WO2022168758A1 - 操作装置 - Google Patents

操作装置 Download PDF

Info

Publication number
WO2022168758A1
WO2022168758A1 PCT/JP2022/003364 JP2022003364W WO2022168758A1 WO 2022168758 A1 WO2022168758 A1 WO 2022168758A1 JP 2022003364 W JP2022003364 W JP 2022003364W WO 2022168758 A1 WO2022168758 A1 WO 2022168758A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
detection device
shaft member
spherical body
magnet
Prior art date
Application number
PCT/JP2022/003364
Other languages
English (en)
French (fr)
Inventor
智 高盛
光一 古澤
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to CN202280009050.9A priority Critical patent/CN116917832A/zh
Priority to US18/271,670 priority patent/US20240060797A1/en
Publication of WO2022168758A1 publication Critical patent/WO2022168758A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/015Arrangements for indicating the position of a controlling member
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/08Controlling members for hand actuation by rotary movement, e.g. hand wheels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G25/00Other details or appurtenances of control mechanisms, e.g. supporting intermediate members elastically
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0338Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of limited linear or angular displacement of an operating part of the device from a neutral position, e.g. isotonic or isometric joysticks
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/24Constructional details thereof, e.g. game controllers with detachable joystick handles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • G05G2009/0474Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks characterised by means converting mechanical movement into electric signals
    • G05G2009/04755Magnetic sensor, e.g. hall generator, pick-up coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H25/00Switches with compound movement of handle or other operating part
    • H01H25/04Operating part movable angularly in more than one plane, e.g. joystick

Definitions

  • the present invention relates to a detection device that detects the motion of a shaft member that operates in response to an external operation, and an operating device that includes such a detection device.
  • a control device called a joystick is widely used as a control device for operating various devices such as computer games, various toys, and industrial robots.
  • an operation device in the form of a joystick by tilting the stick in various directions, an operation target moves in the tilting direction, enabling intuitive operation.
  • Patent Document 1 proposes a variable resistance pointing device that detects tilt with variable resistances arranged on each of the XY axes.
  • variable resistance pointing device described in Patent Document 1 has a problem of low reliability because the sliding portion of the variable resistance is easily deteriorated due to friction.
  • the present invention has been made in view of such circumstances, and its main purpose is to provide a detection device capable of improving reliability.
  • Another object of the present invention is to provide an operating device equipped with such a detection device.
  • the detection device described in the present application is a detection device for detecting the motion of a shaft member that operates in response to an operation from the outside, the shaft member is inserted, and the outer shape is formed in a substantially spherical shape.
  • the detection device described in the present application includes a hollow spherical body having a substantially spherical outer shape through which the shaft member is inserted, and a hollow spherical body having an outer shape formed in a substantially spherical shape, and a fixed position inside the spherical body interlocking with the operation of the shaft member. It is characterized by comprising a magnet and a magnetic field detection unit fixed at a position near the center of the spherical body and detecting a magnetic field generated by the magnet.
  • the shaft member is parallel to the longitudinal direction and operates with respect to a virtual central axis passing through the center of the spherical body
  • the spherical body includes first The magnet is divided into a magnetic field chamber and a second magnetic field chamber, and the magnets are a first magnet fixed to the shaft member inserted in the first magnetic field chamber and a second magnet fixed in the second magnetic field chamber.
  • the magnetic field detection unit includes a first magnetic field sensor for detecting the magnetic field in the first magnetic field chamber and a second magnetic field sensor for detecting the magnetic field in the second magnetic field chamber.
  • the detection device is characterized by comprising a magnetic shielding plate arranged at a position serving as a boundary between the first magnetic field chamber and the second magnetic field chamber.
  • a first separating member separating the magnetic shield plate and the first magnetic field sensor and a second separating member separating the magnetic shield plate and the second magnetic field sensor , at least one of
  • the first magnet is arranged such that its magnetic pole is oriented in a direction orthogonal to the central axis
  • the second magnet is arranged so that its magnetic pole is oriented in a direction parallel to the central axis. is arranged so as to face
  • the operation of the shaft member includes an operation of tilting the central axis about the center of the spherical body as a fulcrum, an operation of rotating about the central axis in a circumferential direction, and a movement in an extending direction of the central axis. It is characterized by being at least one motion among motions to perform.
  • the shaft member can move at least in the extension direction of the central axis, and in conjunction with the motion of the shaft member in the extension direction, the spherical body can move in the extension direction, and the spherical surface can move in the extension direction.
  • a movable member that moves in conjunction with the movement of the body in the stretching direction, a fixed member that operably holds the movable member, and a pressure sensor that is fixed to the fixed member and detects pressure based on the movement of the movable member.
  • the detection device is characterized by comprising a tactile switch that receives pressure based on the movement of the movable member as the pressure sensor or separately from the pressure sensor.
  • the shaft member can move at least in the extension direction of the central axis, and in conjunction with the motion of the shaft member in the extension direction, the spherical body can move in the extension direction, and the spherical surface can move in the extension direction.
  • a movable member that moves in conjunction with an axial motion of the body; a fixed member that operably holds the movable member; a third magnet that is fixed to the movable member; and a third magnet that is fixed to the fixed member. and a magnetic field sensor.
  • connection wire attached to the magnetic field detection unit is provided, and an opening is formed in the spherical body for passing the connection wire inside and outside. It is characterized by being elongated along a great circle passing through the intersection of the central axes.
  • the operation device described in the present application is characterized by comprising the detection device and an operation unit that receives an operation to operate the spherical body provided in the detection device.
  • the motion of the shaft member includes tilting motion of the central shaft about the center of the spherical body as a fulcrum and rotating motion in the circumferential direction about the central shaft. means for correcting the detected value of the rotating motion based on
  • the motion of the shaft member includes tilting motion of the central shaft about the center of the spherical body as a fulcrum and rotating motion in the circumferential direction about the central shaft. means for correcting the detected value of the tilting motion based on the above.
  • the detection device and operation device described in this application detect the motion of the shaft member with the magnet and magnetic field detection unit.
  • the detection device and the operation device according to the present invention use the magnet and magnetic field detection unit to detect the motion of the shaft member that operates in response to the operation from the outside. Therefore, for example, there is no need to use a sliding variable resistor to detect motion. Therefore, excellent effects such as suppression of frictional deterioration and improvement of reliability can be achieved.
  • FIG. 1 is a schematic perspective view of an example of a detection device described herein;
  • FIG. 1 is a schematic perspective view of an example of a detection device described herein;
  • FIG. 1 is a schematic exploded perspective view of an example of a detection device described herein;
  • FIG. 1 is a schematic cross-sectional view showing an example of a detection device described in the present application;
  • FIG. It is a schematic perspective view which shows an example of the magnetic field detection unit with which the detection apparatus as described in this application is provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of a detection device described in the present application; FIG. It is a schematic explanatory drawing which shows notionally an example of the assembly method of the detection apparatus as described in this application. It is a schematic explanatory drawing which shows notionally an example of the assembly method of the detection apparatus as described in this application.
  • 1 is a schematic cross-sectional view showing an example of a detection device described in the present application;
  • FIG. 1 is a schematic cross-sectional view showing an example of a detection device described in the present application;
  • FIG. 1 is a schematic cross-sectional view showing an example of a detection device described in the present application;
  • FIG. 1 is a schematic cross-sectional view showing an example of a detection device described in the present application;
  • FIG. 1 is a schematic cross-sectional view showing an example of a detection device described in the present application;
  • FIG. 1 is a schematic cross-sectional view showing an example of a detection device described in the present application;
  • FIG. 1 is a schematic exploded perspective view of an example of a detection device described herein;
  • FIG. 1 is a schematic cross-sectional view showing an example of a detection device described in the present application;
  • FIG. 1 is a schematic cross-sectional view showing an example of a detection device described in the present application;
  • FIG. 1 is a schematic cross-sectional view showing an example of a detection device described in the present application;
  • FIG. 1 is a schematic exploded perspective view of an example of a detection device described herein;
  • FIG. 1 is a schematic cross-sectional view showing an example of a detection device described in the present application;
  • FIG. 1 is a schematic cross-sectional view showing an example of a detection device described in the present application;
  • FIG. 1 is a schematic cross-sectional view showing an example of a detection device described in the present application;
  • FIG. 1 is a schematic cross-sectional view showing an example of a detection device described in the present application;
  • FIG. 1 is a schematic cross
  • FIG. 1 is a schematic exploded perspective view of an example of a detection device described herein;
  • FIG. 1 is a schematic cross-sectional view showing an example of a detection device described in the present application;
  • FIG. 1 is a schematic cross-sectional view showing an example of a detection device described in the present application;
  • FIG. 1 is a schematic exploded perspective view of an example of a detection device described herein;
  • FIG. 1 is a schematic cross-sectional view showing an example of a detection device described in the present application;
  • FIG. 1 is a schematic exploded perspective view of an example of a portion of a detection device described herein;
  • FIG. 1 is a schematic perspective view of an example of a detection device described herein;
  • FIG. 1 is a schematic cross-sectional view showing an example of a detection device described in the present application;
  • FIG. 1 is a schematic cross-sectional view showing an example of a detection device described in the present application;
  • FIG. 1 is a schematic exploded perspective view of
  • FIG. 4 is an explanatory diagram conceptually showing an example of a magnetic field formed by a first magnet
  • FIG. 4 is an explanatory diagram conceptually showing an example of a magnetic field formed by a first magnet
  • FIG. 4 is an explanatory diagram conceptually showing an example of a magnetic field formed by a first magnet
  • FIG. 4 is an explanatory diagram conceptually showing an example of a magnetic field formed by a first magnet
  • It is a schematic perspective view which shows an example of the magnetic field detection unit with which the detection apparatus as described in this application is provided.
  • FIG. 4 is a schematic explanatory diagram schematically showing an example of the relationship between the first magnet, the first magnetic field sensor, and the magnetic field generated by the first magnet provided in the detection device according to the present application;
  • FIG. 4 is a schematic explanatory diagram schematically showing an example of the relationship between the first magnet, the first magnetic field sensor, and the magnetic field generated by the first magnet provided in the detection device according to the present application;
  • FIG. 4 is a schematic explanatory diagram schematically showing an example of the relationship between the first magnet, the first magnetic field sensor, and the magnetic field generated by the first magnet provided in the detection device according to the present application;
  • FIG. 4 is an explanatory diagram showing virtual coordinate axes used for explaining the operation of the detection device described in the present application;
  • 2 is a model showing the directions of shaft members and the like of the detection device described in the present application on virtual coordinate axes.
  • 2 is a model showing the directions of shaft members and the like of the detection device described in the present application on virtual coordinate axes.
  • FIG. 4 is an explanatory diagram showing virtual coordinate axes used for explaining the operation of the detection device described in the present application;
  • FIG. 4 is an explanatory diagram showing virtual coordinate axes used for explaining the operation of the detection device described in the present application;
  • 2 is a model showing the directions of shaft members and the like of the detection device described in the present application on virtual coordinate axes.
  • 2 is a model showing the directions of shaft members and the like of the detection device described in the present application on virtual coordinate axes.
  • 2 is a model showing the directions of shaft members and the like of the detection device described in the present application on virtual coordinate axes.
  • 2 is a model showing the directions of shaft members and the like of the detection device described in the present application on virtual coordinate axes.
  • 2 is a model showing the directions of shaft members and the like of the detection device described in the present application on virtual coordinate axes.
  • 2 is a model showing the directions of shaft members and the like of the detection device described in the present application on virtual coordinate axes.
  • 4 is a chart showing a comparison of an example of a difference due to inclination of the detected value of the angle of the magnetic line of force (magnetic pole vector) detected by the first magnetic field sensor included in the detection device according to the present application.
  • It is a block diagram which shows the functional structural example of the operating device of this-application description. It is a schematic explanatory drawing which shows typically an example of the magnetic force line of the 1st magnet and 2nd magnet which the 1st magnetic field sensor and the 2nd magnetic field sensor with which the detection apparatus of this application is provided detect.
  • FIG. 4 is a model showing directions of magnetic lines of force generated by a first magnet and a second magnet provided in the detection device according to the present application; It is a model which shows the direction of the magnetic flux density resulting from the 1st magnet detected by the 1st magnetic field sensor with which the detection apparatus of this application is provided on a virtual coordinate axis. It is a model which shows the direction of the magnetic flux density resulting from the 1st magnet detected by the 1st magnetic field sensor with which the detection apparatus of this application is provided on a virtual coordinate axis. It is a model which shows the direction of the magnetic flux density resulting from the 2nd magnet detected by the 2nd magnetic field sensor with which the detection apparatus of this application is provided on a virtual coordinate axis.
  • the operating device described in the present application is used, for example, as a joystick controller that operates an operation target.
  • the detection device described in the present application is incorporated in an operation device, which is a joystick type controller, and detects the movement of a member based on the operation.
  • the operation device described in the present application can be used as an operation device such as a joystick type controller, and can be used as an operation device for computer games, various toys, various mobile objects, various measuring devices, industrial robots, and various other objects to be operated. It can be used for manipulation.
  • an operating device 1 in which the operating device described in the present application is applied to a joystick controller and a detecting device 2 incorporated in the operating device 1 will be described with reference to the drawings.
  • FIG. 1 is a schematic perspective view showing an example of the appearance of the operating device 1 described in the present application.
  • the operation device 1 includes a housing 10, and the housing 10 is formed at both ends with grip portions 11 to be gripped with the right hand and the left hand, respectively. When the gripping portions 11 at both ends are gripped, the positions on the upper surface where the fingers touch are opened in a substantially circular shape. Protruding.
  • the operation unit 12 is attached to a shaft member 20 (see FIG. 3 and the like) provided in the detection device 2 incorporated inside the operation device 1 . Furthermore, on the upper surface side, a plurality of operation buttons 13 are arranged at positions that can be pressed by the operator's fingers.
  • two detection devices 2 a detection device 2 for detecting an operation based on a right hand operation and a detection device 2 for detecting an operation based on a left hand operation, are installed in one housing.
  • a detection device 2 for detecting an operation based on a right hand operation and a detection device 2 for detecting an operation based on a left hand operation, are installed in one housing.
  • the side positioned upward when the operator operates in a general posture, that is, the side where the operation button 13 is arranged and the operation section 12 protrudes will be described as the upper side. .
  • FIG. 2 is a schematic perspective view showing an example of the appearance of the operating device 1 described in the present application.
  • FIG. 2 shows another form of the operating device 1.
  • the operation device 1 illustrated in FIG. 2 incorporates various mechanisms such as one detection device 2 in one housing 10, and is formed as a controller for one-handed operation.
  • one detection device 2 in one housing 10
  • the operation device 1 according to the present invention when applied to a controller of an industrial robot, it is possible to operate the operation device 1 according to the present invention with one hand and perform other work with the other hand, so such a configuration is particularly effective. be. It is also effective as a game controller in which different operation devices 1 are held by the left and right hands.
  • FIG. 3 is a schematic perspective view showing an example of the detection device 2 described in the present application.
  • FIG. 3 shows a detection device 2 integrated in the operating device 1 according to the present application.
  • the detection device 2 includes a shaft member 20 to which the operation unit 12 is attached, and the shaft member 20 operates upon receiving an operation by an operator.
  • the shaft member 20 is inserted through a hollow spherical body 21 having a substantially spherical outer shape.
  • a substantially cylindrical insertion portion 210 through which the shaft member 20 is inserted is formed at the upper end of the spherical body 21 . It is inserted to the inside of the spherical body 21 through the hole 210a.
  • the spherical body 21 is operably held by the holding member 22 .
  • the inner surface of the holding member 22 is formed in a spherical shape matching the outer shape of the spherical body 21, and a protective portion 220 (see FIG. 6, etc.), which will be described later, extends inward.
  • the protection part 220 protects the first connection line 230 .
  • the motion of the shaft member 20 based on the operator's operation is a motion about a virtual central axis parallel to the longitudinal direction and passing through the center of the spherical body 21 .
  • the movement of the shaft member 20 includes tilting of the central axis about the center of the spherical body 21 as a fulcrum, rotational movement around the central axis in the circumferential direction, and vertical movement (extending direction of the central axis). It is an action to do.
  • the spherical body 21 performs a tilting motion with the center as a fulcrum in conjunction with the motion of the shaft member 20 .
  • the spherical body 21 moves up and down in conjunction with the motion of the shaft member 20 .
  • the spherical body 21 does not interlock with the rotation of the shaft member 20 .
  • movement which rotates the shaft member 20 is performed, the operation
  • the operation of moving up and down refer to other embodiments such as the third embodiment.
  • FIG. 4 is a schematic perspective view showing an example of the detection device 2 described in this application.
  • FIG. 4 shows a state in which the holding member 22 is removed from the detection device 2 illustrated in FIG.
  • a magnetic field detection unit 23, which will be described later, is arranged inside the spherical body 21, and a first connection line 230 serving as a medium for conducting electricity is connected to the magnetic field detection unit 23.
  • FIG. The side surface of the spherical body 21 is provided with an opening 21a through which the first connection line 230 is passed, and the first connection line 230 extends outside through the opening 21a.
  • the opening 21a is elongated and extends in the vertical direction along a great circle passing through the top and bottom intersections of the spherical body 21 and the central axis.
  • the first connection line 230 is covered with a protective portion 220 (not shown in FIG. 4/see FIG. 6, etc.) formed on the inner surface of the holding member 22 and extends from the inside to the outside of the spherical body 21 . ing. Although the position of the first connection line 230 covered by the protective portion 220 is fixed, the opening 21a formed in the spherical body 21 allows the spherical body 21 to tilt or move up and down. , the spherical body 21 does not interfere with the first connection line 230 .
  • the spherical body 21 interlocking with the shaft member 20 that tilts in various directions performs tilting motions in various directions (all directions of 360 degrees in a plan view). The spherical body 21 never interferes with the first connection line 230 .
  • FIG. 5 is a schematic exploded perspective view showing an example of the detection device 2 described in the present application.
  • FIG. 6 is a schematic cross-sectional view showing an example of the detection device 2 described in the present application.
  • FIG. 5 shows the spherical body 21 provided in the detection device 2 and various members accommodated inside the spherical body 21 .
  • FIG. 6 shows a cross-section of the internal structure of the detection device 2 along a vertical plane passing through AB shown in FIG. 4 as a schematic cross-section.
  • the inside of the spherical body 21 included in the detection device 2 is hollow.
  • the spherical body 21 is assembled by fixing an upper half body 21b and a lower half body 21c by screwing or the like.
  • the inside of the spherical body 21 is divided into a first magnetic field chamber 21d, which is the space within the upper half body 21b, and a second magnetic field chamber 21e, which is the space within the lower half body 21c, by the magnetic field detection unit 23 and the central magnetic shielding plate 231. divided into top and bottom.
  • a magnetic field detection unit 23 is fixed at a fixed position near the center of the spherical body 21 .
  • a first connection line 230 is connected to the magnetic field detection unit 23 , and the first connection line 230 extends to the outside of the spherical body 21 .
  • the shaft member 20 inserted through the insertion portion 210 of the spherical body 21 has a long rod shape and is inserted through the insertion portion 210 so that the longitudinal direction thereof is the vertical direction.
  • An upper portion of the shaft member 20 is a mounting portion 20a processed into a shape to which the operating portion 12 can be mounted.
  • the edge of the lower end of the shaft member 20 is positioned near the inner surface of the spherical body 21 as a flange portion 20b projecting in the radial direction.
  • a flange portion 20b at the lower end of the shaft member 20 is loosely fitted into a cylindrical concave portion formed on the top surface of the spherical body 21 with some play.
  • a fitting groove 20c is formed in the circumferential direction near the center of the shaft member 20, and a substantially U-shaped metallic fastener 200 is fitted in the fitting groove 20c.
  • a flange portion 20b at the lower end of the shaft member 20 is loosely fitted into a recess in the spherical body 21 to restrict upward movement, and a fastener 200 near the center abuts the upper end of the insertion portion 210 of the spherical body 21. It touches and is restricted from moving downward. Since the shaft member 20 is inserted through the spherical body 21 , when the shaft member 20 tilts, the spherical body 21 also tilts in conjunction with the tilting of the shaft member 20 . Since the protective portion 220 of the holding member 22 is inserted through the opening 21a of the spherical body 21, the spherical body 21 does not interlock even if the shaft member 20 rotates in the circumferential direction.
  • a first magnet 24 using a substantially cylindrical permanent magnet is fixed to the lower end of the shaft member 20 located near the inner surface of the first magnetic field chamber 21d of the spherical body 21 .
  • the first magnet 24 is arranged so that the magnetic poles are oriented in a direction perpendicular to the central axis.
  • a second magnet 25 using a substantially cylindrical permanent magnet is fixed near the inner surface of the second magnetic field chamber 21e of the spherical body 21 at a position intersecting the central axis.
  • the second magnet 25 is arranged so that the magnetic poles are oriented parallel to the central axis.
  • the direction of the magnetic poles means the direction connecting the two magnetic poles.
  • the orientation of the first magnet 24 is such that the north pole faces in a first horizontal direction, such as left, and the south pole faces in a second horizontal direction, such as right, opposite the second direction.
  • the arrangement of the second magnet 25 can be exemplified by a fixed form in which the N pole faces upward and the S pole faces downward.
  • a side magnetic shielding plate 211 for shielding the magnetic field is arranged so as to surround the side of the magnetic field detection unit 23.
  • the inside of the spherical body 21 is divided into a first magnetic field chamber 21d and a second magnetic field chamber 21e by a side magnetic shielding plate 211.
  • the side magnetic shielding plate 211 has a substantially disk-like outer shape that matches the shape of the inside of the spherical body 21, and has a cutout formed therein for arranging the magnetic field detection unit 23 therein.
  • FIG. 7 is a schematic perspective view showing an example of the magnetic field detection unit 23 included in the detection device 2 described in the present application.
  • the magnetic field detection unit 23 will be further explained.
  • the magnetic field detection unit 23 is fixed at a fixed position near the center inside the spherical body 21 .
  • the magnetic field detection unit 23 is arranged at a boundary between the first magnetic field chamber 21d and the second magnetic field chamber 21e of the spherical body 21, and has a central magnetic shielding plate 231 that shields the magnetic field.
  • the central magnetic shielding plate 231 has a flat plate shape, and has an upper surface facing the first magnetic field chamber 21d and a lower surface facing the second magnetic field chamber 21e.
  • the first connection line 230 extending inside the spherical body 21 through the opening 21 a is fixed to the upper surface of the central magnetic shielding plate 231 , and the tip side wraps around and is fixed to the lower surface of the central magnetic shielding plate 231 .
  • a first magnetic field sensor 232 is arranged on the upper surface of the central magnetic shielding plate 231 with the first connection line 230 interposed therebetween.
  • a second magnetic field sensor 233 is arranged on the lower surface of the central magnetic shield plate 231 with the first connection line 230 interposed therebetween.
  • the first magnetic field sensor 232 and the second magnetic field sensor 233 are wired to be electrically connected to the first connection line 230 .
  • the first magnetic field sensor 232 and the second magnetic field sensor 233 are electronic elements such as Hall ICs that detect magnetic fields and output electrical signals based on the detected magnetic fields.
  • the first magnetic field sensor 232 detects the magnetic field generated by the first magnet 24 on the side of the first magnetic field chamber 21d.
  • the second magnetic field sensor 233 detects the magnetic field generated by the second magnet 25 on the side of the second magnetic field chamber 21e.
  • the magnetic fields detected by the first magnetic field sensor 232 and the second magnetic field sensor 233 are output as electrical signals to the outside via the first connection line 230 .
  • FIG. 8 is a schematic cross-sectional view showing an example of the detection device 2 described in the present application.
  • FIG. 8 shows a cross-section of the internal structure taken along a horizontal plane through CD shown in FIG. 4 as a schematic cross-sectional view from above.
  • the side magnetic shielding plate 211 and the central magnetic shielding plate 231 form a horizontal plane separating the first magnetic field chamber 21d and the second magnetic field chamber 21e.
  • the magnetic field of the first magnetic field chamber 21d generated by the first magnet 24 and the magnetic field generated by the second magnet 25 This prevents adverse effects due to interference with the generated magnetic field of the second magnetic field chamber 21e.
  • the side magnetic shielding plate 211 and the central magnetic shielding plate 231 as different members respectively, effects such as improved assembly and improved magnetic shielding can be achieved compared to the case of forming them as a single member.
  • FIG. 9 shows, as a perspective view, the relative positional relationship of the spherical body 21, the holding member 22, and the magnetic field detection unit 23 among the members constituting the detection device 2 described in the present application.
  • FIG. 10 is a perspective view showing the relative positional relationship between the spherical body 21, part of the holding member 22, and the magnetic field detection unit 23.
  • the holding member 22 is shown in a pre-assembled state in which it is divided into two parts.
  • the first connection line 230 of the magnetic field detection unit 23 is inserted into the protection portion 220 of the holding member 22 from the inside.
  • the first magnetic field sensor 232 and the second magnetic field sensor 233 of the magnetic field detection unit 23 are inserted through the opening 21a of the spherical body 21, and fixed at a fixed position near the center of the spherical body 21. fixed to Then, the divided holding members 22 are combined to operably hold the spherical body 21, and the operation portion 12 (not shown) is attached to the attachment portion 20a of the shaft member 20, thereby completing the detection device 2. .
  • FIG. 11 is a schematic cross-sectional view showing an example of the detection device 2 described in the present application.
  • FIG. 11 shows a state in which the shaft member 20 of the detection device 2 is at the reference position.
  • the reference position of the shaft member 20 is a position where the operating device 1 is not operated by the operator and the longitudinal direction of the shaft member 20 is the vertical direction.
  • arrows passing through the first magnet 24 and the second magnet 25 conceptually indicate magnetic fields generated by the first magnet 24 and the second magnet 25, respectively.
  • FIG. 12 is a schematic cross-sectional view showing an example of the detection device 2 described in this application.
  • FIG. 12 shows a state in which the shaft member 20 and the spherical body 21 of the detection device 2 are tilted from the reference positions illustrated in FIG. 11 in response to the tilting operation of the operator.
  • the operation unit 12 receives a tilting operation
  • the shaft member 20 and the spherical body 21 of the detection device 2 tilt with the center of the spherical body 21 as a fulcrum.
  • the magnetic field generated by the first magnet 24 detected by the first magnetic field sensor 232 and the magnetic field generated by the second magnet 25 detected by the second magnetic field sensor 233 change.
  • This application exemplifies a form in which the second magnetic field sensor 233 detects a change in the magnetic field due to tilting.
  • FIG. 13 is a schematic cross-sectional view showing an example of the detection device 2 described in the present application.
  • FIG. 13 shows a state in which the shaft member 20 of the detection device 2 has rotated 180° in the circumferential direction about the central axis from the reference position illustrated in FIG. 11 in response to the operator's rotation operation.
  • the shaft member 20 of the detecting device 2 rotates around the central axis in the circumferential direction.
  • the spherical body 21 does not interlock with the rotation of the shaft member 20 .
  • the shaft member 20 rotates, the magnetic field generated by the first magnet 24 detected by the first magnetic field sensor 232 changes.
  • the first magnetic field sensor 232 detects that the direction of the magnetic field is reversed.
  • This application exemplifies a form in which the first magnetic field sensor 232 detects changes in the magnetic field due to rotation.
  • the operating device 1 and the detecting device 2 accept the operation on the operating section 12 as the operation on the shaft member 20 .
  • the tilting motion and rotating motion with respect to the shaft member 20 are detected as changes in magnetic fields generated by the first magnet 24 and the second magnet 25, transmitted through the first connection line 230, and output as an electrical signal.
  • 2nd Embodiment is a form which added the function which returns automatically to a reference position the shaft member 20 which tilted from the reference position in 1st Embodiment.
  • the same components as in the first embodiment are denoted by the same reference numerals as in the first embodiment, and detailed description thereof will be omitted.
  • FIG. 14 is a schematic cross-sectional view showing an example of the detection device 2 described in this application.
  • FIG. 15 is a schematic exploded perspective view showing an example of the detection device 2 described in the present application.
  • the configuration of various members such as the shaft member 20, the spherical body 21, the inside of the spherical body 21, and the holding member 22 provided in the detection device 2 according to the second embodiment is substantially the same as in the first embodiment.
  • the detecting device 2 according to the second embodiment includes a pressed member 212 at the lower end of the spherical body 21 and a lower mechanism 26 below the holding member 22 .
  • the member to be pressed 212 attached to the lower end of the spherical body 21 has a substantially disk shape, and is formed so that the vicinity of the center is flat and the peripheral edge is curved toward the spherical body 21 side.
  • the lower mechanism 26 attached to the lower part of the holding member 22 has a pressing member 260 that presses the pressed member 212 at the lower end of the spherical body 21 from below to above.
  • the pressing member 260 has a disk-shaped upper portion and a cylindrical lower portion extending downward.
  • the lower mechanism 26 is formed with a loose fit groove 261 in which the pressing member 260 is loosely fitted with some play.
  • the pressing member 260 is loosely fitted in the loose fitting groove 261 and moves up and down.
  • a first biasing member 262 using a return spring such as a compression coil spring is arranged in the loose fitting groove 261 .
  • the lower end of the first biasing member 262 is fixed to the inner bottom surface of the loose fitting groove 261, and the upper end abuts against the pressing member 260 to bias the pressing member 260 upward.
  • the pressing member 260 comes into contact with the pressed member 212 attached to the lower end of the spherical body 21 on the upper surface, and pushes the pressed member 212 upward. press to.
  • 16 and 17 are schematic cross-sectional views showing an example of the detection device 2 described in the present application.
  • 16 shows a state in which the shaft member 20 of the detection device 2 is at the reference position
  • FIG. 17 shows a state in which the shaft member 20 and the spherical body 21 are tilted from the reference position in response to the operator's tilting operation. ing.
  • the pressing member 260 presses the vicinity of the flat center of the pressed member 212 upward where the center of the spherical body 21 is located. Therefore, the shaft member 20 and the spherical body 21 are in a stable posture. As illustrated in FIG.
  • the pressed member 212 presses the pressing member 260 downward at the periphery.
  • the pressing member 260 presses the periphery of the pressed member 212 upward where the center of the spherical body 21 is located, so that the spherical body 21 rotates to return to the reference position.
  • force acts in the direction As illustrated in FIG. 16, when the shaft member 20 and the spherical body 21 are positioned at the reference position, the shaft member 20 and the spherical body 21 are stable. As illustrated in FIG.
  • the detection device 2 and the like according to the second embodiment described in the present application attach the member 212 to be pressed to the lower end of the spherical body 21, and press the member 212 to be pressed upward by the lower mechanism 26 below. do.
  • the spherical body 21 and the shaft member 20 interlocking with the tilting motion of the spherical body 21 are tilted from the reference position, it is possible to realize the detecting device 2 or the like that exerts a force in the direction of returning the spherical body 21 or the like. and the like.
  • 3rd Embodiment is a form which adds the function corresponding to operation which pushes down the operation part 12 in 1st Embodiment, and performs the operation
  • the same reference numerals as in the first and second embodiments are assigned to the same configurations as those in the first and second embodiments, and detailed description thereof will be omitted.
  • FIG. 18 is a schematic cross-sectional view showing an example of the detection device 2 described in this application.
  • FIG. 19 is a schematic exploded perspective view showing an example of the detection device 2 described in the present application.
  • FIG. 19 shows an exploded lower mechanism 26 included in the detection device 2 .
  • the detection device 2 according to the third embodiment when the operation part 12 is pressed down, the shaft member 20 moves downward in the extension direction of the central axis, and the spherical body 21 to which the shaft member 20 is attached and the A holding member 22 that holds the spherical body 21 moves downward in conjunction with the shaft member 20 . That is, the detection device 2 according to the third embodiment has a function corresponding to so-called click operations.
  • the configurations of various members such as the shaft member 20, the spherical body 21, the inside of the spherical body 21, and the holding member 22 provided in the detection device 2 according to the third embodiment are substantially the same as those of the first embodiment and the like.
  • the lower mechanism 26 provided in the detection device 2 includes a movable member 263 fixed to the lower end of the holding member 22 , a fixed member 264 holding the movable member 263 so as to be able to move up and down, and between the movable member 263 and the fixed member 264 . , and a tactile switch 265 that is fixed to a fixed member 264 and receives pressure based on the downward movement of the movable member 263 .
  • a second connection line 266 is connected to the tactile switch 265 to transmit an electrical signal based on the pressure detected by the tactile switch 265 .
  • the movable member 263 is guided by the fixed member 264 and moved downward in conjunction with the downward movement of the shaft member 20 based on the pressing operation on the operation unit 12, and is tactile.
  • Switch 265 is pressed.
  • the tactile switch 265 detects pressing by the movable member 263 and outputs the detected pressing through the second connection line 266 as an electrical signal indicating the downward movement of the shaft member 20 .
  • the tactile switch 265 generates an operation feeling based on a pressing operation, a so-called click feeling.
  • the lower mechanism 26 includes the movable member 263, the fixed member 264, and the tactile switch 265. Accordingly, it is possible to realize the detection device 2 or the like that detects the downward movement of the shaft member 20 based on the pressing operation.
  • ⁇ Fourth Embodiment> 4th Embodiment is a form which adds the function corresponding to operation which pushes down the operation part 12 in 2nd Embodiment, and performs the operation
  • the same reference numerals as in the first to third embodiments are assigned to the same configurations as those in the first to third embodiments, and detailed description thereof is omitted.
  • FIG. 20 is a schematic cross-sectional view showing an example of the detection device 2 described in this application.
  • the configurations of various members such as the shaft member 20, the spherical body 21, the inside of the spherical body 21, and the holding member 22 provided in the detection device 2 according to the fourth embodiment are substantially the same as those of the first embodiment and the like.
  • the detection device 2 according to the fourth embodiment includes a pressed member 212 at the lower end of the spherical body 21 and a lower mechanism 26 at the lower end of the holding member 22 .
  • the lower mechanism 26 includes a movable member 263, a fixed member 264, a tactile switch 265, and a second connection line 266.
  • the movable member 263 includes a pressing member 260 and a first biasing member 262. .
  • the fourth embodiment is a combination of the second and third embodiments, the operations and functions of various members based on the operator's operation refer to the second and third embodiments. and the explanation is omitted.
  • the fifth embodiment is a form in which a function corresponding to the operation of pressing down the operation unit 12 is added to the first embodiment, and the operation of the shaft member 20 is detected with a structure different from that of the third embodiment. form.
  • FIG. 21 is a schematic cross-sectional view showing an example of the detection device 2 described in the present application.
  • FIG. 22 is a schematic exploded perspective view showing an example of the detection device 2 described in the present application.
  • FIG. 21 shows an exploded lower mechanism 26 included in the detection device 2 .
  • the detection device 2 according to the fifth embodiment when the operation unit 12 is pressed down, the shaft member 20 moves downward in the extension direction of the central axis, and the spherical body 21 to which the shaft member 20 is attached and the A holding member 22 that holds the spherical body 21 moves downward in conjunction with the shaft member 20 . That is, the detection device 2 according to the third embodiment has a function corresponding to so-called click operations.
  • the configurations of various members such as the shaft member 20, the spherical body 21, the inside of the spherical body 21, and the holding member 22 provided in the detection device 2 according to the fifth embodiment are substantially the same as those of the first embodiment and the like.
  • the lower mechanism 26 included in the detection device 2 includes a movable member 263 fixed to the lower end of the holding member 22, a fixed member 264 that holds the movable member 263 so as to swing, and is arranged between the movable member 263 and the fixed member 264. and a tactile switch 265 and a pressure sensor 267 that receive pressure based on the downward movement of the movable member 263 .
  • the pressure sensor 267 is connected to a second connection line 266 that transmits an electrical signal based on pressure detected by the pressure sensor 267 .
  • the fixed member 264 includes a pivot pin 2640 that pivotally supports the movable member 263 and two second biasing members that use a return spring such as a compression coil spring that biases the movable member 263 upward. 2641.
  • the movable member 263 swings downward around the pivot pin 2640 in conjunction with the downward movement of the shaft member 20 based on the pressing operation on the operation unit 12. , and presses the tactile switch 265 and the pressure sensor 267 .
  • the movement of the shaft member 20 can be regarded as substantially the same as minute up-and-down movement. can.
  • the pressure sensor 267 detects pressure by the movable member 263 and outputs it via the second connection line 266 as an electrical signal indicating the downward movement of the shaft member 20 .
  • the tactile switch 265 receives pressure from the movable member 263 and generates an operation feeling based on the pressing operation, a so-called click feeling.
  • the second biasing member 2641 biases the members such as the shaft member 20, the spherical body 21, and the movable member 263 to return to the reference position. If a click feeling is not required, or if a mechanism for generating an operation feeling other than the tactile switch 265 is provided, the detection device 2 according to the fifth embodiment can be configured without the tactile switch 265. .
  • the lower mechanism 26 includes the pressure sensor 267 in the detection device 2 and the like according to the fifth embodiment described in the present application. Accordingly, it is possible to realize the detection device 2 or the like that detects the downward movement of the shaft member 20 based on the pressing operation.
  • the sixth embodiment is a form in which a function corresponding to the operation of pressing down the operation unit 12 is added to the second embodiment, and the operation of the shaft member 20 is detected with a structure different from that of the fourth embodiment. form.
  • the same reference numerals as in the first to fifth embodiments are assigned to the same configurations as in any one of the first to fifth embodiments, and detailed description thereof will be omitted.
  • FIG. 23 is a schematic cross-sectional view showing an example of the detection device 2 described in the present application.
  • the configurations of various members such as the shaft member 20, the spherical body 21, the inside of the spherical body 21, and the holding member 22 provided in the detection device 2 according to the sixth embodiment are substantially the same as those of the first embodiment and the like.
  • the detection device 2 according to the sixth embodiment includes a pressed member 212 at the lower end of the spherical body 21 and a lower mechanism 26 at the lower end of the holding member 22 .
  • the lower mechanism 26 has a movable member 263 , a fixed member 264 , a tactile switch 265 , a pressure sensor 267 and a second connection line 266 .
  • the fixed member 264 has a pivot pin 2640 and two second biasing members 2641 .
  • the sixth embodiment is a combination of the second embodiment and the fifth embodiment, the operations and functions of various members based on the operator's operation refer to the second embodiment and the fifth embodiment. and the explanation is omitted.
  • ⁇ Seventh Embodiment> 7th Embodiment is a form which added the function to pull up the operation part 12 in addition to the function to push down the operation part 12 in 4th Embodiment.
  • the same reference numerals as in the first to sixth embodiments are assigned to the same configurations as in any one of the first to sixth embodiments, and detailed description thereof will be omitted.
  • FIG. 24 is a schematic cross-sectional view showing an example of the detection device 2 described in the present application.
  • FIG. 25 is a schematic exploded perspective view showing an example of the detection device 2 described in the present application.
  • the structures of various members such as the shaft member 20, the spherical body 21, the inside of the spherical body 21, and the holding member 22 provided in the detection device 2 according to the seventh embodiment are substantially the same as those of the first embodiment and the like.
  • the detecting device 2 according to the seventh embodiment has a lower mechanism 26 at the lower end of the holding member 22 .
  • the lower mechanism 26 includes a movable member 263 fixed to the lower end of the holding member 22, a fixed member 264 holding the movable member 263 so as to be vertically movable, and a third magnet 268 positioned between the movable member 263 and the fixed member 264. and a third magnetic field sensor 269 .
  • a third magnet 268 is fixed to the lower surface of the movable member 263 .
  • the third magnetic field sensor 269 is fixed to the fixing member 264 so as to face the third magnet 268 .
  • a second connection line 266 that transmits an electrical signal based on the magnetic field detected by the third magnetic field sensor 269 is connected to the third magnetic field sensor 269 .
  • a third magnetic field sensor 269 detects the magnetic field generated by the third magnet 268 in the space between the movable member 263 and the fixed member 264 .
  • the movable member 263 has a substantially rectangular parallelepiped outer shape, and out of the four side surfaces, two opposing side surfaces thereof are formed with disk-shaped projecting portions 2630 projecting outward.
  • the projecting portion 2630 moves up and down as the movable member 263 moves up and down.
  • the fixed member 264 is formed with a cylindrical guide portion 2642 that accommodates the projecting portion 2630 of the movable member 263 so as to be vertically movable.
  • a third biasing member 2643 using a return spring such as a compression coil spring is arranged above the accommodated projecting portion 2630, and compresses the projecting portion 2630 downward.
  • a fourth biasing member 2644 using a return spring such as a coil spring is arranged.
  • An upper bottom portion of the guide portion 2642 is a removable lid portion 2645 .
  • the movable member 263 moves downward in conjunction with the shaft member 20 and the spherical body 21 .
  • the fourth biasing member 2644 arranged below the projecting portion 2630 of the movable member 263 biases the projecting portion 2630 upward, and the movable member 263 returns to its original position.
  • the movable member 263 moves upward in conjunction with the shaft member 20 and the spherical body 21 .
  • the third biasing member 2643 arranged above the projecting portion 2630 of the movable member 263 biases the projecting portion 2630 downward, and the movable member 263 returns to its original position. . Since the guide portion 2642 guides the vertical movement of the projecting portion 2630, the operation of the movable member 263 is stabilized. As the movable member 263 moves up and down, the distance between the third magnet 268 and the third magnetic field sensor 269 changes. The third magnetic field sensor 269 detects the magnetic field generated by the third magnet 268 and outputs an electrical signal indicating the detected magnetic field through the third connection line. The vertical movement of the movable member 263 is detected by the magnetic field detected by the third magnetic field sensor 269 .
  • the detection device 2 and the like according to the seventh embodiment described in this application include the third magnet 268 and the third magnetic field sensor 269 in the lower mechanism 26 . This makes it possible to realize the detecting device 2 or the like that detects not only the downward movement of the shaft member 20 but also the upward movement thereof.
  • the eighth embodiment has a configuration different from that of the seventh embodiment, and implements a function of detecting up and down operations of the operation unit 12 .
  • the same reference numerals as in the first to seventh embodiments are assigned to the same configurations as those in the first to seventh embodiments, and detailed description thereof is omitted.
  • FIG. 26 is a schematic cross-sectional view showing an example of the detection device 2 described in this application.
  • FIG. 27 is a schematic exploded perspective view showing an example of part of the detection device 2 described herein.
  • FIG. 27 is an exploded perspective view of the upper half 21b of the spherical body 21 provided in the detection device 2, the shaft member 20, and peripheral members. Members other than the upper half 21b of the spherical body 21 illustrated in FIG. 27, the shaft member 20, and the peripheral members are the same as those in the fourth embodiment, so the fourth embodiment will be referred to and the description thereof will be omitted. do.
  • a substantially cylindrical insertion portion 210 formed at the upper end of the spherical body 21 has an upper annular groove 210b and a lower annular groove 210c formed around an insertion hole 210a passing through the center.
  • the upper annular groove 210b and the lower annular groove 210c are annular grooves that are centered on the insertion hole 210a and have a larger radius than the insertion hole 210a.
  • the upper annular groove 210b is engraved to a depth from the upper end of the insertion portion 210 to near the center, and the lower annular groove 210c is engraved to a depth from the lower end of the insertion portion 210 to near the center.
  • the lower end of the upper annular groove 210b has a depth close to the upper end of the lower annular groove 210c, but the upper annular groove 210b and the lower annular groove 210c are not connected and are separated from each other.
  • a fifth biasing member 2100 using a return spring such as a compression coil spring is inserted into the upper annular groove 210b.
  • An annular plate 201 is arranged at the opening of the upper end of the upper annular groove 210b, and is in contact with the fastener 200 of the shaft member 20 via the annular plate 201 from below.
  • the fifth biasing member 2100 has its lower end attached to the bottom of the upper annular groove 210b and biases the shaft member 20 upward via the annular plate 201 and the fastener 200 at its upper end.
  • a sixth biasing member 2101 using a return spring such as a compression coil spring is inserted into the lower annular groove 210c.
  • the upper end of the sixth biasing member 2101 is attached to the bottom of the lower annular groove 210c, and the lower end of the sixth biasing member 2101 biases the shaft member 20 downward via the flange portion 20b.
  • the length from the lower surface of the annular plate 201 of the shaft member 20 to the upper surface of the flange portion 20b is greater than the length from the upper end to the lower end of the insertion portion 210 of the spherical body 21. formed a little longer. In the detection device 2 thus formed, the shaft member 20 moves up and down independently of the spherical body 21 .
  • the shaft member 20 moves downward.
  • the fifth biasing member 2100 biases the shaft member 20 upward via the annular plate 201 and the fastener 200, and the shaft member 20 returns to the reference position.
  • the operating portion 12 is pulled up, the shaft member 20 moves upward.
  • the sixth biasing member 2101 biases the shaft member 20 downward via the flange portion 20b, and the shaft member 20 returns to the reference position.
  • the shaft member 20 moves up and down, the distance between the first magnet 24 fixed to the lower end of the shaft member 20 and the first magnetic field sensor 232 changes.
  • the first magnetic field sensor 232 detects the magnetic field generated by the first magnet 24 and outputs an electrical signal indicating the detected magnetic field via the first connection line 230 .
  • the vertical movement of the shaft member 20 is detected by the magnetic field detected by the first magnetic field sensor 232 . That is, the detecting device 2 according to the eighth embodiment detects not only the rotation of the shaft member 20 but also the vertical movement thereof by the magnetic field detected by the first magnetic field sensor 232 .
  • the detecting device 2 or the like accommodates the fifth biasing member 2100 and the sixth biasing member 2101 in the insertion portion 210 of the spherical body 21, and furthermore, the shaft member 20 is configured to move up and down independently of the spherical body 21. - ⁇ Thereby, the detection device 2 or the like that detects the movement of the shaft member 20 in the vertical direction can be realized.
  • the ninth embodiment has a configuration different from the other embodiments in the fourth embodiment, and has a function of holding the spherical body 21 so as to be tiltable in various directions.
  • the same reference numerals as in the first to eighth embodiments are assigned to the same configurations as those in the first to eighth embodiments, and detailed description thereof will be omitted.
  • FIG. 28 is a schematic perspective view showing an example of the detection device 2 described in the present application.
  • an arc-shaped frame 27 is attached to a holding member 22 by bending a long plate into an arc.
  • the arcuate frame 27 is arcuately curved along the outer surface of the substantially spherical holding member 22 .
  • Both ends of an arc-shaped frame 27 having an elongated plate shape are pivotally supported on the outer surface of the holding member 22 so as to be swingable.
  • the rocking axes of both ends are positioned on an imaginary line passing through the center of the spherical body 21 in the horizontal direction.
  • An oblong guide hole 270 is formed near the center of the arc-shaped frame 27 , and the insertion portion 210 of the spherical body 21 passes through the guide hole 270 .
  • the insertion portion 210 When the spherical body 21 tilts in the longitudinal direction of the arc-shaped frame 27, the insertion portion 210 is guided by the guide hole 270 and tilts. When the spherical body 21 tilts in a direction orthogonal to the longitudinal direction of the arc-shaped frame 27, the insertion portion 210 tilts together with the arc-shaped frame 27 swinging around the swing axis. When the spherical body 21 tilts in a direction other than the longitudinal direction of the arc-shaped frame 27 and a direction orthogonal to the longitudinal direction, the tilting motion in the longitudinal direction and the tilting motion in the orthogonal direction are combined.
  • the spherical body 21 does not rotate because the insertion portion 210 of the spherical body 21 and the guide hole 270 of the arc-shaped frame 27 are in contact with each other at the planar portion. Therefore, in the ninth embodiment, the protection portion 220 of the holding member 22 is not required.
  • the detection device 2 and the like according to the ninth embodiment described in the present application are supported by the arc-shaped frame 27 so as to be tiltable in various directions.
  • the tenth embodiment is a form in which the shape of the magnetic field detection unit 23 is changed in the first to ninth embodiments.
  • the same reference numerals as in the first to ninth embodiments are assigned to the same configurations as in any one of the first to ninth embodiments, and detailed description thereof will be omitted.
  • FIG. 29 is a schematic perspective view showing an example of the magnetic field detection unit 23 included in the detection device 2 described in the present application.
  • a first spacing member 234 functioning as a spacer is arranged between the upper surface of the central magnetic shielding plate 231 and the first connection line 230.
  • a first magnetic field sensor 232 is arranged on the upper surface of the .
  • a second spacing member 235 is arranged between the lower surface of the central magnetic shield plate 231 and the first connection line 230 , and a second magnetic field sensor 233 is arranged on the lower surface of the first connection line 230 .
  • the first spacing member 234 and the second spacing member 235 are made of a material such as an insulator that does not affect the lines of magnetic force.
  • the first spacing member 234 prevents the central magnetic shielding plate 231 from affecting the magnetic field detected by the first magnetic field sensor 232 .
  • the second spacing member 235 prevents the central magnetic shield plate 231 from affecting the magnetic field detected by the second magnetic field sensor 233 .
  • FIG. 30 is an explanatory diagram conceptually showing an example of the magnetic field formed by the first magnet 24.
  • FIG. FIG. 30 conceptually shows a virtual model in which the central magnetic shielding plate 231 is absent and the first magnetic field sensor 232 is arranged on the upper surface of the first connection line 230 .
  • the magnetic field formed by the first magnet 24 is not greatly affected by other members.
  • FIG. 31 is an explanatory diagram conceptually showing an example of the magnetic field formed by the first magnet 24.
  • FIG. FIG. 31 conceptually shows a virtual model in which the first connection line 230 is arranged directly on the upper surface of the central magnetic shield plate 231, and the first magnetic field sensor 232 is arranged on the upper surface of the first connection line 230.
  • the magnetic field formed by the first magnet 24 may be distorted by the central magnetic shielding plate 231 as shown in the virtual model shown in FIG. If the magnetic field is distorted in the vicinity of the central magnetic shield plate 231, it may affect the magnetic field detected by the first magnetic field sensor 232 located in the vicinity of the central magnetic shield plate 231, and it becomes a disturbance factor that lowers the detection accuracy. obtain.
  • FIG. 32 is an explanatory diagram conceptually showing an example of the magnetic field formed by the first magnet 24.
  • FIG. FIG. 32 conceptually shows a virtual model in which the central magnetic shielding plate 231 is separated from the first connection line 230 and the first magnetic field sensor 232 .
  • the central magnetic shielding plate 231 it is possible to suppress the influence exerted on the magnetic field detected by the first magnetic field sensor 232 separated from.
  • the detection device 2 and the like according to the tenth embodiment described in the present application are arranged such that the central magnetic shielding plate 231 and the first magnetic field sensor 232 and the second magnetic field sensor 233 are separated by the first spacing member 234 and the second spacing member 235. separate from As a result, the detection device 2 and the like described in the present application can suppress the influence of the distortion of the magnetic field caused by the central magnetic shielding plate 231 .
  • FIG. 33 is a schematic perspective view showing an example of the magnetic field detection unit 23 included in the detection device 2 described in the present application.
  • FIG. 33 shows a modification of the detection device 2 according to the tenth embodiment.
  • a second spacing member 235 is arranged on the lower surface of the central shielding plate 231 .
  • an auxiliary shielding plate 236 is arranged on the lower surface of the second spacing member 235, a third separating member 237 is arranged on the lower surface of the auxiliary shielding plate 236, and a first connection is arranged on the lower surface of the third spacing member 237.
  • a second magnetic field sensor 233 is arranged via line 230 .
  • the detection device 2 and the like according to the tenth embodiment described in the present application can be deformed into various forms, and can suppress the influence of the distortion of the magnetic field caused by the central magnetic shield plate 231. It works great.
  • FIGS. 34 and 35 are schematic explanatory diagrams schematically showing an example of the relationship between the first magnet 24 provided in the detection device 2 described in the present application, the first magnetic field sensor 232, and the magnetic field generated by the first magnet 24.
  • FIG. 34 shows a state in which the shaft member 20 is at the reference position and the central axis is vertical
  • FIG. 35 shows a state in which the shaft member 20 is tilted from the reference position and the central axis is not vertical.
  • Arrows in FIGS. 34 and 35 indicate directions of magnetic lines of force forming the magnetic field. As illustrated in FIG.
  • the first magnetic field sensor 232 detects The rotation angle of the shaft member 20 can be accurately detected from the magnetic field.
  • FIG. 35 when the shaft member 20 tilts, the magnetic pole direction of the first magnet 24 tilts, and if the generated magnetic field tilts, an error may occur in detecting the rotation angle of the shaft member 20 . Therefore, correction is required when detecting the rotation angle with the shaft member 20 tilted.
  • FIG. 36 is an explanatory diagram showing virtual coordinate axes used for explaining the detection device 2 described in the present application and its operation.
  • 37 and 38 are models showing the directions of the shaft member 20 and the like of the detection device 2 described in the present application on virtual coordinate axes.
  • FIG. 36 shows a state in which the shaft member 20 and the spherical body 21 of the detection device 2 are positioned at the reference position, superimposed on the virtual coordinate axes indicated by the X, Y and Z axes.
  • FIG. 37 shows the coordinate axes with the detector 2 removed from FIG.
  • FIG. 38 shows the tilting of the shaft member 20 and the spherical body 21 as vectors.
  • a vector directed from the tilt center of the shaft member 20 toward the operation unit 12 side (upper side) is superimposed as an axis vector on the virtual coordinate axes shown in FIG. It shows the state in which the
  • FIG. 38 As illustrated in FIGS. 36 and 37, in the following description, the horizontal plane is defined as the plane defined by the X-axis and the Y-axis, and the vertical direction is defined as the Z-axis direction.
  • the tilting angle indicated by the axis vector is an angle ⁇ counterclockwise from the X-axis projected onto the XY plane and an angle ⁇ from the Z-axis projected onto the XY plane. and the angle .theta.
  • 39 and 40 are explanatory diagrams showing virtual coordinate axes used for explaining the operation of the detection device 2 described in the present application.
  • 39 and 40 show the virtual coordinate system defined in the present application from the viewpoint from the positive direction (above) of the Z-axis, and show the magnetic poles of the first magnet 24 superimposed on the coordinate axes.
  • 39 shows a state in which the shaft member 20 of the detection device 2 is positioned at the reference position
  • FIG. 40 shows a state in which the shaft member 20 is rotated from the reference position.
  • the angle of the rotational position of the shaft member 20 is defined as an angle Di based on the counterclockwise rotation.
  • the angle related to the rotation is defined by the change in the direction of the normal vector (hereinafter referred to as the magnetic pole vector) of the first magnet 24 on the N pole side, which can be approximated to the emission direction of the magnetic lines of force.
  • 41 and 42 are models showing the directions of the shaft member 20 and the like of the detection device 2 described in the present application on virtual coordinate axes.
  • 41 and 42 are generalized models of the motions of the shaft member 20 and the spherical body 21.
  • FIG. 41 shows the initial state in which the shaft member 20 and the like are not tilted
  • FIG. 42 shows the tilted state. ing.
  • the axis vector in the tilted state is tilted counterclockwise from the X-axis projected onto the XY plane at an angle ⁇ and tilted at an angle ⁇ from the Z-axis.
  • the solid-line arrows are axial vectors
  • the dashed-dotted arrows are magnetic pole vectors.
  • the coordinates of the initial state of the magnetic pole vectors shown in FIG. 41 are defined as (Xi, Yi, Zi), and the coordinates of the tilted state of the magnetic pole vectors shown in FIG. 42 are defined as (Xo, Yo, Zo).
  • the tilt angle of the shaft member 20 and the like is indicated by an angle ⁇ of the counterclockwise rotation from the X-axis projected onto the XY plane and an angle ⁇ indicating the tilt from the Z-axis.
  • the angle of the magnetic pole vector detected by the first magnetic field sensor 232 is indicated as a counterclockwise angle Di from the X-axis on the XY plane, and in the tilted state shown in FIG.
  • the angle of the magnetic pole vector detected by the magnetic field sensor 232 is indicated as the angle Do.
  • FIG. 43 shows the initial state, where the axis vector is located at the reference position along the Z axis.
  • FIG. 44 shows extracted components of the magnetic pole vector rotated clockwise on the XY plane by an angle ⁇ from the changes in the axial vector and the magnetic pole vector in the tilted state illustrated in FIG. 42 .
  • the operation from the state of FIG. 43 to the state of FIG. 44 is hereinafter referred to as the first operation.
  • FIG. 45 shows, of the changes in the axial vector and the magnetic pole vector in the tilted state illustrated in FIG. is shown as a change from By tilting the axis vector, the magnetic pole vector projected on the XY plane also rotates clockwise with respect to the Y axis.
  • FIG. 45 is hereinafter referred to as a second operation.
  • FIG. 46 shows, of the changes in the axial vector and the magnetic pole vector in the tilted state illustrated in FIG. showing. As the axis vector rotates around the Z axis, the magnetic pole vector projected onto the XY plane also rotates counterclockwise.
  • the operation from the state of FIG. 45 to the state of FIG. 46 is hereinafter referred to as the third operation. As described above, the operation from FIGS. 41 to 42 can be decomposed into a combination of the first, second and third operations from FIGS. 43 to 46.
  • FIG. 41 to 42 can be decomposed into a combination of the first, second and third operations from FIGS. 43 to 46.
  • Equation 1 The conversion from the coordinates (Xi, Yi, Zi) of the magnetic pole vector in the initial state shown in FIG. 41 to the coordinates (Xo, Yo, Zo) of the magnetic pole vector in the tilted state shown in FIG. can be expressed as Equation 1 of
  • the fourth matrix on the right side of Equation 1 below indicates coordinates in the initial state.
  • the third matrix on the right side indicates a transformation matrix representing the first operation of rotating the image by an angle ⁇ clockwise about the Z axis.
  • the second matrix on the right side of Equation 1 indicates a transformation matrix representing the second operation of rotating the image by an angle ⁇ clockwise about the Y axis.
  • Equation 1 The first matrix on the right side of Equation 1 indicates a transformation matrix representing the third operation of rotating the image counterclockwise by an angle ⁇ with respect to the Z axis. As described above, Equation 1 converts the coordinates (Xi, Yi, Zi) of the magnetic pole vector in the initial state to the coordinates (Xo , Yo, Zo).
  • the angle of the magnetic pole vector projected onto the XY plane detected by the first magnetic field sensor 232 can be determined by the following equations 2 and 3 using an inverse trigonometric function.
  • a measurement error occurs due to the difference between the angle Di of the magnetic pole vector in the initial state determined by Equation 2 above and the angle Do of the magnetic pole vector in the tilted state determined by Equation 3.
  • FIG. 47 is a table showing a comparison of an example of the difference in the detected value of the angle of the magnetic line of force (magnetic pole vector) detected by the first magnetic field sensor 232 included in the detection device 2 described in the present application.
  • FIG. 47 shows the angle Di, which is the calculated value of the magnetic pole vector detected in the initial state where the axis vector indicating the longitudinal direction of the shaft member 20 etc. coincides with the Z axis, and the magnetic pole detected when the axis vector is tilted.
  • the relationship with the angle Do which is the calculated value of the vector, is shown in comparison.
  • FIG. 47 shows the relationship between the angle Di and the angle Do when the tilted shaft member 20 has an angle ⁇ of 30° from the X-axis and an angle ⁇ of 45° from the Z-axis.
  • the angle Di of the magnetic pole vector detected by the first magnetic field sensor 232 is shown in the upper part, and the angle Do is shown in the lower part.
  • there is a difference between the values of Di and Do so processing for correcting the difference is required.
  • FIG. 48 is a block diagram showing a functional configuration example of the operating device 1 described in the present application.
  • the operation device 1 includes a control section 3 configured using electronic components such as various electronic elements, various electric circuits, and a microcomputer.
  • the control unit 3 includes a first input unit 31 that receives an input from the first magnetic field sensor 232 and a second input unit 32 that receives an input from the second magnetic field sensor 233, and a correction unit that corrects the rotation angle. 30.
  • the first input unit 31 receives an input of the rotation angle measurement value (Do) from the first magnetic field sensor 232 that detects changes in the magnetic field based on the magnetic force vector as the rotation angle of the shaft member 20 .
  • the second input unit 32 receives an input of the tilt angle measurement values ( ⁇ , ⁇ ) from the second magnetic field sensor 233 that detects the change in the magnetic field based on the axis vector as the tilt angle of the shaft member 20 .
  • the correction unit 30 derives the rotation angle correction value (Di) from the rotation angle measurement value (Do) and the tilt angle measurement values ( ⁇ , ⁇ ) based on the determinant and the calculation formula described above. Derivation of the rotation angle correction value (Di) from the rotation angle measurement value (Do) and the tilt angle measurement value ( ⁇ , ⁇ ) is calculated, for example, by performing reverse calculation of the determinant shown as Equation 1. be. Equation 4 is an inverse formula for the determinant shown as Equation 1.
  • the correction unit 30 outputs the rotation angle correction value (Di) derived using Equation 4 to the output unit 4, for example.
  • the correction unit 30 outputs an operation signal based on the correction value from the output unit 4 to a device to be operated such as a game machine, a personal computer, an industrial robot, or the like.
  • the correction in the correction unit 30 may be corrected by calculation based on the determinant and the calculation formula, and a table showing a chart as illustrated in FIG. You may make it correct
  • the control unit 3 itself may be incorporated in the detection device 2 or may be incorporated in the operation device 1 .
  • FIG. 49 is a schematic explanatory diagram schematically showing an example of magnetic force lines of the first magnet 24 and the second magnet 25 detected by the first magnetic field sensor 232 and the second magnetic field sensor 233 provided in the detection device 2 described in the present application.
  • FIG. 50 is a model showing the directions of magnetic force lines by the first magnet 24 and the second magnet 25 provided in the detection device 2 described in the present application. 49 and 50, among the magnetic force lines detected by the first magnetic field sensor 232 and the second magnetic field sensor 233, the magnetic force lines caused by the first magnet 24 are indicated by solid lines, and the magnetic force lines caused by the second magnet 25 are indicated by dashed lines. showing.
  • FIG. 49 and 50 among the magnetic force lines detected by the first magnetic field sensor 232 and the second magnetic field sensor 233, the magnetic force lines caused by the first magnet 24 are indicated by solid lines, and the magnetic force lines caused by the second magnet 25 are indicated by dashed lines. showing.
  • FIG. 49 and 50 among the magnetic force lines detected by the first magnetic field sensor 232 and the second magnetic field
  • FIG. 49 shows a state in which the shaft member 20 and the spherical body 21 are tilted.
  • FIG. 50 shows, from the state shown in FIG. 49, the magnetic flux density Br based on the lines of magnetic force caused by the first magnet 24 used for detecting the rotation motion of the shaft member 20 and the like, and the second magnet used for detecting the tilting motion of the shaft member 20 and the like.
  • 25 shows a model showing the magnetic flux density Bt based on the magnetic lines of force caused by 25.
  • FIG. 50 since the magnetic flux density Br caused by the first magnet 24 detected by the first magnetic field sensor 232 is affected by the tilt angle ⁇ , the magnetic flux density also requires correction processing.
  • FIGS. 51 and 52 are models showing, on virtual coordinate axes, directions of magnetic flux density caused by the first magnet 24 detected by the first magnetic field sensor 232 included in the detection device 2 described in the present application.
  • FIG. 51 shows the initial state in which the shaft member 20 and spherical body 21 of the detection device 2 are positioned at the reference position
  • FIG. 52 shows the tilted state in which the shaft member 20 and the like are tilted.
  • the X-axis component of the magnetic flux density detected by the first magnetic field sensor 232 the X-axis component of the magnetic flux density caused by the first magnet 24 used to detect the rotation of the shaft member 20 will be described.
  • FIGS. 53 and 54 are models showing, on virtual coordinate axes, directions of magnetic flux density caused by the second magnet 25 detected by the second magnetic field sensor 233 included in the detection device 2 described in the present application.
  • FIG. 53 shows the initial state
  • FIG. 54 shows the tilted state.
  • the X-axis component of the magnetic flux density detected by the second magnetic field sensor 233 the X-axis component of the magnetic flux density caused by the second magnet 25 used to detect the tilt of the shaft member 20 will be described.
  • FIG. 55 and 56 show the magnetic flux density caused by the first magnet 24 detected by the first magnetic field sensor 232 included in the detection device 2 described in the present application and the magnetic flux density caused by the second magnet 25 detected by the second magnetic field sensor 233. It is a model that shows the direction of the virtual coordinate axis.
  • FIG. 55 shows the initial state
  • FIG. 56 shows the tilted state. 55 and 56, the overlap of the magnetic flux density caused by the first magnet 24 and the magnetic flux density caused by the second magnet 25 is detected by the first magnetic field sensor 232 and the second magnetic field sensor 233.
  • FIG. 55 and 56 shows the magnetic flux density caused by the first magnet 24 detected by the first magnetic field sensor 232 included in the detection device 2 described in the present application and the magnetic flux density caused by the second magnet 25 detected by the second magnetic field sensor 233.
  • FIG. 57 is a block diagram showing a functional configuration example of the operating device 1 described in the present application.
  • the operating device 1 includes a control unit 3.
  • the control unit 3 includes a first input unit 31 and a second input unit 32, a first correction unit 30a for correcting the rotation angle, and a second correction unit 30a for correcting the tilt angle. It functions as the corrector 30b.
  • the first input unit 31 receives input of the magnetic flux density Br cos ⁇ cos ⁇ caused by the first magnet 24 from the first magnetic field sensor 232 used for detecting rotation.
  • the second input unit 32 receives input of the magnetic flux density Bt sin ⁇ cos ⁇ caused by the second magnet 25 from the second magnetic field sensor 233 used for tilt detection.
  • the first correction unit 30a calculates the X-axis direction related to the rotation. to derive the correction value Brx.
  • the second correction unit 30b calculates the X-axis direction related to the tilt. to derive the correction value Btx.
  • the first correction unit 30a and the second correction unit 30b output the derived correction value Brx related to rotation and the derived correction value Btx related to tilting to the output unit 4.
  • the correction unit 30 outputs an operation signal based on the correction value from the output unit 4 to a device to be operated such as a game machine, a personal computer, an industrial robot, or the like.
  • the correction by the correction unit 30 may be performed by calculation based on the above-described formula.
  • a table recording the calculation results for each tilt angle is prepared in advance, and the correction is performed by converting using the table. can be
  • the detection device 2 and the operation device 1 described in the present application include the magnets such as the first magnet 24 and the second magnet 25 and the magnetic field detection unit 23, and the lines of magnetic force generated by the magnetic field generated by the magnets are detected by the magnetic field detection unit. Detected by a magnetic field sensor provided in 23 . Then, based on the detected magnetic field, various motions of the shaft member 20 such as tilting, rotation, and vertical movement are detected. Since the detection device 2 or the like described in the present application detects motion based on a magnetic field, for example, it is not necessary to use a sliding variable resistor to detect motion, thereby suppressing frictional deterioration and improving reliability. and the like.
  • the detecting device 2 and the like described in the present application arrange magnets such as the first magnet 24 and the second magnet 25 on the side of the spherical body 21 that operates, and the second magnet that requires wiring at a fixed position inside the spherical body 21 is arranged.
  • Magnetic field sensors such as a first magnetic field sensor 232 and a second magnetic field sensor 233 are arranged. Therefore, the detecting device 2 and the like described in the present application are less likely to cause anomalies such as disconnection due to the movement of the spherical body 21, and have excellent effects such as being able to improve reliability.
  • the embodiments exemplified as the first to tenth embodiments are not limited to being implemented independently, but can be combined as appropriate.
  • the present invention is not limited to this, and can be used to operate various objects such as various toys, various moving bodies, various measuring devices, industrial robots, and the like. It is possible to use Furthermore, the detection device 2 described in the present application can be applied not only to the operation device 1 but also to various devices in which spherical joints such as joints of industrial robots can be incorporated.
  • the first magnet 24 is fixed near the center of the spherical body 21 and the first magnetic field sensor 232 is fixed to the shaft member 20 .
  • the present invention is not limited to this, and it is possible to change the fixing position as appropriate.
  • the magnetic field detection unit 23 is fixed at a position affected by the motion of the shaft member 20, and the first magnet 24 is fixed at a fixed position not affected by the motion of the shaft member 20. is possible.
  • the first magnetic field sensor 232 can be fixed near the center of the spherical body 21, and the first magnet 24 can be fixed to the shaft member 20.
  • the magnetic field detection unit 23 is not limited to outputting an electric signal to the outside via the first connection line 230 as illustrated in the above embodiment, and an electric signal may be output wirelessly. , can be developed in various forms. The same is true for the second magnet 25 and the second magnetic field sensor 233, and various configurations are possible as long as the tilting motion of the shaft member 20 can be detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Position Input By Displaying (AREA)
  • Mechanical Control Devices (AREA)
  • Switches With Compound Operations (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

ゲームコントローラ等に使用可能で、部材の摩擦を抑制して耐久性を向上させることが可能な検出装置及び操作装置を提供する。 操作装置は、操作部を介して外部からの操作を受け付ける。操作部に組み込まれた検出装置2は、外部からの操作を受けて動作する軸部材20の動作を検出する。軸部材20は、外形が略球状に形成された中空の球面体21に挿通されている。球面体21は、内側で、軸部材20の動作に連動する位置に固定された磁石(第1磁石24、第2磁石25)と、中心近傍の固定位置に固定され、磁石が形成した磁界を検出する第1磁界センサ232及び第2磁界センサ233を有する磁界検出ユニット23とを備える。

Description

操作装置
 本発明は、外部からの操作を受けて動作する軸部材の動作を検出する検出装置、及びそのような検出装置を備える操作装置に関する。
 コンピュータゲーム、各種玩具、産業用ロボット等の各種装置を操作する操作装置として、ジョイスティックと呼ばれる操作装置が普及している。ジョイスティックと呼ばれる形態の操作装置では、様々な方向にスティックを傾倒することにより、傾倒方向へ操作対象が動作するので、直感的な操作を可能としている。このような操作装置として、例えば、特許文献1では、XY各軸に配置した可変抵抗で傾きを検知する可変抵抗式ポインティングデバイスが提案されている。
台湾実用新案第371503号公報
 しかしながら、特許文献1に記載された可変抵抗式ポインティングデバイスでは、可変抵抗の摺動部分が摩擦により劣化し易いため信頼性が低いという問題がある。
 本発明は斯かる事情に鑑みてなされたものであり、信頼性を向上させることが可能な検出装置の提供を主たる目的とする。
 また、本発明は、そのような検出装置を備える操作装置の提供を他の目的とする。
 上記課題を解決するため、本願記載の検出装置は、外部からの操作を受けて動作する軸部材の動作を検出する検出装置であって、前記軸部材が挿通され、外形が略球状に形成された球面体と、磁石と、前記磁石が形成した磁界を検出する磁界検出ユニットとを備え、前記磁石及び前記磁界検出ユニットのうちの一方は前記軸部材の動作の影響を受ける位置に固定され、他方は前記軸部材の動作の影響を受けない固定位置に固定されていることを特徴とする。
 更に、本願記載の検出装置は、前記軸部材が挿通され、外形が略球状に形成された中空の球面体と、前記球面体の内側で、前記軸部材の動作に連動する位置に固定された磁石と、前記球面体の中心近傍の位置に固定され、前記磁石が形成した磁界を検出する磁界検出ユニットとを備えることを特徴とする。
 また、前記検出装置において、前記軸部材は、長手方向に平行で、かつ前記球面体の中心を通る仮想上の中心軸に対して動作し、前記球面体内は、前記中心軸方向に並ぶ第1磁界室及び第2磁界室に区分されており、前記磁石は、前記第1磁界室内に挿通された前記軸部材に固定された第1磁石と、前記第2磁界室内に固定された第2磁石とを含み、前記磁界検出ユニットは、前記第1磁界室内の磁界を検出する第1磁界センサと、前記第2磁界室内の磁界を検出する第2磁界センサとを有することを特徴とする。
 また、前記検出装置において、前記第1磁界室及び前記第2磁界室の境界となる位置に配置された遮磁板を備えることを特徴とする。
 また、前記検出装置において、前記遮磁板及び前記第1磁界センサの間を離隔する第1離隔部材と、前記遮磁板及び前記第2磁界センサの間を離隔する第2離隔部材とのうち、少なくとも一方を備えることを特徴とする。
 また、前記検出装置において、前記第1磁石は、前記中心軸に対して直交する方向に磁極が向くように配置されており、前記第2磁石は、前記中心軸に対して平行な方向に磁極が向くように配置されていることを特徴とする。
 また、前記検出装置において、前記軸部材の動作は、前記球面体の中心を支点に中心軸が傾倒する動作、前記中心軸を中心に周方向へ回転する動作及び前記中心軸の延伸方向へ移動する動作のうち、少なくとも一の動作であることを特徴とする。
 また、前記検出装置において、前記軸部材は、少なくとも前記中心軸の延伸方向に動作可能であり、前記軸部材の延伸方向の動作に連動して、前記球面体は延伸方向に動作し、前記球面体の延伸方向の動作に連動して移動する可動部材と、前記可動部材を動作可能に保持する固定部材と、前記固定部材に固定され、前記可動部材の移動に基づく押圧を検出する感圧センサとを備えることを特徴とする。
 また、前記検出装置において、前記感圧センサとして、又は前記感圧センサとは別に、前記可動部材の移動に基づく押圧を受けるタクタイルスイッチを備えることを特徴とする。
 また、前記検出装置において、前記軸部材は、少なくとも前記中心軸の延伸方向に動作可能であり、前記軸部材の延伸方向の動作に連動して、前記球面体は延伸方向に動作し、前記球面体の軸方向の動作に連動して移動する可動部材と、前記可動部材を動作可能に保持する固定部材と、前記可動部材に固定された第3磁石と、前記固定部材に固定された第3磁界センサとを備えることを特徴とする。
 また、前記検出装置において、前記磁界検出ユニットに取り付けられた接続線を備え、前記球面体には、前記接続線を内外に通す開口部が開設されており、前記開口部は、前記球面体及び前記中心軸の交点を通る大円に沿って長尺状に開設されていることを特徴とする。
 更に、本願記載の操作装置は、前記検出装置と、前記検出装置が備える前記球面体を動作させる操作を受け付ける操作部とを備えることを特徴とする。
 また、前記操作装置において、前記軸部材の動作は、前記球面体の中心を支点に中心軸が傾倒する動作及び前記中心軸を中心に周方向へ回転する動作を含み、傾倒する動作の検出値に基づいて、回転する動作の検出値を補正する手段を備えることを特徴とする。
 また、前記操作装置において、前記軸部材の動作は、前記球面体の中心を支点に中心軸が傾倒する動作及び前記中心軸を中心に周方向へ回転する動作を含み、回転する動作の検出値に基づいて、傾倒する動作の検出値を補正する手段を備えることを特徴とする。
 本願記載の検出装置及び操作装置は、磁石及び磁界検出ユニットにて軸部材の動作を検出する。
 本発明に係る検出装置及び操作装置は、磁石及び磁界検出ユニットにて、外部からの操作を受けて動作する軸部材の動作を検出する。このため、例えば、動作の検出に摺動する可変抵抗を用いる必要がない。従って、摩擦劣化を抑制し、信頼性を向上させることが可能である等、優れた効果を奏する。
本願記載の操作装置の外観の一例を示す概略斜視図である。 本願記載の操作装置の外観の一例を示す概略斜視図である。 本願記載の検出装置の一例を示す概略斜視図である。 本願記載の検出装置の一例を示す概略斜視図である。 本願記載の検出装置の一例を示す概略分解斜視図である。 本願記載の検出装置の一例を示す概略断面図である。 本願記載の検出装置が備える磁界検出ユニットの一例を示す概略斜視図である。 本願記載の検出装置の一例を示す概略断面図である。 本願記載の検出装置の組立方法の一例を概念的に示す概略説明図である。 本願記載の検出装置の組立方法の一例を概念的に示す概略説明図である。 本願記載の検出装置の一例を示す概略断面図である。 本願記載の検出装置の一例を示す概略断面図である。 本願記載の検出装置の一例を示す概略断面図である。 本願記載の検出装置の一例を示す概略断面図である。 本願記載の検出装置の一例を示す概略分解斜視図である。 本願記載の検出装置の一例を示す概略断面図である。 本願記載の検出装置の一例を示す概略断面図である。 本願記載の検出装置の一例を示す概略断面図である。 本願記載の検出装置の一例を示す概略分解斜視図である。 本願記載の検出装置の一例を示す概略断面図である。 本願記載の検出装置の一例を示す概略断面図である。 本願記載の検出装置の一例を示す概略分解斜視図である。 本願記載の検出装置の一例を示す概略断面図である。 本願記載の検出装置の一例を示す概略断面図である。 本願記載の検出装置の一例を示す概略分解斜視図である。 本願記載の検出装置の一例を示す概略断面図である。 本願記載の検出装置の一部の例を示す概略分解斜視図である。 本願記載の検出装置の一例を示す概略斜視図である。 本願記載の検出装置2が備える磁界検出ユニットの一例を示す概略斜視図である。 第1磁石により形成される磁界の一例を概念的に示す説明図である。 第1磁石により形成される磁界の一例を概念的に示す説明図である。 第1磁石により形成される磁界の一例を概念的に示す説明図である。 本願記載の検出装置が備える磁界検出ユニットの一例を示す概略斜視図である。 本願記載の検出装置が備える第1磁石と、第1磁界センサと、第1磁石による磁界との関係の一例を模式的に示す概略説明図である。 本願記載の検出装置が備える第1磁石と、第1磁界センサと、第1磁石による磁界との関係の一例を模式的に示す概略説明図である。 本願記載の検出装置の動作の説明に用いる仮想上の座標軸を示す説明図である。 本願記載の検出装置の軸部材等の方向を仮想上の座標軸に示すモデルである。 本願記載の検出装置の軸部材等の方向を仮想上の座標軸に示すモデルである。 本願記載の検出装置の動作の説明に用いる仮想上の座標軸を示す説明図である。 本願記載の検出装置の動作の説明に用いる仮想上の座標軸を示す説明図である。 本願記載の検出装置の軸部材等の方向を仮想上の座標軸に示すモデルである。 本願記載の検出装置の軸部材等の方向を仮想上の座標軸に示すモデルである。 本願記載の検出装置の軸部材等の方向を仮想上の座標軸に示すモデルである。 本願記載の検出装置の軸部材等の方向を仮想上の座標軸に示すモデルである。 本願記載の検出装置の軸部材等の方向を仮想上の座標軸に示すモデルである。 本願記載の検出装置の軸部材等の方向を仮想上の座標軸に示すモデルである。 本願記載の検出装置が備える第1磁界センサが検出する磁力線(磁極ベクトル)の角度の検出値の傾倒による差異の一例を比較して示す図表である。 本願記載の操作装置の機能構成例を示すブロック図である。 本願記載の検出装置が備える第1磁界センサ及び第2磁界センサが検出する第1磁石及び第2磁石の磁力線の一例を模式的に示す概略説明図である。 本願記載の検出装置が備える第1磁石及び第2磁石による磁力線の方向を示すモデルである。 本願記載の検出装置が備える第1磁界センサが検出する第1磁石に起因する磁束密度の方向を仮想上の座標軸に示すモデルである。 本願記載の検出装置が備える第1磁界センサが検出する第1磁石に起因する磁束密度の方向を仮想上の座標軸に示すモデルである。 本願記載の検出装置が備える第2磁界センサが検出する第2磁石に起因する磁束密度の方向を仮想上の座標軸に示すモデルである。 本願記載の検出装置が備える第2磁界センサが検出する第2磁石に起因する磁束密度の方向を仮想上の座標軸に示すモデルである。 本願記載の検出装置が備える第1磁界センサが検出する第1磁石に起因する磁束密度及び第2磁界センサが検出する第2磁石に起因する磁束密度の方向を仮想上の座標軸に示すモデルである。 本願記載の検出装置が備える第1磁界センサが検出する第1磁石に起因する磁束密度及び第2磁界センサが検出する第2磁石に起因する磁束密度の方向を仮想上の座標軸に示すモデルである。 本願記載の操作装置の機能構成例を示すブロック図である。
 以下、本発明の実施形態について図面を参照しながら説明する。本願記載の操作装置は、例えば、操作対象を操作するジョイスティック型のコントローラとして用いられる。また、本願記載の検出装置は、ジョイスティック型のコントローラである操作装置に組み込まれ、操作に基づく部材の動作を検出する。本願記載の操作装置は、ジョイスティック型のコントローラ等の操作装置として用いることにより、コンピュータゲーム用の操作装置、その他、各種玩具、各種移動体、各種測定装置、産業用ロボット等の様々な操作対象の操作に用いることが可能である。以下では、図面を参照し、本願記載の操作装置をジョイスティック型のコントローラに適用した操作装置1及び操作装置1に組み込まれた検出装置2を例示して説明する。
 <第1実施形態>
  <操作装置1>
 図1は、本願記載の操作装置1の外観の一例を示す概略斜視図である。操作装置1は、筐体10を備え、筐体10には、右手及び左手でそれぞれ把持する把持部11が両端に形成されている。両端の把持部11をそれぞれ把持した場合において、上面の指が当たる位置は、略円形状に開口しており、開口を通って、操作対象を操作するための操作部12が筐体10内から突出している。操作部12は、操作装置1の内部に組み込まれた検出装置2が備える後述の軸部材20(図3等参照)に取り付けられている。更に、上面側には、操作者の指にて押下可能な位置に複数の操作ボタン13が配置されている。図1に例示する操作装置1内には、右手の操作に基づく動作を検出する検出装置2及び左手の操作に基づく動作を検出する検出装置2の2台の検出装置2が、一つの筐体10内に組み込まれている。なお、本願では、説明の便宜上、操作者が、一般的な姿勢で操作する場合に上方に位置する側、即ち、操作ボタン13が配置され、操作部12が突出している側を上側として説明する。
 図2は、本願記載の操作装置1の外観の一例を示す概略斜視図である。図2は、操作装置1の他の形態を示している。図2に例示する操作装置1は、一つの筐体10内に一つの検出装置2等の各種機構が組み込まれており、片手操作用のコントローラとして形成されている。例えば、産業用ロボットのコントローラに適用する場合、一方の手で本発明に係る操作装置1を操作し、他方の手で他の作業をする形態も考えられるため、このような形態は特に有効である。また、左右の手で異なる操作装置1を把持するゲームのコントローラとしても有効である。
  <検出装置2>
   <構造>
 図3は、本願記載の検出装置2の一例を示す概略斜視図である。図3は、本願記載の操作装置1に組み込まれた検出装置2を示している。検出装置2は、操作部12が取り付けられる軸部材20を備え、軸部材20は、操作者の操作を受けて動作する。軸部材20は、外形が略球状に形成された中空の球面体21に挿通されている。球面体21の上端には、軸部材20が挿通される略円筒状の挿通部210が形成されており、軸部材20は、長尺の棒状をなし、挿通部210の中心に開設された挿通孔210aを通って球面体21の内部まで挿通されている。球面体21は、保持部材22に動作可能に保持されている。保持部材22の内面は、球面体21の外形に合わせた球面状に形成されており、後述する保護部220(図6等参照)が内側へ延びている。保護部220は、第1接続線230を保護している。
 操作者の操作に基づく軸部材20の動作は、長手方向に平行で、球面体21の中心を通る仮想上の中心軸に対する動作である。具体的には、軸部材20の動作は、球面体21の中心を支点に中心軸が傾倒する動作、中心軸を中心に周方向へ回転する動作及び上下方向(中心軸の延伸方向)へ移動する動作である。軸部材20が傾倒する動作を行った場合、球面体21は、軸部材20の動作に連動して、中心を支点に傾倒する動作を行う。軸部材20が上下に移動する動作を行った場合、球面体21は、軸部材20の動作に連動して、上下に移動する動作を行う。軸部材20が回転する動作に対しては、球面体21は連動しない。なお、第1実施形態では、軸部材20が傾倒する動作及び回転する動作を行うが、上下に移動する動作は行わない形態を例示している。上下に移動する動作については、第3実施形態等の他の実施形態を参照するものとする。
 図4は、本願記載の検出装置2の一例を示す概略斜視図である。図4は、図3に例示した検出装置2から保持部材22を外した状態を示している。球面体21の内部には、後述する磁界検出ユニット23が配置されており、磁界検出ユニット23には、電気を通す媒体となる第1接続線230が接続されている。球面体21の側面には、第1接続線230を通す開口部21aが開設されており、第1接続線230は、開口部21aを通って外部に延伸されている。開口部21aは、球面体21及び中心軸の上下の交点を通る大円に沿って縦方向に延びる長尺状に開設されている。第1接続線230は、保持部材22の内面に形成された内側へ延びる保護部220(図4では図示せず/図6等参照)に覆われて球面体21の内部から外部へと延伸されている。保護部220に覆われた第1接続線230の位置は固定されているが、球面体21に開口部21aが形成されていることにより、球面体21が、傾倒する動作又は上下に移動する動作をした場合であっても、球面体21が第1接続線230に干渉することはない。なお、様々な方向へ傾倒する軸部材20に連動する球面体21は、様々な方向(平面視で360度の全ての方向)への傾倒動作を行うが、いずれの方向へ傾倒した場合でも、球面体21が第1接続線230に干渉することはない。
 図5は、本願記載の検出装置2の一例を示す概略分解斜視図である。図6は、本願記載の検出装置2の一例を示す概略断面図である。図5は、検出装置2が備える球面体21及び球面体21の内部に収容される各種部材を示している。図6は、図4に示すA-Bを通る垂直面で切断した検出装置2の内部構造の断面を概略断面図として示している。前述のように、検出装置2が備える球面体21の内部は、中空となっている。球面体21は、上部の上半体21bと下部の下半体21cとがネジ止め等の方法にて固定して組み立てられている。球面体21内は、磁界検出ユニット23及び中央遮磁板231によって、上半体21b内の空間である第1磁界室21dと、下半体21c内の空間である第2磁界室21eとに上下に区分されている。
 球面体21内の略中心近傍の固定位置には、磁界検出ユニット23が固定されている。磁界検出ユニット23には第1接続線230が接続され、第1接続線230は、球面体21の外部へ延伸している。
 球面体21の挿通部210に挿通された軸部材20は、長尺の棒状をなし、長手方向が上下方向となるように挿通部210に挿通されている。軸部材20の上部は、操作部12を取り付け可能な形状に加工された取付部20aとなっている。軸部材20の下端の縁部は、径方向へ張り出した形状のフランジ部20bとして、球面体21の内面近傍に位置している。軸部材20の下端のフランジ部20bは、球面体21内の天面に形成された円柱形状の凹部に若干の遊びを持って遊嵌している。軸部材20の中央近傍には、嵌着溝20cが周方向に刻設されており、嵌着溝20cには、略U字形状をなす金属製の留め具200が嵌められている。軸部材20は、下端のフランジ部20bが、球面体21内の凹部に遊嵌して上方への移動を規制され、中央近傍の留め具200が、球面体21の挿通部210の上端に当接して下方への移動を規制されている。軸部材20が球面体21に挿通されているため、検出装置2は、軸部材20が傾倒すると、球面体21も連動して傾倒する。なお、球面体21の開口部21aに保持部材22の保護部220が挿通されているため、軸部材20が周方向に回転しても、球面体21は連動しない構成となっている。
 球面体21の第1磁界室21dの内面近傍に位置する軸部材20の下端には、略円柱形状をなす永久磁石を用いた第1磁石24が固定されている。第1磁石24は、中心軸に対して直交する方向に磁極が向くように配置されている。球面体21の第2磁界室21eの内面近傍で中心軸と交差する位置には、略円柱形状をなす永久磁石を用いた第2磁石25が固定されている。第2磁石25は、中心軸に対して平行な方向に磁極が向くように配置されている。本願において、磁極の方向とは、両磁極を結ぶ方向のことを示す。従って、例えば、第1磁石24の配置は、N極が左方等の水平の第1方向を向き、S極が第2方向の反対側となる右方等の水平の第2方向を向くように固定された形態を例示することができる。また、例えば、第2磁石25の配置は、N極が上方を向き、S極が下方を向くように固定された形態を例示することができる。
 球面体21の第1磁界室21dと第2磁界室21eとの境界となる位置には、磁界検出ユニット23の側方を囲うように、磁界を遮蔽する側部遮磁板211が配置されており、球面体21内は、側部遮磁板211により第1磁界室21dと第2磁界室21eとに区分される。側部遮磁板211は、外形が、球面体21内の形状に合わせた略円板状をなし、内側に、磁界検出ユニット23を配置するため切り欠きが形成されている。
 図7は、本願記載の検出装置2が備える磁界検出ユニット23の一例を示す概略斜視図である。磁界検出ユニット23について更に説明する。磁界検出ユニット23は、球面体21内の中心近傍の固定位置に固定される。磁界検出ユニット23は、球面体21の第1磁界室21dと第2磁界室21eとの境界となる位置に配置され、磁界を遮蔽する中央遮磁板231を備えている。中央遮磁板231は、扁平な板状をなしており、上面が第1磁界室21dに面し、下面が第2磁界室21eに面している。
 開口部21aを通って球面体21の内部に延伸する第1接続線230は、中央遮磁板231の上面に固着され、更に、先端側が回り込んで、中央遮磁板231の下面に固着されている。中央遮磁板231の上面には、第1接続線230を挟んで第1磁界センサ232が配置されている。中央遮磁板231の下面には第1接続線230を挟んで第2磁界センサ233が配置されている。第1磁界センサ232及び第2磁界センサ233は、第1接続線230に電気的に接続するように配線されている。
 第1磁界センサ232及び第2磁界センサ233は、磁界を検出し、検出した磁界に基づく電気信号を出力するホールIC等の電子素子である。第1磁界センサ232は、第1磁界室21d側で、第1磁石24により発生した磁界を検出する。第2磁界センサ233は、第2磁界室21e側で、第2磁石25により発生した磁界を検出する。第1磁界センサ232及び第2磁界センサ233にて検出された磁界は、電気信号として、第1接続線230を介して外部へ出力される。
 図8は、本願記載の検出装置2の一例を示す概略断面図である。図8は、図4に示すC-Dを通る水平面で切断した内部構造の断面を上からの視点の概略断面図として示している。球面体21が傾倒していない姿勢にある場合、側部遮磁板211及び中央遮磁板231は、第1磁界室21d及び第2磁界室21eを区分する水平面を形成する。側部遮磁板211及び中央遮磁板231にて形成された水平面にて磁界を遮蔽することにより、第1磁石24にて発生した第1磁界室21dの磁界と、第2磁石25にて発生した第2磁界室21eの磁界との干渉による悪影響を防止する。側部遮磁板211及び中央遮磁板231は、それぞれ異なる部材として構成することにより、一つの部材として構成する場合と比較して、組立性の向上、遮磁性の向上等の効果を奏する。
   <組立方法>
 次に、検出装置2の組立方法の概略について説明する。図9及び図10は、本願記載の検出装置2の組立方法の一例を概念的に示す概略説明図である。図9は、本願記載の検出装置2を構成する部材のうち、球面体21、保持部材22及び磁界検出ユニット23の相対的な位置の関係を斜視図として示している。図10は、球面体21、保持部材22の一部及び磁界検出ユニット23の相対的な位置の関係を斜視図として示している。図10において、保持部材22は、2分割された組立前の状態で示している。先ず、図9に例示するように、磁界検出ユニット23の第1接続線230を保持部材22の保護部220に内側から差し込む。次に、図10に例示するように、磁界検出ユニット23の第1磁界センサ232及び第2磁界センサ233を、球面体21の開口部21aから挿入し、球面体21内の中心近傍の固定位置に固定する。そして、分割されていた保持部材22を組み合わせて、球面体21を動作可能に保持し、軸部材20の取付部20aに操作部12(図示せず)を取り付けることで、検出装置2が完成する。
   <検出方法>
 次に、検出装置2による軸部材20の動作の検出方法について説明する。図11は、本願記載の検出装置2の一例を示す概略断面図である。図11は、検出装置2の軸部材20が基準位置にある状態を示している。軸部材20の基準位置とは、操作装置1が操作者の操作を受けておらず、軸部材20の長手方向が上下方向となる位置である。図11中において、第1磁石24又は第2磁石25を通る矢印は、それぞれ第1磁石24又は第2磁石25により発生した磁界を概念的に示している。
 図12は、本願記載の検出装置2の一例を示す概略断面図である。図12は、操作者の傾倒操作を受けて、検出装置2の軸部材20及び球面体21が、図11に例示する基準位置から傾倒した状態を示している。操作部12が傾倒操作を受けた場合、検出装置2の軸部材20及び球面体21は、球面体21の中心を支点に傾倒する。軸部材20及び球面体21が傾倒した場合、第1磁界センサ232が検出する第1磁石24による磁界及び第2磁界センサ233が検出する第2磁石25による磁界が変化する。本願では、傾倒による磁界の変化を、第2磁界センサ233にて検出する形態を例示している。
 図13は、本願記載の検出装置2の一例を示す概略断面図である。図13は、操作者の回転操作を受けて、検出装置2の軸部材20が、図11に例示する基準位置から中心軸を中心に周方向へ180°回転した状態を示している。操作部12が回転操作を受けた場合、検出装置2の軸部材20は、中心軸を中心に周方向へ回転する。なお、軸部材20の回転動作に球面体21は連動しない。軸部材20が回転した場合、第1磁界センサ232が検出する第1磁石24による磁界が変化する。図13に例示するように、180°回転した場合、第1磁界センサ232は、磁界の向きが反対方向となったことを検出する。本願では、回転による磁界の変化を、第1磁界センサ232にて検出する形態を例示している。
 以上のように、本願記載の第1実施形態に係る操作装置1及び検出装置2は、操作部12に対する操作を、軸部材20に対する動作として受け付ける。軸部材20に対する傾倒動作及び回転動作は、第1磁石24及び第2磁石25により発生される磁界の変化として検出され、第1接続線230を介して伝達され、電気信号として出力される。
 <第2実施形態>
 第2実施形態は、第1実施形態において、基準位置から傾倒した軸部材20を基準位置に自動的に復帰させる機能を付加した形態である。第2実施形態において、第1実施形態と同様の構成については、第1実施形態と同様の符号を付し、詳細な説明を省略する。
 図14は、本願記載の検出装置2の一例を示す概略断面図である。図15は、本願記載の検出装置2の一例を示す概略分解斜視図である。第2実施形態に係る検出装置2が備える軸部材20、球面体21、球面体21の内部、保持部材22等の各種部材の構成は、第1実施形態と略同様である。第2実施形態に係る検出装置2は、球面体21の下端に被押圧部材212を備えており、保持部材22の下部に下部機構26を備えている。
 球面体21の下端に取り付けられた被押圧部材212は、略円板状をなし、中心近傍が平坦で周縁部が球面体21側へ反るように形成されている。
 保持部材22の下部に取り付けられた下部機構26は、球面体21下端の被押圧部材212を下方から上方へ押圧する押圧部材260を備えている。押圧部材260は、上部が円板状をなし、下部が円筒状に下方へ延びている。下部機構26には、押圧部材260が、若干の遊びをもって遊嵌する遊嵌溝261が形成されている。押圧部材260は、遊嵌溝261に遊嵌し、上下に移動する。また、遊嵌溝261には、圧縮コイルバネ等の復帰バネを用いた第1付勢部材262が配置されている。第1付勢部材262は、下端が遊嵌溝261の内底面に固定されており、上端で押圧部材260に当接し、押圧部材260を上方へ付勢する。第1付勢部材262が押圧部材260を上方へ付勢することにより、押圧部材260は、上面で、球面体21の下端に取り付けられた被押圧部材212に当接し、被押圧部材212を上方へ押圧する。
 次に、本願記載の検出装置2の動作について説明する。図16及び図17は、本願記載の検出装置2の一例を示す概略断面図である。図16は、検出装置2の軸部材20が基準位置にある状態を示しており、図17は、操作者の傾倒操作を受けて軸部材20及び球面体21が基準位置から傾倒した状態を示している。図16に例示するように軸部材20が基準位置に位置する場合、押圧部材260は、被押圧部材212の平坦な中心近傍に対して、球面体21の中心が位置する上方へ向けて押圧するため、軸部材20及び球面体21は安定した姿勢となる。図17に例示するように、軸部材20及び球面体21が傾倒すると、被押圧部材212は、周縁部で押圧部材260を下方へ押下する。図17に例示する状態において、押圧部材260は、被押圧部材212の周縁部に対して、球面体21の中心が位置する上方へ向けて押圧するため、球面体21が基準位置に復帰する回転方向に力が働く。図16に例示するように、軸部材20及び球面体21が基準位置に位置する場合、軸部材20及び球面体21は安定している。図17に例示するように、軸部材20及び球面体21が基準位置から傾倒した場合、基準位置に復帰する方向に力が働き不安定となる。このため操作者による傾倒させる力が解除されると、軸部材20及び球面体21は基準位置に復帰する。
 以上のように、本願記載の第2実施形態に係る検出装置2等は、球面体21の下端に被押圧部材212を取り付け、下方の下部機構26にて被押圧部材212を上方へ向けて押圧する。これにより、球面体21及び球面体21の傾倒動作に連動する軸部材20が基準位置から傾倒した場合に、球面体21等に復帰する方向に力が働く検出装置2等を実現することが可能である等、優れた効果を奏する。
 <第3実施形態>
 第3実施形態は、第1実施形態において、操作部12を下方へ押下する操作に対応する機能を追加し、軸部材20が中心軸の延伸方向へ移動する動作を行う形態である。第3実施形態において、第1実施形態又は第2実施形態と同様の構成については、第1実施形態及び第2実施形態と同様の符号を付し、詳細な説明を省略する。
 図18は、本願記載の検出装置2の一例を示す概略断面図である。図19は、本願記載の検出装置2の一例を示す概略分解斜視図である。図19は、検出装置2が備える下部機構26を分解して示している。第3実施形態に係る検出装置2は、操作部12を押下する操作を受けて、軸部材20は、中心軸の延伸方向となる下方へ動作し、軸部材20が取り付けられた球面体21及び球面体21を保持する保持部材22は、軸部材20に連動して下方へ動作する。即ち、第3実施形態に係る検出装置2は、所謂、クリック操作に対応する機能を有している。第3実施形態に係る検出装置2が備える軸部材20、球面体21、球面体21の内部、保持部材22等の各種部材の構成は、第1実施形態等の実施形態と略同様である。
 検出装置2が備える下部機構26は、保持部材22の下端に固定された可動部材263と、可動部材263を上下に動作可能に保持する固定部材264と、可動部材263及び固定部材264の間で、固定部材264に固定され、可動部材263の下方への移動に基づく押圧を受けるタクタイルスイッチ265とを備えている。タクタイルスイッチ265には、タクタイルスイッチ265が検出した押圧に基づく電気信号を伝達する第2接続線266が接続されている。
 第3実施形態に係る検出装置2において、操作部12に対する押下操作に基づく軸部材20の下方への移動に連動して、可動部材263は固定部材264に案内されて、下方へ移動し、タクタイルスイッチ265を押圧する。タクタイルスイッチ265は、可動部材263による押圧を検出し、検出した押圧を、軸部材20が下方へ移動する動作を示す電気信号として、第2接続線266を介して出力する。また、タクタイルスイッチ265は、押下操作に基づく操作感触、所謂、クリック感を発生させる。
 以上のように、本願記載の第3実施形態に係る検出装置2等は、下部機構26が、可動部材263、固定部材264及びタクタイルスイッチ265を備える。これにより、押下操作に基づいて軸部材20が下方へ移動する動作を検出する検出装置2等を実現することが可能である。
 <第4実施形態>
 第4実施形態は、第2実施形態において、操作部12を下方へ押下する操作に対応する機能を追加し、軸部材20が中心軸の延伸方向へ移動する動作を行う形態である。第4実施形態において、第1実施形態乃至第3実施形態のいずれかと同様の構成については、第1実施形態乃至第3実施形態と同様の符号を付し、詳細な説明を省略する。
 図20は、本願記載の検出装置2の一例を示す概略断面図である。第4実施形態に係る検出装置2が備える軸部材20、球面体21、球面体21の内部、保持部材22等の各種部材の構成は、第1実施形態等の実施形態と略同様である。第4実施形態に係る検出装置2は、球面体21の下端に被押圧部材212を備えており、保持部材22の下端に下部機構26を備えている。下部機構26は、可動部材263と、固定部材264と、タクタイルスイッチ265と、第2接続線266とを備え、可動部材263は、押圧部材260と、第1付勢部材262とを備えている。
 第4実施形態は、第2実施形態及び第3実施形態を組み合わせた形態であるので、操作者の操作に基づく各種部材の動作及び機能は、第2実施形態及び第3実施形態を参照するものとし、説明を省略する。
 <第5実施形態>
 第5実施形態は、第1実施形態において、操作部12を下方へ押下する操作に対応する機能を追加した形態であって、第3実施形態と異なる構造で、軸部材20の動作を検出する形態である。
 図21は、本願記載の検出装置2の一例を示す概略断面図である。図22は、本願記載の検出装置2の一例を示す概略分解斜視図である。図21は、検出装置2が備える下部機構26を分解して示している。第5実施形態に係る検出装置2は、操作部12を押下する操作を受けて、軸部材20は、中心軸の延伸方向となる下方へ動作し、軸部材20が取り付けられた球面体21及び球面体21を保持する保持部材22は、軸部材20に連動して下方へ動作する。即ち、第3実施形態に係る検出装置2は、所謂、クリック操作に対応する機能を有している。第5実施形態に係る検出装置2が備える軸部材20、球面体21、球面体21の内部、保持部材22等の各種部材の構成は、第1実施形態等の実施形態と略同様である。
 検出装置2が備える下部機構26は、保持部材22の下端に固定された可動部材263と、可動部材263を揺動可能に保持する固定部材264と、可動部材263及び固定部材264の間に配置され、可動部材263の下方への移動に基づく押圧を受けるタクタイルスイッチ265及び感圧センサ267とを備えている。感圧センサ267には、感圧センサ267が検出した押圧に基づく電気信号を伝達する第2接続線266が接続されている。更に、固定部材264は、可動部材263を揺動自在に軸支する軸支ピン2640と、可動部材263を上方へ付勢する圧縮コイルバネ等の復帰バネを用いた2個の第2付勢部材2641とを有している。
 第5実施形態に係る検出装置2において、操作部12に対する押下操作に基づく軸部材20の下方への移動に連動して、可動部材263は、軸支ピン2640を揺動軸として下方へ揺動し、タクタイルスイッチ265及び感圧センサ267を押圧する。第5実施形態に係る検出装置2において、押下操作により可動部材263が揺動する角度は微小であるため、軸部材20の動作は、微小な上下動と実質的に同一と見做すことができる。感圧センサ267は、可動部材263による押圧を検出し、軸部材20が下方へ移動する動作を示す電気信号として、第2接続線266を介して出力する。タクタイルスイッチ265は、可動部材263からの押圧を受けて、押下操作に基づく操作感触、所謂、クリック感を発生させる。操作部12に対する押下が解除されると、第2付勢部材2641に付勢されて、軸部材20、球面体21、可動部材263等の部材は、基準位置に復帰する。なお、クリック感を必要としない場合、又はタクタイルスイッチ265以外に操作感触を発生させる機構を設ける場合、第5実施形態に係る検出装置2は、タクタイルスイッチ265を省いて構成することも可能である。
 以上のように、本願記載の第5実施形態に係る検出装置2等では、下部機構26が感圧センサ267を備える。これにより、押下操作に基づいて軸部材20が下方へ移動する動作を検出する検出装置2等を実現することが可能である。
 <第6実施形態>
 第6実施形態は、第2実施形態において、操作部12を下方へ押下する操作に対応する機能を追加した形態であって、第4実施形態と異なる構造で、軸部材20の動作を検出する形態である。第6実施形態において、第1実施形態乃至第5実施形態のいずれかと同様の構成については、第1実施形態乃至第5実施形態と同様の符号を付し、詳細な説明を省略する。
 図23は、本願記載の検出装置2の一例を示す概略断面図である。第6実施形態に係る検出装置2が備える軸部材20、球面体21、球面体21の内部、保持部材22等の各種部材の構成は、第1実施形態等の実施形態と略同様である。第6実施形態に係る検出装置2は、球面体21の下端に被押圧部材212を備えており、保持部材22の下端に下部機構26を備えている。下部機構26は、可動部材263と、固定部材264と、タクタイルスイッチ265と、感圧センサ267と、第2接続線266とを備えている。固定部材264は、軸支ピン2640と、2個の第2付勢部材2641とを備えている。
 第6実施形態は、第2実施形態及び第5実施形態を組み合わせた形態であるので、操作者の操作に基づく各種部材の動作及び機能は、第2実施形態及び第5実施形態を参照するものとし、説明を省略する。
 <第7実施形態>
 第7実施形態は、第4実施形態において、操作部12を下方へ押下する機能に加えて、上方へ引き上げる機能を追加した形態である。第7実施形態において、第1実施形態乃至第6実施形態のいずれかと同様の構成については、第1実施形態乃至第6実施形態と同様の符号を付し、詳細な説明を省略する。
 図24は、本願記載の検出装置2の一例を示す概略断面図である。図25は、本願記載の検出装置2の一例を示す概略分解斜視図である。第7実施形態に係る検出装置2が備える軸部材20、球面体21、球面体21の内部、保持部材22等の各種部材の構成は、第1実施形態等の実施形態と略同様である。第7実施形態に係る検出装置2は、保持部材22の下端に下部機構26を備えている。
 下部機構26は、保持部材22の下端に固定された可動部材263と、可動部材263を上下動可能に保持する固定部材264と、可動部材263及び固定部材264の間に位置する第3磁石268及び第3磁界センサ269とを備えている。第3磁石268は、可動部材263の下面に固定されている。第3磁界センサ269は、第3磁石268と対向するように固定部材264に固定されている。第3磁界センサ269には、第3磁界センサ269が検出した磁界に基づく電気信号を伝達する第2接続線266が接続されている。第3磁界センサ269は、可動部材263及び固定部材264の間の空間で、第3磁石268により発生した磁界を検出する。
 可動部材263は、略直方体状の外形をなしており、4側面のうち、対向する2側面には、外側へ張り出した円板状の張出部2630が形成されている。張出部2630は、可動部材263の上下動に伴い上下に移動する。固定部材264には、可動部材263の張出部2630を上下に移動可能に収容する円筒状の案内部2642が形成されている。固定部材264の案内部2642の内部では、収容された張出部2630の上方に圧縮コイルバネ等の復帰バネを用いた第3付勢部材2643が配置されており、張出部2630の下方に圧縮コイルバネ等の復帰バネを用いた第4付勢部材2644が配置されている。案内部2642の上底部分は、取り外し可能な蓋部2645となっている。下部機構26の組立の際には、可動部材263の張出部2630を固定部材264の案内部2642に上底側の開口から遊嵌させた後、蓋部2645により、案内部2642の開口が閉じられる。
 以上のように構成された本願記載の検出装置2において、操作部12が押下された場合、軸部材20及び球面体21に連動して可動部材263が下方へ移動する。押下が解除されると、可動部材263の張出部2630の下方に配置された第4付勢部材2644が、張出部2630を上方へ付勢し、可動部材263が元の位置へ復帰する。操作部12が引き上げられた場合、軸部材20及び球面体21に連動して可動部材263が上方へ移動する。引き上げが解除されると、可動部材263の張出部2630の上方に配置された第3付勢部材2643が、張出部2630を下方へ付勢し、可動部材263が元の位置へ復帰する。案内部2642が、張出部2630の上下動を案内するため、可動部材263の動作は安定する。可動部材263が上下に移動すると、第3磁石268と第3磁界センサ269との間の距離が変化する。第3磁界センサ269は、第3磁石268により発生した磁界を検出し、検出した磁界を示す電気信号を、第3接続線を介して出力する。第3磁界センサ269が検出した磁界により、可動部材263の上下方向への移動が検出される。
 以上のように、本願記載の第7実施形態に係る検出装置2等は、下部機構26に第3磁石268及び第3磁界センサ269を備える。これにより、軸部材20の下方への移動だけでなく、上方へ移動する動作も検出する検出装置2等を実現することができる。
 <第8実施形態>
 第8実施形態は、第7実施形態と異なる構成で、操作部12の上下の操作を検出する機能を実現する形態である。第8実施形態において、第1実施形態乃至第7実施形態のいずれかと同様の構成については、第1実施形態乃至第7実施形態と同様の符号を付し、詳細な説明を省略する。
 図26は、本願記載の検出装置2の一例を示す概略断面図である。図27は、本願記載の検出装置2の一部の例を示す概略分解斜視図である。図27は、検出装置2が備える球面体21の上半体21bと、軸部材20及び周辺の部材についての分解斜視図である。図27に例示した球面体21の上半体21b、軸部材20及び周辺の部材以外の部材については、第4実施形態と同様であるので、第4実施形態を参照するものとし、説明を省略する。
 球面体21の上端に形成された略円筒状の挿通部210は、中心を通る挿通孔210aの周囲に上環状溝210b及び下環状溝210cが刻設されている。上環状溝210b及び下環状溝210cは、挿通孔210aと中心を一にし、挿通孔210aより半径が大きい環状の溝である。上環状溝210bは、挿通部210の上端から中央近傍までの深さに刻設されており、下環状溝210cは挿通部210の下端から中央近傍までの深さに刻設されている。上環状溝210bの下端は、下環状溝210cの上端近傍までの深さを有しているが、上環状溝210bと下環状溝210cとは繋がっておらず、仕切られている。
 上環状溝210bには、圧縮コイルバネ等の復帰バネを用いた第5付勢部材2100が挿入されている。上環状溝210bの上端の開口には、環状板201が配置されており、環状板201を介して軸部材20の留め具200に下方から当接している。第5付勢部材2100は、下端が上環状溝210bの底に取り付けられ、上端で環状板201及び留め具200を介して軸部材20を上方へ付勢している。
 下環状溝210cには、圧縮コイルバネ等の復帰バネを用いた第6付勢部材2101が挿入されている。第6付勢部材2101は、上端が下環状溝210cの底に取り付けられ、下端でフランジ部20bを介して軸部材20を下方へ付勢している。
 第8実施形態に係る検出装置2は、球面体21の挿通部210の上端から下端までの長さに対して、軸部材20の環状板201の下面からフランジ部20bの上面までの長さが若干長く形成されている。このように形成された検出装置2は、軸部材20が、球面体21から独立して上下に移動する。
 以上のように構成された本願記載の検出装置2において、操作部12が押下された場合、軸部材20が下方へ移動する。押下が解除されると、第5付勢部材2100が環状板201及び留め具200を介して軸部材20を上方へ付勢し、軸部材20が基準位置へ復帰する。操作部12が引き上げられた場合、軸部材20が上方へ移動する。引き上げが解除されると、第6付勢部材2101がフランジ部20bを介して軸部材20を下方へ付勢し、軸部材20が基準位置へ復帰する。軸部材20が上下に移動した場合、軸部材20の下端に固定された第1磁石24と、第1磁界センサ232との間の距離が変化する。第1磁界センサ232は、第1磁石24により発生した磁界を検出し、検出した磁界を示す電気信号を、第1接続線230を介して出力する。第1磁界センサ232が検出した磁界により、軸部材20の上下方向への移動が検出される。即ち、第8実施形態に係る検出装置2は、第1磁界センサ232が検出した磁界により、軸部材20の回転だけでなく、上下動も検出することになる。
 以上のように、本願記載の第8実施形態に係る検出装置2等は、球面体21の挿通部210に第5付勢部材2100及び第6付勢部材2101を収容し、更に、軸部材20が、球面体21から独立して上下動するように構成する。これにより、軸部材20の上下の方向への動作を検出する検出装置2等を実現することができる。
 <第9実施形態>
 第9実施形態は、第4実施形態において、他の形態とは異なる構成で、球面体21を様々な方向へ傾倒可能に保持する機能を有する形態である。第9実施形態において、第1実施形態乃至第8実施形態のいずれかと同様の構成については、第1実施形態乃至第8実施形態と同様の符号を付し、詳細な説明を省略する。
 図28は、本願記載の検出装置2の一例を示す概略斜視図である。第9実施形態に係る検出装置2は、保持部材22に、長尺板を弧状に湾曲させた弧状フレーム27が取り付けられている。弧状フレーム27は、略球状をなす保持部材22の外面に沿って弧状に湾曲している。長尺板状をなす弧状フレーム27の両端部は、保持部材22の外面に揺動自在に軸支されている。両端部の揺動軸は、球面体21の中心を水平方向に通る仮想線上に位置している。弧状フレーム27の中央近傍には、長円状の案内孔270が開設されており、球面体21の挿通部210が案内孔270を貫通している。
 球面体21が、弧状フレーム27の長手方向に傾倒した場合、挿通部210は案内孔270に案内されて傾倒する。球面体21が弧状フレーム27の長手方向と直交する方向に傾倒した場合、挿通部210は、揺動軸を揺動中心として揺動する弧状フレーム27と共に傾倒する。球面体21が、弧状フレーム27の長手方向及び長手方向と直交する方向以外の方向に傾倒する場合、長手方向への傾倒動作及び直交方向への傾倒動作を複合した動作となる。軸部材20が回転する場合、球面体21の挿通部210と、弧状フレーム27の案内孔270とが平面部分で接しているため、球面体21が回転することはない。従って、第9実施形態において、保持部材22の保護部220は不要となる。
 以上のように、本願記載の第9実施形態に係る検出装置2等は、弧状フレーム27にて様々な方向に傾倒可能に支持される。
 <第10実施形態>
 第10実施形態は、第1実施形態乃至第9実施形態において、磁界検出ユニット23の形状を変更した形態である。第10実施形態において、第1実施形態乃至第9実施形態のいずれかと同様の構成については、第1実施形態乃至第9実施形態と同様の符号を付し、詳細な説明を省略する。
 図29は、本願記載の検出装置2が備える磁界検出ユニット23の一例を示す概略斜視図である。第10実施形態に係る磁界検出ユニット23には、中央遮磁板231の上面及び第1接続線230の間に、スペーサとして機能する第1離隔部材234が配置されており、第1接続線230の上面に、第1磁界センサ232が配置されている。また、中央遮磁板231の下面及び第1接続線230の間に第2離隔部材235が配置されており、第1接続線230の下面に、第2磁界センサ233が配置されている。第1離隔部材234及び第2離隔部材235は、磁力線に影響を与えない絶縁体等の材質で形成されている。第1離隔部材234は、第1磁界センサ232にて検出する磁界に、中央遮磁板231が影響を与えることを防止する。第2離隔部材235は、第2磁界センサ233にて検出する磁界に、中央遮磁板231が影響を与えることを防止する。
 図30は、第1磁石24により形成される磁界の一例を概念的に示す説明図である。図30は、中央遮磁板231がなく、第1接続線230の上面に第1磁界センサ232が配置された仮想モデルを概念的に示している。図30に示す仮想モデルにおいて、第1磁石24にて形成される磁界は、他の部材から大きな影響を受けることがない。
 図31は、第1磁石24により形成される磁界の一例を概念的に示す説明図である。図31は、中央遮磁板231の上面に直接配置された第1接続線230が配置され、第1接続線230の上面に第1磁界センサ232が配置された仮想モデルを概念的に示している。中央遮磁板231の材質によっては、図31に示す仮想モデルに示すように、第1磁石24にて形成される磁界は、中央遮磁板231によって磁界が歪む恐れがある。中央遮磁板231の近傍で磁界が歪んだ場合、中央遮磁板231の近傍に位置する第1磁界センサ232が検出する磁界に影響を与える可能性があり、検出精度を低下させる外乱要因となり得る。
 図32は、第1磁石24により形成される磁界の一例を概念的に示す説明図である。図32は、中央遮磁板231と、第1接続線230及び第1磁界センサ232との間隔を離隔させた仮想モデルを概念的に示している。図32に例示するように、中央遮磁板231と、第1磁界センサ232との間を離隔した場合、仮に、中央遮磁板231の近傍で磁界が歪んだとしても、中央遮磁板231から離隔した第1磁界センサ232が検出する磁界に与える影響を抑制することが可能となる。
 以上のように、本願記載の第10実施形態に係る検出装置2等は、第1離隔部材234及び第2離隔部材235により、中央遮磁板231と第1磁界センサ232及び第2磁界センサ233との間を離隔する。これにより、本願記載の検出装置2等は、中央遮磁板231に起因する磁界の歪みによる影響を抑制することが可能となる。
 図33は、本願記載の検出装置2が備える磁界検出ユニット23の一例を示す概略斜視図である。図33は、第10実施形態に係る検出装置2の変形例を示している。図33に例示する磁界検出ユニット23では、中央遮磁板231の上面及び第1接続線230の間に第1離隔部材234が配置されており、第1接続線230の上面に第1磁界センサ232が配置されている。また、中央遮蔽板231の下面には、第2離隔部材235が配置されている。更に、第2離隔部材235の下面に、補助遮蔽板236が配置されており、補助遮蔽板236の下面に第3離隔部材237が配置され、更に、第3離隔部材237の下面に第1接続線230を介して第2磁界センサ233が配置されている。
 以上のように、本願記載の第10実施形態に係る検出装置2等は、様々な形態に変形し、中央遮磁板231に起因する磁界の歪みによる影響を抑制することが可能となる等、優れた効果を奏する。
  <補正処理>
 次に、本願記載の操作装置1及び検出装置2の補正処理の例について説明する。図34及び図35は、本願記載の検出装置2が備える第1磁石24と、第1磁界センサ232と、第1磁石24による磁界との関係の一例を模式的に示す概略説明図である。図34は、軸部材20が基準位置にあり、中心軸が垂直な状態を示しており、図35は、軸部材20が基準位置から傾倒して中心軸が垂直でない状態を示している。図34及び図35中で矢印は磁界を形成する磁力線の向きを示している。図34に例示しているように、軸部材20が基準位置にあり、第1磁石24の磁極の方向と、中心軸の方向とが直交している場合、第1磁界センサ232は、検出した磁界から、正確に軸部材20の回転角度を検出することができる。しかしながら、図35に例示するように、軸部材20の傾倒に伴い第1磁石24の磁極方向が傾倒し、発生した磁界が傾くと、軸部材20の回転角度の検出に誤差が生じ得る。従って、軸部材20が傾倒した状態で回転角度を検出する場合には、補正が必要となる。
 図36は、本願記載の検出装置2及びその動作の説明に用いる仮想上の座標軸を示す説明図である。図37及び図38は、本願記載の検出装置2の軸部材20等の方向を仮想上の座標軸に示すモデルである。図36は、検出装置2の軸部材20及び球面体21が基準位置に位置する状態を、X軸、Y軸及びZ軸にて示される仮想上の座標軸に重畳して示している。図37は、図36から検出装置2を除外した座標軸を示している。図38は、軸部材20及び球面体21の傾倒をベクトルとして示している。図38では、軸部材20の傾倒中心から操作部12側(上側)へ向くベクトルを、図37に示す仮想上の座標軸に軸ベクトルとして重畳し、軸部材20及び球面体21を基準位置から傾倒させた状態を示している。
 図36乃至図38を用いて、補正について説明する。図36及び図37に例示するように、以降の説明では、水平面をX軸及びY軸にて規定される平面とし、垂直方向をZ軸方向として定義する。図38に示すように、軸部材20及び球面体21を傾倒させた場合、軸ベクトルにて示される傾倒に係る角度は、XY平面に投影したX軸から左回りの角度Φと、Z軸からの傾斜を示す角度θとにより示される。
 図39及び図40は、本願記載の検出装置2の動作の説明に用いる仮想上の座標軸を示す説明図である。図39及び図40は、本願で定義する仮想上の座標系をZ軸の正方向(上方)からの視点で示しており、第1磁石24の磁極を座標軸に重畳して示している。図39は、検出装置2の軸部材20が基準位置に位置する状態を示しており、図40は、軸部材20を基準位置から回転させた状態を示している。図40に示すように、軸部材20を回転位置の角度を左回り(反時計回り)を基準に角度Diとして定義する。回転に係る角度は、磁力線の出射方向に近似できる第1磁石24のN極側の法線ベクトル(以降、磁極ベクトルと称する。)の方向の変化にて規定する。
 図41及び図42は、本願記載の検出装置2の軸部材20等の方向を仮想上の座標軸に示すモデルである。図41及び図42は、軸部材20及び球面体21の動作を一般化したモデルであり、図41は、軸部材20等が傾倒していない初期状態を示し、図42は、傾倒状態を示している。図42に示すように、傾倒状態の軸ベクトルは、XY平面に投影したX軸から左回りに角度Φの方向へ、Z軸から角度θに傾倒している。図41及び図42において、実線で示す矢印は、軸ベクトルであり、一点鎖線で示す矢印は、磁極ベクトルである。図41に示す磁極ベクトルの初期状態の座標は、(Xi,Yi,Zi)として規定し、図42に示す磁極ベクトルの傾倒状態の座標は、(Xo,Yo,Zo)として規定する。図42に示すように、軸部材20等の傾倒の角度は、XY平面に投影したX軸から左回りの角度Φと、Z軸からの傾斜を示す角度θとで示す。また、図41に示す初期状態において、第1磁界センサ232にて検出する磁極ベクトルの角度をXY平面上のX軸からの左回りの角度Diとして示し、図42に示す傾倒状態において、第1磁界センサ232にて検出する磁極ベクトルの角度を角度Doとして示す。
 本願では、図41から図42への動作において、軸部材20等の動作に伴う軸ベクトルの変化を分解して、磁極ベクトルの変化を導出する方法を例示して説明する。図43乃至図46は、本願記載の検出装置2の軸部材20等の方向を仮想上の座標軸に示すモデルである。
 図43は、初期状態を示しており、軸ベクトルは、Z軸に沿った基準位置に位置している。図44は、図42に例示した傾倒状態の軸ベクトル及び磁極ベクトルへの変化のうち、磁極ベクトルがXY平面上を右回りに角度Φ分の回転をした成分を抽出して示している。図43の状態から図44の状態への動作を、以降、第1動作と称する。図45は、図42に例示した傾倒状態の軸ベクトル及び磁極ベクトルの変化のうち、軸ベクトルがXZ平面上でZ軸に対してX軸方向へ角度θ分の傾倒をした成分を、図44からの変化として示している。軸ベクトルが傾倒することにより、XY平面上に投影される磁極ベクトルもY軸に対して右回りに回転する。図44の状態から図45の状態への動作を、以降、第2動作と称する。図46は、図42に例示した傾倒状態の軸ベクトル及び磁極ベクトルの変化のうち、軸ベクトルがZ軸を中心として左回り方向に角度Φ分の回転をした成分を、図45からの変化として示している。軸ベクトルがZ軸を中心として回転することにより、XY平面上に投影される磁極ベクトルも左回りに回転する。図45の状態から図46の状態への動作を、以降、第3動作と称する。以上のように、図41から図42への動作は、図43から図46への第1動作、第2動作及び第3動作の組み合わせに分解することができる。
 図41に示した初期状態における磁極ベクトルの座標(Xi,Yi,Zi)から図42に示した傾倒状態の磁極ベクトルの座標(Xo,Yo,Zo)への変換は、行列式として示した下記の式1として示すことができる。下記の式1のうち右辺4番目の行列は、初期状態の座標を示している。右辺3番目の行列は、Z軸に対して右回りに角度Φ回転させる第1動作を表した変換行列を示している。式1のうち右辺2番目の行列は、Y軸に対して右回りに角度θ回転させる第2動作を表した変換行列を示している。式1のうち右辺1番目の行列は、Z軸に対して左回りに角度Φ回転させる第3動作を表した変換行列を示している。以上のように式1は、初期状態における磁極ベクトルの座標(Xi,Yi,Zi)を第1動作、第2動作及び第3動作に係る変換をして、傾倒状態の磁極ベクトルの座標(Xo,Yo,Zo)に変換する行列式となっている。
Figure JPOXMLDOC01-appb-M000001
 磁極ベクトルの傾きが求まると、逆三角関数を用いることにより、第1磁界センサ232にて検出するXY平面上に投影した磁極ベクトルの角度を下記の式2及び式3で求めることができる。
   Di=arctan(Yi/Xi)  ・・・式2
   Do=arctan(Yo/Xo)  ・・・式3
 上記式2にて求められる初期状態における磁極ベクトルの角度Diと、式3にて求められる傾倒状態における磁極ベクトルの角度Doとの差異により測定誤差が生じる。
 図47は、本願記載の検出装置2が備える第1磁界センサ232が検出する磁力線(磁極ベクトル)の角度の検出値の傾倒による差異の一例を比較して示す図表である。図47は、軸部材20等の長手方向を示す軸ベクトルがZ軸に合致する初期状態にて検出される磁極ベクトルの計算値である角度Diと、軸ベクトルが傾倒状態にて検出される磁極ベクトルの計算値である角度Doとの関係を比較して示している。図47は、傾倒した軸部材20のX軸からの角度θが30°で、Z軸からの角度θが45°の場合における角度Diと角度Doとの関係を示している。図47では、上段に第1磁界センサ232が検出する磁極ベクトルの角度Diを示しており、下段に角度Doを示している。図47に例示するように、Di及びDoの値には差異が生じているため、差異を補正する処理が必要となる。
 図48は、本願記載の操作装置1の機能構成例を示すブロック図である。操作装置1は、各種電子素子、各種電気回路、マイクロコンピュータ等の電子部品を用いて構成された制御部3を備えている。制御部3は、第1磁界センサ232からの入力を受け付ける第1入力部31と、第2磁界センサ233からの入力を受け付ける第2入力部32とを備えており、回転角度を補正する補正部30として機能する。
 第1入力部31は、磁力ベクトルに基づく磁界の変化を軸部材20の回転角度として検出する第1磁界センサ232から、回転角度の測定値(Do)の入力を受け付ける。第2入力部32は、軸ベクトルに基づく磁界の変化を軸部材20の傾倒角度として検出する第2磁界センサ233から、傾倒角度の測定値(θ,φ)の入力を受け付ける。
 補正部30は、前述の行列式及び計算式に基づいて、回転角度の測定値(Do)及び傾倒角度の測定値(θ,φ)から、回転角度の補正値(Di)を導出する。回転角度の測定値(Do)及び傾倒角度の測定値(θ,φ)から、回転角度の補正値(Di)を導出は、例えば、式1として示した行列式の逆算を行うことで算出される。式4は、式1として示した行列式の逆算式である。
Figure JPOXMLDOC01-appb-M000002
 補正部30は、例えば、式4を用いて導出した回転角度の補正値(Di)を出力部4へ出力する。補正部30では、補正値に基づく操作信号を、出力部4からゲーム機、パーソナルコンピュータ、産業用ロボット等の操作対象となる装置へ出力する。補正部30での補正は、行列式及び計算式に基づく計算で補正してもよく、予め図47に例示したような図表を示すテーブルを傾倒角度毎に作成しておき、テーブルを用いて換算することにより補正するようにしてもよい。なお、制御部3自体は、検出装置2に組み込む形態であっても、操作装置1に組み込む形態であってもよい。
 次に、本願記載の操作装置1及び検出装置2の他の補正処理の例について説明する。図49は、本願記載の検出装置2が備える第1磁界センサ232及び第2磁界センサ233が検出する第1磁石24及び第2磁石25の磁力線の一例を模式的に示す概略説明図である。図50は、本願記載の検出装置2が備える第1磁石24及び第2磁石25による磁力線の方向を示すモデルである。図49及び図50では、第1磁界センサ232及び第2磁界センサ233が検出する磁力線のうち、第1磁石24に起因する磁力線を実線で示し、第2磁石25に起因する磁力線を一点鎖線で示している。図49は、軸部材20及び球面体21が傾倒した状態を示している。図50は、図49に示す状態から、軸部材20等の回転動作の検出に用いる第1磁石24に起因する磁力線に基づく磁束密度Br及び軸部材20等の傾倒動作の検出に用いる第2磁石25に起因する磁力線に基づく磁束密度Btを示したモデルを示している。図50に示すように、第1磁界センサ232が検出する第1磁石24に起因する磁束密度Brは、傾倒角度θの影響を受けるため、磁束密度についても補正処理が必要となる。
 図51及び図52は、本願記載の検出装置2が備える第1磁界センサ232が検出する第1磁石24に起因する磁束密度の方向を仮想上の座標軸に示すモデルである。図51は、検出装置2の軸部材20及び球面体21が基準位置に位置する初期状態を示しており、図52は、軸部材20等が傾倒した傾倒状態を示している。第1磁界センサ232が検出する磁束密度のX軸方向の成分のうち、軸部材20の回転の検出に用いる第1磁石24に起因する磁束密度のX軸方向の成分について説明する。
 図51の初期状態において、第1磁界センサ232が検出する第1磁石24による磁束密度BrのX軸方向の成分Brxは、第1磁界センサ232にて-Brの大きさとして検出される。即ち、Brx=-Brとなる。
 図52の傾倒状態において、第1磁界センサ232が検出する第1磁石24による磁束密度BrのX軸方向の成分Brxは、第1磁界センサ232にて、X軸からの角度Φ及びXY平面からの角度θを用いた-Brcosθ・cosΦの大きさとして検出される。即ち、Brx=-Brcosθ・cosΦとなる。
 図53及び図54は、本願記載の検出装置2が備える第2磁界センサ233が検出する第2磁石25に起因する磁束密度の方向を仮想上の座標軸に示すモデルである。図53は、初期状態を示しており、図54は、傾倒状態を示している。第2磁界センサ233が検出する磁束密度のX軸方向の成分のうち、軸部材20の傾倒の検出に用いる第2磁石25に起因する磁束密度のX軸方向の成分について説明する。
 図53の初期状態において、第2磁界センサ233が検出する第2磁石25による磁束密度BtのX軸方向の成分Btxは、第2磁界センサ233にて0の大きさとして検出される。即ち、Btx=0となる。
 図54の傾倒状態において、第2磁界センサ233が検出する第2磁石25による磁束密度BtのX軸方向の成分Btxは、第2磁界センサ233にて、X軸からの角度Φ及びXY平面からの角度θを用いたBtsinθ・cosΦの大きさとして検出される。即ち、Brx=Btsinθ・cosΦとなる。
 図55及び図56は、本願記載の検出装置2が備える第1磁界センサ232が検出する第1磁石24に起因する磁束密度及び第2磁界センサ233が検出する第2磁石25に起因する磁束密度の方向を仮想上の座標軸に示すモデルである。図55は、初期状態を示しており、図56は、傾倒状態を示している。図55及び図56は、第1磁界センサ232及び第2磁界センサ233により、第1磁石24に起因する磁束密度及び第2磁石25に起因する磁束密度の重なりを検出する。
 図55の初期状態において、第1磁石24の磁束密度のX軸方向の成分Brx及び第2磁石25の磁束密度のX軸方向の成分Btxが重なった磁束密度Bxは、-Brとして検出される。即ち、Bx=-Brとなる。
 図56の傾倒状態において、第1磁石24の磁束密度のX軸方向の成分Brx及び第2磁石25の磁束密度のX軸方向の成分Btxが重なった磁束密度Bxは、Btsinθ・cosΦ-Brcosθ・cosΦとなる。即ち、Bx=Btsinθ・cosΦ-Brcosθ・cosΦとなる。
 以上のように、初期状態と、傾倒状態において、磁束密度Bxに差異が生じているため、差異を補正する処理が必要となる。
 図57は、本願記載の操作装置1の機能構成例を示すブロック図である。操作装置1は、制御部3を備えており、制御部3は、第1入力部31及び第2入力部32、更に、回転角度を補正する第1補正部30a及び傾倒角度を補正する第2補正部30bとして機能する。
 第1入力部31は、回転の検出に用いる第1磁界センサ232から第1磁石24に起因する磁束密度Brcosθ・cosΦの入力を受け付ける。第2入力部32は、傾倒の検出に用いる第2磁界センサ233から第2磁石25に起因する磁束密度Btsinθ・cosΦの入力を受け付ける。
 第1補正部30aは、第1磁界センサ232が検出した回転に係る磁束密度Brcosθ・cosΦ及び第2磁界センサ233が検出した傾倒に係る磁束密度Btsinθ・cosΦに基づいて、回転に係るX軸方向の補正値Brxを導出する。第2補正部30bは、第2磁界センサ233が検出した回転に係る磁束密度Brcosθ・cosΦ及び第2磁界センサ233が検出した傾倒に係る磁束密度Btsinθ・cosΦに基づいて、傾倒に係るX軸方向の補正値Btxを導出する。
 第1補正部30a及び第2補正部30bは、導出した回転に係る補正値Brx及び傾倒に係る補正値Btxを出力部4へ出力する。補正部30では、補正値に基づく操作信号を、出力部4からゲーム機、パーソナルコンピュータ、産業用ロボット等の操作対象となる装置へ出力する。補正部30での補正は、前述の計算式に基づく計算で補正してもよく、予め計算結果を記録したテーブルを傾倒角度毎に作成しておき、テーブルを用いて換算することにより補正するようにしてもよい。
 以上のように、本願記載の検出装置2及び操作装置1は、第1磁石24、第2磁石25等の磁石及び磁界検出ユニット23を備え、磁石にて発生した磁界による磁力線を、磁界検出ユニット23が備える磁界センサにて検出する。そして、検出した磁界に基づいて、軸部材20の傾倒、回転、上下移動等の様々な動作を検出する。本願記載の検出装置2等は、磁界に基づいて動作を検出するので、例えば、動作の検出に摺動する可変抵抗を用いる必要がなく、摩擦劣化を抑制し、信頼性を向上させることが可能である等、優れた効果を奏する。
 また、本願記載の検出装置2等は、動作する球面体21側に、第1磁石24、第2磁石25等の磁石を配置し、球面体21内の固定された位置に配線が必要な第1磁界センサ232、第2磁界センサ233等の磁界センサを配置する。従って、本願記載の検出装置2等は、球面体21の動作による断線等の異常が生じ難く、信頼性を向上させることが可能である等、優れた効果を奏する。
 本発明は、以上説明した実施形態に限定されるものではなく、他の様々な形態で実施することが可能である。そのため、上述した実施形態はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明の技術範囲は、請求の範囲によって説明するものであって、明細書本文には何ら拘束されない。更に、請求の範囲の均等範囲に属する変形及び変更は、全て本発明の範囲内のものである。
 例えば、第1実施形態乃至第10実施形態として例示したそれぞれの実施形態は、それぞれ独立して実施する場合に限らず、適宜組み合わせることが可能である。
 例えば、前記実施形態では、ゲームのコントローラに適用する形態について説明したが、本発明はこれに限らず、各種玩具、各種移動体、各種測定装置、産業用ロボット等の様々な操作対象の操作に用いることが可能である。更に、本願記載の検出装置2は、操作装置1への適用に限らず、産業用ロボットの関節等の球状の関節を組込可能な様々な装置に適用することが可能である。
 また、前記実施形態では、第1磁石24を球面体21の中央近傍に固定し、第1磁界センサ232を軸部材20に固定する形態を示したが、軸部材20の回転動作を検出することができるのであれば、本発明はこれに限るものではなく、適宜固定位置を変更することが可能である。例えば、軸部材20の動作の影響を受ける位置に磁界検出ユニット23を固定し、軸部材20の動作の影響を受けない固定位置に第1磁石24を固定する等、様々な形態に展開することが可能である。具体的には、球面体21の中央近傍に第1磁界センサ232を固定し、軸部材20に第1磁石24を固定する等、様々な形態に展開することが可能である。このような形態として構成する場合、前記実施形態で例示したように磁界検出ユニット23から第1接続線230を介して外部へ電気信号を出力する形態に限らず、無線で電気信号を出力する等、様々な形態に展開することが可能である。第2磁石25及び第2磁界センサ233についても同様であり、軸部材20の傾倒動作を検出することができるのであれば、様々な形態に展開することが可能である。
 1    操作装置
 12    操作部
 2     検出装置
 20    軸部材
 21    球面体
 21a   開口部
 21d   第1磁界室
 21e   第2磁界室
 211   側部遮磁板
 22    保持部材
 220   保護部
 23    磁界検出ユニット
 231   中央遮磁板
 232   第1磁界センサ
 233   第2磁界センサ
 234   第1離隔部材
 235   第2離隔部材
 236   補助遮磁板
 237   第3離隔部材
 24    第1磁石
 25    第2磁石
 26    下部機構
 260   押圧部材
 263   可動部材
 264   固定部材
 265   タクタイルスイッチ
 267   感圧センサ
 269   第3磁界センサ
 27    弧状フレーム
 270   案内孔
 3     制御部
 30    補正部
 4     出力部

Claims (14)

  1.  外部からの操作を受けて動作する軸部材の動作を検出する検出装置であって、
     前記軸部材が挿通され、外形が略球状に形成された球面体と、
     磁石と、
     前記磁石が形成した磁界を検出する磁界検出ユニットと
     を備え、
     前記磁石及び前記磁界検出ユニットのうちの一方は前記軸部材の動作の影響を受ける位置に固定され、他方は前記軸部材の動作の影響を受けない固定位置に固定されている
     ことを特徴とする検出装置。
  2.  外部からの操作を受けて動作する軸部材の動作を検出する検出装置であって、
     前記軸部材が挿通され、外形が略球状に形成された中空の球面体と、
     前記球面体の内側で、前記軸部材の動作に連動する位置に固定された磁石と、
     前記球面体の中心近傍の位置に固定され、前記磁石が形成した磁界を検出する磁界検出ユニットと
     を備える
     ことを特徴とする検出装置。
  3.  請求項2に記載の検出装置であって、
     前記軸部材は、
     長手方向に平行で、かつ前記球面体の中心を通る仮想上の中心軸に対して動作し、
     前記球面体内は、
     前記中心軸方向に並ぶ第1磁界室及び第2磁界室に区分されており、
     前記磁石は、
     前記第1磁界室内に挿通された前記軸部材に固定された第1磁石と、
     前記第2磁界室内に固定された第2磁石と
     を含み、
     前記磁界検出ユニットは、
     前記第1磁界室内の磁界を検出する第1磁界センサと、
     前記第2磁界室内の磁界を検出する第2磁界センサと
     を有する
     ことを特徴とする検出装置。
  4.  請求項3に記載の検出装置であって、
     前記第1磁界室及び前記第2磁界室の境界となる位置に配置された遮磁板を備える
     ことを特徴とする検出装置。
  5.  請求項4に記載の検出装置であって、
     前記遮磁板及び前記第1磁界センサの間を離隔する第1離隔部材と、前記遮磁板及び前記第2磁界センサの間を離隔する第2離隔部材とのうち、少なくとも一方を備える
     ことを特徴とする検出装置。
  6.  請求項3乃至請求項5のいずれか1項に記載の検出装置であって、
     前記第1磁石は、前記中心軸に対して直交する方向に磁極が向くように配置されており、
     前記第2磁石は、前記中心軸に対して平行な方向に磁極が向くように配置されている
     ことを特徴とする検出装置。
  7.  請求項3乃至請求項6のいずれか1項に記載の検出装置であって、
     前記軸部材の動作は、前記球面体の中心を支点に中心軸が傾倒する動作、前記中心軸を中心に周方向へ回転する動作及び前記中心軸の延伸方向へ移動する動作のうち、少なくとも一の動作である
     ことを特徴とする検出装置。
  8.  請求項3乃至請求項6のいずれか1項に記載の検出装置であって、
     前記軸部材は、少なくとも前記中心軸の延伸方向に動作可能であり、
     前記軸部材の延伸方向の動作に連動して、前記球面体は延伸方向に動作し、
     前記球面体の延伸方向の動作に連動して移動する可動部材と、
     前記可動部材を動作可能に保持する固定部材と、
     前記固定部材に固定され、前記可動部材の移動に基づく押圧を検出する感圧センサと
     を備える
     ことを特徴とする検出装置。
  9.  請求項8に記載の検出装置であって、
     前記感圧センサとして、又は前記感圧センサとは別に、前記可動部材の移動に基づく押圧を受けるタクタイルスイッチを備える
     ことを特徴とする検出装置。
  10.  請求項3乃至請求項6のいずれか1項に記載の検出装置であって、
     前記軸部材は、少なくとも前記中心軸の延伸方向に動作可能であり、
     前記軸部材の延伸方向の動作に連動して、前記球面体は延伸方向に動作し、
     前記球面体の軸方向の動作に連動して移動する可動部材と、
     前記可動部材を動作可能に保持する固定部材と、
     前記可動部材に固定された第3磁石と、
     前記固定部材に固定された第3磁界センサと
     を備える
     ことを特徴とする検出装置。
  11.  請求項3乃至請求項10のいずれか1項に記載の検出装置であって、
     前記磁界検出ユニットに取り付けられた接続線を備え、
     前記球面体には、前記接続線を内外に通す開口部が開設されており、
     前記開口部は、前記球面体及び前記中心軸の交点を通る大円に沿って長尺状に開設されている
     ことを特徴とする検出装置。
  12.  請求項3乃至請求項11のいずれか1項に記載の検出装置と、
     前記検出装置が備える前記球面体を動作させる操作を受け付ける操作部と
     を備える
     ことを特徴とする操作装置。
  13.  請求項12に記載の操作装置であって、
     前記軸部材の動作は、前記球面体の中心を支点に中心軸が傾倒する動作及び前記中心軸を中心に周方向へ回転する動作を含み、
     傾倒する動作の検出値に基づいて、回転する動作の検出値を補正する手段を備える
     ことを特徴とする操作装置。
  14.  請求項12に記載の操作装置であって、
     前記軸部材の動作は、前記球面体の中心を支点に中心軸が傾倒する動作及び前記中心軸を中心に周方向へ回転する動作を含み、
     回転する動作の検出値に基づいて、傾倒する動作の検出値を補正する手段を備える
     ことを特徴とする操作装置。
PCT/JP2022/003364 2021-02-04 2022-01-28 操作装置 WO2022168758A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280009050.9A CN116917832A (zh) 2021-02-04 2022-01-28 操作装置
US18/271,670 US20240060797A1 (en) 2021-02-04 2022-01-28 Detection device and operation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021016464A JP2022119390A (ja) 2021-02-04 2021-02-04 操作装置
JP2021-016464 2021-02-04

Publications (1)

Publication Number Publication Date
WO2022168758A1 true WO2022168758A1 (ja) 2022-08-11

Family

ID=82741376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003364 WO2022168758A1 (ja) 2021-02-04 2022-01-28 操作装置

Country Status (4)

Country Link
US (1) US20240060797A1 (ja)
JP (1) JP2022119390A (ja)
CN (1) CN116917832A (ja)
WO (1) WO2022168758A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024076547A1 (en) * 2022-10-03 2024-04-11 Panda Hardware LLC Hall effect sensor assembly for use with game controller joysticks

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865729U (ja) * 1981-10-28 1983-05-04 日本電気ホームエレクトロニクス株式会社 ジヨイステイツク
WO2019169086A1 (en) * 2018-02-28 2019-09-06 Bourns, Inc. Non-contact hall-effect joystick

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865729U (ja) * 1981-10-28 1983-05-04 日本電気ホームエレクトロニクス株式会社 ジヨイステイツク
WO2019169086A1 (en) * 2018-02-28 2019-09-06 Bourns, Inc. Non-contact hall-effect joystick

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024076547A1 (en) * 2022-10-03 2024-04-11 Panda Hardware LLC Hall effect sensor assembly for use with game controller joysticks

Also Published As

Publication number Publication date
CN116917832A (zh) 2023-10-20
JP2022119390A (ja) 2022-08-17
US20240060797A1 (en) 2024-02-22

Similar Documents

Publication Publication Date Title
US5619195A (en) Multi-axial position sensing apparatus
CN107077161B (zh) 输入输出操作装置
WO2022168758A1 (ja) 操作装置
JPH08122070A (ja) 傾き検出装置およびこれを使用した入力装置
US8482523B2 (en) Magnetic control device
WO2012086601A1 (ja) 操作子及び操作装置
JP7112385B2 (ja) 操作レバー
US11687113B2 (en) Pointing device
US20090009474A1 (en) Improvements to input peripherals for a computer or the like
GB2476837A (en) Rotatable Input Device
KR101381611B1 (ko) 조작장치
US20150031458A1 (en) Operating Device
JPH0557645A (ja) 操縦装置
US9724599B2 (en) Operator and operating device
WO2022270055A1 (ja) 被操作装置及び操作用装置
JP5352861B2 (ja) ポインティングデバイス
US20230321526A1 (en) Input device, controller, and error detection method
JPH01103281A (ja) 関節センサー
CN114259724A (zh) 检测装置以及操作装置
JP2014115747A (ja) ジョイスティック
JP5848953B2 (ja) シフトレバー装置
JP3544387B2 (ja) 方位・傾斜センサによる入力装置
RU2776590C1 (ru) Джойстик одноосевой пропорциональный
JP3108258B2 (ja) X−y方向入力装置
JPH07104879A (ja) 操作レバー装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749630

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280009050.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18271670

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749630

Country of ref document: EP

Kind code of ref document: A1