WO2022168746A1 - 金属含有コロイダルシリカ及びその製造方法 - Google Patents

金属含有コロイダルシリカ及びその製造方法 Download PDF

Info

Publication number
WO2022168746A1
WO2022168746A1 PCT/JP2022/003249 JP2022003249W WO2022168746A1 WO 2022168746 A1 WO2022168746 A1 WO 2022168746A1 JP 2022003249 W JP2022003249 W JP 2022003249W WO 2022168746 A1 WO2022168746 A1 WO 2022168746A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
colloidal silica
silica
containing colloidal
mixed layer
Prior art date
Application number
PCT/JP2022/003249
Other languages
English (en)
French (fr)
Inventor
祐月 高橋
慎介 宮部
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Priority to JP2022579506A priority Critical patent/JPWO2022168746A1/ja
Publication of WO2022168746A1 publication Critical patent/WO2022168746A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic

Definitions

  • the present invention relates to metal-containing colloidal silica obtained by modifying the surface of colloidal silica with a metal, and a method for producing the same.
  • Colloidal silica has been used as a catalyst carrier, chromatographic filler, silica glass, filler for resin, polishing composition, adhesive binder for phosphors in cathode ray tube manufacturing, gelling agent for electrolyte in batteries, thixotropic agent, and anti-scattering agent. , inorganic adhesives, paints, etc.
  • Patent Literature 1 provides a method of supporting fine metal particles on silica particle surfaces by plasma treatment, instead of fine metal particles themselves, from the viewpoint of lightness, dispersibility, price, and the like.
  • Patent Document 2 describes that as colloidal silica for polishing, as a result of studying improvements in polishing rate and surface smoothness, silica particles supporting a metal were used, and this objective was achieved. ing.
  • techniques related to colloidal silica using silica particles supporting, coated with, or containing metal have been disclosed (see, for example, Patent Documents 3 to 10).
  • colloidal silica has a particle diameter of about 5 to 300 nm, but when it comes to a minute region of 100 nm or less, from the viewpoint of modifying colloidal silica with metal fine particles, it is necessary to make the metal fine particles even smaller. In addition, it is difficult to obtain metal-modified colloidal silica because silica particles aggregate under the influence of metal fine particles.
  • Modification of colloidal silica with a metal using the above-mentioned conventional technology is a method of supporting or coating the surface of the silica particles with the metal for the purpose of modification by reacting the silica particles with a metal compound, and the silica particles are small.
  • colloidal silica is required to be a colloidal particle that is stable over a long period of time when considering its use for dispersing in base materials such as paints and films. Accordingly, an object of the present invention is to provide a metal-containing colloidal silica in which colloidal particles are less likely to aggregate and which has excellent storage stability.
  • the present inventors have made intensive studies to solve the above problems, and found that active silicic acid is further added to the surface of metal-containing colloidal silica obtained by allowing a metal salt compound to coexist during the particle growth process of silica particles.
  • the inventors have found that colloidal particles are less likely to agglomerate by reacting them to form a silica layer, and have completed the present invention.
  • the present invention provides a metal-containing colloidal silica having a mixed layer in which metal M is dispersed in silica, wherein the mixed layer is composed of silica particles serving as a core material and a silica layer located on the surface of the metal-containing colloidal silica.
  • the metal M is Au, Ag, Cu, Zn, Ti, Pt, Mg, Zr, Fe, Sr, Ca, V, Mo, Bi, Nb, Ga, Ge, Sn, Ba, W, Co, It is one or more selected from Ni or Mn, and the molar ratio (Si/M) of silicon to the metal M in the coating layer combining the mixed layer and the silica layer is 10 or more and 10,000 or less, and the metal M is in the mixed layer It is a metal-containing colloidal silica that is uniformly finely dispersed in
  • the present invention also comprises the steps of: (a) adding a metal salt compound to an aqueous active silicic acid solution to prepare an aqueous active silicic acid solution containing a metal salt compound; a step of reacting under conditions to form a mixed layer on the surface of the colloidal silica in which the metal is uniformly finely dispersed in the silica; and forming a silica layer on the surface of the mixed layer.
  • FIG. 1 is a TEM photograph of silver-containing colloidal silica obtained in Example 1.
  • FIG. 1 is the result of elemental mapping by TEM-EDX of silver-containing colloidal silica obtained in Example 1.
  • FIG. 1 is an XPS spectrum of silver-containing colloidal silica obtained in Example 1.
  • the metal-containing colloidal silica of the present invention has a mixed layer in which the metal M is uniformly and finely dispersed in silica, and the mixed layer is located on the surface of the silica particles serving as the core material and the metal-containing colloidal silica. It is positioned between the silica layer.
  • the silica particles serve as the core material of the metal-containing colloidal silica of the present invention and are coated with the mixed layer.
  • the particle size of the silica particles may be such that the resulting metal-containing colloidal silica can maintain a colloidal state, and is preferably 0.5 nm or more and 100 nm or less, particularly 1 nm or more and 50 nm or less.
  • the mixed layer is composed of silica and metal M, and has a form in which metal M is uniformly and finely dispersed in silica.
  • the metal M is Au, Ag, Cu, Zn, Ti, Pt, Mg, Zr, Fe, Sr, Ca, V, Mo, Bi, Nb, Ga, Ge, Sn, Ba, W, Co, Ni or Mn It is preferably one or more selected from, and can be appropriately selected depending on the use of the metal-containing colloidal silica.
  • the metal M is preferably one or more selected from Ag and Cu.
  • antibacterial means suppressing the growth of bacteria
  • sterilization means killing bacteria.
  • antiviral and virucidal both mean inactivating viruses.
  • the metal M of the present invention may be a single metal or a metal compound. That is, the mixed layer of the metal-containing colloidal silica of the present invention has a form in which a single metal is uniformly finely dispersed in silica, a form in which a metal compound is uniformly finely dispersed, or a single metal and a metal compound is uniformly finely dispersed.
  • the metal compound is preferably an oxide or a hydroxide from the viewpoint of being easily stably retained while being finely dispersed in the silica of the mixed layer.
  • the metal-containing colloidal silica of the present invention when used as an antibacterial agent, a disinfectant, an antiviral agent, or a virucidal agent, when the metal M is Ag, metallic silver, silver oxide (Ag 2 O, AgO, Ag 2 O 3 ) and silver hydroxide (AgOH) are finely dispersed in the mixed layer, and when the metal M is Cu, metallic copper, copper oxides (CuO, Cu 2 O) and copper hydroxide (Cu 2 O, It is preferably finely dispersed in the mixed layer as Cu(OH) 2 ).
  • the metal M is uniformly finely dispersed in the mixed layer
  • the presence of the metal M is confirmed by elemental analysis by X-ray photoelectron spectroscopy (XPS analysis) of the metal-containing colloidal silica
  • XPS analysis X-ray photoelectron spectroscopy
  • an elemental mapping image obtained by analyzing metal-containing colloidal silica at a magnification of 1,000,000 times using a transmission electron microscope-energy dispersive X-ray spectroscopy (TEM-EDX) shows the presence of metal M in the mixed layer. It is not confirmed.
  • the state in which the metal M is uniformly finely dispersed means that the metal M is present dispersedly in a size that cannot be confirmed by TEM-EDX resolution, and that there is no site where the metal M aggregates. do.
  • the particle size of the metal-containing colloidal silica of the present invention is generally 5 to 300 nm, which is a general particle size, as long as the silica particles can maintain a colloidal state. When used for viral materials, the effect is enhanced if the region is 100 nm or less, which is close to the size of bacteria and viruses. From this point of view, the average particle size of the metal-containing colloidal silica of the present invention is preferably 1 nm or more and 100 nm or less, particularly 2 nm or more and 80 nm.
  • the mixed layer is made of silica containing a metal, and the molar ratio of silicon to metal M (Si/M) is 5 or more and 5,000 or less, further 10 or more and 3,000 or less, particularly 50 or more and 1,000 or less. is preferred. If this molar ratio is less than 5, the colloidal silica becomes unstable and becomes a cause of sedimentation or gelation of silica particles.
  • the mixed layer in which the metal is uniformly finely dispersed in the silica it is possible to prevent the metal from falling off from the silica particles. Moreover, since the surface of the silica particles is coated with the mixed layer, the silica particles can be efficiently modified with a small amount of metal.
  • the thickness of the mixed layer is preferably 1 nm or more and 50 nm or less, and more preferably 1 nm or more and 10 nm or less.
  • the silica layer is located on the outer surface of the metal-containing colloidal silica of the present invention and covers the mixed layer.
  • the thickness of the silica layer is 0.5 nm or more and 10 nm or less, so that the properties of the metal M such as antibacterial, bactericidal, antiviral, and virucidal properties can be utilized while preventing the metal M from falling off. It is preferable from the viewpoint that the thickness is 1 nm or more and 5 nm or less.
  • the metal-containing colloidal silica of the present invention has a coating layer in which the mixed layer and the silica layer are combined.
  • the molar ratio of silicon to metal M (Si/M) in the coating layer including the mixed layer and the silica layer is 10 or more and 10,000 or less, preferably 20 or more and 8,000 or less, and particularly preferably 50 or more and 5,000. It is below. If this molar ratio is less than 10, the colloidal silica becomes unstable and becomes a cause of sedimentation or gelation of silica particles.
  • the molar ratio of silicon to metal M (Si/M) in the metal-containing colloidal silica of the present invention is preferably 10 or more and 20,000 or less, more preferably 20, although it depends on the size of the silica particles serving as the core material. 10,000 or less, particularly preferably 30 or more and 5,000 or less. If this molar ratio is less than 10, the colloidal silica becomes unstable and becomes a cause of sedimentation or gelation of silica particles.
  • the method for producing metal-containing colloidal silica comprises the steps of: (a) adding a metal salt compound to an aqueous active silicic acid solution to prepare an aqueous active silicic acid solution containing a metal salt compound; a step of reacting a compound-containing active silicic acid aqueous solution under alkaline conditions to form a mixed layer in which a metal is uniformly and finely dispersed in silica on the surface of colloidal silica; and (c) colloidal silica forming the mixed layer. and forming a silica layer on the surface of the mixed layer by reacting an aqueous solution of activated silicic acid under alkaline conditions.
  • an aqueous active silicic acid solution containing a metal salt compound is prepared as a raw material for the mixed layer formed in the step (b) described later.
  • the active silicic acid aqueous solution in the step (a) is preferably obtained by bringing an alkali silicate aqueous solution into contact with a cation exchange resin.
  • a sodium silicate aqueous solution called water glass (water glass No. 1 to 4, etc.) is preferably used. Water glass is relatively inexpensive and readily available.
  • the alkali silicate aqueous solution can be used by diluting with water if necessary.
  • a known cation exchange resin can be appropriately selected and used, and is not particularly limited.
  • the alkali silicate aqueous solution is diluted with water to a silica concentration of 3 to 10% by weight, then brought into contact with the H-type strongly acidic cation exchange resin for dealkalization, and if necessary, It can be carried out by contacting with an OH-type strongly basic anion exchange resin for deanion. This process prepares activated silicic acid.
  • Various proposals have already been made for the details of the contact conditions, and any of these known conditions can be adopted in the present invention.
  • the metal salt compound in step (a) is preferably at least one selected from nitrates, chlorides, acetates, phosphates and sulfates.
  • the metals of the metal salt compounds are Au, Ag, Cu, Zn, Ti, Pt, Mg, Zr, Fe, Sr, Ca, V, Mo, Bi, Nb, Ga, Ge, Sn, Ba, W, It is preferably one or more selected from Co, Ni, and Mn, and can be appropriately selected depending on the application of the metal-containing colloidal silica.
  • the concentration of the metal salt compound added to the aqueous solution of active silicic acid is such that the molar ratio of silicon to metal M (Si/M) in the coating layer combining the metal-containing colloidal silica mixed layer and the silica layer is 10 or more and 10,000 or less. Further, it is preferable to add so that the content is 20 or more and 8,000 or less, particularly 50 or more and 5,000 or less. That is, the molar ratio of silicon to metal M (Si/M) in the mixed layer of metal-containing colloidal silica obtained is 5 or more and 5,000 or less, further 10 or more and 3,000 or less, and particularly 50 or more and 1,000 or less. is preferred.
  • the mixed layer is formed by the above step (b).
  • this step (b) in the presence of colloidal silica, an alkaline agent is added to an aqueous solution of active silicic acid containing a metal salt compound, the pH is adjusted to 8 or higher, and heating is performed at 60 to 240° C., so that A mixed layer in which the metal is uniformly finely dispersed is formed.
  • an alkali metal hydroxide such as sodium hydroxide is the cheapest material.
  • Nitrogen-containing organic alkali compounds such as amines and quaternary ammonium hydroxide can be used when alkali metals are not preferred.
  • amines low volatility tertiary amines such as triethanolamine, secondary amines such as piperazine, and aliphatic amines such as ethylenediamine can be used.
  • Quaternary ammonium hydroxides include tetramethylammonium hydroxide, tetraethylammonium hydroxide, and trimethyl-2-hydroxyethylammonium hydroxide (also known as choline hydroxide).
  • the alkali metal content per silica can be reduced to 50 ppm or less.
  • colloidal silica for example, colloidal silica obtained by an ion exchange method can be used.
  • an aqueous alkali silicate solution is diluted with water to a silica concentration of 3 to 10% by weight, then brought into contact with an H-type strongly acidic cation exchange resin for dealkalization, and if necessary. It is brought into contact with an OH-type strongly basic anion exchange resin to deanion to create active silicic acid.
  • H-type strongly acidic cation exchange resin for dealkalization, and if necessary. It is brought into contact with an OH-type strongly basic anion exchange resin to deanion to create active silicic acid.
  • colloidal silica from active silicic acid.
  • Colloidal silica of 5-300 nm is obtained depending on the heating temperature. Commercially available colloidal silica can also be used.
  • the mixed layer obtained by the step (b) of the present invention has the metal M uniformly and finely dispersed in silica.
  • the metal M is Au, Ag, Cu, Zn, Ti, Pt, Mg, Zr, Fe, Sr, Ca, V, Mo, Bi, Nb, Ga, Ge, Sn, Ba, W, Co, Ni or Mn It is preferably one or more selected from, and can be appropriately selected depending on the use of the metal-containing colloidal silica.
  • the metal M is preferably one or more selected from Ag and Cu.
  • the metal M of the present invention may be a single metal or a metal compound. That is, the mixed layer of the metal-containing colloidal silica of the present invention has a form in which a single metal is uniformly finely dispersed in silica, a form in which a metal compound is uniformly finely dispersed, or a single metal and a metal compound is uniformly finely dispersed.
  • the metal compound is preferably an oxide or a hydroxide from the viewpoint of being easily stably retained while being finely dispersed in the silica of the mixed layer.
  • the metal-containing colloidal silica of the present invention when used as an antibacterial agent, a disinfectant, an antiviral agent, or a virucidal agent, when the metal M is Ag, metallic silver, silver oxide (Ag 2 O, AgO, Ag 2 O 3 ) and silver hydroxide (AgOH) are finely dispersed in the mixed layer, and when the metal M is Cu, metallic copper, copper oxides (CuO, Cu 2 O) and copper hydroxide (Cu 2 O, It is preferably finely dispersed in the mixed layer as Cu(OH) 2 ).
  • the mixed layer is made of silica containing a metal, and the molar ratio of silicon to metal M (Si/M) is 5 or more and 5,000 or less, further 10 or more and 3,000 or less, particularly 50 or more and 1,000 or less. is preferred. If this molar ratio is less than 10, the colloidal silica becomes unstable and becomes a cause of sedimentation or gelation of silica particles.
  • the mixed layer in which the metal is uniformly finely dispersed in the silica it is possible to prevent the metal from falling off from the silica particles. Moreover, since the surface of the silica particles is coated with the mixed layer, the silica particles can be efficiently modified with a small amount of metal.
  • the thickness of the mixed layer is preferably 1 nm or more and 50 nm or less, and more preferably 1 nm or more and 10 nm or less.
  • a silica layer is formed by the above step (c).
  • an aqueous solution of activated silicic acid and an alkaline agent are added to the colloidal silica forming the mixed layer, the pH is adjusted to 8 or higher, and heating is performed at 60 to 240° C. to form a silica layer on the surface of the mixed layer. form.
  • the active silicic acid aqueous solution the same as the active silicic acid aqueous solution in the step (a) can be used.
  • the alkali agent the same alkali agent as in the step (b) can be used.
  • the thickness of the silica layer is 1 nm or more and 20 nm or less, particularly 1 nm or more and 10 nm or less. It is preferable to add
  • the particle size of the metal-containing colloidal silica obtained by the production method of the present invention is about 5 to 300 nm, which is a general particle size, and there is no problem if the silica particles can maintain a colloidal state.
  • the average particle size of the metal-containing colloidal silica of the present invention is preferably 1 nm or more and 100 nm or less, particularly 2 nm or more and 80 nm or less.
  • the molar ratio of silicon to metal M (Si/M) in the coating layer including the mixed layer and the silica layer is 10 or more and 10,000 or less, preferably 20 or more and 8,000. Below, it is particularly preferably 50 or more and 5,000 or less. If this molar ratio is less than 10, the colloidal silica becomes unstable and becomes a cause of sedimentation or gelation of silica particles.
  • the present invention may have a step of concentrating the metal-containing colloidal silica after the step (c). This concentration is carried out by ultrafiltration. Evaporative concentration of water may be used, but ultrafiltration is more advantageous in terms of energy.
  • the ultrafiltration membrane used when concentrating silica by ultrafiltration will be explained. Separation to which ultrafiltration membranes are applied targets particles of 1 nm to several microns, but also targets dissolved macromolecular substances, so filtration accuracy in the nanometer range is expressed in molecular weight cutoff.
  • an ultrafiltration membrane having a cutoff molecular weight of 15,000 or less can be preferably used. Particles larger than 1 nm can be separated by using a membrane in this range. More preferably, an ultrafiltration membrane with a molecular weight cutoff of 3,000 to 15,000 is used. Membranes with a molecular weight of less than 3,000 have too high a filtration resistance and require a long treatment time, which is uneconomical.
  • the material of the membrane is polysulfone, polyacrylonitrile, sintered metal, ceramic, carbon, etc., and any of them can be used.
  • a membrane made of polysulfone is easy to use from the viewpoint of heat resistance, filtration speed, and the like.
  • the shape of the membrane is spiral type, tubular type, or hollow fiber type, and any of them can be used, but the hollow fiber type is compact and easy to use. In this step, it is preferable to concentrate so that the concentration of silica becomes 5 to 50% by mass.
  • the particle size of the metal-containing colloidal silica obtained by the production method of the present invention is about 5 to 300 nm, which is a general particle size, and there is no problem if the silica particles can maintain a colloidal state.
  • the average particle size of the metal-containing colloidal silica of the present invention is preferably 1 nm or more and 100 nm or less, particularly 2 nm or more and 80 nm or less.
  • the metal-containing colloidal silica obtained by the above operation has a molar ratio of silicon to metal M (Si/M) of 10 or more and 20,000 or less, preferably 20 or more, depending on the size of the colloidal silica that serves as the core material. 10,000 or less, particularly preferably 30 or more and 5,000 or less. If this molar ratio is less than 10, the colloidal silica becomes unstable and becomes a cause of sedimentation or gelation of silica particles.
  • the metal-containing colloidal silica of the present invention obtained by the above-described production method has antibacterial, antiviral, bactericidal, and virucidal properties.
  • a solvent is not particularly limited, and includes water and organic solvents. Examples of the organic solvent include methanol, ethanol, n-propanol, isopropanol, n-butanol and isobutanol.
  • the metal-containing colloidal silica of the present invention is excellent in dispersibility in various resins and less prone to discoloration. It can be used in fields such as resin compositions and resin molded articles such as fibers, films, sheets, pipes, panels, containers, building materials and structural materials.
  • the metal-containing colloidal silica of the present invention can be incorporated into paints and the like, and used in the field of antibacterial, bactericidal, antiviral or virucidal coatings.
  • Resin molded articles molded from the resin composition containing the metal-containing colloidal silica of the present invention include articles of any shape. Examples thereof include cloth products such as woven fabrics, nonwoven fabrics, mesh fabrics and knitted fabrics, sheet products such as paper and films, and shaped articles such as plates, rods, boxes and porous bodies. Moreover, paints containing the metal-containing colloidal silica of the present invention may have any properties. Examples include powder products such as dusting agents and sprays, and liquid or paste products such as brush coatings, spray coatings, roller coatings, adhesives and sealants.
  • Resin molded articles molded from a resin composition containing the metal-containing colloidal silica of the present invention, and articles using paints containing the metal-containing colloidal silica of the present invention include, for example, freshness-preserving films and sanitary materials. products, kitchen and bath products, toiletries, cosmetics, water treatment products, medical equipment products, building material products, fishing nets, and the like.
  • the paint compounded with the metal-containing colloidal silica of the present invention can be added to cement mortar or applied to cement-concrete moldings to produce cement-concrete products with antibacterial, bactericidal, antiviral or virucidal properties. can be built.
  • the resin composition and paint containing the metal-containing colloidal silica of the present invention can also be applied to various products for the purpose of antibacterial, bactericidal, antiviral or virucidal properties.
  • Average particle size Take 10 g of a sample, add dilute hydrochloric acid to adjust the pH to 4, heat to solidify, wash with pure water, dry again, dry at 150 ° C. to make a powder sample, and put it in NOVA4200 manufactured by Quantachrome.
  • the nitrogen adsorption BET specific surface area SA was measured using Assuming that the density of silica is 2.2 g/cm 3 , the average particle size was calculated by the following formula (1).
  • Particle diameter D (nm) 6 ⁇ 10 3 /[density (g/cm 3 ) ⁇ SA (m 3 /g)] (1)
  • Molar ratio of silicon to metal in coating layer The amount of silicon in the metal-containing colloidal silica and the silica particles serving as the core material was measured by back titration using hydrochloric acid and potassium hydroxide solution. The amount of metal in the metal-containing colloidal silica was measured with an ICP emission spectrometer ICP-OES 5100 manufactured by Agilent. From the obtained measured values, the molar ratio of silicon to metal M in the coating layer was calculated by the following formula (2).
  • Si/M (amount of Si in colloidal silica containing metal - amount of Si in colloidal silica as core material)/amount of metal M in metal-containing colloidal silica (2) (3) Observation of metal in the mixed layer Transmission electron microscope-Energy dispersive X-ray spectroscopic analyzer (TEM-EDX analyzer; Hitachi High-Tech, HD-2700), metal by element mapping image with magnification of 1 million times was observed. (4) Measurement of contained metal in metal-containing colloidal silica X-ray photoelectron spectroscopic analyzer (XPS analyzer; PHI5000 VersaProbe manufactured by ULVAC-PHI), X-ray source is monochromatic AlK ⁇ (1486.6 eV). Metal M was confirmed from the peak of the spectrum obtained.
  • XPS analyzer X-ray photoelectron spectroscopic analyzer
  • Example 1 (a) Preparation of silver nitrate-containing active silicic acid aqueous solution To 13,750 g of deionized water, sodium silicate No. 3 (SiO 2 : 28.8 mass%, Na 2 O: 9.7 mass%, H 2 O: 61.5 mass% ) was added and uniformly mixed to prepare diluted sodium silicate having a silica concentration of 4% by mass. This diluted sodium silicate is dealkalized by passing it through a 4-liter column packed with H-type strongly acidic cation exchange resin (Amberlite (registered trademark) IR120B manufactured by Organo Co., Ltd.) previously regenerated with hydrochloric acid to obtain a silica concentration of 4 mass.
  • H-type strongly acidic cation exchange resin Amberlite (registered trademark) IR120B manufactured by Organo Co., Ltd.
  • a 10% by mass sodium hydroxide aqueous solution was added to this aqueous colloidal silica to adjust the pH to 9.9, and while the temperature was maintained at 95° C. by heating again, 9,074 g of the silver nitrate-containing active silicic acid aqueous solution was added over 3.2 hours. was added to coat the surface of colloidal silica with a mixed layer to obtain silver-containing colloidal silica. The temperature was maintained at 95° C. during the addition, and 10 mass % sodium hydroxide was added simultaneously to maintain pH 9.5-10.5.
  • step (c) Preparation of silica-coated silver-containing colloidal silica
  • 8,415 g of the active silicic acid aqueous solution obtained in the above step (a) was added to the obtained silver-containing colloidal silica over 3.6 hours to obtain silver-containing colloidal silica.
  • the temperature was maintained at 95° C. during the addition, and 10 mass % sodium hydroxide was added simultaneously to maintain pH 9.5-10.5. After the addition was completed, the mixture was allowed to cool to room temperature to obtain 16,500 g of silica-coated silver-containing colloidal silica.
  • the resulting silica-coated silver-containing colloidal silica was circulated by a pump using a hollow-fiber ultrafiltration membrane with a cutoff molecular weight of 6,000 (Microza (registered trademark) UF module SIP-1013, manufactured by Asahi Kasei Corporation).
  • the liquid was subjected to pressure filtration and concentrated to a silica concentration of 35% by mass to recover 1,200 g of silica-coated silver-containing colloidal silica.
  • This silica-coated silver-containing colloidal silica had a pH of 10 at 25° C. and an average particle size of 21 nm.
  • the molar ratio of silicon to silver (Si/Ag) in the resulting coating layer of silver-containing colloidal silica was 2,256 as a result of measurement by ICP emission spectrometry. Further, when the obtained silver-containing colloidal silica was analyzed by TEM-EDX, the presence of silver in the mixed layer was not confirmed in the elemental mapping image. On the other hand, when the silver-containing colloidal silica was analyzed by XPS, a spectrum derived from metallic silver was obtained. From these results, it was confirmed that metallic silver as the metal M was uniformly and finely dispersed in the mixed layer. The thickness of the mixed layer was 4 nm on average and the thickness of the silica layer was 4 nm on average.
  • Example 2 (a) Preparation of silver nitrate-containing active silicic acid aqueous solution To 13,750 g of deionized water, sodium silicate No. 3 (SiO 2 : 28.8 mass%, Na 2 O: 9.7 mass%, H 2 O: 61.5 mass% ) was added and uniformly mixed to prepare diluted sodium silicate having a silica concentration of 4% by mass. This diluted sodium silicate is dealkalized by passing it through a 4-liter column packed with H-type strongly acidic cation exchange resin (Amberlite (registered trademark) IR120B manufactured by Organo Co., Ltd.) previously regenerated with hydrochloric acid to obtain a silica concentration of 4 mass.
  • H-type strongly acidic cation exchange resin Amberlite (registered trademark) IR120B manufactured by Organo Co., Ltd.
  • a 10% by mass sodium hydroxide aqueous solution was added to this aqueous colloidal silica to adjust the pH to 9.9, and while the temperature was maintained at 95° C. by heating again, 5,027 g of the silver nitrate-containing activated silicic acid aqueous solution was added over 4.2 hours. was added to coat the surface of colloidal silica with a mixed layer to obtain silver-containing colloidal silica. The temperature was maintained at 95° C. during the addition, and 10 mass % sodium hydroxide was added simultaneously to maintain pH 9.5-10.5.
  • step (c) Preparation of silica-coated silver-containing colloidal silica
  • 5233 g of the active silicic acid aqueous solution obtained in the above step (a) was added to the obtained silver-containing colloidal silica over 1.9 hours to obtain silver-containing colloidal silica.
  • the temperature was maintained at 95° C. during the addition, and 10 mass % sodium hydroxide was added simultaneously to maintain pH 9.5-10.5. After the addition was completed, the mixture was allowed to cool to room temperature to obtain 14,500 g of silica-coated silver-containing colloidal silica.
  • the resulting silica-coated silver-containing colloidal silica was circulated by a pump using a hollow-fiber ultrafiltration membrane with a cutoff molecular weight of 6,000 (Microza (registered trademark) UF module SIP-1013, manufactured by Asahi Kasei Corporation).
  • the liquid was subjected to pressure filtration and concentrated to a silica concentration of 35% by mass to recover 1,200 g of silica-coated silver-containing colloidal silica.
  • This silica-coated silver-containing colloidal silica had a pH of 9.9 at 25° C. and an average particle size of 21 nm.
  • the molar ratio of silicon to silver (Si/Ag) in the obtained coating layer of silver-containing colloidal silica was 2,615 as a result of measurement by ICP emission spectrometry.
  • the thickness of the mixed layer was 4 nm on average and the thickness of the silica layer was 2 nm on average.
  • Example 3 (a) Preparation of silver nitrate-containing active silicic acid aqueous solution In the same manner as in Example 2, an active silicic acid aqueous solution and a silver nitrate-containing active silicic acid aqueous solution were prepared. (b) Preparation of silver-containing colloidal silica Silver-containing colloidal silica was prepared in the same manner as in Example 2. (c) Preparation of silica-coated silver-containing colloidal silica To the obtained silver-containing colloidal silica, 8,415 g of the active silicic acid aqueous solution obtained in the above step (a) was added over 3.6 hours to obtain a silver-containing colloidal silica surface.
  • silica-coated silver-containing colloidal silica was circulated by a pump using a hollow-fiber ultrafiltration membrane with a cutoff molecular weight of 6,000 (Microza (registered trademark) UF module SIP-1013, manufactured by Asahi Kasei Corporation).
  • the liquid was subjected to pressure filtration and concentrated to a silica concentration of 35% by mass to recover 1,200 g of silica-coated silver-containing colloidal silica.
  • This silica-coated silver-containing colloidal silica had a pH of 10 at 25° C. and an average particle size of 25 nm.
  • the molar ratio of silicon to silver (Si/Ag) in the obtained coating layer of silver-containing colloidal silica was 4,503 as a result of measurement by ICP emission spectrometry.
  • the thickness of the mixed layer was 4 nm on average and the thickness of the silica layer was 4 nm on average.
  • Example 4 (a) Preparation of copper sulfate-containing active silicic acid aqueous solution No. 3 sodium silicate (SiO 2 : 28.8% by mass, Na 2 O: 9.7% by mass, H 2 O: 61.5% by mass) was added to 4,375 g of deionized water. %) was added and uniformly mixed to prepare a diluted sodium silicate having a silica concentration of 4% by mass. This diluted sodium silicate was dealkalized by passing it through a 4-liter column packed with H-type strongly acidic cation exchange resin (Amberlite (registered trademark) IR120B manufactured by Organo Co., Ltd.) previously regenerated with hydrochloric acid.
  • H-type strongly acidic cation exchange resin Amberlite (registered trademark) IR120B manufactured by Organo Co., Ltd.
  • silica-coated copper-containing colloidal silica was circulated by a pump using a hollow fiber ultrafiltration membrane with a molecular weight cut off of 6,000 (Microza (registered trademark) UF module SIP-1013, manufactured by Asahi Kasei Corporation). The solution was filtered under pressure and concentrated to a silica concentration of 35% by mass to recover 500 g of silica-coated copper-containing colloidal silica.
  • This silica-coated copper-containing colloidal silica had a pH of 10 at 25° C. and an average particle size of 20 nm.
  • the molar ratio of silicon to copper (Si/Cu) in the resulting coating layer of copper-containing colloidal silica was 338 as a result of measurement by ICP emission spectrometry. Further, when the resulting copper-containing colloidal silica was analyzed by TEM-EDX, the presence of copper in the mixed layer was not confirmed in the elemental mapping image. On the other hand, XPS analysis of copper-containing colloidal silica gave a spectrum derived from copper oxide (CuO). From these results, it was confirmed that copper oxide (CuO) as the metal M was uniformly finely dispersed in the mixed layer. The thickness of the mixed layer was 2 nm on average and the thickness of the silica layer was 2 nm on average.
  • Example 1 Silver-containing colloidal silica having no silica layer was obtained in the same manner as in Example 1 except that (c) silica-coated silver-containing colloidal silica was not prepared.
  • This silver-containing colloidal silica had a pH of 10 at 25° C. and an average particle size of 18 nm.
  • the molar ratio of silicon to silver (Si/Ag) in the mixed layer of silver-containing colloidal silica obtained was 761 according to the results of measurement by ICP emission spectrometry. The thickness of the mixed layer was 4 nm on average.
  • Example 2 Copper-containing colloidal silica having no silica layer was obtained in the same manner as in Example 4, except that (c) silica-coated copper-containing colloidal silica was not prepared.
  • This copper-containing colloidal silica had a pH of 10 at 25° C. and an average particle size of 15 nm.
  • the molar ratio of silicon to copper (Si/Cu) in the obtained mixed layer of copper-containing colloidal silica was 151 from the result of measurement by ICP emission spectrometry. The thickness of the mixed layer was 2 nm on average.
  • ⁇ Discoloration resistance evaluation> A filter paper was immersed in a sample solution obtained by diluting the colloidal silica obtained in Examples and Comparative Examples with ion-exchanged water to a SiO 2 concentration of 10% for 5 minutes. After the obtained filter paper was air-dried in a light-shielded state, it was irradiated with sunlight for 24 hours, and the filter paper was visually observed to evaluate discoloration resistance according to the following criteria. ⁇ : No discoloration ⁇ : Discoloration
  • Example 1 ⁇ Bactericidal effect test>
  • Deionized water was added to the silver-containing colloidal silica obtained in Example 1, Example 2, and Comparative Example 1 to adjust the silica concentration to 20% by mass.
  • the following method was used.
  • Escherichia coli (NBRC3972) and Staphylococcus aureus (NBRC12732) were each cultured on a nutrient agar medium (manufactured by Eiken Chemical Co., Ltd.) at 35°C ⁇ 1°C for 24 hours, and diluted with purified water to obtain a bacterial count of 10 7 to 10.
  • a bacterial solution was prepared so as to have a concentration of 10 8 /mL.
  • this test solution was inoculated in a 10-fold diluted SCDLP medium (manufactured by Nihon Pharmaceutical Co., Ltd.) and cultured at 35° C. ⁇ 1° C. for 48 hours.
  • Table 2 shows the results of counting the number of viable cells after culturing.
  • the silver-containing colloidal silica obtained in Examples 1, 2 and Comparative Example 1 are all excellent in bactericidal properties, but the silver-containing colloidal silica obtained in Examples 1 to 3 It can be seen that deposits due to aggregation of colloidal particles are less likely to form, and the effect of improving storage stability is obtained. Furthermore, it can be seen that the silver-containing colloidal silica obtained in Examples 1 to 3 is also excellent in discoloration resistance. Moreover, it can be seen that the copper-containing colloidal silica obtained in Example 4 is superior to Comparative Example 2 in storage stability and discoloration resistance.

Abstract

シリカ中に金属Mが分散した混合層を有する金属含有コロイダルシリカであって、混合層が、芯材となるシリカ粒子と、金属含有コロイダルシリカの表面に位置するシリカ層との間に位置し、金属MがAu、Ag、Cu、Zn、Ti、Pt、Mg、Zr、Fe、Sr、Ca、V、Mo、Bi、Nb、Ga、Ge、Sn、Ba、W、Co、Ni又はMnから選ばれる一種以上であり、混合層及びシリカ層を合わせた被覆層における金属Mに対するケイ素のモル比(Si/M)が10以上10,000以下であり、金属Mが混合層中で均一に微分散している金属含有コロイダルシリカである。

Description

金属含有コロイダルシリカ及びその製造方法
 本発明は、コロイダルシリカの表面を金属で改質した金属含有コロイダルシリカ及びその製造方法に関する。
 従来からコロイダルシリカは、触媒担体、クロマト充填剤、シリカガラス、樹脂用フィラー、研磨組成物、ブラウン管製造における蛍光体の接着バインダー、電池中の電解液のゲル化剤および揺変剤や飛散防止剤、無機接着剤、塗料など様々な用途に用いられている。
 これらの用途に適切な特性を与えることを目的としてシリカ粒子表面に金属を担持する技術が知られている。例えば特許文献1には、軽量性、分散性、価格等の観点から金属微粒子そのものではなく、プラズマ処理によりシリカ粒子表面に金属微粒子を担持させて使用する方法を提供している。特許文献2には、研磨用途のコロイダルシリカとして、研磨速度の向上及び表面の平滑性の向上を検討した結果、金属を担持したシリカ粒子を用いたところ、この目的を達成できたことが記載されている。その他にも金属を担持、被覆又は含有させたシリカ粒子を用いたコロイダルシリカに関する技術が開示されている(例えば特許文献3~10参照)。
 一般的にコロイダルシリカは、その粒子径が5~300nm程度であるが、100nm以下の微小な領域になると、金属微粒子によるコロイダルシリカの改質の観点からは、金属微粒子を更に小さくする必要があり、また、金属微粒子の影響によりシリカ粒子の凝集が起きてしまい、金属により改質されたコロイダルシリカを得ることは困難であった。
特開2014-152079号公報 特開2015-193486号公報 特開平2-292201号公報 特開平4-210606号公報 特開平4-310235号公報 特開平8-253310号公報 特開2001-130910号公報 特開2005-119909号公報 特開2006-306708号公報 特表2010-505734号公報
 上記従来技術を用いた金属によるコロイダルシリカの改質は、シリカ粒子に金属化合物を反応させることにより、シリカ粒子表面に改質を目的とする金属を担持又は被覆させる方法であり、シリカ粒子が小さくなればなるほど比表面積が大きくなり、金属を担持させるために多量の金属化合物を使用しなければならず非効率的であった。また、コロイダルシリカは、塗料やフィルムなどのベースとなる材質に分散させるために使用することを考慮に入れた場合、長期に渡って安定したコロイド粒子であることが求められている。
 したがって本発明の目的は、コロイド粒子が凝集し難い、保存安定性に優れた金属含有コロイダルシリカを提供することにある。
 本発明者らは、前記課題を解決するために鋭意検討を行った結果、シリカ粒子の粒子成長過程において金属塩化合物を共存させることにより得られた金属含有コロイダルシリカの表面に、更に活性珪酸を反応させてシリカ層を形成することにより、コロイド粒子が凝集し難くなることを見出し、本発明を完成した。
 すなわち本発明は、シリカ中に金属Mが分散した混合層を有する金属含有コロイダルシリカであって、混合層が、芯材となるシリカ粒子と、金属含有コロイダルシリカの表面に位置するシリカ層との間に位置し、金属MがAu、Ag、Cu、Zn、Ti、Pt、Mg、Zr、Fe、Sr、Ca、V、Mo、Bi、Nb、Ga、Ge、Sn、Ba、W、Co、Ni又はMnから選ばれる一種以上であり、混合層及びシリカ層を合わせた被覆層における金属Mに対するケイ素のモル比(Si/M)が10以上10,000以下であり、金属Mが混合層中で均一に微分散している金属含有コロイダルシリカである。
 また本発明は、(a)活性珪酸水溶液に金属塩化合物を添加して金属塩化合物含有活性珪酸水溶液を調製する工程、(b)コロイダルシリカの存在下、前記金属塩化合物含有活性珪酸水溶液をアルカリ性条件で反応させて、コロイダルシリカの表面に、シリカ中に金属が均一に微分散している混合層を形成する工程、及び(c)混合層を形成したコロイダルシリカと、活性珪酸水溶液をアルカリ性条件で反応させて、混合層の表面に、シリカ層を形成する工程、を有する金属含有コロイダルシリカの製造方法である。
 本発明によれば、保存安定性に優れた金属含有コロイダルシリカ及びその製造方法を提供することができる。
実施例1で得られた銀含有コロイダルシリカのTEM写真である。 実施例1で得られた銀含有コロイダルシリカのTEM-EDXによる元素マッピングの結果である。 実施例1で得られた銀含有コロイダルシリカのXPSスペクトルである。
 本発明の金属含有コロイダルシリカは、シリカ中に金属Mが均一に微分散した混合層を有しており、該混合層が、芯材となるシリカ粒子と、金属含有コロイダルシリカの表面に位置するシリカ層との間に位置するものである。
 前記シリカ粒子は、本発明の金属含有コロイダルシリカの芯材となり、前記混合層により被覆されるものである。該シリカ粒子の粒子径は、得られる金属含有コロイダルシリカがコロイド状態を保てる程度の粒子径であればよく、例えば0.5nm以上100nm以下、特に1nm以上50nm以下であることが好ましい。
 前記混合層は、シリカ及び金属Mにより構成されるものであり、シリカ中に金属Mが均一に微分散した形態をなす。
 前記金属Mは、Au、Ag、Cu、Zn、Ti、Pt、Mg、Zr、Fe、Sr、Ca、V、Mo、Bi、Nb、Ga、Ge、Sn、Ba、W、Co、Ni又はMnから選ばれる一種以上であることが好ましく、金属含有コロイダルシリカの用途によって適宜選択することができる。例えば、金属含有コロイダルシリカを抗菌剤、殺菌剤、抗ウイルス剤及び殺ウイルス剤に用いる場合には、金属MがAg及びCuから選ばれる一種以上であることが好ましい。
 本発明において、抗菌とは細菌の増殖を抑制することを意味し、殺菌とは細菌を死滅させることを意味する。また、抗ウイルス及び殺ウイルスとは、いずれもウイルスを不活化させることを意味する。
 本発明の金属Mとは、単体の金属であってもよく、金属化合物であってもよい。すなわち、本発明の金属含有コロイダルシリカにかかる混合層は、シリカ中に単体の金属が均一に微分散している形態、金属化合物が均一に微分散している形態、又は単体の金属及び金属化合物が均一に微分散している形態をとる。
 前記金属化合物としては、混合層のシリカ中に微分散しつつ安定して保持されやすい観点から、酸化物又は水酸化物であることが好ましい。例えば、本発明の金属含有コロイダルシリカを抗菌剤、殺菌剤、抗ウイルス剤又は殺ウイルス剤に用いる場合、金属MがAgであるときには金属銀、酸化銀(AgO、AgO、Ag)及び水酸化銀(AgOH)として混合層中に微分散していることが好ましく、金属MがCuであるときには金属銅、酸化銅(CuO、CuO)及び水酸化銅(CuO、Cu(OH))として混合層中に微分散していることが好ましい。
 本発明において、「金属Mが混合層中で均一に微分散している」とは、「金属含有コロイダルシリカのX線光電子分光分析(XPS分析)による元素分析により金属Mの存在が確認され、かつ、透過型電子顕微鏡-エネルギー分散型X線分光法(TEM-EDX)により、100万倍の倍率で金属含有コロイダルシリカを分析して得られる元素マッピング画像において混合層中に金属Mの存在が確認されない」ことをいう。言い換えれば、金属Mが均一に微分散している状態とは、TEM-EDXの解像度では確認できない大きさで金属Mが分散して存在しており、金属Mが凝集した部位が無いことを意味する。
 本発明の金属含有コロイダルシリカの粒子径は、シリカ粒子がコロイド状態を保てれば一般的な粒子径である5~300nm程度で問題は無いが、例えば抗菌性、抗ウイルス性、或いは殺菌性、殺ウイルス性材料に使用する場合、菌やウイルスの大きさに近い100nm以下の領域であるとその効果が大きくなる。この観点から、本発明の金属含有コロイダルシリカの平均粒子径は1nm以上100nm以下、特に2nm以上80nmであることが好ましい。
 前記混合層は、金属を含むシリカからなり、金属Mに対するケイ素のモル比(Si/M)が5以上5,000以下、さらには10以上3,000以下、特に50以上1,000以下であることが好ましい。このモル比が5未満であるとコロイダルシリカが不安定となりシリカ粒子の沈降、或いはゲル化の一因となり、また、5,000を超えると金属を含有することによる特性を活用することができない。
 前記混合層をシリカ中に金属が均一に微分散しているものとすることで、シリカ粒子から金属が脱落することを防止できる。また、シリカ粒子の表面を前記混合層で被覆するため、少量の金属で効率的にシリカ粒子の改質を行うことができる。
 前記混合層の厚さは、1nm以上50nm以下であることが、効率的なシリカ粒子の改質や製造の観点から好ましく、1nm以上10nm以下であることがより好ましい。
 前記シリカ層は、本発明の金属含有コロイダルシリカの外表面に位置するものであり、前記混合層を被覆するものである。該シリカ層の厚さは、0.5nm以上10nm以下であることが、金属Mの脱落を防止しつつ、抗菌性、殺菌性、抗ウイルス性、殺ウイルス性などの金属Mの特性を活かすことができる観点から好ましく、1nm以上5nm以下であることがより好ましい。
 本発明の金属含有コロイダルシリカは、前記混合層及び前記シリカ層を合わせた被覆層を有するものである。この混合層及びシリカ層を合わせた被覆層における金属Mに対するケイ素のモル比(Si/M)は、10以上10,000以下、好ましくは20以上8,000以下、特に好ましくは50以上5,000以下である。このモル比が10未満であるとコロイダルシリカが不安定となりシリカ粒子の沈降、或いはゲル化の一因となり、また、10,000を超えると金属を含有することによる特性を活用することができない。
 本発明の金属含有コロイダルシリカ中の金属Mに対するケイ素のモル比(Si/M)は、芯材となるシリカ粒子の大きさにもよるが、好ましくは10以上20,000以下、さらに好ましくは20以上10,000以下、特に好ましくは30以上5,000以下である。このモル比が10未満であるとコロイダルシリカが不安定となりシリカ粒子の沈降、或いはゲル化の一因となり、また、20,000を超えると金属を含有することによる特性を活用することができない。
 本発明の金属含有コロイダルシリカの製造方法は、(a)活性珪酸水溶液に金属塩化合物を添加して金属塩化合物含有活性珪酸水溶液を調製する工程、(b)コロイダルシリカの存在下、前記金属塩化合物含有活性珪酸水溶液をアルカリ性条件で反応させて、コロイダルシリカの表面に、シリカ中に金属が均一に微分散している混合層を形成する工程、及び(c)混合層を形成したコロイダルシリカと、活性珪酸水溶液をアルカリ性条件で反応させて、混合層の表面に、シリカ層を形成する工程、を有する。
 本発明の(a)工程では、後述する(b)工程で形成する混合層の原料となる金属塩化合物含有活性珪酸水溶液を調製する。
 前記(a)工程における活性珪酸水溶液は、珪酸アルカリ水溶液をカチオン交換樹脂に接触させて得られるものであることが好ましい。原料として用いる珪酸アルカリ水溶液としては、水ガラス(水ガラス1号~4号等)と呼ばれる珪酸ナトリウム水溶液が好適に用いられる。水ガラスは比較的安価であり、容易に手に入れることができる。珪酸アルカリ水溶液は、必要に応じて水で希釈して使用することができる。
 前記カチオン交換樹脂は、公知のものを適宜選択して使用することができ、特に制限されない。珪酸アルカリ水溶液とカチオン交換樹脂との接触工程は、例えば珪酸アルカリ水溶液をシリカ濃度3~10重量%に水希釈し、次いでH型強酸性カチオン交換樹脂に接触させて脱アルカリし、必要に応じてOH型強塩基性アニオン交換樹脂に接触させて脱アニオンすることによって行うことができる。この工程により、活性珪酸が調製される。前記接触条件の詳細は、従来から既に様々な提案があり、本発明ではそれら公知のいかなる条件も採用することができる。
 前記(a)工程における金属塩化合物は、硝酸塩、塩化物塩、酢酸塩、リン酸塩及び硫酸塩から選ばれる少なくとも一種であることが好ましい。また、前記金属塩化合物の金属は、Au、Ag、Cu、Zn、Ti、Pt、Mg、Zr、Fe、Sr、Ca、V、Mo、Bi、Nb、Ga、Ge、Sn、Ba、W、Co、Ni又はMnから選ばれる一種以上であることが好ましく、金属含有コロイダルシリカの用途によって適宜選択することができる。
 活性珪酸水溶液に添加する金属塩化合物の濃度は、得られる金属含有コロイダルシリカの混合層及びシリカ層を合わせた被覆層における金属Mに対するケイ素のモル比(Si/M)が10以上10,000以下、更には20以上8,000以下、特に50以上5,000以下となるように添加することが好ましい。すなわち、得られる金属含有コロイダルシリカの混合層における金属Mに対するケイ素のモル比(Si/M)が5以上5,000以下、さらには10以上3,000以下、特に50以上1,000以下であることが好ましい。
 次いで前記(b)工程により混合層の形成を行う。この(b)工程では、コロイダルシリカの存在下、金属塩化合物含有活性珪酸水溶液にアルカリ剤を添加し、pHを8以上にして60~240℃の加熱を行い、コロイダルシリカの表面にシリカ中に金属が均一に微分散している混合層を形成させる。
 前記アルカリ剤としては、水酸化ナトリウムのようなアルカリ金属水酸化物が最も安価な材料である。アルカリ金属を好まないときには、アミン類や水酸化第四アンモニウム等の含窒素有機アルカリ化合物が使用できる。アミン類としてはトリエタノールアミン等の揮発性の低い3級アミン、ピペラジン等の2級アミン、エチレンジアミン等の脂肪族アミンが使用できる。水酸化第四アンモニウムとしては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化トリメチル-2-ヒドロキシエチルアンモニウム(別名、水酸化コリン)が挙げられる。
 上記の含窒素有機アルカリ化合物を使用することで、シリカ当たりのアルカリ金属含有率は50ppm以下とすることができる。セラミック、触媒用バインダー、電子材料用研磨剤等の用途ではこの程度のアルカリ金属含有率とすることが好ましい。より好ましくは30ppm以下である。
 前記コロイダルシリカとしては、例えばイオン交換法によるコロイダルシリカを使用することができる。イオン交換法によるコロイダルシリカの製造工程では、まず珪酸アルカリ水溶液をシリカ濃度3~10重量%に水で希釈し、次いでH型強酸性陽イオン交換樹脂に接触させて脱アルカリし、必要に応じてOH型強塩基性陰イオン交換樹脂に接触させて脱アニオンし、活性珪酸を作成する。イオン交換樹脂の種類や諸条件については既に様々な提案があり、それら公知のいかなる方法も適用できる。次いで、常法に準じてpHが8以上となるようアルカリ剤を添加し、60~240℃に加熱して、活性珪酸からコロイダルシリカを作製する。加熱温度に応じて5~300nmのコロイダルシリカが得られる。また、市販のコロイダルシリカを使用することもできる。
 本発明の(b)工程により得られる混合層は、シリカ中に金属Mが均一に微分散したものとなる。
 前記金属Mは、Au、Ag、Cu、Zn、Ti、Pt、Mg、Zr、Fe、Sr、Ca、V、Mo、Bi、Nb、Ga、Ge、Sn、Ba、W、Co、Ni又はMnから選ばれる一種以上であることが好ましく、金属含有コロイダルシリカの用途によって適宜選択することができる。例えば、金属含有コロイダルシリカを抗菌剤、殺菌剤、抗ウイルス剤又は殺ウイルス剤に用いる場合には、金属MがAg及びCuから選ばれる一種以上であることが好ましい。
 本発明の金属Mとは、単体の金属であってもよく、金属化合物であってもよい。すなわち、本発明の金属含有コロイダルシリカにかかる混合層は、シリカ中に単体の金属が均一に微分散している形態、金属化合物が均一に微分散している形態、又は単体の金属及び金属化合物が均一に微分散している形態をとる。
 前記金属化合物としては、混合層のシリカ中に微分散しつつ安定して保持されやすい観点から、酸化物又は水酸化物であることが好ましい。例えば、本発明の金属含有コロイダルシリカを抗菌剤、殺菌剤、抗ウイルス剤又は殺ウイルス剤に用いる場合、金属MがAgであるときには金属銀、酸化銀(AgO、AgO、Ag)及び水酸化銀(AgOH)として混合層中に微分散していることが好ましく、金属MがCuであるときには金属銅、酸化銅(CuO、CuO)及び水酸化銅(CuO、Cu(OH))として混合層中に微分散していることが好ましい。
 前記混合層は、金属を含むシリカからなり、金属Mに対するケイ素のモル比(Si/M)が5以上5,000以下、さらには10以上3,000以下、特に50以上1,000以下であることが好ましい。このモル比が10未満であるとコロイダルシリカが不安定となりシリカ粒子の沈降、或いはゲル化の一因となり、また、5,000を超えると金属を含有することによる特性を活用することができない。
 前記混合層をシリカ中に金属が均一に微分散しているものとすることで、シリカ粒子から金属が脱落することを防止できる。また、シリカ粒子の表面を前記混合層で被覆するため、少量の金属で効率的にシリカ粒子の改質を行うことができる。
 前記混合層の厚さは、1nm以上50nm以下であることが、製造効率の観点から好ましく、1nm以上10nm以下であることがより好ましい。
 次いで前記(c)工程によりシリカ層の形成を行う。この(c)工程では、混合層を形成したコロイダルシリカに、活性珪酸水溶液及びアルカリ剤を添加し、pHを8以上にして60~240℃の加熱を行い、混合層の表面に、シリカ層を形成させる。
 前記活性珪酸水溶液としては、前記(a)工程における活性珪酸水溶液と同じものを使用することができる。また、前記アルカリ剤としては、前記(b)工程におけるアルカリ剤と同じものを使用することができる。
 前記活性珪酸水溶液の添加量は、実施する規模により調整されるが、得られる金属含有コロイダルシリカの保存安定性の観点から、シリカ層の厚さが1nm以上20nm以下、特に1nm以上10nm以下となるように添加することが好ましい。
 本発明の製造方法により得られる金属含有コロイダルシリカの粒子径は、シリカ粒子がコロイド状態を保てれば一般的な粒子径である5~300nm程度で問題は無いが、例えば抗菌剤、抗ウイルス剤、或いは殺菌剤、殺ウイルス剤に使用する場合、菌やウイルスの大きさに近い100nm以下の領域であるとその効果が大きくなる。この観点から、本発明の金属含有コロイダルシリカの平均粒子径は1nm以上100nm以下、特に2nm以上80nm以下であることが好ましい。
 以上の操作により得られる金属含有コロイダルシリカは、混合層及びシリカ層を合わせた被覆層における金属Mに対するケイ素のモル比(Si/M)が10以上10,000以下、好ましくは20以上8,000以下、特に好ましくは50以上5,000以下である。このモル比が10未満であるとコロイダルシリカが不安定となりシリカ粒子の沈降、或いはゲル化の一因となり、また、10,000を超えると金属を含有することによる特性を活用することができない。
 本発明においては、前記(c)工程の後、金属含有コロイダルシリカを濃縮する工程を有していてもよい。この濃縮には限外濾過による濃縮を行う。水分の蒸発濃縮でもよいが、エネルギー的には限外濾過の方が有利である。
 限外濾過によりシリカを濃縮するときに使用される限外濾過膜について説明する。限外濾過膜が適用される分離は対象粒子が1nmから数ミクロンであるが、溶解した高分子物質をも対象とするため、ナノメータ域では濾過精度を分画分子量で表現している。本発明では、分画分子量15,000以下の限外濾過膜を好適に使用することができる。この範囲の膜を使用すると1nm以上の粒子は分離することが出来る。更に好ましくは分画分子量3,000~15,000の限外濾過膜を使用する。3,000未満の膜では濾過抵抗が大きすぎて処理時間が長くなり不経済であり、15,000を超えると、精製度が低くなる。
 膜の材質はポリスルホン、ポリアクリロニトリル、焼結金属、セラミック、カーボン等であり、いずれも使用できる。耐熱性や濾過速度等の観点からポリスルホン製の膜が使用しやすい。膜の形状は、スパイラル型、チューブラー型、中空糸型であり、いずれでも使用できるが、中空糸型がコンパクトで使用しやすい。この工程でシリカの濃度が5~50質量%となるように濃縮することが好ましい。
 本発明の製造方法により得られる金属含有コロイダルシリカの粒子径は、シリカ粒子がコロイド状態を保てれば一般的な粒子径である5~300nm程度で問題は無いが、例えば抗菌剤、抗ウイルス剤、或いは殺菌剤、殺ウイルス剤に使用する場合、菌やウイルスの大きさに近い100nm以下の領域であるとその効果が大きくなる。この観点から、本発明の金属含有コロイダルシリカの平均粒子径は1nm以上100nm以下、特に2nm以上80nm以下であることが好ましい。
 以上の操作により得られる金属含有コロイダルシリカは、芯材となるコロイダルシリカの大きさにもよるが、金属Mに対するケイ素のモル比(Si/M)が10以上20,000以下、好ましくは20以上10,000以下、特に好ましくは30以上5,000以下である。このモル比が10未満であるとコロイダルシリカが不安定となりシリカ粒子の沈降、或いはゲル化の一因となり、また、20,000を超えると金属を含有することによる特性を活用することができない。
 前記製造方法により得られる本発明の金属含有コロイダルシリカは、抗菌性、抗ウイルス性、或いは殺菌性、殺ウイルス性を有するので、そのままでも抗菌剤、抗ウイルス剤、或いは殺菌剤、殺ウイルス剤として使用することが可能であるが、用途により更に溶剤を含むことが好ましい。該溶剤は特に限定されず、水又は有機溶剤が挙げられる。該有機溶剤としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール等が挙げられる。
 本発明の金属含有コロイダルシリカは、種々の樹脂への分散性に優れており、しかも変色傾向も少ないので、各種樹脂に配合して、抗菌性、殺菌性、抗ウイルス性又は殺ウイルス性を有する樹脂組成物や樹脂成形品、例えば、繊維、フィルム、シート、パイプ、パネル、容器、建材、構造材等の分野に用いることができる。また、本発明の金属含有コロイダルシリカを塗料等に配合して、抗菌性、殺菌性、抗ウイルス性又は殺ウイルス性塗膜の分野に用いることができる。
 本発明の金属含有コロイダルシリカが配合された樹脂組成物から成形される樹脂成形品には、いかなる形状のものも含まれる。例えば、織布、不織布、網布、編布等の布製品、紙、フィルム等のシート製品、板、棒、箱、多孔質体等の具形成形品が挙げられる。また、本発明の金属含有コロイダルシリカが配合された塗料には、いかなる性状のものも含まれる。例えば、散布剤、スプレー剤等の粉製品、刷毛塗り塗料、スプレー塗料、ローラー塗り塗料、接着剤、シーラント等の液体ないしペースト状製品が挙げられる。その他には、脱臭剤、制汗剤、石鹸、シャンプー、保湿剤、化粧品、歯磨き粉、口腔洗浄液、潤滑液、クリーム、ローション、表面洗浄剤、洗濯用洗剤等に配合することにより抗菌性、殺菌性、抗ウイルス性又は殺ウイルス性の目的を満たすことができる。
 本発明の金属含有コロイダルシリカが配合された樹脂組成物から成形される樹脂成形品や、本発明の金属含有コロイダルシリカが配合された塗料を用いた物品としては、例えば、鮮度保持フィルムや衛生材料製品、台所浴用製品、トイレタリー、化粧用品、水処理用品、医療器具製品、建材製品、魚網等を挙げることができる。また、本発明の金属含有コロイダルシリカが配合された塗料を、セメントモルタルに添加、あるいはセメントコンクリートの成形体に塗装して、抗菌性、殺菌性、抗ウイルス性又は殺ウイルス性のセメントコンクリートの製品を造ることができる。本発明の金属含有コロイダルシリカが配合された樹脂組成物及び塗料は、その他、抗菌性、殺菌性、抗ウイルス性又は殺ウイルス性を目的として種々の製品に応用することができる。
 以下、本発明を実施例により説明する。しかしながら本発明の範囲はこれらの実施例に限定されるものではない。例中の特性は下記の方法により測定した。
(1)平均粒子径
 試料を10g取り希塩酸を加えてpHを4とし、加熱して固化し純水で洗浄、再乾燥した後、150℃で乾燥して粉末試料とし、Quantachrome社製のNOVA4200にて窒素吸着BET比表面積SAを測定した。シリカの密度を2.2g/cmとして下記式(1)により平均粒子径を算出した。
 
粒子径D(nm)=6×10/[密度(g/cm)×SA(m/g)]  (1)
 
(2)被覆層中の金属に対するケイ素のモル比
 金属含有コロイダルシリカ及び芯材となるシリカ粒子中のケイ素量は、塩酸と水酸化カリウム溶液を用いて逆滴定することにより測定した。金属含有コロイダルシリカ中の金属量は、アジレント社製のICP発光分析装置ICP-OES 5100により測定した。得られた測定値から下記式(2)により被覆層中の金属Mに対するケイ素のモル比を算出した。
 
Si/M=(金属含有コロイダルシリカ中のSi量-芯材となるコロイダルシリカ中のSi量)/金属含有コロイダルシリカ中の金属M量   (2)
 
(3)混合層中の金属の観察
 透過型電子顕微鏡-エネルギー分散型X線分光分析装置(TEM-EDX分析装置;日立ハイテク製、HD-2700)により、倍率100万倍の元素マッピング画像により金属の観察を行った。
(4)金属含有コロイダルシリカ中の含有金属の測定
 X線光電子分光分析装置(XPS分析装置;ULVAC-PHI社製、PHI5000VersaProbe)により、X線源を単色化AlKα(1486.6eV)として、得られたスペクトルのピークから、金属Mの確認を行った。
〔実施例1〕
(a)硝酸銀含有活性珪酸水溶液の調製
 脱イオン水13,750gに3号珪酸ソーダ(SiO:28.8質量%、NaO:9.7質量%、HO:61.5質量%)2,200gを加えて均一に混合し、シリカ濃度4質量%の希釈珪酸ソーダを作製した。この希釈珪酸ソーダを、予め塩酸によって再生したH型強酸性カチオン交換樹脂(オルガノ(株)製アンバーライト(登録商標)IR120B)を充填した4リットルのカラムに通して脱アルカリし、シリカ濃度4質量%でpH3.1の活性珪酸水溶液14,000mLを得た。
 得られた活性珪酸水溶液のうち3,283gに、撹拌しながら硝酸銀0.653gを加え硝酸銀含有活性珪酸水溶液を調製した。
(b)銀含有コロイダルシリカの調製
 平均粒子径9nmのコロイダルシリカ(日本化学工業(株)製、シリカドール30S)65gに脱イオン水2,500gを加えて希釈後、95℃まで加熱して水性コロイダルシリカを得た。この水性コロイダルシリカに10質量%水酸化ナトリウム水溶液を添加してpHを9.9とし、再度加熱して95℃を保持しながら、前記硝酸銀含有活性珪酸水溶液9,074gを3.2時間かけて添加し、コロイダルシリカの表面を混合層で被覆して銀含有コロイダルシリカを得た。添加中は95℃を維持し、10質量%水酸化ナトリウムを同時添加してpH9.5~10.5を維持した。
(c)シリカコート銀含有コロイダルシリカの調製
 次いで、得られた銀含有コロイダルシリカに上記(a)工程で得られた活性珪酸水溶液8,415gを3.6時間かけて添加し、銀含有コロイダルシリカの表面をシリカ層で被覆した。添加中は95℃を維持し、10質量%水酸化ナトリウムを同時添加してpH9.5~10.5を維持した。添加終了後、室温まで放冷して16,500gのシリカコート銀含有コロイダルシリカを得た。
 得られたシリカコート銀含有コロイダルシリカを、分画分子量6,000の中空糸型限外濾過膜(旭化成(株)製、マイクローザ(登録商標)UFモジュールSIP-1013)を用いてポンプ循環送液による加圧濾過を行い、シリカ濃度35質量%まで濃縮し、シリカコート銀含有コロイダルシリカ1,200gを回収した。このシリカコート銀含有コロイダルシリカは、25℃でのpHが10であり、平均粒子径は21nmであった。また、ICP発光分析の測定結果により、得られた銀含有コロイダルシリカの被覆層における銀に対するケイ素のモル比(Si/Ag)は2,256であった。また、得られた銀含有コロイダルシリカをTEM-EDXにより分析したところ、元素マッピング画像では混合層中に銀の存在が確認されなかった。一方、銀含有コロイダルシリカをXPS分析したところ、金属銀に由来するスペクトルが得られた。これらの結果から、金属Mとして金属銀が混合層中に均一に微分散していることが確認された。混合層の厚さは平均4nmであり、シリカ層の厚さは平均4nmであった。
〔実施例2〕
(a)硝酸銀含有活性珪酸水溶液の調製
 脱イオン水13,750gに3号珪酸ソーダ(SiO:28.8質量%、NaO:9.7質量%、HO:61.5質量%)2,200gを加えて均一に混合し、シリカ濃度4質量%の希釈珪酸ソーダを作製した。この希釈珪酸ソーダを、予め塩酸によって再生したH型強酸性カチオン交換樹脂(オルガノ(株)製アンバーライト(登録商標)IR120B)を充填した4リットルのカラムに通して脱アルカリし、シリカ濃度4質量%でpH3.1の活性珪酸水溶液14,000mLを得た。
 得られた活性珪酸水溶液のうち5,027gに、撹拌しながら硝酸銀0.53gを加え硝酸銀含有活性珪酸水溶液を調製した。
(b)銀含有コロイダルシリカの調製
 平均粒子径9nmのコロイダルシリカ(日本化学工業(株)製、シリカドール30S)100gに脱イオン水2,500gを加えて希釈後、95℃まで加熱して水性コロイダルシリカを得た。この水性コロイダルシリカに10質量%水酸化ナトリウム水溶液を添加してpHを9.9とし、再度加熱して95℃を保持しながら、前記硝酸銀含有活性珪酸水溶液5,027gを4.2時間かけて添加し、コロイダルシリカの表面を混合層で被覆して銀含有コロイダルシリカを得た。添加中は95℃を維持し、10質量%水酸化ナトリウムを同時添加してpH9.5~10.5を維持した。
(c)シリカコート銀含有コロイダルシリカの調製
 次いで、得られた銀含有コロイダルシリカに上記(a)工程で得られた活性珪酸水溶液5,233gを1.9時間かけて添加し、銀含有コロイダルシリカの表面をシリカ層で被覆した。添加中は95℃を維持し、10質量%水酸化ナトリウムを同時添加してpH9.5~10.5を維持した。添加終了後、室温まで放冷して14,500gのシリカコート銀含有コロイダルシリカを得た。
 得られたシリカコート銀含有コロイダルシリカを、分画分子量6,000の中空糸型限外濾過膜(旭化成(株)製、マイクローザ(登録商標)UFモジュールSIP-1013)を用いてポンプ循環送液による加圧濾過を行い、シリカ濃度35質量%まで濃縮し、シリカコート銀含有コロイダルシリカ1,200gを回収した。このシリカコート銀含有コロイダルシリカは、25℃でのpHが9.9であり、平均粒子径は21nmであった。また、ICP発光分析の測定結果により、得られた銀含有コロイダルシリカの被覆層における銀に対するケイ素のモル比(Si/Ag)は2,615であった。混合層の厚さは平均4nmであり、シリカ層の厚さは平均2nmであった。
〔実施例3〕
(a)硝酸銀含有活性珪酸水溶液の調製
 実施例2と同じ方法で活性珪酸水溶液及び硝酸銀含有活性珪酸水溶液を調製した。
(b)銀含有コロイダルシリカの調製
 実施例2と同じ方法で銀含有コロイダルシリカを調製した。
(c)シリカコート銀含有コロイダルシリカの調製
 得られた銀含有コロイダルシリカに上記(a)工程で得られた活性珪酸水溶液8,415gを3.6時間かけて添加し、銀含有コロイダルシリカの表面をシリカ層で被覆した。添加中は95℃を維持し、10質量%水酸化ナトリウムを同時添加してpH9.5~10.5を維持した。添加終了後、室温まで放冷して16,500gのシリカコート銀含有コロイダルシリカを得た。
 得られたシリカコート銀含有コロイダルシリカを、分画分子量6,000の中空糸型限外濾過膜(旭化成(株)製、マイクローザ(登録商標)UFモジュールSIP-1013)を用いてポンプ循環送液による加圧濾過を行い、シリカ濃度35質量%まで濃縮し、シリカコート銀含有コロイダルシリカ1,200gを回収した。このシリカコート銀含有コロイダルシリカは、25℃でのpHが10であり、平均粒子径は25nmであった。また、ICP発光分析の測定結果により、得られた銀含有コロイダルシリカの被覆層における銀に対するケイ素のモル比(Si/Ag)は4,503であった。混合層の厚さは平均4nmであり、シリカ層の厚さは平均4nmであった。
〔実施例4〕
(a)硫酸銅含有活性珪酸水溶液の調製
 脱イオン水4,375gに3号珪酸ソーダ(SiO:28.8質量%、NaO:9.7質量%、HO:61.5質量%)700gを加えて均一に混合しシリカ濃度4質量%の希釈珪酸ソーダを作製した。この希釈珪酸ソーダを、予め塩酸によって再生したH型強酸性カチオン交換樹脂(オルガノ(株)製アンバーライト(登録商標)IR120B)を充填した4リットルのカラムに通して脱アルカリし、シリカ濃度4重量%でpH3.1の活性珪酸水溶液約5,075mLを得た。得られた活性珪酸水溶液のうち2,062gに、撹拌しながら硫酸銅五水和物2.61gを加え硫酸銅含有活性珪酸水溶液を調製した。
(b)銅含有コロイダルシリカの調製
 平均粒子径9nmのコロイダルシリカ(日本化学工業(株)製、シリカドール30S)100gに脱イオン水3,000gを加えて希釈後、95℃まで加熱して水性コロイダルシリカを得た。この水性コロイダルシリカに10質量%水酸化ナトリウム水溶液を添加してpHを9.9とし、再度加熱して95℃を保持しながら、前記硫酸銅含有活性珪酸水溶液2,062gを2.2時間かけて添加し、コロイダルシリカの表面を混合層で被覆して銅含有コロイダルシリカを得た。添加中は95℃を維持し、10質量%水酸化ナトリウムを同時添加してpH9.5~10.5を維持した。
(c)シリカコート銅含有コロイダルシリカの調製
 次いで、得られた銅含有コロイダルシリカに上記(a)工程で得られた活性珪酸水溶液3,788gを2.0時間かけて添加し、銅含有コロイダルシリカの表面をシリカ層で被覆した。添加中は95℃を維持し、10質量%水酸化ナトリウムを同時添加してpH9.5~10.5を維持した。添加終了後、室温まで放冷して10,053gのシリカコート銅含有コロイダルシリカを得た。
 得られたシリカコート銅含有コロイダルシリカを、分画分子量6,000の中空糸型限外濾過膜(旭化成(株)製、マイクローザ(登録商標)UFモジュールSIP-1013)を用いてポンプ循環送液による加圧濾過を行い、シリカ濃度35質量%まで濃縮し、シリカコート銅含有コロイダルシリカ500gを回収した。このシリカコート銅含有コロイダルシリカは、25℃でのpHが10であり、平均粒子径は20nmであった。また、ICP発光分析の測定結果により、得られた銅含有コロイダルシリカの被覆層における銅に対するケイ素のモル比(Si/Cu)は338であった。また、得られた銅含有コロイダルシリカをTEM-EDXにより分析したところ、元素マッピング画像では混合層中に銅の存在が確認されなかった。一方、銅含有コロイダルシリカをXPS分析したところ、酸化銅(CuO)に由来するスペクトルが得られた。これらの結果から、金属Mとして酸化銅(CuO)が混合層中に均一に微分散していることが確認された。混合層の厚さは平均2nmであり、シリカ層の厚さは平均2nmであった。
〔比較例1〕
 実施例1において、(c)シリカコート銀含有コロイダルシリカの調製を行わなかったこと以外は実施例1と同じ方法で行い、シリカ層を有さない銀含有コロイダルシリカを得た。この銀含有コロイダルシリカは、25℃でのpHが10であり、平均粒子径は18nmであった。また、ICP発光分析の測定結果により、得られた銀含有コロイダルシリカの混合層における銀に対するケイ素のモル比(Si/Ag)は761であった。混合層の厚さは平均4nmであった。
〔比較例2〕
 実施例4において、(c)シリカコート銅含有コロイダルシリカの調製を行わなかったこと以外は実施例4と同じ方法で行い、シリカ層を有さない銅含有コロイダルシリカを得た。この銅含有コロイダルシリカは、25℃でのpHが10であり、平均粒子径は15nmであった。また、ICP発光分析の測定結果により、得られた銅含有コロイダルシリカの混合層における銅に対するケイ素のモル比(Si/Cu)は151であった。混合層の厚さは平均2nmであった。
<保存安定性評価>
 100mLのポリビンに、実施例及び比較例で得られたコロイダルシリカを入れて密栓した。密栓したポリビンを遮光した恒温機内で室温に保持して静置した。静置開始から7日後にポリビンの中の液体を目視で観察し、以下の基準で保存安定性を評価した。
○:沈殿物なし
×:沈殿物あり
<耐変色性評価>
 実施例及び比較例で得られたコロイダルシリカを、イオン交換水によりSiO濃度10%に希釈して得られた試料溶液に、濾紙を5分浸漬した。得られた濾紙を遮光した状態で風乾した後、太陽光を24時間照射して濾紙を目視で観察し、以下の基準で耐変色性を評価した。
○:変色なし
×:変色あり
Figure JPOXMLDOC01-appb-T000001
 
<殺菌効果試験>
 実施例1、実施例2及び比較例1で得られた銀含有コロイダルシリカに脱イオン水を加えてシリカ濃度20質量%に調整した銀含有シリカゾルを用いて大腸菌及び黄色ブドウ球菌の殺菌効果試験を以下の方法で行った。
 大腸菌(NBRC3972)及び黄色ブドウ球菌(NBRC12732)をそれぞれ普通寒天培地(栄研化学株式会社製)で35℃±1℃、24時間培養し、これを精製水で希釈して菌数が10~10/mLとなるように菌液を調製した。この菌液0.1mLを銀含有シリカゾル10mLと混合し撹拌した後、25℃で5分間静置して試験液を得た。その後、この試験液をSCDLP培地(日本製薬株式会社製)により10倍希釈で接種して35℃±1℃で48時間培養した。培養後の生菌数をカウントした結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 以上の結果から、実施例1、実施例2及び比較例1で得られた銀含有コロイダルシリカはいずれも殺菌特性に優れているが、実施例1~3で得られた銀含有コロイダルシリカは、コロイド粒子の凝集による沈殿物が生成し難く、保存安定性向上の効果が得られていることが判る。さらに、実施例1~3で得られた銀含有コロイダルシリカは、耐変色性にも優れていることが判る。また、実施例4で得られた銅含有コロイダルシリカは比較例2と比べて、保存安定性及び耐変色性に優れていることが判る。
 

Claims (15)

  1.  シリカ中に金属Mが分散した混合層を有する金属含有コロイダルシリカであって、
     混合層が、芯材となるシリカ粒子と、金属含有コロイダルシリカの表面に位置するシリカ層との間に位置し、
     金属MがAu、Ag、Cu、Zn、Ti、Pt、Mg、Zr、Fe、Sr、Ca、V、Mo、Bi、Nb、Ga、Ge、Sn、Ba、W、Co、Ni又はMnから選ばれる一種以上であり、
     混合層及びシリカ層を合わせた被覆層における金属Mに対するケイ素のモル比(Si/M)が10以上10,000以下であり、
     金属Mが混合層中で均一に微分散している金属含有コロイダルシリカ。
  2.  金属Mが、Ag及びCuから選ばれる一種以上である、請求項1に記載の金属含有コロイダルシリカ。
  3.  混合層の厚さが1nm以上50nm以下である、請求項1又は2に記載の金属含有コロイダルシリカ。
  4.  シリカ層の厚さが0.5nm以上10nm以下である、請求項1~3の何れか一項に記載の金属含有コロイダルシリカ。
  5.  シリカ粒子の粒子径が0.5nm以上100nm以下である、請求項1~4の何れか一項に記載の金属含有コロイダルシリカ。
  6.  混合層における金属Mに対するケイ素のモル比(Si/M)が5以上5,000以下である、請求項1~5の何れか一項に記載の金属含有コロイダルシリカ。
  7.  請求項1~6の何れか一項に記載の金属含有コロイダルシリカを含有する剤。
  8.  請求項1~6の何れか一項に記載の金属含有コロイダルシリカを含有する樹脂組成物。
  9.  請求項1~6の何れか一項に記載の金属含有コロイダルシリカを含有する塗料。
  10. (a)活性珪酸水溶液に金属塩化合物を添加して金属塩化合物含有活性珪酸水溶液を調製する工程、
    (b)コロイダルシリカの存在下、前記金属塩化合物含有活性珪酸水溶液をアルカリ性条件で反応させて、コロイダルシリカの表面に、シリカ中に金属が均一に微分散している混合層を形成する工程、及び
    (c)混合層を形成したコロイダルシリカと、活性珪酸水溶液をアルカリ性条件で反応させて、混合層の表面に、シリカ層を形成する工程、
     を有する金属含有コロイダルシリカの製造方法。
  11.  前記活性珪酸水溶液が、珪酸水溶液をカチオン交換樹脂に接触させて得られるものである、請求項10に記載の金属含有コロイダルシリカの製造方法。
  12.  前記金属塩化合物の金属が、Au、Ag、Cu、Zn、Ti、Pt、Mg、Zr、Fe、Sr、Ca、V、Mo、Bi、Nb、Ga、Ge、Sn、Ba、W、Co、Ni又はMnから選ばれる一種以上である、請求項10又は11に記載の金属含有コロイダルシリカの製造方法。
  13.  前記金属塩化合物が、硝酸塩、塩化物塩、酢酸塩、リン酸塩及び硫酸塩から選ばれる少なくとも一種である請求項10~12の何れか一項に記載の金属含有コロイダルシリカの製造方法。
  14.  前記(c)工程の後、金属含有コロイダルシリカを濃縮する工程を有する請求項10~13の何れか一項に記載の金属含有コロイダルシリカの製造方法。
  15.  請求項10~14の何れか一項に記載の製造方法により得られる金属含有コロイダルシリカ。
     
PCT/JP2022/003249 2021-02-02 2022-01-28 金属含有コロイダルシリカ及びその製造方法 WO2022168746A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022579506A JPWO2022168746A1 (ja) 2021-02-02 2022-01-28

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-014865 2021-02-02
JP2021014865 2021-02-02
JP2021067901 2021-04-13
JP2021-067901 2021-04-13

Publications (1)

Publication Number Publication Date
WO2022168746A1 true WO2022168746A1 (ja) 2022-08-11

Family

ID=82741335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003249 WO2022168746A1 (ja) 2021-02-02 2022-01-28 金属含有コロイダルシリカ及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2022168746A1 (ja)
WO (1) WO2022168746A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042522A (ja) * 2009-08-20 2011-03-03 Nippon Chem Ind Co Ltd コロイダルシリカおよびその製造方法
JP2013119131A (ja) * 2011-12-06 2013-06-17 Jgc Catalysts & Chemicals Ltd シリカ系複合粒子およびその製造方法
WO2019122449A1 (en) * 2017-12-21 2019-06-27 Prebona Ab Compositions and methods for reducing odor
JP2019116396A (ja) * 2017-12-26 2019-07-18 日揮触媒化成株式会社 シリカ系粒子分散液及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042522A (ja) * 2009-08-20 2011-03-03 Nippon Chem Ind Co Ltd コロイダルシリカおよびその製造方法
JP2013119131A (ja) * 2011-12-06 2013-06-17 Jgc Catalysts & Chemicals Ltd シリカ系複合粒子およびその製造方法
WO2019122449A1 (en) * 2017-12-21 2019-06-27 Prebona Ab Compositions and methods for reducing odor
JP2019116396A (ja) * 2017-12-26 2019-07-18 日揮触媒化成株式会社 シリカ系粒子分散液及びその製造方法

Also Published As

Publication number Publication date
JPWO2022168746A1 (ja) 2022-08-11

Similar Documents

Publication Publication Date Title
Wang et al. Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects
Namratha et al. Synthesis of silver nanoparticles using Azadirachta indica (Neem) extract and usage in water purification
KR101233570B1 (ko) 항균성 소취제 및 그 제조방법
CN107951902B (zh) 一种石墨烯抗菌组合物及使用该组合物的卫生材料
JP5019076B2 (ja) 細長い形状を有するシリカゾルの製造方法
KR101265781B1 (ko) 결정질 이산화티타늄 코어-비정질 이산화티타늄 쉘 형태의 이산화티타늄 광촉매, 그 제조방법 및 상기 이산화티타늄 광촉매를 포함한 친수성 코팅제
CN109205567B (zh) 一种利用mof衍生双金属氧化物模板制备金属氧化物多级结构的方法
WO2012113650A2 (de) Verfahren zur herstellung wässriger kolloidaler silikasole hoher reinheit aus alkalimetallsilikatlösungen
CN101508863B (zh) 一种纳米羟基磷灰石抗菌涂料及其制备方法
CN111944348B (zh) 离子液体基涂料及其制备方法以及具有离子液体基涂层的制品的制造方法
Shafiee et al. Removal of Rhodamine B by g-C3N4/Co3O4/MWCNT composite stabilized in hydrogel via the synergy of adsorption and photocatalysis under visible light
JP6989930B2 (ja) ポリアニリン導電性高分子に有機酸及び金属イオンが一定の順でドープされる、抗菌および重金属除去用ポリアニリン複合体の製造方法及びその方法により製造されたポリアニリン複合体
Ahmad et al. Novel triangular silver nanoparticle modified membranes for enhanced antifouling performance
CN102499255A (zh) 一种新型银离子分子筛抗菌剂的制备方法
CN1819969A (zh) 具有复合功能的纳米复合材料溶液及其制备方法
Akbar et al. RETRACTED ARTICLE: Cu-loaded C3N4-MgO nanorods for promising antibacterial and dye degradation
JPS6270221A (ja) 抗菌剤
WO2022168746A1 (ja) 金属含有コロイダルシリカ及びその製造方法
CN100341411C (zh) 无机复合抗菌剂及其制备方法和应用
JP2012096133A (ja) 消臭性ルチル型酸化チタン微粒子および該微粒子を含む消臭性塗膜形成用塗布液、消臭性塗膜付基材
JP2022106677A (ja) 金属含有コロイダルシリカ及びその製造方法
KR100738796B1 (ko) 금속의 나노 입자가 함유된 유브이 도료로 코팅처리된 공조기의 열교환용 항균 알루미늄 코일 핀재의 제조방법 및 코팅장치
JP5574813B2 (ja) 酸化チタン系微粒子の製造方法、該酸化チタン系微粒子を用いた抗菌・消臭剤ならびに抗菌・消臭性塗膜形成用塗布液および抗菌・消臭性塗膜付基材
JP3684634B2 (ja) 抗菌性組成物とその製造方法
JP2559125B2 (ja) 抗菌性ゼオライトの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749618

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022579506

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749618

Country of ref document: EP

Kind code of ref document: A1