WO2022168548A1 - サーバ装置、生成方法、電子機器の生成方法、データベースの生成方法、電子機器 - Google Patents

サーバ装置、生成方法、電子機器の生成方法、データベースの生成方法、電子機器 Download PDF

Info

Publication number
WO2022168548A1
WO2022168548A1 PCT/JP2022/000745 JP2022000745W WO2022168548A1 WO 2022168548 A1 WO2022168548 A1 WO 2022168548A1 JP 2022000745 W JP2022000745 W JP 2022000745W WO 2022168548 A1 WO2022168548 A1 WO 2022168548A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
software
underwater
underwater object
software used
Prior art date
Application number
PCT/JP2022/000745
Other languages
English (en)
French (fr)
Inventor
進 高塚
弘樹 鉄川
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to CN202280011653.2A priority Critical patent/CN116940948A/zh
Priority to EP22749425.9A priority patent/EP4290428A1/en
Priority to JP2022579408A priority patent/JPWO2022168548A1/ja
Priority to KR1020237024667A priority patent/KR20230142469A/ko
Publication of WO2022168548A1 publication Critical patent/WO2022168548A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/20Software design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/60Software deployment
    • G06F8/65Updates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Definitions

  • This technology relates to a server device, generation method, electronic device generation method, database generation method, and electronic device, and particularly to technology for measuring underwater objects.
  • a measuring device for measuring the abundance of phytoplankton by irradiating excitation light of a predetermined wavelength to excite phytoplankton and measuring the intensity of fluorescence emitted from the excited phytoplankton has been proposed (for example, See Patent Document 1).
  • the purpose of this technology is to efficiently generate software that is used for different purposes.
  • a server device includes a data acquisition unit that acquires first data related to an underwater object acquired for a first purpose; a purpose-specific software generation unit that generates software used for a purpose. This makes it possible to generate software used for a second purpose based on first data obtained for a first purpose different from the second purpose.
  • the purpose-specific software generation unit generates software used for the first purpose based on second data related to underwater objects acquired for the second purpose. It is conceivable to generate With this, based on both the first data regarding the underwater object acquired for the first purpose and the second data acquired for the second purpose different from the first purpose, the first purpose It will be possible to generate software used for
  • the purpose-specific software generation unit may generate software used for the first purpose based on the first data. Thereby, generating both software used for the first purpose and software used for the second purpose based on the first data acquired for the first purpose becomes possible.
  • the purpose-specific software generation unit generates the first purpose based on the first data and the second data related to underwater objects acquired for the second purpose. and software used for said second purpose.
  • software used for the first purpose based on both the first data obtained for the first purpose and the second data obtained for the second purpose, and It is possible to generate both software used for the second purpose.
  • an identification program for identifying an underwater object is generated in the software used for the first purpose and the software used for the second purpose. It is conceivable to provide an identification program generator that This makes it possible to identify underwater objects using an identification program in the software used for the first purpose and in the software used for the second purpose.
  • the identification program is commonly used for the software used for the first purpose and the software used for the second purpose. can be considered. This allows a common identification program to be used to identify underwater objects in the software used for the first purpose and the software used for the second purpose.
  • the database used when generating the identification program is based on the first data and the second data regarding underwater objects acquired for the second purpose. generated by As a result, a database is generated based on both the first data relating to underwater objects acquired for the first purpose and the second data relating to underwater objects acquired for the second purpose.
  • the server device it is conceivable that at least part of the underwater object to be identified is different between the first object and the second object. This makes it possible to generate the software used for the second purpose based on the first data acquired for the first purpose at least partially different from the underwater object to be identified. .
  • the operation performed when an underwater object to be identified is detected differs between the first object and the second object. Accordingly, software used for the second purpose is generated based on the first data acquired for the first purpose, which differs in the operation to be performed when the underwater object to be identified is detected. It becomes possible to
  • a generation method acquires first data about an underwater object acquired for a first purpose, and based on the first data, for a second purpose different from the first purpose It is what produces the software that is used. Even with such a generation method, an effect similar to that of the server device according to the present technology described above can be obtained.
  • a method of generating an electronic device acquires first data related to an underwater object acquired for a first purpose, and based on the first data, a second purpose different from the first purpose. and storing said software on a medium.
  • the second data related to the underwater object acquired for the second purpose is acquired, and the software used for the second purpose is used to generate the second data. It is conceivable to acquire an identification result obtained by processing the data of 2 and store the identification result in a medium.
  • Such an electronic device generation method can also provide the same effect as the server device according to the present technology described above.
  • a method of generating a database acquires first data related to an underwater object acquired for a first purpose, and selects data for a second purpose different from the first purpose from the first data. extracts a first data portion necessary for generating software used in the software, and stores all or part of the first data in a medium so that the first data portion can be identified.
  • second data related to underwater objects acquired for a second purpose is acquired, the second data and the first data part are integrated, and the It is conceivable to store it in a medium as information necessary for generating software used for the second purpose.
  • Such a database generation method can also provide the same effect as the server device according to the present technology described above.
  • the electronic device according to the present technology includes a medium in which the database is stored. Such an electronic device can also provide the same effects as the server device according to the present technology described above.
  • FIG. 10 is a diagram for explaining an underwater object table;
  • FIG. 10 is a diagram for explaining detailed information of an underwater object table;
  • FIG. 4 is a flowchart showing the procedure of generation processing; It is a figure explaining the structure of the measuring apparatus of a modification.
  • the underwater measurement system 1 is a system for measuring underwater objects such as microorganisms and microplastics existing in water.
  • the measurement is a concept that includes at least one of identifying the type or characteristics of an underwater object, and recording or storing underwater captured images, and broadly speaking, it is a concept that includes investigation or exploration of an underwater object.
  • FIG. 1 is a diagram for explaining the configuration of the underwater measurement system 1.
  • an underwater measurement system 1 includes a server device 2 and measurement devices 3A, 3B, and 3C.
  • the measuring devices 3A, 3B, and 3C have different purposes of use and different software to be executed, but have the same configuration.
  • the measuring device 3 when describing without dividing the measuring devices 3A, 3B, and 3C, they are referred to as the measuring device 3.
  • FIG. 1 is a diagram for explaining the configuration of the underwater measurement system 1.
  • an underwater measurement system 1 includes a server device 2 and measurement devices 3A, 3B, and 3C.
  • the measuring devices 3A, 3B, and 3C have different purposes of use and different software to be executed, but have the same configuration.
  • the measuring device 3A, 3B, and 3C when describing without dividing the measuring devices 3A, 3B, and 3C, they are referred to as the measuring device 3.
  • the server device 2 can communicate with the measuring device 3 , acquires data of underwater objects measured by the measuring device 3 , generates software executed by the measuring device 3 , and transmits the software to the measuring device 3 .
  • software generation includes software update.
  • the measuring device 3 executes the software generated by the server device 2 and measures underwater objects. Further, the measuring device 3 executes a specific operation when an underwater object (hereinafter referred to as a target object) preset for each software is detected.
  • a target object an underwater object preset for each software
  • FIG. 2 is a diagram illustrating a usage example of the measuring device 3. As shown in FIG. The measuring device 3 is used for various purposes such as marine organism survey, aquaculture water quality measurement, fishing ground selection survey, microplastic measurement, marine development impact survey, ship ballast water survey, marine resource exploration, blue carbon measurement, global warming survey, etc. be.
  • the measuring device 3A is placed in a fish tank and used for the first purpose of measuring aquaculture water quality.
  • the measuring device 3B is placed in the deep sea and used for the second purpose of deep-sea life research (marine life research).
  • the measuring device 3C is placed in the sea and used for microplastic measurement as a third purpose.
  • three types of measuring devices 3A, 3B, and 3C with different purposes (software) will be described as examples, but if the measuring device 3 is used for two or more different purposes (software) , the number of purposes does not matter.
  • the first purpose, the second purpose, and the third purpose are examples, and other purposes may be used.
  • the measurement device 3A runs aquaculture water quality measurement software
  • the measurement device 3B runs deep-sea organism survey software
  • the measurement device 3C runs microplastic measurement software.
  • harmful plankton that is considered harmful in aquaculture is used as a target object, and the presence or absence of harmful plankton that is the target object, the number of harmful plankton, etc. are detected. be done.
  • the software executed by the measurement device 3B as indicated by the squares in the figure, deep-sea organisms that inhabit the deep sea are used as target objects, and the presence or absence of the deep-sea organisms that are the target objects and the number of deep-sea organisms are detected.
  • microplastics floating in the sea are used as target objects, and the presence or absence of microplastics, which are target objects, and the number of microplastics are detected. .
  • FIG. 3 is a diagram for explaining the configuration of the measuring device 3. As shown in FIG. As shown in FIG. 3 , the measuring device 3 has a measuring section 10 and a stimulus generating section 11 .
  • the measurement unit 10 is a device that can appropriately control the measurement device 3 and measure a target object using, for example, at least one of chemotaxis and fluorescence of underwater objects (mainly aquatic organisms).
  • chemotaxis is an innate behavior in which an organism responds to directional external stimuli.
  • External stimuli include light, pressure, gravity, chemicals (pheromones), electricity, temperature, and touch.
  • the taxis to light is called phototaxis
  • the taxis to temperature is called thermotaxis. Moving toward the source of the external stimulus is called positive taxis, and moving away from the source of the external stimulus is called negative taxis.
  • the protozoan flagellate genus Euglena migrates toward the light source when exposed to light.
  • the directional external stimulus is light
  • Euglena is said to exhibit positive phototaxis.
  • nematodes when nematodes are placed in an environment with a temperature gradient, they move toward a temperature field (approximately 25°C) that is considered to be the optimum temperature for nematodes.
  • the directional external stimulus is temperature, and the nematode exhibits thermotaxis.
  • certain organisms are known to exhibit chemotaxis.
  • organisms exhibiting chemotaxis are found in all animals and plants.
  • fluorescence is a phenomenon in which, when irradiated with excitation light of a predetermined wavelength, an underwater object is excited and emits light of a wavelength different from that of the excitation light.
  • the measurement device 3 utilizes at least one of the chemotaxis and fluorescence of such underwater objects to measure the target object.
  • the measurement unit 10 includes a control unit 20, a memory 21, a communication unit 22, a gravity sensor 23, an imaging unit 24 and a lens 25.
  • the control unit 20 includes, for example, a microcomputer having a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory), and controls the measuring apparatus 3 as a whole.
  • the control unit 20 functions as a stimulation control unit 31, an imaging control unit 32, an identification unit 33, and an operation control unit 34 in this embodiment.
  • the stimulus control unit 31, imaging control unit 32, identification unit 33, and operation control unit 34 will be described later in detail.
  • the control unit 20 reads data stored in the memory 21 , stores data in the memory 21 , and transmits and receives various data to and from the server device 2 via the communication unit 22 .
  • the memory 21 is composed of a non-volatile memory.
  • the communication unit 22 performs wired or wireless data communication with the server device 2 .
  • the gravity sensor 23 detects gravitational acceleration (direction of gravity) and outputs the detection result to the control unit 20 . Note that the measuring device 3 does not have to include the gravity sensor 23 .
  • the imaging unit 24 includes a vision sensor 24a and an imaging sensor 24b.
  • the vision sensor 24a is a sensor called DVS (Dynamic Vision Sensor) or EVS (Event-Based Vision Sensor).
  • the vision sensor 24 a captures an image of a predetermined imaging range through the lens 25 .
  • the vision sensor 24a is an asynchronous image sensor in which a plurality of pixels having photoelectric conversion elements are arranged two-dimensionally and a detection circuit for detecting an address event in real time is provided for each pixel.
  • an address event is an event that occurs for each address assigned to each of a plurality of pixels arranged two-dimensionally. For example, the quantity exceeds a certain threshold.
  • the vision sensor 24a detects whether or not an address event has occurred for each pixel, and when the occurrence of an address event is detected, reads a pixel signal as pixel data from the pixel where the address event has occurred.
  • a pixel signal readout operation is executed for pixels for which the occurrence of an address event has been detected.
  • the amount of data read out for one frame is small.
  • the vision sensor 24a in the measurement device 3, it is possible to detect the motion of the target object more quickly.
  • the vision sensor 24a can reduce the amount of data and the power consumption.
  • the imaging sensor 24b is, for example, a CCD (Charge Coupled Device) type or CMOS (Complementary Metal-Oxide-Semiconductor) type image sensor, and a plurality of pixels having photoelectric conversion elements are arranged two-dimensionally.
  • the imaging sensor 24b captures a predetermined imaging range through the lens 25 at regular intervals according to the frame rate to generate image data.
  • a zone plate, a pinhole plate, or a transparent plate can be used instead of the lens 25.
  • the vision sensor 24a and the imaging sensor 24b are arranged so as to capture substantially the same imaging range through the lens 25.
  • a half mirror (not shown) is arranged between the vision sensor 24a and the imaging sensor 24b, and the lens 25, one of which is split by the half mirror is incident on the vision sensor 24a, and the other is incident on the imaging sensor 24b. You should do it like this.
  • the stimulus generation unit 11 is a device that generates (outputs) an external stimulus in the imaging range imaged by the imaging unit 24 and applies the external stimulus to living organisms present in the imaging range.
  • a device 41 is provided.
  • the light-heat generating device 40 includes a lighting device 40a (light source) that irradiates the imaging range with light, and a heat source device 40b (heat source) that applies heat to the imaging range.
  • the illumination device 40a is driven under the control of the control unit 20, and can change the wavelength and intensity of light with which the imaging range is irradiated.
  • the heat source device 40b is driven under the control of the control section 20, and can change the temperature of the imaging range.
  • the stimulating substance release device 41 includes, for example, a container containing a pheromone (stimulating substance, chemical substance) and having an openable door. can release pheromones.
  • the stimulus generating section 11 only needs to include a device that generates at least one external stimulus.
  • the measuring device 3 can detect not only phytoplankton, but also phytoplankton, zooplankton, aquatic microorganisms such as larvae of aquatic organisms, microplastics, dust, A wide range of underwater objects including underwater fine particles such as sand and marine snow can be measured.
  • FIG. 4 is a flow chart showing the procedure of the measurement operation process.
  • the control unit 20 executes the measurement operation process shown in FIG. 4 by executing purpose-specific software (purpose-specific programs) stored in the memory 21 .
  • the control unit 20 determines whether the identification program stored in the memory 21 is the latest.
  • the control unit 20 determines that the version of the identification program stored in the memory 21 and the version of the identification program provided by the server device 2 are the latest when they match. If not, it is determined that it is not the latest.
  • the identification program is a program for identifying underwater objects, as will be described later in detail.
  • step S1 If it is determined that the identification program stored in the memory 21 is not the latest (No in step S1), the controller 20 downloads the latest identification program from the server device 2 and stores it in the memory 21 in step S2. . Further, when it is determined that the identification program stored in the memory 21 is the latest (Yes in step S1), the process proceeds to step S3.
  • step S3 the control unit 20 executes measurement operation processing for each purpose, such as measuring the target object for each purpose and executing the operation when the target object is detected.
  • the purpose-based measurement operation process will be described later in detail.
  • step S4 the control unit 20 determines whether or not the termination condition for terminating the measurement operation process is satisfied. If it is determined that the termination condition for terminating the measurement operation process is Yes), the measurement operation process is terminated.
  • the termination condition for terminating the measurement operation process is, for example, that a predetermined period of time has elapsed, or that a user instruction for terminating the measurement operation process has been input.
  • FIG. 5 is a flow chart showing the procedure of the purpose-based measurement operation process.
  • the control unit 20 executes underwater object detection processing for detecting an underwater object.
  • the stimulus control unit 31 operates the stimulus generator 11 so that the stimulus generator 11 generates an external stimulus corresponding to the chemotaxis condition or the fluorescence condition of the organism according to a predesignated operation time sheet.
  • the imaging control unit 32 controls the imaging unit 24 to image the imaging range, and obtains pixel data and image data.
  • the identification unit 33 detects an underwater object existing within the imaging range based on the image (pixel data) captured by the vision sensor 24a. For example, the identification unit 33 creates one frame data based on pixel data input within a predetermined period, and detects a pixel group within a predetermined range in which movement is detected in the frame data as an underwater object. .
  • step S12 the identification unit 33 determines whether an underwater object was detected in step S11. As a result, when it is determined that an underwater object has been detected (Yes in step S11), the identification unit 33 executes underwater object identification processing for identifying the type of the detected underwater object.
  • the identification unit 33 first acquires environment information indicating the environment in which the image was captured.
  • the environment information may include the direction of gravity detected by the gravity sensor 23 and the external environment information acquired via the communication unit 22 in addition to the condition of the external stimulus generated by the stimulus generation unit 11. .
  • the external environment information may include electrical conductivity, temperature, pH, concentration of gas (eg, methane, hydrogen, helium), concentration of metal (eg, manganese, iron), and the like.
  • the identification unit 33 derives identification information of the detected underwater object based on the image (pixel data, image data).
  • the identification unit 33 performs pattern matching or the like to track underwater objects between a plurality of frame data. Based on the tracking result of the object, the identification unit 33 derives the movement direction, speed, trajectory, etc. with respect to the stimulus source as identification information.
  • the identification unit 33 extracts an image portion corresponding to the underwater object from the image (image data) captured by the imaging sensor 24b for the underwater object for which identification information has been derived. Based on the extracted image portion, the identification unit 33 derives the size of the object, presence/absence of tactile sensation, etc. as identification information by image analysis. In addition, since image analysis can use a well-known method, the description is abbreviate
  • the identification unit 33 executes an identification program, which will be described later in detail, based on the derived environmental information and identification information, thereby determining the confidence between the detected underwater object and the underwater object shown in the underwater object table, which will be described later. Derive the rate.
  • the confidence rate is the rate of certainty that indicates whether underwater objects can be correctly identified.
  • step S14 the identification unit 33 determines whether there is an underwater object having a confidence rate equal to or higher than a predetermined first threshold for the detected underwater object, that is, whether the detected underwater object is a known underwater object.
  • the identification unit 33 collects the environmental information, the identification information, and the extracted image portion (hereinafter collectively referred to as ) is stored in the memory 21 (medium) as new underwater object information (identification result) and is transmitted (uploaded) to the server device 2 .
  • step S16 the identification unit 33 determines that the detected underwater object is a target object preset for each purpose. Determine whether or not
  • the confidence rate between the detected underwater object and the target object is equal to or higher than a second threshold higher than the first threshold, the detected underwater object is determined to be the target object.
  • step S17 the operation control unit 34 performs a preset operation for each purpose (hereinafter referred to as a purpose-specific operation). do).
  • step S18 the control unit 20 determines whether or not a termination condition for terminating the purpose-specific measurement operation process is met. Then, the control unit 20 repeats steps S11 to S18 until the termination condition for terminating the purpose-specific measurement operation process is satisfied. (Yes in step S18), the purpose-specific measurement operation process is terminated.
  • FIG. 6 is a diagram illustrating an example of purpose-based operations.
  • the measurement device 3A that detects harmful plankton as the target object will be described as an example.
  • the measuring device 3A includes a drug spraying section 12 in addition to a measuring section 10 and a stimulus generating section 11 .
  • the chemical spraying unit 12 contains a chemical for exterminating harmful plankton.
  • the operation control unit 34 drives the chemical spraying unit 12 in step S17 for the purpose of spraying the chemical on the cage. Execute another action.
  • the measuring device 3A executes the purpose-specific measurement operation process, so that when harmful plankton, which is a target object, is detected, a chemical that exterminates the harmful plankton is sprayed from the chemical spraying unit 12. Become. Thereby, 3 A of measuring apparatuses become possible [ exterminating harmful plankton, when harmful plankton is detected.
  • the measurement apparatus 3A has been described as an example, but the measurement apparatuses 3B and 3C also perform preset purpose-specific operations when a preset target object is detected. Run.
  • the purpose-specific operation executed when the target object is detected does not only actually execute some operation like the measuring device 3A, but also executes a software-like operation such as counting the number of objects. You may do so.
  • FIG. 7 is a diagram for explaining the configuration of the server device 2. As shown in FIG. As shown in FIG. 7 , the server device 2 includes a control section 50 , a storage section 51 and a communication section 52 .
  • the control unit 50 includes, for example, a microcomputer having a CPU, ROM, and RAM, and performs overall control of the server device 2 .
  • the control unit 50 functions as a data acquisition unit 60 , an underwater object table generation unit 61 , an identification program generation unit 62 and a purpose-specific software generation unit 63 .
  • the data acquisition unit 60, the underwater object table generation unit 61, the identification program generation unit 62, and the purpose-specific software generation unit 63 will be described in detail later.
  • the storage unit 51 is composed of a non-volatile memory.
  • the communication unit 22 performs wired or wireless data communication with the measuring device 3 .
  • the data acquisition unit 60 acquires (receives) the new underwater object information (identification result) transmitted from the measurement device 3 and stores it in the storage unit 51 (medium).
  • the data acquisition section 60 acquires the new underwater object information transmitted from any of the measuring devices 3A, 3B and 3C without discrimination.
  • the underwater object table generation unit 61 generates an underwater object table (database) based on the new underwater object information acquired by the data acquisition unit 60, and stores the generated underwater object table in the storage unit 51. Note that generation of the underwater object table includes updating (addition) of the underwater object table.
  • FIG. 8 is a diagram illustrating an underwater object table.
  • FIG. 9 is a diagram for explaining detailed information of the underwater object table.
  • the underwater object table stores detailed information for each underwater object.
  • detailed information includes information on identifier, morphology, fluorescence response, phototaxis, thermotaxis, chemotaxis, chemotaxis behavior and habitat.
  • a distinguished name includes information about a unique ID and species name.
  • Form includes size and image information.
  • the fluorescence reaction includes information on the presence or absence of fluorescence reaction, fluorescence wavelength, and excitation light wavelength.
  • Phototaxis includes presence/absence of phototaxis, positive phototactic wavelength, negative phototactic wavelength, presence/absence of light source blinking, light source blink frequency, presence/absence of light source polarization, direction of light source polarization, size of light source, shape of light source and type of light source. Contains orientation information.
  • Thermotaxis includes information on the presence or absence of thermotaxis and the temperature of thermotaxis.
  • Chemotaxis includes information on the presence or absence of chemotaxis and chemotactic substances.
  • the tactical motion includes information about the tactical movement features (movement speed, movement vector with respect to the stimulus source and gravity).
  • Habitat includes information about known habitat or measured areas.
  • the underwater object table generation unit 61 When new underwater object information is acquired by the data acquisition unit 60 , the underwater object table generation unit 61 generates an underwater object table based on the new underwater object information and stores it in the storage unit 51 .
  • the underwater object table generation unit 61 identifies the underwater object indicated by the new underwater object information by, for example, matching the new underwater object information with the information about the underwater object indicated in the existing external database, Detailed information about the identified underwater object may be added to the underwater object table. Alternatively, the user may analyze the new underwater object information and manually add the detailed information to the underwater object table.
  • new underwater object information and information about underwater objects shown in existing external databases may contain only a part of each item of the above detailed information.
  • the underwater object information determined as a known underwater object by the measuring device 3 is transmitted to the server device 2, and based on the underwater object information, the detailed information about the corresponding underwater object in the underwater object table is further updated.
  • the underwater object table generation unit 61 selects information (first 1) is extracted, and all or part of the new underwater object information is added to the underwater object table and stored in the storage unit 51 so that the extracted information can be identified.
  • the underwater object table generation unit 61 for example, generates all or part of the new underwater object information acquired by the measuring device 3A and all of the new underwater object information (second data) acquired by the measuring device 3B. Alternatively, a part of it can be integrated and added to the underwater object table as information necessary for generating software used in the measuring device 3B and stored in the storage unit 51 .
  • the identification program generator 62 When the underwater object table is generated, the identification program generator 62 generates the identification program by machine learning using the generated underwater object table as teacher data.
  • the identification program is a program for deriving the confidence rate between the underwater objects detected by the measuring device 3 and the underwater objects shown in the underwater object table.
  • the identification program generator 62 transmits the same identification program to all the measuring devices 3 (3A, 3B, 3C). That is, the measuring device 3 identifies underwater objects with the same identification program regardless of the purpose.
  • the identification program generator 62 may generate an identification program at predetermined intervals.
  • the purpose-specific software generation unit 63 generates software for each purpose of the measuring device 3 .
  • the purpose-specific software generation unit 63 generates a target object (target plankton) for each purpose, a second threshold value for identifying the target object, an operation when the target object is detected (purpose-specific operation), and the like. Generates software in which It should be noted that the purpose-specific software differs in at least part of the target object, or differs in the operation performed when the target object is detected.
  • the purpose-specific software generation unit 63 transmits the generated software to the corresponding measuring device 3 . In other words, the purpose-specific software generation unit 63 saves purpose-specific software in the memory 21 (medium) of the measurement device 3 to generate the measurement device 3 in which the software is saved.
  • the server device 2 acquires the new underwater object information (first data) acquired by the measuring device 3A that executes the software for measuring aquaculture water quality, which is the first purpose
  • the server device 2 acquires the new underwater object information.
  • the server device 2 acquires the new underwater object information (second data) acquired by the measuring device 3B that executes the software for deep-sea organism survey, which is the second purpose, based on the new underwater object information generates (updates) an underwater object table and an identification program, and based on the underwater object table and identification program, software for measuring aquaculture water quality, which is the first objective, is generated. That is, when the server device 2 acquires the new underwater object information (second data) acquired for the second purpose, the server device 2, based on the new underwater object information, uses the software for deep-sea organism research as the first purpose. to generate
  • the server device 2 acquires the new underwater object information (first data) acquired by the measuring device 3A that executes the software for measuring aquaculture water quality, which is the first purpose
  • the server device 2 acquires the new underwater object information based on the new underwater object information. generates (updates) an underwater object table and an identification program, and based on the underwater object table and identification program, software for measuring aquaculture water quality, which is the first objective, is generated. That is, when the server device 2 acquires the new underwater object information (first data) acquired for the first purpose, the server device 2, based on the new underwater object information, acquires the software for measuring the culture water quality, which is the first purpose. to generate
  • the server device 2 provides new underwater object information (first data) obtained by the measurement device 3A that executes software for measuring aquaculture water quality, which is the first purpose, and deep-sea organisms, which is the second purpose.
  • first data new underwater object information
  • second data new underwater object information acquired by the measuring device 3B that executes survey software
  • generating (updating) an underwater object table and an identification program based on the new underwater object information
  • software for the first purpose of measuring aquaculture water quality and the second purpose of software for investigating deep-sea organisms are generated.
  • the server device 2 acquires the new underwater object information (first data) acquired for the first purpose and the new underwater object information (second data) acquired for the second purpose, Based on the new underwater object information, software for measuring the quality of aquaculture water, which is the first purpose, and software for measuring the quality of aquaculture water, which is the second purpose, are generated.
  • the server device 2 can be used to measure underwater data in a wide range of different measurement locations. Learning can be performed based on object information, and various software can be efficiently generated for each purpose.
  • FIG. 10 is a flowchart showing the procedure of generation processing.
  • the underwater object table generation unit 61 determines whether the data acquisition unit 60 has acquired new underwater object information. As a result, when it is determined that new underwater object information has been acquired (Yes in step S21), the underwater object table generation unit 61 reads out the underwater object table stored in the storage unit 51 in step S22, and the data acquisition unit 60 Generate (add) an underwater object table based on the new underwater object information acquired by .
  • step S23 the identification program generation unit 62 determines whether an underwater object table has been generated. As a result, when it is determined that an underwater object table has been generated (Yes in step S23), the identification program generator 62 reads out the generated underwater object table in step S24. Then, in step S25, the identification program generator 62 performs machine learning using the underwater object table to generate an identification program.
  • step S26 the purpose-specific software generation unit 63 determines whether to update the software.
  • the identification program is updated, or when the user performs an operation for updating, it is determined that the software is to be updated. If the software is to be updated (Yes in step S26), the purpose-specific software generation unit 63 updates the target software that needs to be updated, and transmits the updated software to the measuring device 3.
  • the measuring device 3 of the above-described embodiment is an example, and may have other configurations as long as it can measure at least underwater objects.
  • FIG. 11 is a diagram explaining the configuration of the measuring device 103 of the modified example.
  • the measurement apparatus 103 includes a sample container 110, a cleaning liquid container 111, a sample switching unit 112, a flow cell 113, a sample discharging unit 114, a front light source 115, a back light source 116, a detection light source 117, a SPAD (Single Photon Avalanche Diode) sensor 118 , imaging sensor 119 , half mirror 120 , mirror 121 , lens 122 , lens 123 , control section 124 , storage section 125 and communication section 126 .
  • SPAD Single Photon Avalanche Diode
  • the sample container 110 is a container that stores a fluid (sea water or lake water) as a sample, and stores the sample taken in from the outside of the apparatus through the sample inlet Mi.
  • the cleaning liquid container 111 is a container that contains a cleaning liquid for cleaning the channel in the flow cell 113 .
  • the sample switching unit 112 switches the fluid to flow into the flow channel in the flow cell 113 between the sample from the sample container 110 and the cleaning liquid from the cleaning liquid container 111 .
  • the flow cell 113 functions as a sample storage unit, and a fluid as a sample is sampled in a channel formed inside. As will be described later, when the sample switching unit 112 is switched to the cleaning liquid container 111 side, the cleaning liquid flows into the channel of the flow cell 113 .
  • the sample discharge unit 114 has a fluid discharge pump, and when the pump is driven, the fluid in the channel of the flow cell 113 is discharged through the sample discharge port Mo located outside the device.
  • a flow path from the sample container 110 to the sample discharge part 114 via the sample switching part 112 and the flow cell 113 and a flow path from the washing liquid container 111 to the sample discharge part 114 via the sample switching part 112 and the flow cell 113 The flow paths leading to each are made to be consistent flow paths, and the inflow of the sample from the sample container 110 to the flow cell 113 and the inflow of the cleaning liquid from the cleaning liquid container 111 to the flow cell 113 are performed by driving the pump of the sample discharge section 114 .
  • the front light source 115 is used as a light source for illuminating the fluid inside the flow cell 113 corresponding to the imaging by the imaging sensor 119 .
  • the “front surface” here means the surface on the imaging sensor 119 side with the position of the flow cell 113 as a reference.
  • the front light source 115 is an annular light source, which prevents interference with imaging by the imaging sensor 119 and illuminates the sample obliquely from the front side of the flow cell 113 .
  • the back light source 116 is a light source for illuminating the fluid in the flow cell 113 corresponding to the imaging by the imaging sensor 119, and is positioned on the opposite side of the flow cell 113 from the front light source 115.
  • Back light source 116 is used for bright field imaging.
  • the image sensor 119 receives the light that has passed through the sample, which is the same as the method used in general microscopes. Since the illumination light is directly incident on the lens 15, the background is bright.
  • Front light source 115 is used for dark field imaging. Light is applied obliquely to the sample, and the imaging sensor 119 receives scattered light and reflected light from the object. Even transparent objects can be measured with high contrast and fine detail. In this case, since the illumination light does not directly enter the lens 15, the background becomes dark.
  • the detection light source 117 emits light for detecting objects in the sample sampled in the flow cell 113 .
  • a semiconductor laser or the like is used for the detection light source 117 .
  • the light emitted from the detection light source 117 is reflected by the half mirror 120 to irradiate the fluid sampled in the channel in the flow cell 113 .
  • SPAD sensor 118 functions as a sensor for detecting underwater objects in the fluid within flow cell 113 .
  • the measurement device 103 uses a pixel array in which a plurality of photodetection pixels are arranged in order to detect weak light (excited light, etc.) from microorganisms and particles.
  • SPAD is conceivable as one of the techniques of this photodetection pixel.
  • a SPAD undergoes avalanche amplification when a single photon enters a high electric field PN junction region while a voltage higher than the breakdown voltage is applied.
  • the existence, position, size, etc. of the underwater object in the flow cell 113 can be specified.
  • the SPAD sensor 118 has a SPAD element that performs photoelectric conversion on incident light using an electron avalanche phenomenon.
  • the electron avalanche phenomenon in SPAD devices is a type of phenomenon known as the internal photoelectric effect.
  • the internal photoelectric effect is a phenomenon in which the number of conduction electrons inside a semiconductor or insulator increases when it is irradiated with light.
  • the SPAD element is an element having a light-receiving resolution in units of photons. In other words, it is an element that can identify the presence or absence of light reception in units of photons.
  • the SPAD sensor 118 in this example has a configuration in which a plurality of pixels having SPAD elements are arranged two-dimensionally. Light emitted from underwater objects in the fluid in the flow cell 113 enters the SPAD sensor 118 via the half mirror 120 , the mirror 13 and the lens 14 .
  • the imaging sensor 119 is configured as, for example, a CCD-type or CMOS-type image sensor, and a plurality of pixels having photoelectric conversion elements are arranged two-dimensionally.
  • the photoelectric conversion element of each pixel of the image sensor 119 does not perform photoelectric conversion using the electron avalanche phenomenon, but employs a photoelectric conversion element such as a photodiode that is used in general imaging. That is, the photoelectric conversion element has a lower light reception resolution than the SPAD element.
  • the imaging sensor 119 performs imaging of the flow channel in the flow cell 113 (imaging including at least the flow channel within the imaging field of view). Light (image light) from the flow cell 113 passes through the half mirror 120 and enters the imaging sensor 119 via the lens 15 .
  • the control unit 124 includes, for example, a microcomputer having a CPU, a ROM, and a RAM, and controls the measuring device 103 as a whole. For example, the control unit 124 performs switching control of the sample switching unit 112, light emission drive control of the front light source 115 and rear light source 116, pump drive control in the sample discharge unit 114, light emission drive control of the detection light source 117, and the like. In addition, the control unit 124 reads data stored in the storage unit 125, stores data in the storage unit 125, and exchanges various data with external devices via the communication unit 126. .
  • the storage unit 125 is configured with a nonvolatile memory.
  • the communication unit 126 performs wired or wireless data communication with an external device. Further, the control unit 124 of this example performs underwater object detection processing based on the light receiving signal from the SPAD sensor 118 and various image analysis processing based on the image captured by the imaging sensor 119 .
  • underwater objects are measured using the taxis and fluorescence of underwater objects, but underwater objects may be measured by different methods.
  • the data acquisition unit 60 receives the first data related to underwater objects acquired for the first purpose, and the first purpose is determined based on the first data. and a purpose-specific software generation unit 63 that generates software used for a different second purpose. This makes it possible to generate software used for a second purpose based on first data obtained for a first purpose different from the second purpose. Therefore, it is possible to efficiently generate software that is used for different purposes.
  • the purpose-specific software generation unit 63 generates software used for the first purpose based on the second data related to underwater objects acquired for the second purpose. can be considered. With this, based on both the first data regarding the underwater object acquired for the first purpose and the second data acquired for the second purpose different from the first purpose, the first purpose It will be possible to generate software used for Therefore, since both the first data and the second data are used to generate the software used for the first purpose, the software used for the first purpose can be generated more efficiently. can be generated.
  • the purpose-specific software generation unit 63 may generate software used for the first purpose based on the first data. Thereby, generating both software used for the first purpose and software used for the second purpose based on the first data acquired for the first purpose becomes possible. Therefore, to more efficiently generate software used for a first purpose and software used for a second purpose based on first data obtained for one purpose. can be done.
  • the purpose-specific software generation unit 63 generates the following data for the first purpose based on the first data and the second data related to underwater objects acquired for the second purpose. It is conceivable to create software that is used for , and software that is used for a second purpose. Thereby, software used for the first purpose based on both the first data obtained for the first purpose and the second data obtained for the second purpose, and It is possible to generate both software used for the second purpose. Therefore, based on the first data and the second data obtained for different purposes, the software used for the first purpose and the software used for the second purpose can be efficiently selected. can be generated.
  • the software used for the first purpose and the identification program for identifying underwater objects in the software used for the second purpose are generated.
  • An identification program generator 62 may be provided. This makes it possible to identify underwater objects using identification programs in the software used for said first purpose and in the software used for said second purpose. Therefore, underwater objects can be identified based on the identification program.
  • the identification program generator 62 is commonly used for the software used for the first purpose and the software used for the second purpose. can be considered. This allows a common identification program to be used to identify underwater objects in the software used for the first purpose and the software used for the second purpose. Therefore, the software can be efficiently generated without the need to generate the identification program separately.
  • the database used when generating the identification program is generated based on the first data and the second data regarding underwater objects acquired for the second purpose. It is conceivable that As a result, a database is generated based on both the first data relating to underwater objects acquired for the first purpose and the second data relating to underwater objects acquired for the second purpose. Therefore, a database can be efficiently generated based on the first data and the second data.
  • the server device 2 it is conceivable that at least part of the target underwater object differs between the first purpose and the second purpose. This makes it possible to generate the software used for the second purpose based on the first data acquired for the first purpose at least partially different from the underwater object to be identified. . Therefore, even if the target underwater object differs for each purpose, it is possible to efficiently generate software for each purpose.
  • the operation performed when an underwater object to be identified is detected differs between the first purpose and the second purpose. Accordingly, software used for the second purpose is generated based on the first data acquired for the first purpose, which differs in the operation to be performed when the underwater object to be identified is detected. It becomes possible to Therefore, even if the operations to be executed are different, purpose-specific software can be efficiently generated.
  • a method of generating an electronic device (measuring device 3) according to the present technology receives first data related to an underwater object acquired for a first purpose, and based on the first data, generates a second data different from the first purpose. 2, and stores the software in a medium (memory 21).
  • the second data related to the underwater object acquired for the second purpose is acquired, and the software used for the second purpose is It is conceivable to obtain an identification result obtained by processing the second data using the second data, and store the identification result in a medium.
  • Such an electronic device generation method can also provide the same effect as the server device 2 according to the present technology described above.
  • a method of generating a database (underwater object table) according to the present technology acquires first data related to underwater objects acquired for a first purpose, and selects data different from the first purpose from among the first data.
  • the first data part necessary for generating the software used for the purpose of 2 is extracted, and all or part of the first data is stored in a medium so that the first data part can be identified. .
  • An electronic device (measuring device 3) according to the present technology includes a medium in which a database is stored. Even with such an electronic device, the same effect as that of the server device 2 according to the present technology described above can be obtained.
  • the present technology can also adopt the following configuration.
  • a data acquisition unit for receiving first data relating to underwater objects acquired for a first purpose a purpose-specific software generation unit that generates software used for a second purpose different from the first purpose, based on the first data;
  • a server device comprising (2) The purpose-specific software generation unit The server device according to (1), which generates software used for the first purpose based on second data about underwater objects acquired for the second purpose.
  • the purpose-specific software generation unit The server device according to (1) or (2), which generates software used for the first purpose based on the first data.
  • the purpose-specific software generation unit Software used for said first purpose and software used for said second purpose based on said first data and second data relating to underwater objects obtained for said second purpose
  • the server device according to any one of (1) to (3), which generates software to be processed.
  • (1) comprising an identification program generation unit that generates an identification program for identifying underwater objects in the software used for the first purpose and the software used for the second purpose (4)
  • the server device according to any one of the above.
  • (6) The server device according to (5), wherein the identification program is commonly used for the software used for the first purpose and the software used for the second purpose.
  • the database used when generating the identification program is generated based on the first data and the second data regarding underwater objects acquired for the second purpose (5) or (6)
  • the server device according to any one of (1) to (7), wherein at least part of the underwater object to be identified is different between the first object and the second object.
  • the server apparatus according to any one of (1) to (8), wherein the first object and the second object differ in the operation performed when an underwater object to be identified is detected.
  • (11) receiving first data relating to underwater objects acquired for the first purpose; generating software based on the first data to be used for a second purpose different from the first purpose; A method of generating an electronic device storing said software on a medium.
  • An electronic device comprising a medium in which the database according to (13) or (14) is stored.
  • a communication unit that acquires software used for a second purpose different from the first purpose, which is generated based on first data about underwater objects acquired for the first purpose; a medium for storing the acquired software; electronic equipment.
  • An information processing system having a server device and an electronic device,
  • the server device a data acquisition unit for acquiring first data relating to an underwater object acquired for a first purpose; a purpose-specific software generation unit that generates software used for a second purpose different from the first purpose, based on the first data; a communication unit that transmits the software; with The electronic device a communication unit that acquires the software; a medium for storing the acquired software;
  • An information processing system comprising (18) the computer, a data acquisition unit for acquiring first data relating to an underwater object acquired for a first purpose; a purpose-specific software generation unit that generates software used for a second purpose different from the first purpose, based on the first data;

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

サーバ装置は、第1の目的で取得された水中物体に関する第1のデータを取得するデータ取得部と、第1のデータに基づき、第1の目的とは異なる第2の目的のために使用されるソフトウェアを生成する目的別ソフトウェア生成部と、を備える。

Description

サーバ装置、生成方法、電子機器の生成方法、データベースの生成方法、電子機器
 本技術はサーバ装置、生成方法、電子機器の生成方法、データベースの生成方法、電子機器に関し、特に、水中物体を測定する技術に関する。
 所定の波長の励起光を照射して植物プランクトンを励起させ、励起された植物プランクトンから発する蛍光の強度を計測することで、植物プランクトンの存在量を測定する測定装置が提案されている(例えば、特許文献1参照)。
特開2019-165687号公報
 上記したような測定装置では、目的ごとに専用のソフトウェアがインストールされ実行することになる。しかしながら、目的ごとに専用のソフトウェアを全て別々に生成しようとすると、ソフトウェアを生成する効率が悪くなってしまう。
 そこで本技術は、異なる目的に用いられるソフトウェアを効率的に生成することを目的とする。
 本技術に係るサーバ装置は、第1の目的で取得された水中物体に関する第1のデータを取得するデータ取得部と、前記第1のデータに基づき、前記第1の目的とは異なる第2の目的のために使用されるソフトウェアを生成する目的別ソフトウェア生成部と、を備えるものである。
 これにより、第2の目的とは異なる第1の目的で取得された第1のデータに基づいて、第2の目的のために使用されるソフトウェアを生成することが可能となる。
 上記した本技術に係るサーバ装置においては、前記目的別ソフトウェア生成部は、前記第2の目的で取得した水中物体に関する第2のデータに基づき、前記第1の目的のために使用されるソフトウェアを生成することが考えられる。
 これにより、第1の目的で取得された水中物体に関する第1のデータ、および、第1の目的とは異なる第2の目的で取得された第2のデータの双方に基づいて、第1の目的のために使用されるソフトウェアを生成することが可能となる。
 上記した本技術に係るサーバ装置においては、前記目的別ソフトウェア生成部は、前記第1のデータに基づき、前記第1の目的のために使用されるソフトウェアを生成することが考えられる。
 これにより、第1の目的で取得された第1のデータに基づいて、第1の目的のために使用されるソフトウェア、および、第2の目的のために使用されるソフトウェアの双方を生成することが可能となる。
 上記した本技術に係るサーバ装置においては、前記目的別ソフトウェア生成部は、前記第1のデータ、および、前記第2の目的で取得した水中物体に関する第2のデータに基づき、前記第1の目的のために使用されるソフトウェア、および、前記第2の目的のために使用されるソフトウェアを生成することが考えられる。
 これにより、第1の目的で取得された第1のデータ、および、第2の目的で取得された第2のデータの双方に基づいて、第1の目的のために使用されるソフトウェア、および、第2の目的のために使用されるソフトウェアの双方を生成することが可能となる。
 上記した本技術に係るサーバ装置においては、前記第1の目的のために使用されるソフトウェア、および、前記第2の目的のために使用されるソフトウェアにおいて水中物体を識別するための識別プログラムを生成する識別プログラム生成部を備えることが考えられる。
 これにより、第1の目的のために使用されるソフトウェア、および、第2の目的のために使用されるソフトウェアにおいて、識別プログラムを用いて水中物体を識別することが可能となる。
 上記した本技術に係るサーバ装置においては、前記識別プログラムは、前記第1の目的のために使用されるソフトウェア、および、前記第2の目的のために使用されるソフトウェアで共通して用いられることが考えられる。
 これにより、共通の識別プログラムを用いて、第1の目的のために使用されるソフトウェア、および、第2の目的のために使用されるソフトウェアにおいて、水中物体を識別することが可能となる。
 上記した本技術に係るサーバ装置においては、前記識別プログラムを生成する際に使用されるデータベースは、前記第1のデータ、および、前記第2の目的で取得した水中物体に関する第2のデータに基づいて生成されることが考えられる。
 これにより、第1の目的で取得した水中物体に関する第1のデータ、および、第2の目的で取得した水中物体に関する第2のデータの双方に基づいてデータベースが生成されることになる。
 上記した本技術に係るサーバ装置においては、前記第1の目的、および、前記第2の目的では、識別対象となる水中物体の少なくとも一部が異なることが考えられる。
 これにより、識別対象となる水中物体の少なくとも一部が異なる第1の目的で取得された第1のデータに基づいて、第2の目的のために使用されるソフトウェアを生成することが可能となる。
 上記した本技術に係るサーバ装置においては、前記第1の目的、および、前記第2の目的では、識別対象となる水中物体が検出された際に実行される動作が異なることが考えられる。
 これにより、識別対象となる水中物体が検出された際に実行される動作が異なる第1の目的で取得された第1のデータに基づいて、第2の目的のために使用されるソフトウェアを生成することが可能となる。
 本技術に係る生成方法は、第1の目的で取得された水中物体に関する第1のデータを取得し、前記第1のデータに基づき、前記第1の目的とは異なる第2の目的のために使用されるソフトウェアを生成するものである。
 このような生成方法によっても、上記した本技術に係るサーバ装置と同様の作用が得られる。
 本技術に係る電子機器の生成方法は、第1の目的で取得された水中物体に関する第1のデータを取得し、前記第1のデータに基づき、前記第1の目的とは異なる第2の目的のために使用されるソフトウェアを生成し、前記ソフトウェアを媒体に保存するものである。
 上記した本技術に係る電子機器の生成方法においては、第2の目的で取得された水中物体に関する第2のデータを取得し、前記第2の目的のために使用されるソフトウェアを用いて前記第2のデータが処理されることで得られる識別結果を取得し、前記識別結果を媒体に保存することが考えられる。
 このような電子機器の生成方法によっても、上記した本技術に係るサーバ装置と同様の作用が得られる。
 本技術に係るデータベースの生成方法は、第1の目的で取得された水中物体に関する第1のデータを取得し、前記第1のデータの中から、前記第1の目的とは異なる第2の目的に使用されるソフトウェアの生成に必要な第1のデータ部分を抽出し、前記第1のデータ部分が識別可能なように前記第1のデータの全部または一部を媒体に保存するものである。
 上記した本技術に係るデータベースの生成方法においては、第2の目的で取得された水中物体に関する第2のデータを取得し、前記第2のデータおよび前記第1のデータ部分を統合して、前記第2の目的に使用されるソフトウェアの生成に必要な情報として媒体に保存することが考えられる。
 このようなデータベースの生成方法によっても、上記した本技術に係るサーバ装置と同様の作用が得られる。
 本技術に係る電子機器は、前記データベースが保存された媒体を備えることが考えられる。
 このような電子機器によっても、上記した本技術に係るサーバ装置と同様の作用が得られる。
実施形態の水中測定システムの構成を説明する図である。 測定装置の使用例を説明する図である。 測定装置の構成を説明する図である。 測定動作処理の手順を示すフローチャートである。 目的別測定動作処理の手順を示すフローチャートである。 目的別動作の一例を説明する図である。 サーバ装置の構成を説明する図である。 水中物体テーブルを説明する図である。 水中物体テーブルの詳細情報を説明する図である。 生成処理の手順を示すフローチャートである。 変形例の測定装置の構成を説明する図である。
 以下、実施の形態を次の順序で説明する。
<1.水中測定システムの構成>
<2.測定装置>
[2-1.測定装置の使用例]
[2-2.測定装置の構成]
[2-3.測定装置による測定処理]
[2-4.目的別動作の一例]
<3.サーバ装置>
[3-1.サーバ装置の構成]
[3-2.生成処理]
<4.水中測定システムの他の構成例>
<5.まとめ>
<6.本技術>
<1.水中測定システムの構成>
 先ず、本技術に係る実施形態としての水中測定システム1の構成について説明する。
 水中測定システム1は、水中に存在する微生物やマイクロプラスチック等の水中物体についての測定を行うシステムである。ここでの測定とは、水中物体の種別もしくは特徴の特定、水中の撮像画像の記録や記憶の少なくとも何れかを含む概念であり、広義的には水中物体の調査または探査を含む概念である。
 図1は、水中測定システム1の構成を説明する図である。図1に示すように、水中測定システム1は、サーバ装置2および測定装置3A、3B、3Cを備える。測定装置3A、3B、3Cは、詳しくは後述するように、使用の目的が互いに異なり、実行するソフトウェアも異なるが、構成は同一である。なお、測定装置3A、3B、3Cを分けることなく説明する際には、測定装置3と表記する。
 サーバ装置2は、測定装置3と通信可能であり、測定装置3によって測定された水中物体のデータを取得するとともに、測定装置3で実行されるソフトウェアを生成して測定装置3に送信する。なお、ソフトウェアの生成には、ソフトウェアの更新を含む。
 測定装置3は、サーバ装置2で生成されたソフトウェアを実行し、水中物体ついての測定を行う。また、測定装置3は、それぞれのソフトウェアごとに予め設定されている対象となる水中物体(以下、対象物体と表記する)が検出された場合に特定の動作を実行する。
<2.測定装置>
[2-1.測定装置の使用例]
 図2は、測定装置3の使用例を説明する図である。測定装置3は、海洋生物調査、養殖水質測定、漁場選定調査、マイクロプラスチック測定、海洋開発影響調査、船舶バラスト水調査、海洋資源探査、ブルーカーボン測定、温暖化調査等の様々な目的で使用される。
 例えば、図2に示すように、測定装置3Aは、生け簀内に配置され、第1の目的としての養殖水質測定に使用される。測定装置3Bは、深海に配置され、第2の目的としての深海生物調査(海洋生物調査)に使用される。測定装置3Cは、海中内に配置され、第3の目的としてのマイクロプラスチック測定に使用される。本例では、目的(ソフトウェア)が異なる3種類の測定装置3A、3B、3Cを例に挙げて説明するが、測定装置3は、2種類以上の異なる目的(ソフトウェア)で使用されるのであれば、その目的数は問わない。また、第1の目的、第2の目的、および、第3の目的は一例であり、他の目的であってもよい。
 したがって、測定装置3Aでは、養殖水質測定用のソフトウェアが実行され、測定装置3Bでは、深海生物調査用のソフトウェアが実行され、測定装置3Cでは、マイクロプラスチック測定用のソフトウェアが実行される。
 例えば、測定装置3Aで実行されるソフトウェアでは、図中丸で示すように、養殖において有害とされる有害プランクトンが対象物体とされ、対象物体である有害プランクトンの有無や、有害プランクトンの数等が検出される。また、測定装置3Bで実行されるソフトウェアでは、図中四角で示すように、深海に生息する深海生物が対象物体とされ、対象物体である深海生物の有無や、深海生物の数が検出される。また、測定装置3Cで実行されるソフトウェアでは、図中三角で示すように、海中に浮遊するマイクロプラスチックが対象物体とされ、対象物体であるマイクロプラスチックの有無や、マイクロプラスチックの数が検出される。
[2-2.測定装置の構成]
 図3は、測定装置3の構成を説明する図である。図3に示すように、測定装置3は、測定部10および刺激発生部11を備えている。
 測定部10は、測定装置3を適宜制御し、例えば水中物体(主に水中生物)の走性および蛍光の少なくとも一方を利用して対象物体についての測定を行うことが可能な装置である。
 ここで、走性とは、方向性のある外部刺激に対して、生物が反応する生得的な行動である。外部刺激としては、光、圧力、重力、化学物質(フェロモン)、電気、温度、接触等がある。そして、例えば、光に対する走性を走光性と呼び、温度に対する走性を温度走性と呼ぶ。また、外部刺激の発生源に対して近づく方向に移動することを正の走性と呼び、外部刺激の発生源に対して遠ざかる方向に移動することを負の走性と呼ぶ。
 例えば、原生動物鞭毛虫類のミドリムシ(ユーグレナ)属は、光を当てると光源に向かって移動する。この例では、方向性を持つ外部刺激は光であり、ミドリムシ属は正の走光性を示すものであると言える。
 また、線虫は温度勾配を持たせた環境に入れられると、線虫にとって適温とされる温度場(約25℃)に向かって移動する。この例では、方向性を持つ外部刺激は温度であり、線虫は温度走性を示すものであると言える。
 このように、特定の生物は走性を示すことが知られている。なお、走性を示す生物は、動植物のいずれにも見られる。
 また、蛍光とは、所定波長の励起光を照射すると、水中物体が励起して励起光とは異なる波長の光を発する現象である。
 測定装置3は、このような水中物体の走性および蛍光の少なくとも一方を利用して、対象物体についての測定を行うものである。
 測定部10は、制御部20、メモリ21、通信部22、重力センサ23、撮像部24およびレンズ25を備えている。
 制御部20は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、および、RAM(Random Access Memory)を有するマイクロコンピュータを備えて構成され、測定装置3の全体制御を行う。制御部20は、本実施形態において、刺激制御部31、撮像制御部32、識別部33および動作制御部34として機能する。なお、刺激制御部31、撮像制御部32、識別部33および動作制御部34について、詳しくは後述する。
 また、制御部20は、メモリ21に記憶されたデータの読み出し処理、メモリ21にデータを記憶させる処理、および、通信部22を介したサーバ装置2との間での各種データの送受信を行う。
 メモリ21は、不揮発性メモリで構成される。通信部22は、サーバ装置2との間で有線または無線によるデータ通信を行う。重力センサ23は、重力加速度(重力方向)を検出し、検出結果を制御部20に出力する。なお、測定装置3は、重力センサ23を備えていなくてもよい。
 撮像部24は、ビジョンセンサ24aおよび撮像センサ24bを備えている。ビジョンセンサ24aは、DVS(Dynamic Vision Sensor)またはEVS(Event-Based Vision Sensor)と呼ばれるセンサである。ビジョンセンサ24aは、レンズ25を通した所定の撮像範囲を撮像する。
 ビジョンセンサ24aは、光電変換素子を有する画素が二次元に複数配列されているとともに、アドレスイベントをリアルタイムに検出する検出回路が画素毎に設けた非同期型のイメージセンサである。なお、アドレスイベントとは、二次元に配列された複数の画素それぞれに割り当てられたアドレスごとに発生するイベントであり、例えば、光電変換素子で発生した電荷に基づく電流の電流値、または、その変化量がある一定の閾値を超えたことなどである。
 ビジョンセンサ24aは、画素ごとにアドレスイベントの発生の有無を検出し、アドレスイベントの発生が検出された場合、そのアドレスイベントが発生した画素から画素信号を画素データとして読み出す。
 ビジョンセンサ24aでは、アドレスイベントの発生が検出された画素に対して画素信号の読み出し動作が実行されるため、所定のフレームレートで全ての画素に対して読み出し動作が実行される同期型のイメージセンサよりも非常に高速な読み出しが可能であり、かつ、1フレーム分として読み出されるデータ量も小さい。
 そのため、測定装置3では、ビジョンセンサ24aを用いることで、より迅速に対象物体の動作を検出することが可能となる。また、ビジョンセンサ24aは、データ量を削減するとともに、消費電力を低減することも可能となる。
 撮像センサ24bは、例えば、CCD(Charge Coupled Device)型やCMOS(Complementary Metal-Oxide-Semiconductor)型のイメージセンサであり、光電変換素子を有する画素が二次元に複数配列されている。撮像センサ24bは、レンズ25を通した所定の撮像範囲を、フレームレートに応じて一定の間隔で撮像して画像データを生成する。なお、測定部10では、レンズ25に代えて、ゾーンプレート、ピンホールプレートまたは透明板を用いることができる。
 ビジョンセンサ24aと撮像センサ24bとは、レンズ25を通じて実質的に同じ撮像範囲を撮像するように配置されている。例えば、ビジョンセンサ24aおよび撮像センサ24bと、レンズ25との間に不図示のハーフミラーが配置され、ハーフミラーによって分光された一方がビジョンセンサ24aに入射され、他方が撮像センサ24bに入射されるようにすればよい。
 刺激発生部11は、撮像部24によって撮像される撮像範囲に対して外部刺激を発生(出力)し、撮像範囲に存在する生物に外部刺激を与える装置であり、光熱発生装置40および刺激物質放出装置41を備えている。
 光熱発生装置40は、撮像範囲に対して光を照射する照明装置40a(光源)と、撮像範囲に対して熱を与える熱源装置40b(熱源)とを備えている。照明装置40aは、制御部20の制御に基づいて駆動され、撮像範囲に照射する光の波長および強度を変更可能である。熱源装置40bは、制御部20の制御に基づいて駆動され、撮像範囲の温度を変更可能である。
 刺激物質放出装置41は、例えば内部にフェロモン(刺激物質、化学物質)を収容した、開閉扉を有する容器を備え、制御部20の制御に基づいて開閉扉を開放することで、撮像範囲に対してフェロモンを放出可能である。
 なお、刺激発生部11は、少なくとも一つの外部刺激を発生させる装置を備えていればよい。
 これにより、測定装置3は、蛍光反応の波長と光強度を測定する装置と異なり、植物プランクトンだけでなく、植物プランクトン、動物プランクトン、水中生物の幼生等の水中微生物、および、マイクロプラスチック、塵、砂、マリンスノー等の水中微粒子を含む広範囲での水中物体を測定の対象とすることが可能となる。
[2-3.測定動作処理]
 図4は、測定動作処理の手順を示すフローチャートである。制御部20は、メモリ21に記憶されている目的別のソフトウェア(目的別のプログラム)を実行することで、図4に示す測定動作処理を実行する。
 ステップS1で制御部20は、メモリ21に記憶されている識別プログラムが最新であるかを判定する。ここでは、制御部20は、メモリ21に記憶されている識別プログラムのバージョンと、サーバ装置2が提供している識別プログラムのバージョンとが一致しているときに最新であると判定し、一致していないときには最新でないと判定する。なお、識別プログラムは、詳しくは後述するように、水中物体を識別するためのプログラムである。
 そして、メモリ21に記憶されている識別プログラムが最新でないと判定した場合(ステップS1でNo)、ステップS2で制御部20は、サーバ装置2から最新の識別プログラムをダウンロードしてメモリ21に記憶させる。また、メモリ21に記憶されている識別プログラムが最新であると判定した場合(ステップS1でYes)、ステップS3に処理を移す。
 ステップS3で制御部20は、目的ごとの対象物体を測定したり、対象物体を検出したときの動作を実行したりする目的別測定動作処理を実行する。なお、目的別測定動作処理について、詳しくは後述する。
 そして、ステップS4で制御部20は、測定動作処理を終了するための終了条件が成立したかを判定し、測定動作処理を終了するための終了条件が成立したと判定した場合には(ステップS4でYes)、測定動作処理を終了する。なお、測定動作処理を終了するための終了条件は、例えば、所定時間が経過したこと、測定動作処理を終了させるためのユーザ指示が入力されたこと等である。
 図5は、目的別測定動作処理の手順を示すフローチャートである。図5に示すように、ステップS11で制御部20は、水中物体を検出する水中物体検出処理を実行する。
 ここでは、刺激制御部31は、予め指定された動作タイムシートに従って、生物の走性条件または蛍光条件に応じた外部刺激を刺激発生部11から発生させるように、刺激発生部11を動作させる。また、撮像制御部32は、撮像部24を制御して撮像範囲を撮像させ、画素データおよび画像データを取得する。
 そして、識別部33は、ビジョンセンサ24aにより撮像された画像(画素データ)に基づいて、撮像範囲に存在する水中物体を検出する。例えば、識別部33は、所定の期間内に入力された画素データに基づいて1つのフレームデータを作成し、そのフレームデータ内で動きが検出された所定範囲内の画素群を水中物体として検出する。
 ステップS12で識別部33は、上記ステップS11で水中物体が検出されたかを判定する。その結果、水中物体が検出されたと判定した場合(ステップS11でYes)、識別部33は、検出された水中物体の種類を識別する水中物体識別処理を実行する。
 ここでは、識別部33は、まず、画像が撮像された環境を示す環境情報を取得する。環境情報には、刺激発生部11から発生させた外部刺激の条件に加え、重力センサ23により検出された重力方向や、通信部22を介して取得される外部環境情報が含まれていてもよい。なお、外部環境情報としては、電気伝導度、温度、ph、気体(例えば、メタン、水素、ヘリウム)の濃度、金属の濃度(例えば、マンガン、鉄)などが考えられる。
 また、識別部33は、画像(画素データ、画像データ)に基づいて、検出された水中物体の識別情報を導出する。ここでは、識別部33は、複数のフレームデータ間において水中物体の追跡をパターンマッチング等により行う。そして、識別部33は、物体の追跡結果に基づいて、刺激源に対する移動方向、速度、軌跡等を識別情報として導出する。
 また、識別部33は、識別情報が導出された水中物体について、撮像センサ24bによって撮像された画像(画像データ)から、水中物体に対応する画像部分を抽出する。そして、識別部33は、抽出した画像部分に基づいて、物体の大きさ、触覚の有無などを画像解析により識別情報として導出する。なお、画像解析は、公知の方法を用いることができるため、ここではその説明は省略する。
 その後、識別部33は、導出した環境情報および識別情報に基づいて、詳しくは後述する識別プログラムを実行することで、検出された水中物体と、後述する水中物体テーブルに示される水中物体とのコンフィデンスレートを導出する。なお、コンフィデンスレートとは、正しく水中物体を識別できているかを示す確証性の割合である。
 ステップS14で識別部33は、検出された水中物体について所定の第1閾値以上のコンフィデンスレートを有する水中物体があったか、すなわち、検出された水中物体が既知の水中物体であったかを判定する。その結果、検出された水中物体が既知の水中物体でないと判定した場合(ステップS14でNo)、ステップS15で識別部33は、環境情報、識別情報および抽出された画像部分(以下、これらをまとめて水中物体情報と表記する)を新規水中物体情報(識別結果)としてメモリ21(媒体)に保存するとともにサーバ装置2に送信(アップロード)する。
 一方、検出された水中物体が既知の水中物体であると判定した場合(ステップS14でYes)、ステップS16で識別部33は、検出された水中物体が、目的ごとに予め設定されている対象物体であるかを判定する。ここでは、検出された水中物体と、対象物体とのコンフィデンスレートが第1閾値よりも高い第2閾値以上であった場合に、検出された水中物体が対象物体であると判定される。
 その結果、検出された水中物体が対象物体であると判定した場合(ステップS16でYes)、ステップS17で動作制御部34は、目的ごとに予め設定されている動作(以下、目的別動作と表記する)を実行する。
 ステップS18で制御部20は、目的別測定動作処理を終了させるための終了条件が成立したかを判定する。そして、制御部20は、目的別測定動作処理を終了させるための終了条件が成立するまでステップS11からステップS18までを繰り返し、目的別測定動作処理を終了させるための終了条件が成立した場合には(ステップS18でYes)、目的別測定動作処理を終了する。
[2-4.目的別動作の一例]
 図6は、目的別動作の一例を説明する図である。ここでは、対象物体として有害プランクトンを検出する測定装置3Aを例に挙げて説明する。測定装置3Aは、測定部10および刺激発生部11に加えて薬剤散布部12を備える。
 薬剤散布部12には、有害プランクトンを駆除するための薬剤が収容されている。上記した目的別測定動作処理において、ステップS16で対象物体である有害プランクトンが検出された場合、ステップS17で動作制御部34は、薬剤散布部12を駆動し、生け簀に対して薬剤を散布させる目的別動作を実行する。このように、測定装置3Aでは、上記目的別測定動作処理を実行することで、対象物体である有害プランクトンを検出した場合に、有害プランクトンを駆除する薬剤が薬剤散布部12から散布されることになる。
 これにより、測定装置3Aは、有害プランクトンが検出された場合に、有害プランクトンを駆除することが可能となる。
 なお、ここでは、測定装置3Aについて例を挙げて説明したが、測定装置3B、3Cについても、それぞれについて予め設定された対象物体が検出された場合に、それぞれについて予め設定された目的別動作を実行する。ただし、対象物体が検出された場合に実行される目的別動作は、測定装置3Aのように何かしらの動作を実際に実行するのみでなく、その数をカウントする等のソフトウェア的な動作を実行するようにしてもよい。
<3.サーバ装置>
[3-1.サーバ装置の構成]
 図7は、サーバ装置2の構成を説明する図である。図7に示すように、サーバ装置2は、制御部50、記憶部51および通信部52を備える。
 制御部50は、例えばCPU、ROMおよびRAMを有するマイクロコンピュータを備えて構成され、サーバ装置2の全体制御を行う。制御部50は、データ取得部60、水中物体テーブル生成部61、識別プログラム生成部62および目的別ソフトウェア生成部63として機能する。なお、データ取得部60、水中物体テーブル生成部61、識別プログラム生成部62および目的別ソフトウェア生成部63について、詳しくは後述する。
 記憶部51は、不揮発性メモリで構成される。通信部22は、測定装置3との間で有線または無線によるデータ通信を行う。
 データ取得部60は、測定装置3から送信される新規水中物体情報(識別結果)を取得(受信)して記憶部51(媒体)に保存する。ここで、データ取得部60は、いずれの測定装置3A、3Bおよび3Cから送信された新規水中物体情報であっても区別することなく取得するようになされている。
 水中物体テーブル生成部61は、データ取得部60によって取得された新規水中物体情報に基づいて水中物体テーブル(データベース)を生成し、生成した水中物体テーブルを記憶部51に記憶する。なお、水中物体テーブルの生成には、水中物体テーブルの更新(追加)を含む。
 図8は、水中物体テーブルを説明する図である。図9は、水中物体テーブルの詳細情報を説明する図である。図8に示すように、水中物体テーブルには、水中物体ごとに詳細情報が記憶されている。図9に示すように、詳細情報には、識別名、形態、蛍光反応、走光性、温度走性、走化性、走性動作および生息地域に関する情報が含まれる。
 例えば、識別名には、固有のIDおよび種名に関する情報が含まれる。形態には、サイズおよび画像情報が含まれる。蛍光反応には、蛍光反応の有無、蛍光波長および励起光波長に関する情報が含まれる。走光性には、走光性の有無、正走光性波長、負走光性波長、光源点滅の有無、光源点滅周波数、光源偏光の有無、光源偏光の方向、光源の大きさ、光源の形および光源の向きに関する情報が含まれる。温度走性には、温度走性の有無、温度走性の温度に関する情報が含まれる。走化性には、走化性の有無、走化性物質に関する情報が含まれる。走性動作には、走性の動き特徴量(移動速度、刺激源と重力に対しての移動ベクトル)に関する情報が含まれる。生息地域には、既知の生息地域、または、測定された地域に関する情報が含まれる。
 水中物体テーブル生成部61は、データ取得部60によって新規水中物体情報が所得された場合、新規水中物体情報に基づいて水中物体テーブルを生成して記憶部51に保存する。
 ここでは、水中物体テーブル生成部61は、例えば、新規水中物体情報と、既存の外部データベースに示される水中物体に関する情報とをマッチングすることにより、新規水中物体情報に示される水中物体を特定し、特定した水中物体に関する詳細情報を水中物体テーブルに追加するようにしてもよい。
 また、新規水中物体情報をユーザが解析し、手動により詳細情報を水中物体テーブルに追加するようにしてもよい。
 なお、新規水中物体情報、および、既存の外部データベースに示される水中物体に関する情報には、上記の詳細情報の各項目の一部のみが含まれている場合もあり、このような場合には、マッチングした情報の全部または一部を組み合わせて(統合して)詳細情報を追加していくことで、精度の高い詳細情報を登録することが可能となる。
 また、測定装置3において既知の水中物体と判定された水中物体情報をサーバ装置2に送信し、その水中物体情報に基づいて、水中物体テーブルにおける対応する水中物体についての詳細情報をさらに更新するようにしてもよい。
 これにより、水中物体テーブル生成部61は、例えば、測定装置3Aで取得された新規水中物体情報(第1のデータ)の中から、測定装置3Bで使用されるソフトウェアの生成に必要な情報(第1のデータ部分)を抽出し、抽出した情報が識別可能なように新規水中物体情報の全部または一部を水中物体テーブルに追加して記憶部51に保存することができる。
 また、水中物体テーブル生成部61は、例えば、測定装置3Aで取得された新規水中物体情報の全部または一部、および、測定装置3Bで取得された新規水中物体情報(第2のデータ)の全部または一部を統合して、測定装置3Bで使用されるソフトウェアの生成に必要な情報として水中物体テーブルに追加して記憶部51に保存することができる。
 識別プログラム生成部62は、水中物体テーブルが生成されると、生成された水中物体テーブルを教師データとした機械学習によって識別プログラムを生成する。識別プログラムは、測定装置3において検出された水中物体と、水中物体テーブルに示される水中物体とのコンフィデンスレートを導出するためのプログラムである。
 識別プログラム生成部62は、識別プログラムを生成すると、全ての測定装置3(3A、3B、3C)に対して同一の識別プログラムを送信する。すなわち、測定装置3では、目的に拘わらず、同一の識別プログラムで水中物体を識別することになる。
 なお、識別プログラム生成部62は、所定間隔ごとに識別プログラムを生成するようにしてもよい。
 目的別ソフトウェア生成部63は、測定装置3の目的ごとのソフトウェアを生成する。例えば、目的別ソフトウェア生成部63は、目的ごとに対象となる対象物体(対象プランクトン)、その対象物体を識別するための第2閾値、対象物体が検出されたときの動作(目的別動作)等が定められたソフトウェアを生成する。なお、目的別のソフトウェアでは、対象物体の少なくとも一部が異なり、または、対象物体が検出された際に実行される動作が異なるものである。
 そして、目的別ソフトウェア生成部63は、目的ごとのソフトウェアを生成すると、生成したソフトウェアを対応する測定装置3に送信する。換言すると、目的別ソフトウェア生成部63は、目的別のソフトウェアを測定装置3のメモリ21(媒体)に保存することで、そのソフトウェアが保存された測定装置3を生成する。
 例えば、サーバ装置2は、第1の目的である養殖水質測定用のソフトウェアを実行する測定装置3Aで取得された新規水中物体情報(第1のデータ)を取得すると、その新規水中物体情報に基づいて水中物体テーブルおよび識別プログラムを生成(更新)し、水中物体テーブルおよび識別プログラムに基づいて、第2の目的である深海生物調査用のソフトウェアを生成する。すなわち、サーバ装置2は、第1の目的で取得された新規水中物体情報を取得すると、その新規水中物体情報に基づいて、第2の目的である深海生物調査用のソフトウェアを生成する。
 また、サーバ装置2は、第2の目的である深海生物調査用のソフトウェアを実行する測定装置3Bで取得された新規水中物体情報(第2のデータ)を取得すると、その新規水中物体情報に基づいて水中物体テーブルおよび識別プログラムを生成(更新)し、水中物体テーブルおよび識別プログラムに基づいて、第1の目的である養殖水質測定用のソフトウェアを生成する。すなわち、サーバ装置2は、第2の目的で取得された新規水中物体情報(第2のデータ)を取得すると、その新規水中物体情報に基づいて、第1の目的である深海生物調査用のソフトウェアを生成する。
 また、サーバ装置2は、第1の目的である養殖水質測定用のソフトウェアを実行する測定装置3Aで取得された新規水中物体情報(第1のデータ)を取得すると、その新規水中物体情報に基づいて水中物体テーブルおよび識別プログラムを生成(更新)し、水中物体テーブルおよび識別プログラムに基づいて、第1の目的である養殖水質測定用のソフトウェアを生成する。すなわち、サーバ装置2は、第1の目的で取得された新規水中物体情報(第1のデータ)を取得すると、その新規水中物体情報に基づいて、第1の目的である養殖水質測定用のソフトウェアを生成する。
 また、サーバ装置2は、第1の目的である養殖水質測定用のソフトウェアを実行する測定装置3Aで取得された新規水中物体情報(第1のデータ)、および、第2の目的である深海生物調査用のソフトウェアを実行する測定装置3Bで取得された新規水中物体情報(第2のデータ)を取得すると、それらの新規水中物体情報に基づいて水中物体テーブルおよび識別プログラムを生成(更新)し、水中物体テーブルおよび識別プログラムに基づいて、第1の目的である養殖水質測定用のソフトウェア、および、第2の目的である深海生物調査用のソフトウェアを生成する。すなわち、サーバ装置2は、第1の目的で取得された新規水中物体情報(第1のデータ)、および、第2の目的で取得された新規水中物体情報(第2のデータ)を取得すると、それらの新規水中物体情報に基づいて、第1の目的である養殖水質測定用のソフトウェア、および、第2の目的である養殖水質測定用のソフトウェアを生成する。
 このように、水中測定システム1においては複数の測定装置3(3A、3B、3C)をネットワーク化してサーバ装置2へ接続することにより、サーバ装置2は、広範囲の異なる測定場所で測定される水中物体情報を基に学習を行うことができ、目的別の様々なソフトウェアを効率的に生成することができる。
[3-2.生成処理]
 図10は、生成処理の手順を示すフローチャートである。図10に示すように、ステップS21で水中物体テーブル生成部61は、データ取得部60によって新規水中物体情報が取得されたかを判定する。その結果、新規水中物体情報が取得されたと判定した場合(ステップS21でYes)、ステップS22で水中物体テーブル生成部61は、記憶部51に記憶されている水中物体テーブルを読み出し、データ取得部60によって取得された新規水中物体情報に基づいて水中物体テーブルを生成(追加)する。
 ステップS23で識別プログラム生成部62は、水中物体テーブルが生成されたかを判定する。その結果、水中物体テーブルが生成されたと判定した場合(ステップS23でYes)、ステップS24で識別プログラム生成部62は、生成された水中物体テーブルを読み出す。そして、ステップS25で識別プログラム生成部62は、水中物体テーブルを用いて機械学習を行い、識別プログラムを生成する。
 ステップS26で目的別ソフトウェア生成部63は、ソフトウェアを更新するかを判定する。ここでは、例えば、識別プログラムが更新された場合や、ユーザにより更新するための操作が行われた場合等に、ソフトウェアを更新すると判定する。そして、ソフトウェアを更新する場合(ステップS26でYes)、目的別ソフトウェア生成部63は、更新が必要な目的のソフトウェアについて更新を行い、更新されたソフトウェアを測定装置3に送信する。
<4.水中測定システムの他の構成例>
 なお、実施形態としては上記により説明した具体例に限定されるものではなく、多様な変形例としての構成を採り得るものである。
 上記した実施形態の測定装置3は一例であり、少なくとも水中物体を測定可能であれば他の構成であってもよい。
 図11は、変形例の測定装置103の構成を説明する図である。図11に示すように、測定装置103は、試料容器110、洗浄液容器111、試料切替部112、フローセル113、試料排出部114、前面光源115、背面光源116、検出用光源117、SPAD(Single Photon Avalanche Diode)センサ118、撮像センサ119、ハーフミラー120、ミラー121、レンズ122、レンズ123、制御部124、記憶部125および通信部126を備えている。
 試料容器110は、試料としての流体(海水や湖水)を収容する容器とされ、試料取込口Miを介して装置外部より取り込まれた試料が収容される。
 洗浄液容器111は、フローセル113内の流路を洗浄するための洗浄液を収容する容器とされる。
 試料切替部112は、フローセル113内の流路に流入させる流体を試料容器110からの試料と洗浄液容器111からの洗浄液との間で切替える。
 フローセル113は、試料の収容部として機能し、内部に形成された流路に対して試料としての流体がサンプリングされる。なお、後述するように試料切替部112が洗浄液容器111側に切替えられた状態では、フローセル113の流路には洗浄液が流入する。
 試料排出部114は、流体排出用のポンプを有し、そのポンプが駆動されることでフローセル113の流路内における流体を装置外部に位置された試料排出口Moを介して排出する。
 ここで、本例では、試料容器110から試料切替部112およびフローセル113を介して試料排出部114に至る流路と、洗浄液容器111から試料切替部112およびフローセル113を介して試料排出部114に至る流路はそれぞれ一貫した流路とされ、試料容器110からフローセル113に対する試料の流入、および、洗浄液容器111からフローセル113に対する洗浄液の流入は試料排出部114のポンプを駆動することで行われる。
 前面光源115は、撮像センサ119による撮像時に対応してフローセル113内の流体を照明するための光源とされる。ここでの「前面」とは、フローセル113の位置を基準として、撮像センサ119側の面を意味している。変形例では、前面光源115は環状の光源とされ、撮像センサ119による撮像の妨げとなることの防止が図られるとともに、フローセル113の前面側から試料に対し斜め側方からの照明を行う。
 背面光源116は、前面光源115と同様、撮像センサ119による撮像時に対応してフローセル113内の流体を照明するための光源とされ、フローセル113を境に前面光源115とは逆側に位置されている。
 背面光源116は、明視野撮像に用いられる。試料を透過した光を撮像センサ119で受光するもので、一般的な顕微鏡で用いられている手法と同様である。照明光はレンズ15に直接入射するため、背景は明るくなる。
 一方、前面光源115は、暗視野撮像に用いられる。試料の斜め側方から光を当てて、対象物の散乱光、反射光を撮像センサ119で受光する。透明な対象であってもコントラストを高く、微細に測定することができる。この場合、照明光はレンズ15に直接入射しないので背景は暗くなる。
 検出用光源117は、フローセル113にサンプリングされた試料に対して対象物を検出するための光を発する。この検出用光源117には、例えば半導体レーザ等が用いられる。図示のように検出用光源117より発せられた光は、ハーフミラー120で反射されて、フローセル113内の流路にサンプリングされた流体に照射される。
 SPADセンサ118は、フローセル113内の流体中における水中物体を検出するためのセンサとして機能する。測定装置103では、微生物や粒子の微弱な光(励起した光等)を検出するために、光検出画素を複数配列した画素アレイを用いる。この光検出画素の技術の一つとしてSPADが考えられる。SPADは、降伏電圧よりも大きい電圧を印加した状態で高電界のPN接合領域へ1個の光子が入るとアバランシェ増幅が発生する。その際に瞬間的に電流が流れた画素の位置とタイミングを検出することで水中物体のフローセル113内での有無、位置、サイズ等を特定することができる。
 SPADセンサ118は、入射光について電子雪崩現象を利用した光電変換を行うSPAD素子を有している。SPAD素子における電子雪崩現象は、内部光電効果として知られる現象の一種である。内部光電効果は、半導体や絶縁体に光を照射すると物質内部の伝導電子が増加する現象である。
 公知のようにSPAD素子は、受光分解能がフォトン単位とされた素子である。換言すれば、受光の有無をフォトン単位で識別可能な素子である。
 本例におけるSPADセンサ118は、SPAD素子を有する画素が二次元に複数配列された構成を有する。
 SPADセンサ118には、フローセル113内の流体中における水中物体から発せられた光がハーフミラー120、ミラー13およびレンズ14を介して入射する。
 撮像センサ119は、例えばCCD型やCMOS型等によるイメージセンサとして構成され、光電変換素子を有する画素が二次元に複数配列されている。撮像センサ119の各画素が有する光電変換素子は、電子雪崩現象を利用した光電変換を行うものではなく、例えばフォトダイオード等の一般的なイメージングで用いられる光電変換素子が採用されている。すなわち、SPAD素子よりも受光解像度の低い光電変換素子である。
 撮像センサ119は、フローセル113内の流路を対象とした撮像(撮像視野内に少なくとも該流路を含む撮像)を行う。撮像センサ119には、フローセル113からの光(像光)がハーフミラー120を透過しレンズ15を介して入射する。
 制御部124は、例えばCPU、ROMおよびRAMを有するマイクロコンピュータを備えて構成され、測定装置103の全体制御を行う。例えば、制御部124は、試料切替部112の切替制御、前面光源115や背面光源116の発光駆動制御、試料排出部114におけるポンプの駆動制御、検出用光源117の発光駆動制御等を行う。
 また、制御部124は、記憶部125に記憶されたデータの読み出し処理や記憶部125にデータを記憶させる処理、および、通信部126を介した外部機器との間での各種データのやりとりを行う。例えば、記憶部125は、不揮発性メモリで構成される。通信部126は、外部機器との間で有線または無線によるデータ通信を行う。
 また、本例の制御部124は、SPADセンサ118による受光信号に基づく水中物体の検出処理や、撮像センサ119による撮像画像に基づく各種の画像解析処理等を行う。
 また、上記した実施の形態および変形例では、水中物体の走性、蛍光を利用して水中物体を測定したが、異なる方法により水中物体を測定してもよい。
 また、上記した実施の形態および変形例では、サーバ装置2の記憶部51に水中物体テーブルが保存されている場合について説明したが、水中物体テーブルが測定装置3のメモリ21に保存されるようにしてもよい。
<5.まとめ>
 上記のように実施形態のサーバ装置2においては、第1の目的で取得された水中物体に関する第1のデータを受信するデータ取得部60と、第1のデータに基づき、第1の目的とは異なる第2の目的のために使用されるソフトウェアを生成する目的別ソフトウェア生成部63と、を備えるものである。
 これにより、第2の目的とは異なる第1の目的で取得された第1のデータに基づいて、第2の目的のために使用されるソフトウェアを生成することが可能となる。
 したがって、異なる目的に用いられるソフトウェアを効率的に生成することができる。
 上記した本技術に係るサーバ装置2においては、目的別ソフトウェア生成部63は、第2の目的で取得した水中物体に関する第2のデータに基づき、第1の目的のために使用されるソフトウェアを生成することが考えられる。
 これにより、第1の目的で取得された水中物体に関する第1のデータ、および、第1の目的とは異なる第2の目的で取得された第2のデータの双方に基づいて、第1の目的のために使用されるソフトウェアを生成することが可能となる。
 したがって、第1の目的のために使用されるソフトウェアを生成するために、第1のデータおよび第2のデータの双方を用いるため、第1の目的のために使用されるソフトウェアをより効率的に生成することができる。
 上記した本技術に係るサーバ装置2においては、目的別ソフトウェア生成部63は、第1のデータに基づき、第1の目的のために使用されるソフトウェアを生成することが考えられる。
 これにより、第1の目的で取得された第1のデータに基づいて、第1の目的のために使用されるソフトウェア、および、第2の目的のために使用されるソフトウェアの双方を生成することが可能となる。
 したがって、1つの目的で取得された第1のデータに基づいて、第1の目的のために使用されるソフトウェア、および、第2の目的のために使用されるソフトウェアをより効率的に生成することができる。
 上記した本技術に係るサーバ装置2においては、目的別ソフトウェア生成部63は、第1のデータ、および、第2の目的で取得した水中物体に関する第2のデータに基づき、第1の目的のために使用されるソフトウェア、および、第2の目的のために使用されるソフトウェアを生成することが考えられる。
 これにより、第1の目的で取得された第1のデータ、および、第2の目的で取得された第2のデータの双方に基づいて、第1の目的のために使用されるソフトウェア、および、第2の目的のために使用されるソフトウェアの双方を生成することが可能となる。
 したがって、異なる目的で取得された第1のデータおよび第2のデータに基づいて、第1の目的のために使用されるソフトウェア、および、第2の目的のために使用されるソフトウェアを効率的に生成することができる。
 上記した本技術に係るサーバ装置2においては、第1の目的のために使用されるソフトウェア、および、第2の目的のために使用されるソフトウェアにおいて水中物体を識別するための識別プログラムを生成する識別プログラム生成部62を備えることが考えられる。
 これにより、前記第1の目的のために使用されるソフトウェア、および、前記第2の目的のために使用されるソフトウェアにおいて、識別プログラムを用いて水中物体を識別することが可能となる。
 したがって、識別プログラムに基づいて水中物体を識別することができる。
 上記した本技術に係るサーバ装置2においては、識別プログラム生成部62は、第1の目的のために使用されるソフトウェア、および、第2の目的のために使用されるソフトウェアで共通して用いられることが考えられる。
 これにより、共通の識別プログラムを用いて、第1の目的のために使用されるソフトウェア、および、第2の目的のために使用されるソフトウェアにおいて、水中物体を識別することが可能となる。
 したがって、識別プログラムを別々に生成する必要がなく、ソフトウェアを効率的に生成することができる。
 上記した本技術に係るサーバ装置2においては、識別プログラムを生成する際に使用されるデータベースは、第1のデータ、および、第2の目的で取得した水中物体に関する第2のデータに基づいて生成されることが考えられる。
 これにより、第1の目的で取得した水中物体に関する第1のデータ、および、第2の目的で取得した水中物体に関する第2のデータの双方に基づいてデータベースが生成されることになる。
 したがって、第1のデータおよび第2のデータに基づいてデータベースを効率的に生成することができる。
 上記した本技術に係るサーバ装置2においては、第1の目的、および、第2の目的では、対象となる水中物体の少なくとも一部が異なることが考えられる。
 これにより、識別対象となる水中物体の少なくとも一部が異なる第1の目的で取得された第1のデータに基づいて、第2の目的のために使用されるソフトウェアを生成することが可能となる。
 したがって、目的ごとに対象となる水中物体が異なっていても、目的別のソフトウェアを効率的に生成することができる。
 上記した本技術に係るサーバ装置2においては、第1の目的、および、第2の目的では、識別対象となる水中物体が検出された際に実行される動作が異なることが考えられる。
 これにより、識別対象となる水中物体が検出された際に実行される動作が異なる第1の目的で取得された第1のデータに基づいて、第2の目的のために使用されるソフトウェアを生成することが可能となる。
 したがって、実行される動作が異なっていても、目的別のソフトウェアを効率的に生成することができる。
 本技術に係る電子機器(測定装置3)の生成方法は、第1の目的で取得された水中物体に関する第1のデータを受信し、第1のデータに基づき、第1の目的とは異なる第2の目的のために使用されるソフトウェアを生成し、ソフトウェアを媒体(メモリ21)に保存するものである。
 上記した本技術に係る電子機器(測定装置3)の生成方法においては、第2の目的で取得された水中物体に関する第2のデータを取得し、第2の目的のために使用されるソフトウェアを用いて第2のデータが処理されることで得られる識別結果を取得し、識別結果を媒体に保存することが考えられる。
 このような電子機器の生成方法によっても、上記した本技術に係るサーバ装置2と同様の作用が得られる。
 本技術に係るデータベース(水中物体テーブル)の生成方法は、第1の目的で取得された水中物体に関する第1のデータを取得し、第1のデータの中から、第1の目的とは異なる第2の目的に使用されるソフトウェアの生成に必要な第1のデータ部分を抽出し、第1のデータ部分が識別可能なように第1のデータの全部または一部を媒体に保存するものである。
 上記した本技術に係るデータベース(水中物体テーブル)の生成方法においては、第2の目的で取得された水中物体に関する第2のデータを取得し、第2のデータおよび前記第1のデータ部分を統合して、第2の目的に使用されるソフトウェアの生成に必要な情報として媒体に保存することが考えられる。
 このようなデータベースの生成方法によっても、上記した本技術に係るサーバ装置2と同様の作用が得られる。
 本技術に係る電子機器(測定装置3)は、データベースが保存された媒体を備えるものである。
 このような電子機器によっても、上記した本技術に係るサーバ装置2と同様の作用が得られる。
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。
<6.本技術>
 本技術は以下のような構成も採ることができる。
(1)
 第1の目的で取得された水中物体に関する第1のデータを受信するデータ取得部と、
 前記第1のデータに基づき、前記第1の目的とは異なる第2の目的のために使用されるソフトウェアを生成する目的別ソフトウェア生成部と、
を備えるサーバ装置。
(2)
 前記目的別ソフトウェア生成部は、
 前記第2の目的で取得した水中物体に関する第2のデータに基づき、前記第1の目的のために使用されるソフトウェアを生成する
(1)に記載のサーバ装置。
(3)
 前記目的別ソフトウェア生成部は、
 前記第1のデータに基づき、前記第1の目的のために使用されるソフトウェアを生成する
(1)または(2)に記載のサーバ装置。
(4)
 前記目的別ソフトウェア生成部は、
 前記第1のデータ、および、前記第2の目的で取得した水中物体に関する第2のデータに基づき、前記第1の目的のために使用されるソフトウェア、および、前記第2の目的のために使用されるソフトウェアを生成する
(1)から(3)のいずれかに記載のサーバ装置。
(5)
 前記第1の目的のために使用されるソフトウェア、および、前記第2の目的のために使用されるソフトウェアにおいて水中物体を識別するための識別プログラムを生成する識別プログラム生成部を備える
(1)から(4)のいずれかに記載のサーバ装置。
(6)
 前記識別プログラムは、前記第1の目的のために使用されるソフトウェア、および、前記第2の目的のために使用されるソフトウェアで共通して用いられる
(5)に記載のサーバ装置。
(7)
 前記識別プログラムを生成する際に使用されるデータベースは、前記第1のデータ、および、前記第2の目的で取得した水中物体に関する第2のデータに基づいて生成される
(5)または(6)に記載のサーバ装置。
(8)
 前記第1の目的、および、前記第2の目的では、識別対象となる水中物体の少なくとも一部が異なる
(1)から(7)のいずれかに記載のサーバ装置。
(9)
 前記第1の目的、および、前記第2の目的では、識別対象となる水中物体が検出された際に実行される動作が異なる
(1)から(8)のいずれかに記載のサーバ装置。
(10)
 第1の目的で取得された水中物体に関する第1のデータを受信し、
 前記第1のデータに基づき、前記第1の目的とは異なる第2の目的のために使用されるソフトウェアを生成する
生成方法。
(11)
 第1の目的で取得された水中物体に関する第1のデータを受信し、
 前記第1のデータに基づき、前記第1の目的とは異なる第2の目的のために使用されるソフトウェアを生成し、
 前記ソフトウェアを媒体に保存する
電子機器の生成方法。
(12)
 第2の目的で取得された水中物体に関する第2のデータを取得し、
 前記第2の目的のために使用されるソフトウェアを用いて前記第2のデータが処理されることで得られる識別結果を取得し、
 前記識別結果を媒体に保存する
(11)に記載の電子機器の生成方法。
(13)
 第1の目的で取得された水中物体に関する第1のデータを取得し、
 前記第1のデータの中から、前記第1の目的とは異なる第2の目的に使用されるソフトウェアの生成に必要な第1のデータ部分を抽出し、
 前記第1のデータ部分が識別可能なように前記第1のデータの全部または一部を媒体に保存する
 データベースの生成方法。
(14)
 第2の目的で取得された水中物体に関する第2のデータを取得し、
 前記第2のデータおよび前記第1のデータ部分を統合して、前記第2の目的に使用されるソフトウェアの生成に必要な情報として媒体に保存する
(13)に記載のデータベースの生成方法。
(15)
(13)または(14)に記載のデータベースが保存された媒体を備える電子機器。
(16)
 第1の目的で取得された水中物体に関する第1のデータに基づいて生成された、前記第1の目的とは異なる第2の目的のために使用されるソフトウェアを取得する通信部と、
 前記取得したソフトウェアを記憶する媒体と、
 を備える電子機器。
(17)
 サーバ装置と電子機器を有する情報処理システムであって、
 前記サーバ装置は、
 第1の目的で取得された水中物体に関する第1のデータを取得するデータ取得部と、
 前記第1のデータに基づき、前記第1の目的とは異なる第2の目的のために使用されるソフトウェアを生成する目的別ソフトウェア生成部と、
 前記ソフトウェアを送信する通信部と、
 を備え、
 前記電子機器は、
 前記ソフトウェアを取得する通信部と、
 前記取得したソフトウェアを記憶する媒体と、
を備える
情報処理システム。
(18)
 コンピュータを、
 第1の目的で取得された水中物体に関する第1のデータを取得するデータ取得部と、
 前記第1のデータに基づき、前記第1の目的とは異なる第2の目的のために使用されるソフトウェアを生成する目的別ソフトウェア生成部と、
 として機能させるためのプログラム。
1 水中測定システム
2 サーバ装置
3 測定装置(電子機器)
60 データ取得部
61 水中物体テーブル生成部
62 識別プログラム生成部
63 目的別ソフトウェア生成部

Claims (15)

  1.  第1の目的で取得された水中物体に関する第1のデータを取得するデータ取得部と、
     前記第1のデータに基づき、前記第1の目的とは異なる第2の目的のために使用されるソフトウェアを生成する目的別ソフトウェア生成部と、
    を備えるサーバ装置。
  2.  前記目的別ソフトウェア生成部は、
     前記第2の目的で取得した水中物体に関する第2のデータに基づき、前記第1の目的のために使用されるソフトウェアを生成する
    請求項1に記載のサーバ装置。
  3.  前記目的別ソフトウェア生成部は、
     前記第1のデータに基づき、前記第1の目的のために使用されるソフトウェアを生成する
    請求項1に記載のサーバ装置。
  4.  前記目的別ソフトウェア生成部は、
     前記第1のデータ、および、前記第2の目的で取得した水中物体に関する第2のデータに基づき、前記第1の目的のために使用されるソフトウェア、および、前記第2の目的のために使用されるソフトウェアを生成する
    請求項1に記載のサーバ装置。
  5.  前記第1の目的のために使用されるソフトウェア、および、前記第2の目的のために使用されるソフトウェアにおいて水中物体を識別するための識別プログラムを生成する識別プログラム生成部を備える
    請求項1に記載のサーバ装置。
  6.  前記識別プログラムは、前記第1の目的のために使用されるソフトウェア、および、前記第2の目的のために使用されるソフトウェアで共通して用いられる
    請求項5に記載のサーバ装置。
  7.  前記識別プログラムを生成する際に使用されるデータベースは、前記第1のデータ、および、前記第2の目的で取得した水中物体に関する第2のデータに基づいて生成される
    請求項5に記載のサーバ装置。
  8.  前記第1の目的、および、前記第2の目的では、対象となる水中物体の少なくとも一部が異なる
    請求項1に記載のサーバ装置。
  9.  前記第1の目的、および、前記第2の目的では、対象となる水中物体が検出された際に実行される動作が異なる
    請求項1に記載のサーバ装置。
  10.  第1の目的で取得された水中物体に関する第1のデータを取得し、
     前記第1のデータに基づき、前記第1の目的とは異なる第2の目的のために使用されるソフトウェアを生成する
    生成方法。
  11.  第1の目的で取得された水中物体に関する第1のデータを取得し、
     前記第1のデータに基づき、前記第1の目的とは異なる第2の目的のために使用されるソフトウェアを生成し、
     前記ソフトウェアを媒体に保存する
    電子機器の生成方法。
  12.  第2の目的で取得された水中物体に関する第2のデータを取得し、
     前記第2の目的のために使用されるソフトウェアを用いて前記第2のデータが処理されることで得られる識別結果を取得し、
     前記識別結果を媒体に保存する
    請求項11に記載の電子機器の生成方法。
  13.  第1の目的で取得された水中物体に関する第1のデータを取得し、
     前記第1のデータの中から、前記第1の目的とは異なる第2の目的に使用されるソフトウェアの生成に必要な第1のデータ部分を抽出し、
     前記第1のデータ部分が識別可能なように前記第1のデータの全部または一部を媒体に保存する
     データベースの生成方法。
  14.  第2の目的で取得された水中物体に関する第2のデータを取得し、
     前記第2のデータおよび前記第1のデータ部分を統合して、前記第2の目的に使用されるソフトウェアの生成に必要な情報として媒体に保存する
     請求項13記載のデータベースの生成方法。
  15.  請求項13に記載のデータベースが保存された媒体を備える電子機器。
PCT/JP2022/000745 2021-02-03 2022-01-12 サーバ装置、生成方法、電子機器の生成方法、データベースの生成方法、電子機器 WO2022168548A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280011653.2A CN116940948A (zh) 2021-02-03 2022-01-12 服务器装置、生成方法、电子装置生成方法、数据库生成方法和电子装置
EP22749425.9A EP4290428A1 (en) 2021-02-03 2022-01-12 Server device, generation method, electronic equipment generation method, database generation method, and electronic equipment
JP2022579408A JPWO2022168548A1 (ja) 2021-02-03 2022-01-12
KR1020237024667A KR20230142469A (ko) 2021-02-03 2022-01-12 서버 장치, 생성 방법, 전자 기기의 생성 방법, 데이터베이스의생성 방법, 전자 기기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-015621 2021-02-03
JP2021015621 2021-02-03

Publications (1)

Publication Number Publication Date
WO2022168548A1 true WO2022168548A1 (ja) 2022-08-11

Family

ID=82741158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000745 WO2022168548A1 (ja) 2021-02-03 2022-01-12 サーバ装置、生成方法、電子機器の生成方法、データベースの生成方法、電子機器

Country Status (5)

Country Link
EP (1) EP4290428A1 (ja)
JP (1) JPWO2022168548A1 (ja)
KR (1) KR20230142469A (ja)
CN (1) CN116940948A (ja)
WO (1) WO2022168548A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019165687A (ja) 2018-03-23 2019-10-03 Jfeアドバンテック株式会社 特定種の植物プランクトンの存在量の算出方法及び算出装置、及び特定種の植物プランクトンによる赤潮発生の予兆検知方法及び予兆検知装置
US20200394804A1 (en) * 2019-06-17 2020-12-17 Guard, Inc. Analysis and deep learning modeling of sensor-based object detection data in bounded aquatic environments

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019165687A (ja) 2018-03-23 2019-10-03 Jfeアドバンテック株式会社 特定種の植物プランクトンの存在量の算出方法及び算出装置、及び特定種の植物プランクトンによる赤潮発生の予兆検知方法及び予兆検知装置
US20200394804A1 (en) * 2019-06-17 2020-12-17 Guard, Inc. Analysis and deep learning modeling of sensor-based object detection data in bounded aquatic environments

Also Published As

Publication number Publication date
CN116940948A (zh) 2023-10-24
KR20230142469A (ko) 2023-10-11
JPWO2022168548A1 (ja) 2022-08-11
EP4290428A1 (en) 2023-12-13

Similar Documents

Publication Publication Date Title
US11112361B2 (en) Integrated photodetector with direct binning pixel
EP3375859B1 (en) Method for constructing classifier, and method for determining life or death of cells using same
WO2006104201A1 (ja) 細胞画像解析方法、細胞画像解析プログラム、細胞画像解析装置、スクリーニング方法およびスクリーニング装置
Smeds et al. Paradoxical rules of spike train decoding revealed at the sensitivity limit of vision
CN103308497A (zh) 用于研究生物细胞或细胞培养物的方法和酶标仪
CN101310173A (zh) 用于检测活细胞活性的装置和方法
JP2022132488A (ja) 装置、方法、及びプログラム
IL303323A (en) Optical means for examining snails and fish
US20220254182A1 (en) Optical technique for analyzing insects, shrimp and fish
WO2022168548A1 (ja) サーバ装置、生成方法、電子機器の生成方法、データベースの生成方法、電子機器
WO2012176775A1 (ja) 光測定装置、光測定方法、及び光測定プログラム
US20240018461A1 (en) Measurement device, measurement method, and measurement system
Nakamoto et al. Response analysis of odor sensor based upon insect olfactory receptors using image processing method
Jaffe et al. Advances in underwater fluorometry: from bulk fluorescence to planar laser imaging
WO2023026880A1 (ja) 測定装置、測定方法、プログラム
JP5010890B2 (ja) 生体試料解析方法
Isa et al. An IoT-based ovitrap system applied for aedes mosquito surveillance
Jaballah et al. A deep learning approach to detect and identify live freshwater macroinvertebrates
Karaköylü et al. Copepod feeding quantified by planar laser imaging of gut fluorescence
JP2006081427A (ja) 菌検出方法および菌計数装置
EP4350307A1 (en) Measurement device, measurement method, and program
Ugur Daloglu et al. Low-cost and portable UV holographic microscope for high-contrast protein crystal imaging
Ghaye Image processing on reconfigurable hardware for continuous monitoring of fluorescent biomarkers in cell cultures
Sen et al. A new macro-imager based on Tpx3Cam optical camera for PLIM
Parker Development of a computer vision pipeline for the analysis of Aliivibrio fischeri bioluminescence inhibition on solid media

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022579408

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280011653.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022749425

Country of ref document: EP

Effective date: 20230904