WO2022168143A1 - 無線通信装置及び無線通信方法 - Google Patents

無線通信装置及び無線通信方法 Download PDF

Info

Publication number
WO2022168143A1
WO2022168143A1 PCT/JP2021/003665 JP2021003665W WO2022168143A1 WO 2022168143 A1 WO2022168143 A1 WO 2022168143A1 JP 2021003665 W JP2021003665 W JP 2021003665W WO 2022168143 A1 WO2022168143 A1 WO 2022168143A1
Authority
WO
WIPO (PCT)
Prior art keywords
streams
stream
antenna
antennas
user terminals
Prior art date
Application number
PCT/JP2021/003665
Other languages
English (en)
French (fr)
Inventor
拓人 新井
大誠 内田
辰彦 岩國
秀樹 和井
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US18/270,556 priority Critical patent/US20240088960A1/en
Priority to PCT/JP2021/003665 priority patent/WO2022168143A1/ja
Priority to JP2022579168A priority patent/JPWO2022168143A1/ja
Publication of WO2022168143A1 publication Critical patent/WO2022168143A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present invention relates to a wireless communication device and a wireless communication method.
  • radio waves in the high frequency band are used for communication.
  • Future wireless systems for example, sixth-generation mobile communication systems
  • Non-Patent Document 1 a wireless communication system (distributed antenna system) that communicates using a plurality of distributed antennas has been studied.
  • Distributed antenna systems use multiple distributed antennas to support Single User MIMO (Single User - Multi-Input Multi-Output: SU-MIMO) and Multi-User MIMO (Multi User - Multi-Input Multi-Output: MU -MIMO) and These allow the distributed antenna system to improve communication capacity.
  • Single User MIMO Single User - Multi-Input Multi-Output: SU-MIMO
  • Multi-User MIMO Multi User - Multi-Input Multi-Output: MU -MIMO
  • Patent Document 1 in a wireless communication system including a base station (wireless communication device) using multi-user MIMO and a plurality of mobile stations (user terminals), based on each channel estimation value between the base station and each mobile station, Accordingly, a base station has been proposed that determines the number and parameters of streams sent to each mobile station.
  • a base station assigns the number of streams transmitted from an antenna to a mobile station to each mobile station by applying the Greedy method or the like to each channel estimation value. This makes it possible to improve the communication capacity.
  • One aspect of the present invention is a terminal selection unit that selects one or more user terminals, and a prediction that derives a predicted value of the interference amount of a group of streams transmitted from a plurality of antennas for the selected one or more user terminals a collection unit that collects received power values of beams of streams included in the stream group from the one or more selected user terminals when the predicted value of the amount of interference is less than a threshold, and the received power an antenna selection unit that selects the plurality of streams in descending order of values and selects the plurality of antennas associated with the plurality of selected streams; and a transmitter that transmits by beamforming using the antenna.
  • One aspect of the present invention is a wireless communication method executed by a wireless communication device, comprising: a terminal selection step of selecting one or more user terminals; a prediction step of deriving a predicted value of the amount of interference for a group of streams in the stream group, and if the predicted value of the amount of interference is less than a threshold, the received power value of the beam of the stream included in the stream group is set to the selected one or more an antenna selection step of selecting a plurality of the streams in order of decreasing received power value, and selecting a plurality of the antennas associated with the selected plurality of the streams; and a transmission step of transmitting the selected plurality of streams by beamforming using the selected plurality of antennas.
  • FIG. 1 is a diagram showing a configuration example of a wireless communication system in an embodiment
  • FIG. FIG. 4 is a diagram showing an example of adding a stream to a group of spatially multiplexed streams in the embodiment
  • 4 is a sequence diagram showing an operation example of the wireless communication system in the embodiment
  • FIG. 4 is a flowchart showing an operation example of the wireless communication system in the embodiment
  • 9 is a flowchart showing an example of operation of a wireless communication system in a modified example of the embodiment
  • 1 is a diagram illustrating an example hardware configuration of a wireless communication device in an embodiment
  • a wireless communication system is a system (distributed antenna system) that wirelessly communicates a stream (data sequence) using at least some of all distributed antennas.
  • a wireless communication system one stream per antenna is transmitted to a user terminal using one beam per antenna. Therefore, when multiple streams (stream groups) are allocated to a user terminal, the multiple allocated streams (beams) are transmitted from multiple antennas toward the user terminal.
  • the base station of the wireless communication system selects multiple antennas for transmitting multiple assigned streams from among all the distributed antennas.
  • the base station derives a predicted value of the amount of interference between streams transmitted from the selected multiple antennas using a predetermined statistical method based on the combination of the selected multiple antennas. Also, the base station determines whether the derived prediction value is less than a predetermined threshold before transmitting the stream.
  • the base station When it is determined that the predicted value of the amount of interference between streams is less than a predetermined threshold, the base station generates beams for each distributed antenna so that each user terminal can measure the received power value of the beams of the streams. Run a search.
  • the base station uses each antenna to transmit a power measurement signal beam to each user terminal in the communication area.
  • Each user terminal feeds back the maximum received power value of the beam of the power measurement signal transmitted from each antenna to the base station.
  • the base station collects the maximum received power value of the beam of the transmitted power measurement signal from each user terminal in the communication area. That is, the base station collects, from each user terminal in the communication area, the maximum received power value for each antenna that has transmitted the beam of the signal for power measurement.
  • the received power value of the beam of the power measurement signal transmitted from the antenna corresponds to the received power value of the beam of the stream transmitted from the same antenna. Note that the received power value is a simpler index than the channel estimation value (an index that does not require a high processing load).
  • the base station allocates one or more downlink streams to one or more selected user terminals within the range of the number of streams that can be simultaneously transmitted by the base station in response to an allocation request transmitted from a higher-level device.
  • the base station allocates the number of streams to one or more selected user terminals based on the collected received power values.
  • the base station may assign the number of streams to one or more selected user terminals based on the collected received power values.
  • the base station selects multiple antennas from among all distributed antennas, giving priority to antennas with a high signal-to-noise ratio of the stream.
  • all distributed antennas may be selected, or a part of all distributed antennas may be selected.
  • the base station uses high-frequency band radio waves (radio signals) transmitted from a plurality of selected antennas. and transmit the streams to one or more user terminals.
  • the wireless communication system performs beamforming to reduce the amount of interference between streams.
  • FIG. 1 is a diagram showing a configuration example of a radio communication system 1.
  • the wireless communication system 1 is a system (distributed antenna system) that wirelessly communicates a stream using at least some of all distributed antennas.
  • a wireless communication system 1 includes a host device 2 , a base station 3 , multiple antennas 4 , and one or more user terminals 5 .
  • a plurality of antennas 4 protrude from the base station 3 and are distributed in the communication area.
  • the base station 3 and each antenna 4 are connected using, for example, optical fibers or coaxial cables.
  • Optical fibers may transmit optical signals between the base station 3 and each antenna 4 using analog RoF (Radio-over-Fiber).
  • the radio communication system 1 comprises 16 antennas 4 as an example.
  • Antenna 4 comprises a plurality of antenna elements.
  • the user terminal 5 is provided with one or more antenna elements.
  • the host device 2 is an information processing device, such as a server device. Host device 2 transmits stream (data series) candidates transmitted from antenna 4 to base station 3 .
  • the base station 3 centrally controls the operation of each distributed antenna 4 .
  • the base station 3 selects a plurality of antennas 4 from among all the distributed antennas 4 .
  • the base station 3 uses a plurality of selected antennas 4 to transmit spatially multiplexed stream groups 8 to one or more user terminals 5 .
  • the base station 3 uses a plurality of antenna elements provided in the antenna 4 to perform beamforming. This ensures gain in the high frequency band.
  • Both the base station 3 and the user terminal 5 may perform beamforming. Also, the host device 2 may acquire a plurality of streams from the base station 3 by uplink transmission.
  • the base station 3 performs at least one of single-user MIMO and multi-user MIMO.
  • a plurality of antennas 4 simultaneously transmit a group of spatially multiplexed streams 8 (a plurality of streams) to a plurality of user terminals 5 .
  • the base station 3 performs multi-user MIMO on the downlink.
  • multiple user terminals 5 may simultaneously transmit spatially multiplexed streams to multiple antennas 4 . In this way the base station 3 may perform multi-user MIMO for the uplink.
  • a plurality of antennas 4 simultaneously transmit a group of spatially multiplexed streams 9 (a plurality of streams) to a single user terminal 5 .
  • antenna 4-1 uses beam 6-1 to transmit stream 7-1 towards user terminal 5-1.
  • Antenna 4-3 uses beam 6-3 to transmit stream 7-3 towards user terminal 5-1.
  • the base station 3 implements single-user MIMO for the downlink.
  • a single user terminal 5 may simultaneously transmit spatially multiplexed streams to multiple antennas 4 . In this way the base station 3 may perform single-user MIMO for the uplink.
  • a stream group 8 is a multi-user MIMO stream group.
  • the upper limit of the number of streams 7 that can be simultaneously communicated in multiuser MIMO is determined based on a parameter representing the maximum number of layers in multiuser MIMO.
  • a stream group 9 is a single-user MIMO stream group. Note that the upper limit of the number of streams 7 that can be simultaneously communicated in single-user MIMO is determined based on a parameter representing the maximum number of layers in single-user MIMO.
  • the base station 3 includes a terminal selection unit 30, a prediction unit 31, a collection unit 32, an antenna selection unit 33, and a communication unit 34 (transmitting unit, receiving unit).
  • the terminal selection unit 30 acquires a plurality of stream identifiers from the host device 2 as a downlink stream allocation request.
  • the terminal selection unit 30 manages stream candidates to be assigned to the user terminal 5 with respect to the acquired stream identifiers. That is, the terminal selection unit 30 selects one or more user terminals 5 from a plurality of user terminals 5 in the communication area based on the stream identifier.
  • the terminal selection unit 30 selects the user terminal 5 based on a predetermined index such as a rank indicator (RI) and a predetermined scheduling process.
  • a predetermined index such as a rank indicator (RI) and a predetermined scheduling process.
  • the terminal selection unit 30 may select the user terminal 5 based on proportional fairness (PF) and predetermined scheduling processing.
  • PF proportional fairness
  • the terminal selection unit 30 may select the user terminals 5 in descending order of received power of the stream transmitted from the antenna 4 .
  • the terminal selection unit 30 may select user terminals 5 having similar reception power values of beams of streams transmitted from the antennas 4 .
  • the terminal selection unit 30 may select a plurality of user terminals 5 based on the positional relationship between the user terminals 5 so that the amount of interference between streams between the user terminals 5 is reduced. For example, the terminal selection unit 30 may select user terminals 5 separated from each other by a predetermined distance or more so that the amount of interference between streams between the user terminals 5 is reduced.
  • the terminal selection unit 30 may select user terminals 5 whose number is equal to or greater than the maximum number of layers of multi-user MIMO. For example, the terminal selection unit 30 may select user terminals 5 whose number is less than the maximum number of layers of multi-user MIMO.
  • the prediction unit 31 acquires data representing one or more selected user terminals 5 (for example, terminal identifiers) from the terminal selection unit 30 .
  • the prediction unit 31 derives a prediction value of the amount of interference between streams transmitted from the plurality of antennas 4 for one or more selected user terminals 5 .
  • the prediction unit 31 derives, for a single selected user terminal 5 , a predicted value of the amount of interference between streams of that user terminal 5 .
  • the prediction unit 31 derives a prediction value of the amount of interference between streams of the plurality of user terminals 5 selected for the plurality of user terminals 5 .
  • the prediction unit 31 determines whether or not the predicted value of the interference amount of the stream group is less than a predetermined threshold. Note that when it is determined that the predicted value of the interference amount of the stream group is equal to or greater than the predetermined threshold, the terminal selection unit 30 continues until it is determined that the predicted value of the interference amount of the stream group is less than the predetermined threshold.
  • the process of selecting the user terminal 5 may be redone.
  • the prediction unit 31 uses a predetermined statistical method based on the combination of multiple antennas 4 and multiple transmitted streams (beams) to derive a predicted value of the amount of interference between streams.
  • the prediction unit 31 uses a predetermined statistical method based on the positional relationship of the plurality of antennas 4 and the beam width corresponding to the number of antenna elements for each antenna 4 to derive a predicted value of the amount of interference between streams. good.
  • the terminal selection unit 30 may select the user terminal 5 based on these derived prediction values so that the amount of interference between streams is reduced.
  • the collection unit 32 collects power measurement signals transmitted from each antenna 4 that may transmit a stream to each selected user terminal 5.
  • the received power value of the beam is collected by feedback from each selected user terminal 5 or the like.
  • the antenna 4 that may transmit the stream is the antenna 4 pre-associated with the identifier of the acquired stream.
  • the received power value of the beam of the power measurement signal transmitted from the antenna 4 corresponds to the received power value of the beam of the stream transmitted from the same antenna 4 .
  • the antenna selection unit 33 selects a plurality of streams from the stream candidates in descending order of received power value of the stream beam. That is, the antenna selection unit 33 selects the stream that indicates the maximum received power value based on the correspondence between the antenna 4 and the stream 7 from among the stream candidates determined by the identifiers of the multiple streams acquired from the host device 2. choose with priority.
  • the antenna selection unit 33 selects the antenna 4 associated with the selected stream 7.
  • the antenna selection unit 33 avoids redundant selection of the antenna 4 (resource).
  • the antenna selection unit 33 excludes the later selected stream 7 from candidates for the stream 7 to be added to the stream group 8 to be spatially multiplexed.
  • the antenna selection unit 33 transmits the streams 7 until the number of streams 7 in the spatially multiplexed stream group 8 reaches the maximum value of the number of layers of multi-user MIMO, or until there are no remaining stream candidates. to select. In this manner, the antenna selector 33 determines allocation (distribution) of the stream 7 to each user terminal 5 .
  • the terminal selection unit 30 selects the user terminal 5 may be additionally selected, and the antenna selection unit 33 may add stream candidates addressed to the user terminal 5 to the stream group 8 .
  • the communication unit 34 (transmitting unit, receiving unit) requests the higher-level device 2 to transmit the plurality of selected streams downstream.
  • the communication unit 34 acquires the selected multiple streams from the host device 2 .
  • the communication unit 34 transmits the selected streams by beamforming using the selected antennas 4 .
  • FIG. 2 is a diagram showing an example of addition of a stream 7 to a spatially multiplexed stream group 8 (an example of allocation of streams to user terminals).
  • the selected user terminals 5 are, for example, a user terminal 5-1, a user terminal 5-2, and a user terminal 5-3.
  • the antenna selection unit 33 extracts the numbers (antenna numbers) of the antennas 4 that have the possibility of transmitting a stream to each user terminal 5 from among all the numbers of the distributed antennas 4 by the search process. . That is, the antenna selection unit 33 extracts the number of the antenna 4 associated with the stream candidate from among all the numbers of the antennas 4 distributed.
  • the received power value and the antenna number are associated with each other based on the result of a beam search performed in advance using the beam of the power measurement signal transmitted from each antenna 4.
  • stream candidates and antenna numbers are associated with each other, for example, based on the positional relationship between the user terminal 5 serving as the destination of the stream and the antenna 4 .
  • stream candidates and received power values are associated with each other based on the antenna numbers.
  • the antenna selection unit 33 selects, for example, an antenna 4-3 associated with the stream 7-3, an antenna 4-7 associated with the stream 7-7, and an antenna 4-7 associated with the stream 7-5. and the antenna 4-1 associated with the stream 7-1 are extracted from the plurality of distributed antennas 4.
  • the antenna selection unit 33 selects, for example, an antenna 4-6 associated with the stream 7-6, an antenna 4-5 associated with the stream 7-5, and an antenna 4-5 associated with the stream 7-7. and the antenna 4-4 associated with the stream 7-4 are extracted from the plurality of distributed antennas 4.
  • the antenna selection unit 33 selects, for example, an antenna 4-12 associated with the stream 7-12, an antenna 4-9 associated with the stream 7-9, and an antenna 4-9 associated with the stream 7-5. and the antenna 4-8 associated with the stream 7-8 are extracted from the plurality of distributed antennas 4.
  • the antenna selection unit 33 extracts the received power value of each selected user terminal 5 from among multiple received power values collected from multiple user terminals 5 .
  • the antenna selection unit 33 extracts the stream reception power values for four or less stream candidates for each user terminal 5 .
  • the maximum number of layers for single-user MIMO is 4. Therefore, the number of stream candidates is four for each user terminal 5 . Also, the maximum number of layers for multi-user MIMO is eight. Therefore, the antenna selection unit 33 adds eight or fewer streams selected from the stream candidates to the stream group 8 .
  • the antenna selection unit 33 adds stream candidates to the spatially multiplexed stream group 8 in descending order of associated received power values. Here, if there are a plurality of stream candidates indicating the same received power value, the antenna selection unit 33 may randomly select a stream from among those stream candidates. Further, the antenna selection unit 33 may preferentially select stream candidates for the user terminal 5 to which the number of allocated streams 7 is small from among those stream candidates.
  • the antenna selection unit 33 adds the stream 7-6 exhibiting the highest received power value "-73 dB" among the stream candidates to the stream group 8 to be spatially multiplexed. Further, the antenna selection unit 33 excludes the added stream 7-6 from stream candidates.
  • the antenna selection unit 33 adds the stream 7-3 exhibiting the second largest received power value "-74 dB" among the stream candidates to the stream group 8 to be spatially multiplexed.
  • the antenna selection unit 33 adds the stream 7-5 having the third largest received power value of “ ⁇ 75 dB” among the stream candidates to the stream group 8 to be spatially multiplexed.
  • the antenna selection unit 33 adds the stream 7-7 having the fourth largest received power value of “ ⁇ 76 dB” among the stream candidates to the stream group 8 to be spatially multiplexed.
  • the antenna selection unit 33 selects multiple antennas 4 for transmitting the multiple selected streams 7 from among all the antennas 4 in the communication area so as not to overlap. For example, the antenna selection unit 33 does not add the stream 7-7 having the fifth largest received power value of “ ⁇ 77 dB” among the stream candidates to the stream group 8 to be spatially multiplexed. This is because the antenna 4-7 associated with the stream 7-7 indicating the fifth largest received power value "-77 dB” is the stream indicating the fourth largest received power value "-76 dB" among stream candidates. This is because the antenna 4-7 associated with 7-7 has already been selected. When a stream candidate associated with the selected antenna 4 is selected, the antenna selection unit 33 does not add the stream candidate to the stream group 8, but excludes it from addition targets to the stream group 8. do.
  • FIG. 3 is a sequence diagram showing an operation example of the wireless communication system 1.
  • the host device 2 transmits the identifier of the stream addressed to the user terminal 5-n (n is an integer equal to or greater than 1) to the base station 3 as a stream allocation request (step S101).
  • the base station 3 selects one or more user terminals 5-n to which the stream is assigned based on the stream identifier (step S102).
  • the base station 3 derives a predicted value of the amount of interference between streams for one or more selected user terminals 5-n (step S103).
  • the base station 3 requests one or more selected user terminals 5-n to transmit the maximum received power value.
  • Each user terminal 5-n transmits the received power value of the beam transmitted from each antenna 4 to the base station 3 (step S104).
  • the base station 3 collects the maximum received power value of the beam transmitted from each antenna 4 from each user terminal 5-n (step S105).
  • the base station 3 searches for the antenna 4 associated with the candidate for the stream 7 to be spatially multiplexed (step S106).
  • the base station 3 gives priority to a stream with a large received power value, and selects multiple antennas 4 associated with multiple streams 7 (step S107).
  • the base station 3 requests transmission of multiple streams (step S108).
  • the host device 2 acquires transmission requests for a plurality of streams (step S109).
  • the host device 2 transmits the requested multiple streams to the base station 3 as multiple spatially multiplexed streams (step S110).
  • the base station 3 acquires a plurality of spatially multiplexed streams (step S111).
  • the base station 3 uses the selected multiple antennas 4 to transmit the spatially multiplexed stream group (multiple streams 7) to each user terminal 5-n (step S112).
  • Each user terminal 5-n acquires the stream 7 addressed to itself from the antenna 4 associated with the stream 7 (step S113).
  • the user terminal 5-n may transmit the uplink stream to the antenna 4 associated with the uplink stream (step S114).
  • the base station 3 acquires its uplink streams using selected antennas 4 .
  • the base station 3 transmits the uplink stream to the host device 2 (step S115).
  • the host device 2 acquires the uplink stream from the base station 3 (step S116).
  • FIG. 4 is a flowchart showing an operation example of the wireless communication system 1 (a method of allocating streams to each user terminal 5).
  • the terminal selection unit 30 selects one or more user terminals 5 from a plurality of user terminals 5 in the communication area (step S201).
  • the prediction unit 31 derives a prediction value of the amount of interference between streams transmitted from the plurality of antennas 4 for one or more selected user terminals 5 .
  • the collection unit 32 determines whether or not the predicted value of the interference amount of the stream group is less than a predetermined threshold (Step S202a).
  • step S202a: NO the collection unit 32 returns the process to step S201.
  • step S202a: YES the collection unit 32 selects the The received power values of the selected beams are collected from one or more selected user terminals 5 (step S203).
  • the antenna selection unit 33 searches for the antenna 4 associated with the candidate for the stream 7 to be spatially multiplexed (step S204).
  • the antenna selection unit 33 selects the stream 7 from the candidates for the spatially multiplexed stream 7 in descending order of the received power value (step S205).
  • the antenna selection unit 33 determines whether or not the antenna 4-m associated with the selected stream 7-m (m is an integer equal to or greater than 1) has already been selected. That is, the antenna selection unit 33 determines whether or not the antenna 4-m associated with the selected stream 7-m is assigned for transmission of another stream (step S206).
  • the antenna selection unit 33 selects the antenna 4-m associated with the selected stream 7-m.
  • the selected antenna 4-m is selected as the antenna 4 for beam forming (step S207).
  • the antenna selector 33 adds the selected stream 7-m to the stream group 8 to be spatially multiplexed. For example, the antenna selection unit 33 adds the selected stream 7-m to the spatially multiplexed stream group 8 (step S208).
  • the antenna selection unit 33 excludes the stream 7-m added to the stream group 8 to be spatially multiplexed from the candidates for the stream 7 to be spatially multiplexed. For example, the antenna selection unit 33 excludes the stream 7-m added to the spatially multiplexed stream group 8 from the candidates for the spatially multiplexed stream 7 (step S209).
  • the antenna selection unit 33 determines whether or not the number of streams 7 added to the spatially multiplexed stream group 8 is less than the maximum number of layers of multi-user MIMO (eg, 8). That is, the antenna selection unit 33 determines whether or not it is possible to further add the stream 7 to the spatially multiplexed stream group 8 (step S210).
  • the antenna selection unit 33 When it is determined that the number of streams 7 added to the spatially multiplexed stream group 8 is equal to the maximum number of layers of multi-user MIMO (step S210: YES), the antenna selection unit 33 performs spatial multiplexing. Determine whether there are any remaining candidates for stream 7. That is, the antenna selection unit 33 determines whether or not the number of candidates for the stream 7 to be spatially multiplexed is 0 (step S211).
  • step S210 When it is determined that the number of streams 7 added to the spatially multiplexed stream group 8 is less than the maximum value of the number of layers of multi-user MIMO (step S210: NO), the antenna selection unit 33 terminates the process. .
  • step S211: YES When it is determined that there remains a candidate for spatially multiplexed stream 7 (step S211: YES), the antenna selection unit 33 returns the process to step S205. If it is determined that there are no remaining candidates for spatially multiplexed stream 7 (step S211: NO), antenna selection section 33 terminates the process.
  • step S206 When it is determined in step S206 that the antenna 4-m associated with the selected stream 7-m has already been selected (step S206: YES), the antenna selection unit 33 selects the selected stream 7-m. m is excluded from candidates for stream 7 to be spatially multiplexed (step S212). Moreover, the antenna selection part 33 returns a process to step S205.
  • the terminal selection unit 30 selects one or more user terminals 5 .
  • the prediction unit 31 derives a prediction value of the amount of interference between streams transmitted from the plurality of antennas 4 for one or more selected user terminals 5 .
  • the collection unit 32 collects the received power values of the beams 6 of the streams 7 included in the stream group 8 from one or more selected user terminals 5 when the predicted value of the interference amount of the stream group is less than the threshold.
  • the antenna selection unit 33 selects a plurality of streams 7 in descending order of beam reception power values of the streams.
  • the antenna selection unit 33 selects multiple antennas 4 associated with the multiple selected streams 7 .
  • the communication unit 34 transmits the selected streams 7 by beamforming using the selected antennas 4 .
  • the radio communication system can improve communication capacity while suppressing an increase in processing load without collecting channel estimation values between each antenna and each user terminal.
  • the received power value is a simpler index than the channel estimation value (an index that does not require a high processing load).
  • FIG. 5 is a flow chart showing an operation example of the wireless communication system 1 in the modified example of the embodiment. Step S201 shown in FIG. 5 is similar to step S201 shown in FIG.
  • the prediction unit 31 derives a prediction value of the interference amount of the stream group transmitted from the multiple antennas 4 for one or more selected user terminals 5 .
  • the collection unit 32 determines whether or not the predicted value of the interference amount of the stream group is less than a predetermined threshold (step S202b). When it is determined that the predicted value of the interference amount of the stream group is less than the predetermined threshold (step S202b: YES), the collection unit 32 advances the process to step S203.
  • the antenna selection unit 33 selects the allocation method that takes into consideration the interference amount between the streams, and uses the first implementation method. Assignment (allocation) of streams to the user terminals 5 is performed by a predetermined method different from the assignment method shown in the form. That is, the antenna selection unit 33 allocates the spatially multiplexed stream group 8 to the plurality of antennas 4 based on a predetermined condition so that the amount of interference between the streams is reduced (step S213). The antenna selection unit 33 terminates the processing.
  • the predetermined condition may be any condition as long as the amount of interference between streams is reduced.
  • the antenna selection unit 33 selects the spatial Multiplexed stream groups 8 are assigned to multiple antennas 4 . This makes it possible to improve the communication capacity while suppressing an increase in the processing load.
  • FIG. 6 is a diagram illustrating a hardware configuration example of a wireless communication device according to the embodiment.
  • a processor 100 such as a CPU (Central Processing Unit) is a storage device having a non-volatile recording medium (non-temporary recording medium) for some or all of the functional units of the base station 3 (wireless communication device). It is implemented as software by executing a program stored in 102 and memory 101 . The program may be recorded on a computer-readable recording medium.
  • Computer-readable recording media include portable media such as flexible discs, magneto-optical discs, ROM (Read Only Memory), CD-ROM (Compact Disc Read Only Memory), and storage such as hard disks built into computer systems. It is a non-temporary recording medium such as a device.
  • Some or all of the functional units of the wireless communication system 1 may use, for example, LSI (Large Scale Integrated circuit), ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), or FPGA (Field Programmable Gate Array). may be implemented using hardware including electronic circuits or circuitry.
  • LSI Large Scale Integrated circuit
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the present invention is applicable to distributed antenna systems performing single-user MIMO (SU-MIMO) and multi-user MIMO (MU-MIMO).
  • SU-MIMO single-user MIMO
  • MU-MIMO multi-user MIMO

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線通信装置は、1以上のユーザ端末を選択する端末選択部と、選択された1以上のユーザ端末について、複数のアンテナから送信されるストリーム群の干渉量の予測値を導出する予測部と、干渉量の予測値が閾値未満である場合、ストリーム群に含まれるストリームの受信電力値を、選択された1以上のユーザ端末から収集する収集部と、受信電力値が大きい順に複数のストリームを選択し、選択された複数のストリームに対応付けられた複数のアンテナを選択するアンテナ選択部と、選択された複数のストリームを、選択された複数のアンテナを用いてビームフォーミングによって送信する送信部とを備える。

Description

無線通信装置及び無線通信方法
 本発明は、無線通信装置及び無線通信方法に関する。
 第5世代移動通信システム(5G)では、高周波数帯(ミリ波帯)の電波が通信に使用されている。将来の無線システム(例えば、第6世代移動通信システム)では、通信容量が向上するように、より広い帯域幅を確保可能な更に高い周波数帯の電波の使用が想定されている。
 一般に、高周波数帯の電波の伝搬損失は大きい。また、高周波数帯の電波の直進性は高い。そこで、通信エリアをカバーするために、分散配置された複数のアンテナを用いて通信する無線通信システム(分散アンテナシステム)が検討されている(非特許文献1参照)。
 分散アンテナシステムは、分散配置された複数のアンテナを用いて、シングルユーザMIMO(Single User - Multi-Input Multi-Output : SU-MIMO)とマルチユーザMIMO(Multi User - Multi-Input Multi-Output : MU-MIMO)とを実行する。これらによって、分散アンテナシステムは、通信容量を向上させることが可能である。
 特許文献1では、マルチユーザMIMOを用いる基地局(無線通信装置)と複数の移動局(ユーザ端末)とを備える無線通信システムにおいて、基地局と各移動局との間の各チャネル推定値に基づいて、各移動局に送信されるストリームの本数及びパラメータを決定する基地局が提案されている。特許文献1では、基地局は、各チャネル推定値に対してGreedy法等を適用することによって、アンテナから移動局に送信されるストリームの本数を移動局ごとに割り当てる。これによって、通信容量を向上させることが可能である。
特開2017-163497号公報
株式会社NTTドコモ, "ドコモ6Gホワイトペーパー2.0版", 2020年7月
 高周波数帯の電波を通信に使用する無線通信システムでは、処理遅延の抑制とデバイス制御の簡易化との観点から、処理負荷の増大を抑制することが求められている。しかしながら、分散配置された全てのアンテナと各ユーザ端末との間の複数のチャネル推定値を基地局が収集することは、処理負荷の増大を抑制する観点から望ましくない。また、これら複数のチャネル推定値に基づいてユーザ端末に割り当てるストリームを制御することは、処理負荷の増大を抑制する観点から望ましくない。これらのように、処理負荷が増大した場合には、通信容量を向上させることができない場合がある。
 上記事情に鑑み、本発明は、処理負荷の増大を抑制した上で、通信容量を向上させることが可能である無線通信装置及び無線通信方法を提供することを目的としている。
 本発明の一態様は、1以上のユーザ端末を選択する端末選択部と、選択された前記1以上のユーザ端末について、複数のアンテナから送信されるストリーム群の干渉量の予測値を導出する予測部と、前記干渉量の予測値が閾値未満である場合、前記ストリーム群に含まれるストリームのビームの受信電力値を、選択された前記1以上のユーザ端末から収集する収集部と、前記受信電力値が大きい順に複数の前記ストリームを選択し、選択された複数の前記ストリームに対応付けられた複数の前記アンテナを選択するアンテナ選択部と、選択された複数の前記ストリームを、選択された複数の前記アンテナを用いてビームフォーミングによって送信する送信部とを備える無線通信装置である。
 本発明の一態様は、無線通信装置が実行する無線通信方法であって、1以上のユーザ端末を選択する端末選択ステップと、選択された前記1以上のユーザ端末について、複数のアンテナから送信されるストリーム群の干渉量の予測値を導出する予測ステップと、前記干渉量の予測値が閾値未満である場合、前記ストリーム群に含まれるストリームのビームの受信電力値を、選択された前記1以上のユーザ端末から収集する収集ステップと、前記受信電力値が大きい順に複数の前記ストリームを選択し、選択された複数の前記ストリームに対応付けられた複数の前記アンテナを選択するアンテナ選択ステップと、選択された複数の前記ストリームを、選択された複数の前記アンテナを用いてビームフォーミングによって送信する送信ステップとを含む無線通信方法である。
 本発明により、処理負荷の増大を抑制した上で、通信容量を向上させることが可能である。
実施形態における、無線通信システムの構成例を示す図である。 実施形態における、空間多重されるストリーム群へのストリームの追加例を示す図である。 実施形態における、無線通信システムの動作例を示すシーケンス図である。 実施形態における、無線通信システムの動作例を示すフローチャートである。 実施形態の変形例における、無線通信システムの動作例を示すフローチャートである。 実施形態における、無線通信装置のハードウェア構成例を示す図である。
 本発明の実施形態について、図面を参照して詳細に説明する。
 (概要)
 実施形態の無線通信システムは、分散配置された全てのアンテナのうちの少なくとも一部のアンテナを用いてストリーム(データ系列)を無線通信するシステム(分散アンテナシステム)である。無線通信システムでは、アンテナごとに1本のストリームが、そのアンテナごとに1本のビームを用いて、ユーザ端末に送信される。したがって、複数のストリーム(ストリーム群)がユーザ端末に割り当てられた場合には、そのユーザ端末に向けて、割り当てられた複数のストリーム(ビーム)が複数のアンテナから送信される。
 ここで、無線通信システムの基地局は、分散配置された全てのアンテナのうちから、割り当てられた複数のストリームを送信する複数のアンテナを選択する。基地局は、選択された複数のアンテナから送信されるストリーム同士の干渉量の予測値を、選択された複数のアンテナの組み合わせに基づく所定の統計手法を用いて導出する。また、基地局は、導出された予測値が所定の閾値未満であるか否かを、ストリームの送信前に判定する。
 ストリーム同士の干渉量の予測値が所定の閾値未満であると判定された場合、基地局は、各ユーザ端末がストリームのビームの受信電力値を測定できるように、分散配置されたアンテナごとにビームサーチを実行する。ここで、基地局は、通信エリアにおける各ユーザ端末に、各アンテナを用いて、電力測定用信号のビームを送信する。各ユーザ端末は、アンテナごとに送信された電力測定用信号のビームの最大受信電力値を、基地局にフィードバックする。基地局は、送信された電力測定用信号のビームの最大受信電力値を、通信エリアにおける各ユーザ端末から収集する。すなわち、基地局は、電力測定用信号のビームを送信したアンテナごとの最大受信電力値を、通信エリアにおける各ユーザ端末から収集する。アンテナから送信された電力測定用信号のビームの受信電力値は、その同じアンテナから送信されたストリームのビームの受信電力値に相当する。なお、受信電力値は、チャネル推定値よりも簡易な指標(処理負荷が高くない指標)である。
 基地局は、上位装置から送信された割り当て要求に応じて、ダウンリンクについて、基地局が同時送信可能なストリームの本数の範囲で、選択された1以上のユーザ端末に1以上のストリームを割り当てる。ここで、基地局は、収集された受信電力値に基づいて、選択された1以上のユーザ端末にストリームの本数を割り当てる。なお、基地局は、アップリンクについて、収集された受信電力値に基づいて、選択された1以上のユーザ端末にストリームの本数を割り当ててもよい。
 基地局は、ストリームの信号対雑音比(signal-to-noise ratio)が高くなるアンテナを優先して、分散配置された全てのアンテナのうちから複数のアンテナを選択する。ここで、分散配置された全てのアンテナが選択されてもよいし、分散配置された全てのアンテナのうちの一部が選択されてもよい。
 基地局は、ストリーム同士の干渉量の予測値が所定の閾値未満であると判定された場合、選択された複数のアンテナから送信される高周波数帯の電波(無線信号)を用いて、選択された1以上のユーザ端末にストリーム群を送信する。ここで、無線通信システムがビームフォーミングを実行することによって、ストリーム同士の干渉量が低減される。これらによって、処理負荷の増大を抑制した上で、通信容量を向上させることが可能である。
 (実施形態)
 図1は、無線通信システム1の構成例を示す図である。無線通信システム1は、分散配置された全てのアンテナのうちの少なくとも一部のアンテナを用いてストリームを無線通信するシステム(分散アンテナシステム)である。無線通信システム1は、上位装置2と、基地局3と、複数のアンテナ4と、1以上のユーザ端末5とを備える。
 複数のアンテナ4(超分散アンテナ)は、基地局3から張り出して、通信エリアに分散配置される。基地局3と各アンテナ4との間は、例えば光ファイバ又は同軸ケーブルを用いて接続される。基地局3と各アンテナ4との間では、アナログRoF(Radio-over-Fiber)を用いて、光ファイバが光信号を伝送してもよい。図1では、無線通信システム1は、一例として16個のアンテナ4を備える。アンテナ4は、複数のアンテナ素子を備える。また、ユーザ端末5は、1以上のアンテナ素子を備える。
 上位装置2は、情報処理装置であり、例えばサーバ装置である。上位装置2は、アンテナ4から送信されるストリーム(データ系列)の候補を、基地局3に送信する。
 基地局3は、分散配置された各アンテナ4の動作を集中制御する。基地局3は、分散配置された全てのアンテナ4のうちから、複数のアンテナ4を選択する。基地局3は、選択された複数のアンテナ4を用いて、空間多重されたストリーム群8を1以上のユーザ端末5に送信する。ここで、基地局3は、アンテナ4に備えられた複数のアンテナ素子を用いて、ビームフォーミングを実行する。これによって、高周波数帯における利得が確保される。
 なお、基地局3とユーザ端末5との両方が、ビームフォーミングを実行してもよい。また、上位装置2は、上り送信によって、複数のストリームを基地局3から取得してもよい。
 基地局3は、シングルユーザMIMOとマルチユーザMIMOとのうちの少なくとも一方を実行する。複数のアンテナ4は、空間多重されたストリーム群8(複数のストリーム)を、複数のユーザ端末5に向けて同時送信する。このようにして、基地局3は、ダウンリンクについて、マルチユーザMIMOを実行する。同様に、複数のユーザ端末5は、空間多重されたストリーム群を、複数のアンテナ4に向けて同時送信してもよい。このようにして、基地局3は、アップリンクについて、マルチユーザMIMOを実行してもよい。
 複数のアンテナ4は、空間多重されたストリーム群9(複数のストリーム)を、単一のユーザ端末5に向けて同時送信する。図1では、アンテナ4-1は、ビーム6-1を用いて、ストリーム7-1をユーザ端末5-1に向けて送信する。アンテナ4-3は、ビーム6-3を用いて、ストリーム7-3をユーザ端末5-1に向けて送信する。このようにして、基地局3は、ダウンリンクについて、シングルユーザMIMOを実行する。同様に、単一のユーザ端末5は、空間多重されたストリーム群を、複数のアンテナ4に向けて同時送信してもよい。このようにして、基地局3は、アップリンクについて、シングルユーザMIMOを実行してもよい。
 ストリーム群8は、マルチユーザMIMOのストリーム群である。なお、マルチユーザMIMOにおいて同時に通信可能なストリーム7の本数の上限は、マルチユーザMIMOのレイヤ数の最大値を表すパラメータに基づいて定められる。
 ストリーム群9は、シングルユーザMIMOのストリーム群である。なお、シングルユーザMIMOにおいて同時に通信可能なストリーム7の本数の上限は、シングルユーザMIMOのレイヤ数の最大値を表すパラメータに基づいて定められる。
 次に、基地局3の構成例について説明する。
 基地局3は、端末選択部30と、予測部31と、収集部32と、アンテナ選択部33と、通信部34(送信部、受信部)とを備える。
 端末選択部30は、ダウンリンクのストリームの割り当て要求として、複数のストリームの識別子を上位装置2から取得する。端末選択部30は、取得された複数のストリームの識別子について、ユーザ端末5に割り当てられるストリームの候補を管理する。すなわち、端末選択部30は、ストリームの識別子に基づいて、通信エリアにおける複数のユーザ端末5のうちから、1以上のユーザ端末5を選択する。
 例えば、端末選択部30は、ランク指標(Rank Indicator : RI)等の所定指標と所定のスケジューリング処理とに基づいて、ユーザ端末5を選択する。例えば、端末選択部30は、比例公平性(Proportional fairness : PF)と所定のスケジューリング処理とに基づいて、ユーザ端末5を選択してもよい。
 例えば、端末選択部30は、アンテナ4から送信されたストリームの受信電力が高いユーザ端末5から順に、ユーザ端末5を選択してもよい。例えば、端末選択部30は、アンテナ4から送信されたストリームのビームの受信電力値が類似するユーザ端末5同士を選択してもよい。
 例えば、端末選択部30は、ユーザ端末5同士の間においてストリーム同士の干渉量が低減するように、ユーザ端末5同士の位置関係等に基づいて、複数のユーザ端末5を選択してもよい。例えば、端末選択部30は、ユーザ端末5同士の間においてストリーム同士の干渉量が低減するように、所定距離以上に互いに離れているユーザ端末5同士を選択してもよい。
 例えば、端末選択部30は、マルチユーザMIMOのレイヤ数の最大値以上の個数のユーザ端末5を選択してもよい。例えば、端末選択部30は、マルチユーザMIMOのレイヤ数の最大値未満の個数のユーザ端末5を選択してもよい。
 予測部31は、選択された1以上のユーザ端末5を表すデータ(例えば、端末の識別子)を、端末選択部30から取得する。予測部31は、選択された1以上のユーザ端末5について、複数のアンテナ4から送信されるストリーム群の干渉量の予測値を導出する。例えば、予測部31は、選択された単一のユーザ端末5について、そのユーザ端末5のストリーム同士の干渉量の予測値を導出する。例えば、予測部31は、選択された複数のユーザ端末5について、それら複数のユーザ端末5のストリーム同士の干渉量の予測値を導出する。
 予測部31は、ストリーム群の干渉量の予測値が所定の閾値未満であるか否かを判定する。なお、ストリーム群の干渉量の予測値が所定の閾値以上であると判定された場合、端末選択部30は、ストリーム群の干渉量の予測値が所定の閾値未満であると判定されるまで、ユーザ端末5を選択する処理をやり直してもよい。
 予測部31は、複数のアンテナ4と送信される複数のストリーム(ビーム)との組み合わせに基づく所定の統計手法を用いて、ストリーム同士の干渉量の予測値を導出する。予測部31は、複数のアンテナ4の位置関係とアンテナ4ごとのアンテナ素子の個数に応じたビーム幅とに基づく所定の統計手法を用いて、ストリーム同士の干渉量の予測値を導出してもよい。
 なお、端末選択部30は、これらの導出された予測値に基づいて、ストリーム同士の干渉量が少なくなるようにユーザ端末5を選択してもよい。
 干渉量の予測値が所定閾値未満であると判定された場合、収集部32は、選択された各ユーザ端末5にストリームを送信する可能性のある各アンテナ4から送信された電力測定用信号のビームの受信電力値を、選択された各ユーザ端末5からのフィードバック等によって収集する。ストリームを送信する可能性のあるアンテナ4とは、取得されたストリームの識別子に予め対応付けられたアンテナ4である。なお、上述したように、アンテナ4から送信された電力測定用信号のビームの受信電力値は、その同じアンテナ4から送信されたストリームのビームの受信電力値に相当する。
 アンテナ選択部33は、ストリームの候補のうちから、ストリームのビームの受信電力値が大きい順に、複数のストリームを選択する。すなわち、アンテナ選択部33は、上位装置2から取得された複数のストリームの識別子により定まるストリームの候補のうちから、アンテナ4とストリーム7との対応付けに基づいて、最大の受信電力値を示すストリームを優先して選択する。
 アンテナ選択部33は、選択されたストリーム7に対応付けられたアンテナ4を選択する。ここで、アンテナ選択部33は、アンテナ4(リソース)を重複して選択しないようにする。アンテナ選択部33は、アンテナ4が重複して選択された場合には、後から選択されたストリーム7を、空間多重されるストリーム群8に追加されるストリーム7の候補から除外する。
 アンテナ選択部33は、空間多重されるストリーム群8におけるストリーム7の本数がマルチユーザMIMOのレイヤ数の最大値に達するまで、又は、ストリームの候補の残りが無くなるまで、ストリーム7を送信するアンテナ4を選択する。このようにして、アンテナ選択部33は、各ユーザ端末5へのストリーム7の割り当て(配分)を決定する。
 なお、空間多重されるストリーム群におけるストリームの本数がマルチユーザMIMOのレイヤ数の最大値に達しておらず、かつ、ストリームの候補の残りが無くなった場合には、端末選択部30がユーザ端末5を追加で選択し、そのユーザ端末5宛のストリームの候補をアンテナ選択部33がストリーム群8に追加してもよい。
 通信部34(送信部、受信部)は、選択された複数のストリームの下り送信を、上位装置2に要求する。通信部34は、選択された複数のストリームを、上位装置2から取得する。通信部34は、選択された複数のストリームを、選択された複数のアンテナ4を用いて、ビームフォーミングによって送信する。
 次に、アンテナ選択部33の詳細について説明する。
 図2は、空間多重されるストリーム群8へのストリーム7の追加例(ユーザ端末へのストリームの割り当て例)を示す図である。図2では、選択されたユーザ端末5は、一例として、ユーザ端末5-1と、ユーザ端末5-2と、ユーザ端末5-3とである。
 アンテナ選択部33は、各ユーザ端末5に向けてストリームを送信する可能性のあるアンテナ4の番号(アンテナ番号)を、検索処理によって、分散配置された全てのアンテナ4の番号のうちから抽出する。すなわち、アンテナ選択部33は、ストリームの候補に対応付けられたアンテナ4の番号を、分散配置された全てのアンテナ4の番号のうちから抽出する。
 図2に示されたデータテーブルでは、各アンテナ4から送信された電力測定用信号のビームを用いて予め実行されたビームサーチの結果に基づいて、受信電力値とアンテナ番号とが対応付けられている。また、ストリームの候補とアンテナ番号とが、例えば、ストリームの宛先となっているユーザ端末5とアンテナ4との間の位置関係に基づいて対応付けられている。これによって、アンテナ番号に基づいて、ストリームの候補と受信電力値とが対応付けられている。
 アンテナ選択部33は、ユーザ端末5-1について、一例として、ストリーム7-3に対応付けられたアンテナ4-3と、ストリーム7-7に対応付けられたアンテナ4-7と、ストリーム7-5に対応付けられたアンテナ4-5と、ストリーム7-1に対応付けられたアンテナ4-1とを、分散配置された複数のアンテナ4のうちから抽出する。
 アンテナ選択部33は、ユーザ端末5-2について、一例として、ストリーム7-6に対応付けられたアンテナ4-6と、ストリーム7-5に対応付けられたアンテナ4-5と、ストリーム7-7に対応付けられたアンテナ4-7と、ストリーム7-4に対応付けられたアンテナ4-4とを、分散配置された複数のアンテナ4のうちから抽出する。
 アンテナ選択部33は、ユーザ端末5-3について、一例として、ストリーム7-12に対応付けられたアンテナ4-12と、ストリーム7-9に対応付けられたアンテナ4-9と、ストリーム7-5に対応付けられたアンテナ4-5と、ストリーム7-8に対応付けられたアンテナ4-8とを、分散配置された複数のアンテナ4のうちから抽出する。
 アンテナ選択部33は、選択された各ユーザ端末5の受信電力値を、複数のユーザ端末5から収集された複数の受信電力値のうちから抽出する。ここで、シングルユーザMIMOのレイヤ数の最大値が4であることから、アンテナ選択部33は、ユーザ端末5ごとに4本以下のストリームの候補について、ストリームの受信電力値を抽出する。
 このようにして図2では、データテーブルの形式で、「ストリームの候補」と「受信電力値」と「アンテナ番号」と「追加順」とが、選択されたユーザ端末5ごとに対応付けられている。
 図2では、シングルユーザMIMOのレイヤ数の最大値は、4である。このため、ストリームの候補の数は、ユーザ端末5ごとに4個である。また、マルチユーザMIMOのレイヤ数の最大値は、8である。このため、アンテナ選択部33は、ストリームの候補のうちから選択された8本以下のストリームを、ストリーム群8に追加する。
 アンテナ選択部33は、対応付けられた受信電力値が大きい順に、空間多重されるストリーム群8にストリームの候補を追加する。ここで、同じ受信電力値を示すストリームの候補が複数存在する場合には、アンテナ選択部33は、それらのストリームの候補のうちから、ストリームをランダムに選択してもよい。また、アンテナ選択部33は、それらのストリームの候補のうちから、割り当てられたストリーム7の本数が少ないユーザ端末5のストリームの候補を優先して選択してもよい。
 アンテナ選択部33は、ストリームの候補のうちで1番目に大きい受信電力値「-73dB」を示すストリーム7-6を、空間多重されるストリーム群8に追加する。また、アンテナ選択部33は、追加されたストリーム7-6を、ストリームの候補から除外する。
 アンテナ選択部33は、ストリームの候補のうちで2番目に大きい受信電力値「-74dB」を示すストリーム7-3を、空間多重されるストリーム群8に追加する。アンテナ選択部33は、ストリームの候補のうちで3番目に大きい受信電力値「-75dB」を示すストリーム7-5を、空間多重されるストリーム群8に追加する。アンテナ選択部33は、ストリームの候補のうちで4番目に大きい受信電力値「-76dB」を示すストリーム7-7を、空間多重されるストリーム群8に追加する。
 アンテナ選択部33は、選択された複数のストリーム7を送信する複数のアンテナ4を、通信エリアにおける全てのアンテナ4のうちから重複しないように選択する。例えば、アンテナ選択部33は、ストリームの候補のうちで5番目に大きい受信電力値「-77dB」を示すストリーム7-7を、空間多重されるストリーム群8に追加しない。なぜなら、5番目に大きい受信電力値「-77dB」を示すストリーム7-7に対応付けられたアンテナ4-7は、ストリームの候補のうちで4番目に大きい受信電力値「-76dB」を示すストリーム7-7に対応付けられたアンテナ4-7として選択済だからである。選択済のアンテナ4に対応付けられたストリームの候補が選択された場合には、アンテナ選択部33は、そのストリームの候補をストリーム群8に追加せずに、ストリーム群8への追加対象から除外する。
 図2では、受信電力値「-83dB」を示すストリーム7-1がストリーム群8に追加された時点で、空間多重されるストリームの本数が、マルチユーザMIMOのレイヤ数の最大値「8」に達する。このため、ストリームの候補のうちで残っている候補が今回選択されることなく、選択されたユーザ端末5へのストリーム7の割り当て処理は終了する。
 次に、無線通信システム1の動作例を説明する。
 図3は、無線通信システム1の動作例を示すシーケンス図である。上位装置2は、ユーザ端末5-n(nは1以上の整数)宛てのストリームの識別子を、ストリームの割り当て要求として基地局3に送信する(ステップS101)。基地局3は、ストリームの識別子に基づいて、ストリームが割り当てられる1以上のユーザ端末5-nを選択する(ステップS102)。基地局3は、選択された1以上のユーザ端末5-nについて、ストリーム同士の干渉量の予測値を導出する(ステップS103)。
 ストリーム同士の干渉量の予測値が閾値未満である場合、基地局3は、最大受信電力値の送信を、選択された1以上のユーザ端末5-nに要求する。各ユーザ端末5-nは、各アンテナ4から送信されたビームの受信電力値を、基地局3に送信する(ステップS104)。基地局3は、各アンテナ4から送信されたビームの最大受信電力値を、各ユーザ端末5-nから収集する(ステップS105)。
 基地局3は、空間多重されるストリーム7の候補に対応付けられたアンテナ4を検索する(ステップS106)。基地局3は、受信電力値が大きいストリームを優先し、複数のストリーム7に対応付けられた複数のアンテナ4を選択する(ステップS107)。
 基地局3は、複数のストリームの送信を要求する(ステップS108)。上位装置2は、複数のストリームの送信要求を取得する(ステップS109)。上位装置2は、要求された複数のストリームを、空間多重される複数のストリームとして、基地局3に送信する(ステップS110)。基地局3は、空間多重される複数のストリームを取得する(ステップS111)。
 基地局3は、選択された複数のアンテナ4を用いて、空間多重されたストリーム群(複数のストリーム7)を各ユーザ端末5-nに送信する(ステップS112)。各ユーザ端末5-nは、自端末宛てのストリーム7を、そのストリーム7に対応付けられたアンテナ4から取得する(ステップS113)。
 ユーザ端末5-nは、アップリンクのストリームを、そのアップリンクのストリームに対応付けられたアンテナ4に送信してもよい(ステップS114)。基地局3は、選択された複数のアンテナ4を用いて、そのアップリンクのストリームを取得する。基地局3は、アップリンクのストリームを、上位装置2に送信する(ステップS115)。上位装置2は、アップリンクのストリームを、基地局3から取得する(ステップS116)。
 図4は、無線通信システム1の動作例(各ユーザ端末5へのストリームの割り当て方法)を示すフローチャートである。端末選択部30は、通信エリアにおける複数のユーザ端末5のうちから、1以上のユーザ端末5を選択する(ステップS201)。予測部31は、選択された1以上のユーザ端末5について、複数のアンテナ4から送信されるストリーム群の干渉量の予測値を導出する。収集部32は、ストリーム群の干渉量の予測値が所定閾値未満であるか否かを判定する(ステップS202a)。
 ストリーム群の干渉量の予測値が所定閾値以上であると判定された場合(ステップS202a:NO)、収集部32は、ステップS201に処理を戻す。ストリーム群の干渉量の予測値が所定閾値未満であると判定された場合(ステップS202a:YES)、収集部32は、分散配置された全てのアンテナ4に含まれている各アンテナ4から送信されたビームの受信電力値を、選択された1以上のユーザ端末5から収集する(ステップS203)。
 アンテナ選択部33は、空間多重されるストリーム7の候補に対応付けられたアンテナ4を検索する(ステップS204)。アンテナ選択部33は、空間多重されるストリーム7の候補のうちから、受信電力値が大きい順にストリーム7を選択する(ステップS205)。アンテナ選択部33は、選択されたストリーム7-m(mは1以上の整数)に対応付けられたアンテナ4-mが既に選択されているか否かを判定する。すなわち、アンテナ選択部33は、選択されたストリーム7-mに対応付けられたアンテナ4-mが他のストリームの送信のために割り当てられているか否かを判定する(ステップS206)。
 選択されたストリーム7-mに対応付けられたアンテナ4-mが選択されていないと判定された場合(ステップS206:NO)、アンテナ選択部33は、選択されたストリーム7-mに対応付けられたアンテナ4-mを、ビームフォーミングを実行するアンテナ4として選択する(ステップS207)。アンテナ選択部33は、選択されたストリーム7-mを、空間多重されるストリーム群8に追加する。例えば、アンテナ選択部33は、選択されたストリーム7-mを、空間多重されるストリーム群8に追加する(ステップS208)。
 アンテナ選択部33は、空間多重されるストリーム群8に追加されたストリーム7-mを、空間多重されるストリーム7の候補から除外する。例えば、アンテナ選択部33は、空間多重されるストリーム群8に追加されたストリーム7-mを、空間多重されるストリーム7の候補から除外する(ステップS209)。
 アンテナ選択部33は、空間多重されるストリーム群8に追加されたストリーム7の本数がマルチユーザMIMOのレイヤ数の最大値(例えば、8)未満であるか否かを判定する。すなわち、アンテナ選択部33は、空間多重されるストリーム群8にストリーム7を更に追加することが可能であるか否かを判定する(ステップS210)。
 空間多重されるストリーム群8に追加されたストリーム7の本数とマルチユーザMIMOのレイヤ数の最大値とが等しいと判定された場合(ステップS210:YES)、アンテナ選択部33は、空間多重されるストリーム7の候補が残っているか否かを判定する。すなわち、アンテナ選択部33は、空間多重されるストリーム7の候補の個数が0であるか否かを判定する(ステップS211)。
 空間多重されるストリーム群8に追加されたストリーム7の本数がマルチユーザMIMOのレイヤ数の最大値未満であると判定された場合(ステップS210:NO)、アンテナ選択部33は、処理を終了する。
 空間多重されるストリーム7の候補が残っていると判定された場合(ステップS211:YES)、アンテナ選択部33は、ステップS205に処理を戻す。空間多重されるストリーム7の候補が残っていないと判定された場合(ステップS211:NO)、アンテナ選択部33は、処理を終了する。
 ステップS206において、選択されたストリーム7-mに対応付けられたアンテナ4-mが既に選択されていると判定された場合(ステップS206:YES)、アンテナ選択部33は、選択されたストリーム7-mを、空間多重されるストリーム7の候補から除外する(ステップS212)。また、アンテナ選択部33は、ステップS205に処理を戻す。
 以上のように、端末選択部30は、1以上のユーザ端末5を選択する。予測部31は、選択された1以上のユーザ端末5について、複数のアンテナ4から送信されるストリーム群の干渉量の予測値を導出する。収集部32は、ストリーム群の干渉量の予測値が閾値未満である場合、ストリーム群8に含まれるストリーム7のビーム6の受信電力値を、選択された1以上のユーザ端末5から収集する。アンテナ選択部33は、ストリームのビームの受信電力値が大きい順に、複数のストリーム7を選択する。アンテナ選択部33は、選択された複数のストリーム7に対応付けられた複数のアンテナ4を選択する。通信部34(送信部)は、選択された複数のストリーム7を、選択された複数のアンテナ4を用いてビームフォーミングによって送信する。
 これによって、処理負荷の増大を抑制した上で、通信容量(スループット)を向上させることが可能である。すなわち、無線通信システムは、各アンテナと各ユーザ端末との間のチャネル推定値を収集することなく、処理負荷の増大を抑制した上で、通信容量を向上させることが可能である。なお、受信電力値は、チャネル推定値よりも簡易な指標(処理負荷が高くない指標)である。
 (変形例)
 図5は、実施形態の変形例における、無線通信システム1の動作例を示すフローチャートである。図5に示されたステップS201は、図4に示されたステップS201と同様である。
 予測部31は、選択された1以上のユーザ端末5について、複数のアンテナ4から送信されるストリーム群の干渉量の予測値を導出する。収集部32は、ストリーム群の干渉量の予測値が所定閾値未満であるか否かを判定する(ステップS202b)。ストリーム群の干渉量の予測値が所定閾値未満であると判定された場合(ステップS202b:YES)、収集部32は、ステップS203に処理を進める。
 ストリーム群の干渉量の予測値が所定閾値以上であると判定された場合(ステップS202b:NO)、アンテナ選択部33は、ストリーム同士の干渉量が考慮された割り当て方法であって、第1実施形態に示された割り当て方法とは異なる所定の方法によって、ユーザ端末5へのストリームの割り当て(配分)を実行する。すなわち、アンテナ選択部33は、ストリーム同士の干渉量が低減されるように、所定条件に基づいて、空間多重されるストリーム群8を複数のアンテナ4に割り当てる(ステップS213)。アンテナ選択部33は、処理を終了する。所定条件とは、ストリーム同士の干渉量が低減されるようになる条件であれば、どのような条件でもよい。
 以上のように、ストリーム群の干渉量の予測値が所定閾値以上であると判定された場合、アンテナ選択部33は、ストリーム同士の干渉量が低減されるように、所定条件に基づいて、空間多重されるストリーム群8を複数のアンテナ4に割り当てる。これによって、処理負荷の増大を抑制した上で、通信容量を向上させることが可能である。
 (ハードウェア構成)
 図6は、実施形態における、無線通信装置のハードウェア構成例を示す図である。基地局3(無線通信装置)の各機能部のうちの一部又は全部は、CPU(Central Processing Unit)等のプロセッサ100が、不揮発性の記録媒体(非一時的な記録媒体)を有する記憶装置102とメモリ101とに記憶されたプログラムを実行することにより、ソフトウェアとして実現される。プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、CD-ROM(Compact Disc Read Only Memory)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置などの非一時的な記録媒体である。
 無線通信システム1の各機能部の一部又は全部は、例えば、LSI(Large Scale Integrated circuit)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)又はFPGA(Field Programmable Gate Array)等を用いた電子回路(electronic circuit又はcircuitry)を含むハードウェアを用いて実現されてもよい。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 本発明は、シングルユーザMIMO(SU-MIMO)及びマルチユーザMIMO(MU-MIMO)を実行する分散アンテナシステムに適用可能である。
1…無線通信システム、2…上位装置、3…基地局、4…アンテナ、5…ユーザ端末、6…ビーム、7…ストリーム、8…ストリーム群、9…ストリーム群、30…端末選択部、31…予測部、32…収集部、33…アンテナ選択部、34…通信部、100…プロセッサ、101…メモリ、102…記憶装置

Claims (8)

  1.  1以上のユーザ端末を選択する端末選択部と、
     選択された前記1以上のユーザ端末について、複数のアンテナから送信されるストリーム群の干渉量の予測値を導出する予測部と、
     前記干渉量の予測値が閾値未満である場合、前記ストリーム群に含まれるストリームのビームの受信電力値を、選択された前記1以上のユーザ端末から収集する収集部と、
     前記受信電力値が大きい順に複数の前記ストリームを選択し、選択された複数の前記ストリームに対応付けられた複数の前記アンテナを選択するアンテナ選択部と、
     選択された複数の前記ストリームを、選択された複数の前記アンテナを用いてビームフォーミングによって送信する送信部と
     を備える無線通信装置。
  2.  前記予測部は、複数の前記アンテナと送信される複数の前記ストリームとの組み合わせに基づいて、前記ストリーム同士の干渉量の予測値を導出する、請求項1に記載の無線通信装置。
  3.  前記予測部は、複数の前記アンテナの位置関係と前記アンテナごとのアンテナ素子の個数に応じたビーム幅とに基づいて、前記ストリーム同士の干渉量の予測値を導出する、請求項1に記載の無線通信装置。
  4.  前記端末選択部は、ランク指標と所定のスケジューリング処理とに基づいて、前記1以上のユーザ端末を選択する、請求項1から請求項3のいずれか一項に記載の無線通信装置。
  5.  前記端末選択部は、比例公平性と所定のスケジューリング処理とに基づいて、前記1以上のユーザ端末を選択する、請求項1から請求項3のいずれか一項に記載の無線通信装置。
  6.  前記端末選択部は、前記アンテナから送信された前記ストリームの受信電力が高いユーザ端末から順に、前記1以上のユーザ端末を選択する、請求項1から請求項3のいずれか一項に記載の無線通信装置。
  7.  前記端末選択部は、前記アンテナから送信された前記ストリームのビームの受信電力値が類似する前記1以上のユーザ端末を選択する、請求項1から請求項3のいずれか一項に記載の無線通信装置。
  8.  無線通信装置が実行する無線通信方法であって、
     1以上のユーザ端末を選択する端末選択ステップと、
     選択された前記1以上のユーザ端末について、複数のアンテナから送信されるストリーム群の干渉量の予測値を導出する予測ステップと、
     前記干渉量の予測値が閾値未満である場合、前記ストリーム群に含まれるストリームのビームの受信電力値を、選択された前記1以上のユーザ端末から収集する収集ステップと、
     前記受信電力値が大きい順に複数の前記ストリームを選択し、選択された複数の前記ストリームに対応付けられた複数の前記アンテナを選択するアンテナ選択ステップと、
     選択された複数の前記ストリームを、選択された複数の前記アンテナを用いてビームフォーミングによって送信する送信ステップと
     を含む無線通信方法。
PCT/JP2021/003665 2021-02-02 2021-02-02 無線通信装置及び無線通信方法 WO2022168143A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/270,556 US20240088960A1 (en) 2021-02-02 2021-02-02 Wireless communication apparatus and wireless communication method
PCT/JP2021/003665 WO2022168143A1 (ja) 2021-02-02 2021-02-02 無線通信装置及び無線通信方法
JP2022579168A JPWO2022168143A1 (ja) 2021-02-02 2021-02-02

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/003665 WO2022168143A1 (ja) 2021-02-02 2021-02-02 無線通信装置及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2022168143A1 true WO2022168143A1 (ja) 2022-08-11

Family

ID=82741215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003665 WO2022168143A1 (ja) 2021-02-02 2021-02-02 無線通信装置及び無線通信方法

Country Status (3)

Country Link
US (1) US20240088960A1 (ja)
JP (1) JPWO2022168143A1 (ja)
WO (1) WO2022168143A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221291A1 (ja) * 2016-06-20 2017-12-28 三菱電機株式会社 送信装置、通信システム、およびプレコーディング演算方法
WO2020040001A1 (ja) * 2018-08-21 2020-02-27 日本電信電話株式会社 分散アンテナを用いた無線基地局およびスケジューリング方法
WO2020066143A1 (ja) * 2018-09-26 2020-04-02 日本電気株式会社 基地局、システム、方法及び非一時的なコンピュータ可読媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221291A1 (ja) * 2016-06-20 2017-12-28 三菱電機株式会社 送信装置、通信システム、およびプレコーディング演算方法
WO2020040001A1 (ja) * 2018-08-21 2020-02-27 日本電信電話株式会社 分散アンテナを用いた無線基地局およびスケジューリング方法
WO2020066143A1 (ja) * 2018-09-26 2020-04-02 日本電気株式会社 基地局、システム、方法及び非一時的なコンピュータ可読媒体

Also Published As

Publication number Publication date
JPWO2022168143A1 (ja) 2022-08-11
US20240088960A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
JP6272560B2 (ja) 無線通信装置
JP4673778B2 (ja) 無線通信方法
US8514788B2 (en) Radio resource allocation method and telecommunication apparatus
KR101574670B1 (ko) 협력 기지국 클러스터를 이용한 기지국 협력 기법 및 이를 위한 시스템
JP6516733B2 (ja) 相互依存性に基づくmimoセルラ配備におけるスケジューリング、負荷平衡、及びパイロット割り振りの方法及び装置
JP6498762B2 (ja) 高周波無線ネットワーク用の効率的なビーム走査
US8526886B2 (en) Wireless communication device and method for controlling beam to be transmitted
JP5231544B2 (ja) 移動通信システムの複数のアンテナを有する基地局での最大電力設定
JP7097385B2 (ja) 送信ビーム情報を取得する方法と装置、および送信ビーム情報をフィードバックする方法と装置
KR101636418B1 (ko) 지향성 안테나를 사용하는 무선 통신 방법 및 장치
KR20160026091A (ko) 다중 셀 다중 사용자 통신 시스템에서 적응적 빔 호핑을 위한 방법 및 장치
TW200810415A (en) Systems and methods for reduced overhead in wireless communication networks having SDMA modulation
WO2022168143A1 (ja) 無線通信装置及び無線通信方法
KR100829505B1 (ko) 기지국의 신호 송신 방법 및 단말의 피드백 정보 송신 방법
US8275058B2 (en) Wireless communications apparatus
US20120195230A1 (en) Method for multiple access to the radio resources in a mobile ad hoc network and system implementing the method
KR101073294B1 (ko) 무선 인지 시스템을 위한 유전자 알고리즘 기반의 동적 주파수 선택 시스템 및 방법
KR20130104369A (ko) 협력 전송 기반의 다중 안테나 시스템에서의 전송 파워 결정 방법
JP5239659B2 (ja) 無線リソース割り当て方法および無線リソース割当制御装置
JP2005518703A (ja) 符号間相関に基づく符号割当て
KR20190080092A (ko) 분산 안테나 구조의 무선 통신 시스템에서 대규모 안테나를 이용하는 신호 전송 방법
WO2023162177A1 (ja) 無線通信方法、分散アンテナシステム及び無線通信装置
KR20130068015A (ko) 차세대 무선 액세스 네트워크에서의 자원 할당 장치 및 자원 할당 방법
KR20070063113A (ko) 공간 분할 다중 접속 통신 장치 및 방법
KR20220046814A (ko) 이종 noma 시스템의 리소스를 할당하는 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924541

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022579168

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18270556

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924541

Country of ref document: EP

Kind code of ref document: A1