质;
    微波生成电路,用于按预设微波频率生成微波;
    微波发射天线,与所述微波生成电路连接,在预设微波频率范围内扫频发射微波,用于向雾化腔发射微波以加热所述气溶胶生成基质;
    反馈采集电路,用于采集所述微波发射天线发射的所述预设微波频率微波对应的反馈信号;和
    微波控制电路,所述微波控制电路分别连接所述微波生成电路和所述反馈采集电路;所述微波控制电路用于确定所述预设微波频率,控制所述微波生成电路按所述预设微波频率生成微波,所述微波控制电路根据所述反馈信号选择微波发射频率维持或修正所述预设微波频率。
  2. 根据权利要求1所述的电子雾化装置,其特征在于,所述反馈信号为反馈电流值,所述反馈采集电路为电流采集电路;或
    所述反馈信号为反馈电压值,所述反馈采集电路为电压采集电路;或
    所述反馈信号为反馈电容值,所述反馈采集电路为电容采集电路;或
    所述反馈信号为反馈温度值,所述反馈采集电路为温度采集电路。
  3. 根据权利要求1所述的电子雾化装置,其特征在于,所述反馈信号为反向微波功率,所述反馈采集电路为微波反向功率检测器。
  4. 根据权利要求3所述的电子雾化装置,其特征在于,所述微波反向功率检测器用于检测所述微波发射天线接收的反向微波功率。
  5. 根据权利要求1所述的电子雾化装置,其特征在于,还包括与所述微波控制电路连接的微波正向功率检测器,所述微波正向功率检测器用于采集微波发射功率。
  6. 根据权利要求1所述的电子雾化装置,其特征在于,还包括功率放大器,所述微波生成电路的输出端连接所述功率放大器的第一输入端,所述功率放大器的输出端连接所述微波发射天线;所述微波控制电路连接所述功率放大器,所述微波控制电路根据所述反馈信号调整所述功率放大器。
  7. 根据权利要求1所述的电子雾化装置,其特征在于,还包括功率调节器,所述微波控制电路连接所述功率调节器的输入端,所述功率调节器的输出端连接所述功率放大器的第二输入端,所述微波控制电路根据所述反馈信号调整所述功率调节器。
  8. 一种加热不燃烧电子雾化装置,其特征在于,包括:
    雾化腔,用于收容气溶胶生成基质;
    电路板,包括微波生成电路、反馈采集电路和微波控制电路;所述微波控制电路分别连接所述微波生成电路和所述反馈采集电路;所述微波生成电路用于按预设微波频率生成微波;
    微波发射天线,与所述微波生成电路连接,在预设微波频率范围内扫频发射微波,用于向雾化腔发射微波以加热所述气溶胶生成基质;
    所述反馈采集电路采集所述微波发射天线发射的所述预设微波频率微波对应的反馈信号;所述微波控制电路用于确定所述预设微波频率,控制所述微波生成电路按所述预设微波频率生成微波,所述微波控制电路根据所述反馈信号选择微波发射频率维持或修正所述预设微波频率。
  9. 根据权利要求8所述的加热不燃烧电子雾化装置,其特征在于,所述反馈信号为反馈电流值,所述反馈采集电路为电流采集电路;或
    所述反馈信号为反馈电压值,所述反馈采集电路为电压采集电路;或
    所述反馈信号为反馈电容值,所述反馈采集电路为电容采集电路;或
    所述反馈信号为反馈温度值,所述反馈采集电路为温度采集电路。
  10. 根据权利要求8所述的加热不燃烧电子雾化装置,其特征在于,所述反馈信号为反向微波功率,所述反馈采集电路为微波反向功率检测器。
  11. 根据权利要求10所述的加热不燃烧电子雾化装置,其特征在于,所述微波反向功率检测器用于检测所述微波发射天线接收的反向微波功率。
  12. 根据权利要求8所述的加热不燃烧电子雾化装置,其特征在于,还包括与所述微波控制电路连接的微波正向功率检测器,所述微波正向功率检测器用于采集微波发射功率。
  13. 根据权利要求8所述的加热不燃烧电子雾化装置,其特征在于,还包括功率放大器,所述微波生成电路的输出端连接所述功率放大器的第一输入端,所述功率放大器的输出端连接所述微波发射天线;所述微波控制电路连接所述功率放大器,所述微波控制电路根据所述反馈信号调整所述功率放大器。
  14. 根据权利要求8所述的加热不燃烧电子雾化装置,其特征在于,还包括功率调节器,所述微波控制电路连接所述功率调节器的输入端,所述功率调节器的输出端连接所述功率放大器的第二输入端,所述微波控制电路根据所述反馈信号调整所述功率调节器。
  15. 根据权利要求8所述的加热不燃烧电子雾化装置,其特征在于,还包括微波聚集装置,微波发射天线位于所述微波聚集装置内,所述微波聚集装置用于将所述微波发射天线发射的至少部分微波聚集至雾化腔。
  16. 根据权利要求15所述的加热不燃烧电子雾化装置,其特征在于,所述微波聚集装置的内层为微波反射层。
  17. 根据权利要求16所述的加热不燃烧电子雾化装置,其特征在于,所述微波聚集装置的外层为微波屏蔽层。
  18. 一种微波控制方法,其特征在于,应用于如权利要求1至17任一项所述的电子雾化装置中,所述方法包括:
    S1、微波控制电路控制微波生成电路生成微波,使微波发射天线在预设微波频率范围内扫频发射微波,所述微波用于加热雾化腔中的气溶胶生成基质;
    S2、反馈采集电路采集所述微波对应的反馈信号,将所述反馈信号发送至所述微波控制电路;
    S3、扫频发射微波结束后,所述微波控制电路根据所述反馈信号选择微波发射频率。
  19. 根据权利要求18所述的微波控制方法,其特征在于,所述步骤S3中所述微波控制电路根据所述反馈信号选择微波发射频率包括:所述微波控制电路根据所述反馈信号选择微波发射频率和微波发射功率。
  20. 根据权利要求18所述的微波控制方法,其特征在于,所述步骤S2中所述反馈信号为反向微波功率;
    所述步骤S3中所述微波控制电路根据所述反馈信号选择微波发射频率包括:所述微波控制电路选择所述反向微波功率最小值所对应的微波发射频率。
  21. 根据权利要求18所述的微波控制方法,其特征在于,在所述步骤S1之前还包括:
    S101、所述微波控制电路接收到微波频率选择指令;或
    S102、所述微波控制电路接收到气溶胶生成基质安装完毕指令;或
    S103、所述微波控制电路接收到抽吸指令;或
    S104、所述微波控制电路每间隔预设抽吸时间。
PCT/CN2021/076222 2021-02-09 2021-02-09 电子雾化装置及其微波控制方法 WO2022170468A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023547584A JP2024507478A (ja) 2021-02-09 2021-02-09 電子霧化装置及びそのマイクロ波制御方法
KR1020237029683A KR20230142555A (ko) 2021-02-09 2021-02-09 전자 무화 장치 및 이의 마이크로파 제어 방법
EP21925149.3A EP4285761A4 (en) 2021-02-09 2021-02-09 ELECTRONIC ATOMIZER DEVICE AND MICROWAVE CONTROL METHOD THEREOF
PCT/CN2021/076222 WO2022170468A1 (zh) 2021-02-09 2021-02-09 电子雾化装置及其微波控制方法
US18/363,778 US20240016215A1 (en) 2021-02-09 2023-08-02 Electronic vaporization device and method for controlling microwave thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/076222 WO2022170468A1 (zh) 2021-02-09 2021-02-09 电子雾化装置及其微波控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/363,778 Continuation US20240016215A1 (en) 2021-02-09 2023-08-02 Electronic vaporization device and method for controlling microwave thereof

Publications (1)

Publication Number Publication Date
WO2022170468A1 true WO2022170468A1 (zh) 2022-08-18

Family

ID=82838190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076222 WO2022170468A1 (zh) 2021-02-09 2021-02-09 电子雾化装置及其微波控制方法

Country Status (5)

Country Link
US (1) US20240016215A1 (zh)
EP (1) EP4285761A4 (zh)
JP (1) JP2024507478A (zh)
KR (1) KR20230142555A (zh)
WO (1) WO2022170468A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024049256A1 (ko) * 2022-08-31 2024-03-07 주식회사 케이티앤지 에어로졸 생성 장치
WO2024045050A1 (zh) * 2022-08-31 2024-03-07 深圳麦时科技有限公司 加热不燃烧装置及其加热控制方法、程序产品、存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967600B2 (ja) * 2006-10-24 2012-07-04 パナソニック株式会社 マイクロ波処理装置
CN108552612A (zh) * 2018-07-16 2018-09-21 云南中烟工业有限责任公司 一种用于电子烟的微波谐振腔
CN110662322A (zh) * 2019-09-02 2020-01-07 成都亚彦科技有限公司 微波输出控制方法、装置、存储介质及终端设备
CN111031622A (zh) * 2019-12-30 2020-04-17 广东美的厨房电器制造有限公司 微波加热组件、微波加热设备和控制方法
CN111043632A (zh) * 2019-12-28 2020-04-21 华南理工大学 一种用于基于固态源的微波炉频率智能选择方法
KR20200079694A (ko) * 2018-12-26 2020-07-06 주식회사 이엠텍 마이크로웨이브 발열 방식 미세 입자 발생 장치
EP3747289A1 (en) * 2019-06-06 2020-12-09 Torrenño Núñez, Alberto Microwave heating unit and method
WO2020256292A1 (ko) * 2019-06-18 2020-12-24 주식회사 케이티앤지 마이크로웨이브를 통해 에어로졸을 생성하는 에어로졸 생성장치 및 그 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134307A1 (ja) * 2009-05-19 2010-11-25 パナソニック株式会社 マイクロ波加熱装置及びマイクロ波加熱方法
RU2012104702A (ru) * 2009-07-10 2013-08-20 Панасоник Корпорэйшн Устройство для микроволнового нагрева и способ управления микроволновым нагревом
CN114025631A (zh) * 2019-07-19 2022-02-08 菲利普莫里斯生产公司 使用介电加热的气溶胶生成系统和方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967600B2 (ja) * 2006-10-24 2012-07-04 パナソニック株式会社 マイクロ波処理装置
CN108552612A (zh) * 2018-07-16 2018-09-21 云南中烟工业有限责任公司 一种用于电子烟的微波谐振腔
KR20200079694A (ko) * 2018-12-26 2020-07-06 주식회사 이엠텍 마이크로웨이브 발열 방식 미세 입자 발생 장치
EP3747289A1 (en) * 2019-06-06 2020-12-09 Torrenño Núñez, Alberto Microwave heating unit and method
WO2020256292A1 (ko) * 2019-06-18 2020-12-24 주식회사 케이티앤지 마이크로웨이브를 통해 에어로졸을 생성하는 에어로졸 생성장치 및 그 방법
CN110662322A (zh) * 2019-09-02 2020-01-07 成都亚彦科技有限公司 微波输出控制方法、装置、存储介质及终端设备
CN111043632A (zh) * 2019-12-28 2020-04-21 华南理工大学 一种用于基于固态源的微波炉频率智能选择方法
CN111031622A (zh) * 2019-12-30 2020-04-17 广东美的厨房电器制造有限公司 微波加热组件、微波加热设备和控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4285761A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024049256A1 (ko) * 2022-08-31 2024-03-07 주식회사 케이티앤지 에어로졸 생성 장치
WO2024045050A1 (zh) * 2022-08-31 2024-03-07 深圳麦时科技有限公司 加热不燃烧装置及其加热控制方法、程序产品、存储介质

Also Published As

Publication number Publication date
KR20230142555A (ko) 2023-10-11
US20240016215A1 (en) 2024-01-18
EP4285761A4 (en) 2024-03-13
EP4285761A1 (en) 2023-12-06
JP2024507478A (ja) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2022170468A1 (zh) 电子雾化装置及其微波控制方法
KR101727904B1 (ko) 마이크로웨이브를 이용한 조리기기 및 그 동작방법
RU2660379C2 (ru) Устройство формирования волны, электронное устройство и система
CN114903216A (zh) 电子雾化装置及其微波控制方法
KR20110025174A (ko) 마이크로파 가열 장치
JP2009544217A (ja) 望ましくない電磁放射線への曝露を低減させるための方法および装置
JP2009259511A (ja) マイクロ波処理装置
CN110662322B (zh) 微波输出控制方法、装置、存储介质及终端设备
CN115670030A (zh) 气溶胶产生装置、控制方法、控制装置和可读存储介质
CN211050546U (zh) 雾化器
CN110996422A (zh) 微波加热组件、微波加热设备和控制方法
CN213517914U (zh) 一种原子钟系统
JP3284263B2 (ja) マイクロ波加熱装置
CN111615230B (zh) 微波家电的控制方法、装置、微波家电和电子设备
CN114669436A (zh) 调频驱动电路、调频驱动方法、驱动装置
CN114850137A (zh) 材料的激光清洗方法和装置、存储介质及电子装置
CN210958866U (zh) 气状物产生装置、基于液体加热的气状物产生装置及系统
WO2023004678A1 (zh) 气溶胶产生装置、控制方法、控制装置和可读存储介质
CN112584566A (zh) 一种射频加热控制方法及射频加热器具
CN116491718A (zh) 气溶胶产生装置、控制方法、控制装置和可读存储介质
JPS633417B2 (zh)
CN212414715U (zh) 一种超声波雾化片及超声雾化型烟具系统
JP2010140839A (ja) マイクロ波処理装置
JPH0411330Y2 (zh)
CN116032328B (zh) 无电池无线通信系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925149

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023547584

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237029683

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021925149

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021925149

Country of ref document: EP

Effective date: 20230831

NENP Non-entry into the national phase

Ref country code: DE