WO2020040001A1 - 分散アンテナを用いた無線基地局およびスケジューリング方法 - Google Patents

分散アンテナを用いた無線基地局およびスケジューリング方法 Download PDF

Info

Publication number
WO2020040001A1
WO2020040001A1 PCT/JP2019/031843 JP2019031843W WO2020040001A1 WO 2020040001 A1 WO2020040001 A1 WO 2020040001A1 JP 2019031843 W JP2019031843 W JP 2019031843W WO 2020040001 A1 WO2020040001 A1 WO 2020040001A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless
base station
antenna
rssi
antennas
Prior art date
Application number
PCT/JP2019/031843
Other languages
English (en)
French (fr)
Inventor
浩一 石原
友規 村上
ヒランタ アベセカラ
俊朗 中平
泰司 鷹取
崇文 林
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/269,285 priority Critical patent/US11528628B2/en
Publication of WO2020040001A1 publication Critical patent/WO2020040001A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff

Definitions

  • the present invention provides a distributed antenna system in which a wireless base station using distributed antennas and a plurality of wireless terminals communicate with each other.
  • the present invention relates to a radio base station using a distributed antenna for scheduling a combination of an antenna and a radio terminal according to a radio environment (hereinafter, referred to as a single BSS) using a single BSS or a single BSS, and a scheduling method.
  • a wireless base station disperses a plurality of antennas, thereby reducing the distance between the antenna of the wireless base station and the antenna of the wireless terminal, and consequently improving the reception power of each wireless communication. Has become possible.
  • FIG. 5 shows an example of SU (single user) transmission in a distributed antenna system.
  • the distributed antenna system includes a wireless base station AP (Access Point) having a plurality of antennas arranged in a distributed manner, and a plurality of wireless terminals STA (Station).
  • AP Access Point
  • STA Serving Mobility
  • STA Serving Mobility
  • the antenna and transmission power of the AP are individually set and transmitted for each STA to be transmitted. As a result, interference outside the area can be reduced.
  • a third invention uses a distributed antenna for selecting a combination of a distributed antenna of a wireless base station and a wireless terminal that performs multi-user transmission to a plurality of wireless terminals in a multi-BSS wireless environment in which a plurality of BSSs coexist.
  • Scheduling means for measuring the received power (RSSI) from each wireless terminal at each of the distributed antennas at each of the distributed antennas, and selecting a combination of an antenna having a higher RSSI and a plurality of wireless terminals for each wireless terminal.
  • Transmission power control means for setting a minimum transmission power according to the RSSI of the antenna when performing multi-user transmission between the antenna combined by the scheduling means and the plurality of wireless terminals.
  • a distributed antenna for selecting a combination of a distributed antenna of a wireless base station for performing multi-user transmission to a plurality of wireless terminals and a wireless terminal is used.
  • the received power (RSSI) from each wireless terminal is measured with each of the distributed antennas, and a combination of an antenna and a plurality of wireless terminals whose RSSIs are common at a higher rank is selected for each wireless terminal.
  • FIG. 6 is a flowchart illustrating an example of a scheduling process in the wireless base station of the present invention. It is a figure which shows the example of scheduling in multi-BSS environment and MU-MIMO transmission. It is a figure which shows the example of scheduling in single BSS environment and MU-MIMO transmission. It is a figure which shows the example of scheduling in multi-BSS environment and OFDMA transmission. It is a figure which shows the example of SU transmission of a distributed antenna system. It is a figure which shows the example of SU transmission / transmission power control of a distributed antenna system.
  • the radio base station includes a plurality of antennas i (i is 1 to MN) that are distributed and arranged.
  • M is the number of antennas in one antenna set
  • N is the number of antenna sets
  • MN is the total number of antennas.
  • a plurality of wireless terminals u exist around the wireless base station.
  • a combination of antennas and wireless terminals that are almost the same in descending order of RSSI is selected for each wireless terminal.
  • an antenna is selected for each wireless terminal in descending order of RSSI, and a combination of an antenna and a wireless terminal that minimizes channel correlation is selected.
  • FIG. 2 showing an example of MU-MIMO scheduling in a multi-BSS
  • FIG. 3 showing an example of MU-MIMO scheduling in a single BSS
  • FIG. 4 showing an example of OFDMA scheduling in a multi-BSS. It will be described separately. If the wireless base station and the wireless terminal are in line of sight, the order of the greatest RSSI is the order of the shortest distance between the antenna and the wireless terminal, and the antenna is selected in the order of the closest to the wireless terminal.
  • the received power P u, i from all wireless terminals u (1 ⁇ u ⁇ u ′) at the scheduled antenna i is measured at predetermined time intervals (S6), and the amount of change in the received power P u, i is determined. It is determined whether or not the threshold value P th is exceeded (S7). If there is a change exceeding the threshold value P th , the process returns to step S2 to perform scheduling and transmission power setting again. Also, when a new wireless terminal u ′ is connected, steps S1 to S2 and subsequent steps are performed, and scheduling and transmission power setting are performed again.
  • the AP connects to the antennas 1 and 2 via the antenna control unit 100 and performs MU-MIMO transmission to the STAs # 1 and # 2.
  • the antenna control unit 100 suppresses the transmission power by setting the minimum transmission power according to the RSSIs of the antennas 1 and 2, so that interference with other BSSs is reduced.
  • MU-MIMO transmission is performed on STAs # 3 and # 4 using a combination of antennas 3 and 4 having the same level in descending order of RSSI.
  • the AP measures RSSIs from STAs # 1 to # 4 using two antennas in each of antenna sets 10 to 40, and selects N sets of antennas selected in descending order of RSSI for each STA.
  • the combination of the antenna set and the STA that minimizes the channel correlation is selected.
  • an antenna set is selected in descending order of RSSI, and antennas 11 of antenna set 10 and antenna 32 of antenna set 30, which minimize the channel correlation, and STA # 1 to STA # 1.
  • FIG. 4 shows an example of scheduling in a multi-BSS environment / OFDMA transmission.
  • the AP measures RSSIs from STAs # 1 to # 4 using antennas 1 to 4, and selects an antenna in descending order of RSSI for each STA.
  • antenna 1 that has a higher RSSI and is common is selected.
  • the AP connects to the antenna 1 via the antenna control unit 100 and performs OFDMA transmission to the STAs # 1 and # 2.
  • the antenna control unit 100 suppresses the transmission power by setting the minimum transmission power according to the RSSI of the antenna 1, so that interference with other BSSs is reduced.
  • OFDMA transmission is performed on the STAs # 3 and # 4 using the antenna 4 having the higher RSSI and common.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

マルチBSSの無線環境で、複数の無線端末に対してマルチユーザ伝送を行う無線基地局の分散アンテナと無線端末との組合せを選択する分散アンテナを用いた無線基地局において、分散アンテナのそれぞれで各無線端末からの受信電力(RSSI)を測定し、無線端末ごとにRSSIが大きい順に同程度となる複数のアンテナと複数の無線端末の組合せを選択するスケジューリング手段と、スケジューリング手段で組み合わせた複数のアンテナと複数の無線端末との間でマルチユーザ伝送を行うときに、そのアンテナのRSSIに応じた最小限の送信電力を設定する送信電力制御手段とを備える。

Description

分散アンテナを用いた無線基地局およびスケジューリング方法
 本発明は、分散アンテナを用いた無線基地局と複数の無線端末が通信を行う分散アンテナシステムにおいて、マルチユーザ伝送を行うときに、複数のBSS(Basic Service Set)が混在する無線環境(以下、マルチBSSという)または単独のBSSによる無線環境(以下、シングルBSSという)に応じて、アンテナと無線端末との組合せをスケジューリングする分散アンテナを用いた無線基地局およびスケジューリング方法に関する。
 なお、マルチユーザ伝送としては、複数のアンテナを用いるMU-MIMO(Multi User - Multiple Input Multiple Output)通信、または単独のアンテナを用いるOFDMA(Orthogonal Frequency Division Multiple Access) 通信を想定する。
 分散アンテナシステムでは、無線基地局が複数のアンテナを分散配置することにより、無線基地局のアンテナと無線端末のアンテナとの間の距離を縮め、結果的に各無線通信の受信電力を向上させることが可能になっている。
 図5は、分散アンテナシステムのSU(シングルユーザ)伝送例を示す。
 図5において、分散アンテナシステムは、分散配置される複数のアンテナを備える無線基地局AP(Access Point、アクセスポイント)と、複数の無線端末STA(Station )とにより構成される。APでは、各アンテナの受信電力を測定することにより、それぞれ近傍に位置するSTAがわかる。
 APから1つのSTAに送信するSU(シングルユーザ)伝送のときは、送信するSTAごとに、APのアンテナおよび送信電力を個別に設定して送信する。これにより、エリア外への干渉を低減することができる。
 また、図6に示すように、送信するSTAごとに、選択したアンテナのRSSIに応じて送信電力を制御することにより、同様にエリア外への干渉を低減する方法も検討されている。
 また、特許文献1および非特許文献1には、分散アンテナシステムにおいて分散配置される各アンテナを複数のアンテナからなるアンテナセットとして構成し、アンテナセットまたはアンテナセットの中のアンテナを適宜選択することにより、SU-MIMOやマルチユーザ(MU)-MIMOに対応する構成がある。SU-MIMOには、例えば1つのアンテナセットを構成する複数のアンテナを用いる。MU-MIMOには、例えば複数のアンテナセットの各1つのアンテナを用いる。さらに、特許文献1には、選択するアンテナごとに送信電力を制御する構成も開示されている。
特開2017-143460号公報
Roh, Wonil, and Arogyaswami Paulraj. "MIMO channel capacity for the distributed antenna." Vehicular Technology Conference, 2002. Proceedings. VTC 2002-Fall. 2002 IEEE 56th. Vol. 2. IEEE, 2002.
 従来の分散アンテナシステムでは、複数のBSSが混在するマルチBSS、または単独のBSSであるシングルBSSの無線環境において、複数の無線端末に対してマルチユーザ伝送を行う無線基地局の分散アンテナと無線端末との組合せを最適に選択し、スループットを向上させる方法については確立していない。
 本発明は、マルチBSSまたはシングルBSSの無線環境において、複数の無線端末に対してマルチユーザ伝送を行う無線基地局の分散アンテナと無線端末のスケジューリングと送信電力設定を行うことができる分散アンテナを用いた無線基地局およびスケジューリング方法を提供することを目的とする。
 第1の発明は、複数のBSSが混在するマルチBSSの無線環境で、複数の無線端末に対してマルチユーザ伝送を行う無線基地局の分散アンテナと無線端末との組合せを選択する分散アンテナを用いた無線基地局において、分散アンテナのそれぞれで各無線端末からの受信電力(RSSI)を測定し、無線端末ごとにRSSIが大きい順に同程度となる複数のアンテナと複数の無線端末の組合せを選択するスケジューリング手段と、スケジューリング手段で組み合わせた複数のアンテナと複数の無線端末との間でマルチユーザ伝送を行うときに、そのアンテナのRSSIに応じた最小限の送信電力を設定する送信電力制御手段とを備える。
 第2の発明は、単独のBSSであるシングルBSSの無線環境で、複数の無線端末に対してマルチユーザ伝送を行う無線基地局の分散アンテナと無線端末との組合せを選択する分散アンテナを用いた無線基地局において、分散アンテナのそれぞれで各無線端末からの受信電力(RSSI)を測定し、無線端末ごとにRSSIの大きい順に選択した複数のアンテナからチャネル相関が最小となる複数のアンテナと複数の無線端末の組合せを選択するスケジューリング手段を備える。
 第3の発明は、複数のBSSが混在するマルチBSSの無線環境で、複数の無線端末に対してマルチユーザ伝送を行う無線基地局の分散アンテナと無線端末との組合せを選択する分散アンテナを用いた無線基地局において、分散アンテナのそれぞれで各無線端末からの受信電力(RSSI)を測定し、無線端末ごとにRSSIが上位で共通となるアンテナと複数の無線端末の組合せを選択するスケジューリング手段と、スケジューリング手段で組み合わせたアンテナと複数の無線端末との間でマルチユーザ伝送を行うときに、そのアンテナのRSSIに応じた最小限の送信電力を設定する送信電力制御手段とを備える。
 第1~第3の発明の分散アンテナを用いた無線基地局において、分散アンテナにおいて各無線端末からの受信電力(RSSI)を測定する代わりに、分散アンテナから同一の送信電力で送信したときの各無線端末での受信電力(RSSI)を測定し、無線基地局にフィードバックする構成である。
 第4の発明は、複数のBSSが混在するマルチBSSの無線環境で、複数の無線端末に対してマルチユーザ伝送を行う無線基地局の分散アンテナと無線端末との組合せを選択する分散アンテナを用いた無線基地局のスケジューリング方法において、分散アンテナのそれぞれで各無線端末からの受信電力(RSSI)を測定し、無線端末ごとにRSSIが大きい順に同程度となる複数のアンテナと複数の無線端末の組合せを選択するスケジューリングステップと、スケジューリングステップで組み合わせた複数のアンテナと複数の無線端末との間でマルチユーザ伝送を行うときに、そのアンテナのRSSIに応じた最小限の送信電力を設定する送信電力制御ステップとを有する。
 第5の発明は、単独のBSSであるシングルBSSの無線環境で、複数の無線端末に対してマルチユーザ伝送を行う無線基地局の分散アンテナと無線端末との組合せを選択する分散アンテナを用いた無線基地局のスケジューリング方法において、分散アンテナのそれぞれで各無線端末からの受信電力(RSSI)を測定し、無線端末ごとにRSSIの大きい順に選択した複数のアンテナからチャネル相関が最小となる複数のアンテナと複数の無線端末の組合せを選択するスケジューリングステップを有する。
 第6の発明は、複数のBSSが混在するマルチBSSの無線環境で、複数の無線端末に対してマルチユーザ伝送を行う無線基地局の分散アンテナと無線端末との組合せを選択する分散アンテナを用いた無線基地局のスケジューリング方法において、分散アンテナのそれぞれで各無線端末からの受信電力(RSSI)を測定し、無線端末ごとにRSSIが上位で共通となるアンテナと複数の無線端末の組合せを選択するスケジューリングステップと、スケジューリングステップで組み合わせたアンテナと複数の無線端末との間でマルチユーザ伝送を行うときに、そのアンテナのRSSIに応じた最小限の送信電力を設定する送信電力制御ステップとを有する。
 第4~第6の発明の無線基地局のスケジューリング方法において、分散アンテナにおいて各無線端末からの受信電力(RSSI)を測定する代わりに、分散アンテナから同一の送信電力で送信したときの各無線端末での受信電力(RSSI)を測定し、無線基地局にフィードバックするステップを有する。
 本発明は、複数のBSSが混在するマルチBSS、または単独のBSSであるシングルBSSの無線環境において、複数の無線端末に対してマルチユーザ伝送を行う無線基地局の分散アンテナと無線端末との組合せと送信電力を最適に選択し、スループットを向上させることができる。
本発明の無線基地局におけるスケジューリング処理例を示すフローチャートである。 マルチBSS環境・MU-MIMO伝送におけるスケジューリング例を示す図である。 シングルBSS環境・MU-MIMO伝送におけるスケジューリング例を示す図である。 マルチBSS環境・OFDMA伝送におけるスケジューリング例を示す図である。 分散アンテナシステムのSU伝送例を示す図である。 分散アンテナシステムのSU伝送・送信電力制御例を示す図である。
 図1は、本発明の無線基地局におけるスケジューリング処理例を示す。
 本スケジューリング処理では、複数のBSSが混在するマルチBSS、または単独のBSSであるシングルBSSの無線環境において、複数の無線端末に対してマルチユーザ伝送を行う無線基地局の分散アンテナと無線端末との組合せを最適選択する。
 無線基地局は、分散配置される複数のアンテナi(iは1~MN)を備える。Mは1アンテナセットにおけるアンテナ数であり、Nはアンテナセット数であり、MNは全アンテナ数である。アンテナセットは、M個のアンテナが例えば半波長程度離れて配置されるが、M=1の場合はアンテナセット=アンテナとなる。無線基地局の周辺には複数の無線端末uが存在する。
 図1において、無線基地局は、無線端末u’と接続すると(S1)、1≦u≦u' の全ての無線端末uに対して、全アンテナ1~MNにおける受信電力(RSSI)Pu,1 ~Pu,m ~Pu,MNを測定する(S2)。次に、マルチBSSまたはシングルBSSの無線環境に応じて、複数の無線端末に対してマルチユーザ伝送を行う無線基地局のアンテナと無線端末とを組合せるスケジューリングを行う(S3)。なお、無線端末1~u’のそれぞれについてRSSIの測定を並列に行う場合には、スケジューリング処理を同期させる必要がある。
 ここで、マルチBSSの無線環境では、無線端末ごとにRSSIが大きい順に同程度となるアンテナと無線端末の組合せを選択する。シングルBSSの無線環境では、無線端末ごとにRSSIが大きい順にアンテナを選択し、さらにチャネル相関が最小となるアンテナと無線端末の組合せを選択する。このスケジューリングの詳細については、マルチBSSにおけるMU-MIMOのスケジューリング例を示す図2、シングルBSSにおけるMU-MIMOのスケジューリング例を示す図3、マルチBSSにおけるOFDMAのスケジューリング例を示す図4を参照して別途説明する。なお、無線基地局と無線端末が見通し内であれば、RSSIの大きい順は、アンテナと無線端末との距離が近い順になり、無線端末に近い順にアンテナが選択されることになる。
 次に、マルチBSSの場合には(S4:Yes )、スケジューリングしたアンテナのRSSIに応じた最小限の送信電力を設定する(S5)。これにより、そのアンテナから抑制された送信電力で送信したときに他BSSへの干渉が最も小さくなる。また、シングルBSSの場合には、当該送信電力設定は不要である。
 次に、スケジューリングされたアンテナiにおける全無線端末u(1≦u≦u' )からの受信電力Pu,i を所定時間ごとに測定し(S6)、受信電力Pu,i の変化量が閾値Pthを越えるか否かを判定し(S7)、閾値Pthを越える変化があった場合には、ステップS2に戻ってスケジューリングと送信電力の設定をやり直す。また、新たな無線端末u’が接続された場合にも、ステップS1からステップS2以降を実施し、スケジューリングと送信電力の設定をやり直す。
 なお、全アンテナにおいて各無線端末からの受信電力(RSSI)を測定する代わりに、全アンテナから同一の送信電力で送信したときの各無線端末での受信電力(RSSI)を測定し、無線基地局にフィードバックする構成としてもよい。
 以下、図1のステップS3のマルチユーザ伝送を行う無線基地局のアンテナと無線端末とを組合せるスケジューリングについて具体的に説明する。ただし、以下に示すアンテナと無線端末の組合せは一例であり、それに限定されるものではない。
 マルチユーザ伝送は2ユーザ(2多重)とし、3ユーザ以上に対しては時分割(TDM)で行うものとし、ここでは無線基地局APに近い4個の無線端末STA1~STA4に対して、2個のSTAずつ時分割でMU-MIMO伝送またはOFDMA伝送を行う例を示す。APは、分散配置される4個のアンテナ1~4、または4個のアンテナセット10~40を備える。アンテナセット10は、2個のアンテナ11,12を備える。アンテナセット20~40も同様である。
 図2は、マルチBSS環境・MU-MIMO伝送におけるスケジューリング例を示す。
 図2(1) において、APは、アンテナ1~4でSTA#1~#4からのRSSIを測定し、STAごとにRSSIが大きい順に同程度となる2つのアンテナの組合せを選択する。ここでは、STA#1,#2に対して、RSSIが大きい順に同程度となるアンテナ1,2の組合せを選択する。
 APは、アンテナ制御部100を介してアンテナ1,2に接続し、STA#1,#2に対してMU-MIMO伝送を行う。このとき、アンテナ制御部100は、アンテナ1,2のRSSIに応じた最小限の送信電力を設定することにより送信電力を抑制するので、他BSSへの干渉が小さくなる。次のタイミングでも同様に、STA#3,#4に対して、RSSIが大きい順に同程度となるアンテナ3,4の組合せでMU-MIMO伝送を行う。
 図2(2) において、APは、アンテナセット10~40の各2本のアンテナで、STA#1~#4からのRSSIを測定し、STAごとにRSSIが最大となるアンテナセットを選択する。ここでは、STA#1,#2に対して、RSSIが最大となるアンテナセット10を選択する。なお、アンテナセット10のアンテナ11,12におけるSTA#1,#2からのRSSIは同程度である。
 APは、アンテナ制御部100を介してアンテナセット10のアンテナ11,12に接続し、STA#1,#2に対してMU-MIMO伝送を行う。このとき、アンテナ制御部100は、アンテナ11,12のRSSIに応じた最小限の送信電力を設定することにより送信電力を抑制するので、他BSSへの干渉が小さくなる。次のタイミングでも同様に、STA#3,#4に対して、RSSIが最大となるアンテナセット40のアンテナ41,42の組合せでMU-MIMO伝送を行う。
 このように、マルチBSS環境では、MU-MIMO伝送するSTAの近傍にあり、かつRSSIが同程度となるアンテナから、そのアンテナのRSSIに応じた最小限の送信電力で送信することにより、他BSSへの干渉を最小限に抑えることができ、システム全体のスループットの改善を図ることができる。
 図3は、シングルBSS環境・MU-MIMO伝送におけるスケジューリング例を示す。
 図3(1) において、APは、アンテナ1~4でSTA#1~#4からのRSSIを測定し、STAごとにRSSIの大きい順に選択した複数のアンテナからチャネル相関が最小となるアンテナとSTAの組合せを選択する。ここでは、STA#1~#4に対して、それぞれRSSIが大きい順にアンテナを選択し、さらにチャネル相関が最小となるアンテナ1,3とSTA#1,#3の組合せを選択する。
 APは、アンテナ制御部100を介してアンテナ1,3に接続し、STA#1,#3に対してMU-MIMO伝送を行う。このとき、他BSSが存在しないので、アンテナ制御部100は他BSSへの干渉を考慮した送信電力制御は不要である。次のタイミングでも同様に、アンテナ2,4とSTA#2,#4の組合せを選択してMU-MIMO伝送を行う。
 図3(2) において、APは、アンテナセット10~40の各2本のアンテナで、STA#1~#4からのRSSIを測定し、STAごとにRSSIの大きい順に選択したNセットのアンテナからチャネル相関が最小となるアンテナセットとSTAの組合せを選択する。ここでは、STA#1~#4に対して、それぞれRSSIが大きい順にアンテナセットを選択し、さらにチャネル相関が最小となるアンテナセット10のアンテナ11およびアンテナセット30のアンテナ32と、STA#1,#3の組合せを選択する。
 APは、アンテナ制御部100を介してアンテナセット10のアンテナ11およびアンテナセット30のアンテナ32に接続し、STA#1,#3に対してMU-MIMO伝送を行う。このとき、他BSSが存在しないので、アンテナ制御部100は他BSSへの干渉を考慮した送信電力制御は不要である。次のタイミングでも同様に、アンテナセット20のアンテナ21およびアンテナセット40のアンテナ42と、STA#2,#4の組合せを選択してMU-MIMO伝送を行う。
 図4は、マルチBSS環境・OFDMA伝送におけるスケジューリング例を示す。
 図4において、APは、アンテナ1~4でSTA#1~#4からのRSSIを測定し、STAごとにRSSIが大きい順にアンテナを選択する。ここでは、STA#1,#2に対して、RSSIが上位で共通となるアンテナ1を選択する。
 APは、アンテナ制御部100を介してアンテナ1に接続し、STA#1,#2に対してOFDMA伝送を行う。このとき、アンテナ制御部100は、アンテナ1のRSSIに応じた最小限の送信電力を設定することにより送信電力を抑制するので、他BSSへの干渉が小さくなる。次のタイミングでも同様に、STA#3,#4に対して、RSSIが上位で共通となるアンテナ4でOFDMA伝送を行う。
 なお、上記説明では、マルチユーザ伝送は2ユーザ(2多重)としたが、3ユーザ以上に対しても同様にマルチユーザ伝送することも可能である。
 また、上記説明では、分散アンテナシステムの構成をもとに説明しているが、分散アンテナに限らず、たとえば、分散アンテナの代わりに指向性方向が異なる複数の指向性アンテナによるシステムにおいて実施してもよい。
 また、上記説明では、無線端末のスケジューリング手段を無線LANチップに実装することを想定して説明したが、たとえば、VAP(Virtual AP)機能により、同じ組み合わせごとに固有のBSSID(Basic Service Set Identifier)に接続させることでスケジューリングを実現させてもよい。
 AP 無線基地局
 STA 無線端末
 1,2,3,4,11,12,21,22,31,32,41,42 アンテナ
 10,20,30,40 アンテナセット
 100 アンテナ制御部

Claims (8)

  1.  複数のBSSが混在するマルチBSSの無線環境で、複数の無線端末に対してマルチユーザ伝送を行う無線基地局の分散アンテナと無線端末との組合せを選択する分散アンテナを用いた無線基地局において、
     前記分散アンテナのそれぞれで各無線端末からの受信電力(RSSI)を測定し、無線端末ごとにRSSIが大きい順に同程度となる複数のアンテナと複数の無線端末の組合せを選択するスケジューリング手段と、
     前記スケジューリング手段で組み合わせた複数のアンテナと複数の無線端末との間でマルチユーザ伝送を行うときに、そのアンテナのRSSIに応じた最小限の送信電力を設定する送信電力制御手段と
     を備えたことを特徴とする分散アンテナを用いた無線基地局。
  2.  単独のBSSであるシングルBSSの無線環境で、複数の無線端末に対してマルチユーザ伝送を行う無線基地局の分散アンテナと無線端末との組合せを選択する分散アンテナを用いた無線基地局において、
     前記分散アンテナのそれぞれで各無線端末からの受信電力(RSSI)を測定し、無線端末ごとにRSSIの大きい順に選択した複数のアンテナからチャネル相関が最小となる複数のアンテナと複数の無線端末の組合せを選択するスケジューリング手段を備えた
     ことを特徴とする分散アンテナを用いた無線基地局。
  3.  複数のBSSが混在するマルチBSSの無線環境で、複数の無線端末に対してマルチユーザ伝送を行う無線基地局の分散アンテナと無線端末との組合せを選択する分散アンテナを用いた無線基地局において、
     前記分散アンテナのそれぞれで各無線端末からの受信電力(RSSI)を測定し、無線端末ごとにRSSIが上位で共通となるアンテナと複数の無線端末の組合せを選択するスケジューリング手段と、
     前記スケジューリング手段で組み合わせたアンテナと複数の無線端末との間でマルチユーザ伝送を行うときに、そのアンテナのRSSIに応じた最小限の送信電力を設定する送信電力制御手段と
     を備えたことを特徴とする分散アンテナを用いた無線基地局。
  4.  請求項1~請求項3のいずれかに記載の分散アンテナを用いた無線基地局において、
     前記分散アンテナにおいて各無線端末からの受信電力(RSSI)を測定する代わりに、前記分散アンテナから同一の送信電力で送信したときの各無線端末での受信電力(RSSI)を測定し、前記無線基地局にフィードバックする構成である
     ことを特徴とする分散アンテナを用いた無線基地局。
  5.  複数のBSSが混在するマルチBSSの無線環境で、複数の無線端末に対してマルチユーザ伝送を行う無線基地局の分散アンテナと無線端末との組合せを選択する分散アンテナを用いた無線基地局のスケジューリング方法において、
     前記分散アンテナのそれぞれで各無線端末からの受信電力(RSSI)を測定し、無線端末ごとにRSSIが大きい順に同程度となる複数のアンテナと複数の無線端末の組合せを選択するスケジューリングステップと、
     前記スケジューリングステップで組み合わせた複数のアンテナと複数の無線端末との間でマルチユーザ伝送を行うときに、そのアンテナのRSSIに応じた最小限の送信電力を設定する送信電力制御ステップと
     を有することを特徴とする無線基地局のスケジューリング方法。
  6.  単独のBSSであるシングルBSSの無線環境で、複数の無線端末に対してマルチユーザ伝送を行う無線基地局の分散アンテナと無線端末との組合せを選択する分散アンテナを用いた無線基地局のスケジューリング方法において、
     前記分散アンテナのそれぞれで各無線端末からの受信電力(RSSI)を測定し、無線端末ごとにRSSIの大きい順に選択した複数のアンテナからチャネル相関が最小となる複数のアンテナと複数の無線端末の組合せを選択するスケジューリングステップを有する
     ことを特徴とする無線基地局のスケジューリング方法。
  7.  複数のBSSが混在するマルチBSSの無線環境で、複数の無線端末に対してマルチユーザ伝送を行う無線基地局の分散アンテナと無線端末との組合せを選択する分散アンテナを用いた無線基地局のスケジューリング方法において、
     前記分散アンテナのそれぞれで各無線端末からの受信電力(RSSI)を測定し、無線端末ごとにRSSIが上位で共通となるアンテナと複数の無線端末の組合せを選択するスケジューリングステップと、
     前記スケジューリングステップで組み合わせたアンテナと複数の無線端末との間でマルチユーザ伝送を行うときに、そのアンテナのRSSIに応じた最小限の送信電力を設定する送信電力制御ステップと
     を有することを特徴とする無線基地局のスケジューリング方法。
  8.  請求項5~請求項7のいずれかに記載の無線基地局のスケジューリング方法において、
     前記分散アンテナにおいて各無線端末からの受信電力(RSSI)を測定する代わりに、前記分散アンテナから同一の送信電力で送信したときの各無線端末での受信電力(RSSI)を測定し、前記無線基地局にフィードバックするステップを有する
     ことを特徴とする無線基地局のスケジューリング方法。
PCT/JP2019/031843 2018-08-21 2019-08-13 分散アンテナを用いた無線基地局およびスケジューリング方法 WO2020040001A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/269,285 US11528628B2 (en) 2018-08-21 2019-08-13 Radio base station using distributed antenna and scheduling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-154877 2018-08-21
JP2018154877A JP7044012B2 (ja) 2018-08-21 2018-08-21 分散アンテナを用いた無線基地局およびスケジューリング方法

Publications (1)

Publication Number Publication Date
WO2020040001A1 true WO2020040001A1 (ja) 2020-02-27

Family

ID=69592027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031843 WO2020040001A1 (ja) 2018-08-21 2019-08-13 分散アンテナを用いた無線基地局およびスケジューリング方法

Country Status (3)

Country Link
US (1) US11528628B2 (ja)
JP (1) JP7044012B2 (ja)
WO (1) WO2020040001A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168143A1 (ja) * 2021-02-02 2022-08-11 日本電信電話株式会社 無線通信装置及び無線通信方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102594039B1 (ko) * 2020-11-10 2023-10-26 서울대학교산학협력단 분산 안테나 시스템을 가지는 ap의 동작 방법 및 이러한 방법을 수행하는 장치
WO2024023923A1 (ja) * 2022-07-26 2024-02-01 日本電信電話株式会社 分散アンテナシステム、無線通信方法及び無線通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214759A (ja) * 2006-02-08 2007-08-23 Nippon Telegr & Teleph Corp <Ntt> 無線通信装置および無線通信方法
JP2008060994A (ja) * 2006-08-31 2008-03-13 Ntt Docomo Inc 通信制御装置及び通信制御方法
JP2012114700A (ja) * 2010-11-25 2012-06-14 Hitachi Ltd 分散アンテナシステム、分散アンテナ切替方法、基地局装置及びアンテナスイッチ装置
JP2012169741A (ja) * 2011-02-10 2012-09-06 Hitachi Ltd 分散アンテナシステム、基地局装置、無線リソース制御方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9667301B1 (en) * 2014-08-03 2017-05-30 Quantenna Communications Inc. Transceiver for heterogeneous WLAN
JP6400614B2 (ja) 2016-02-12 2018-10-03 日本電信電話株式会社 分散アンテナを用いた無線基地局およびアンテナ切替方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214759A (ja) * 2006-02-08 2007-08-23 Nippon Telegr & Teleph Corp <Ntt> 無線通信装置および無線通信方法
JP2008060994A (ja) * 2006-08-31 2008-03-13 Ntt Docomo Inc 通信制御装置及び通信制御方法
JP2012114700A (ja) * 2010-11-25 2012-06-14 Hitachi Ltd 分散アンテナシステム、分散アンテナ切替方法、基地局装置及びアンテナスイッチ装置
JP2012169741A (ja) * 2011-02-10 2012-09-06 Hitachi Ltd 分散アンテナシステム、基地局装置、無線リソース制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168143A1 (ja) * 2021-02-02 2022-08-11 日本電信電話株式会社 無線通信装置及び無線通信方法

Also Published As

Publication number Publication date
US20210392524A1 (en) 2021-12-16
JP7044012B2 (ja) 2022-03-30
US11528628B2 (en) 2022-12-13
JP2020031306A (ja) 2020-02-27

Similar Documents

Publication Publication Date Title
US10575214B2 (en) Communication apparatus, communication method, and communication system for handling frames of variable length
US10903891B2 (en) Communication apparatus, communication method, and communication system
CN110463059B (zh) 用于接入点群集中分布式mimo通信的探通调度
EP3130190B1 (en) Multi-user, multiple access, systems, methods, and devices
Kim et al. Uplink NOMA with multi-antenna
KR101649773B1 (ko) 통신 장치 및 통신 방법, 컴퓨터 프로그램 및 통신 시스템
EP2449837B1 (en) Method and apparatus for multi-station request messaging
US8849353B2 (en) Method of grouping users to reduce interference in MIMO-based wireless network
WO2020040001A1 (ja) 分散アンテナを用いた無線基地局およびスケジューリング方法
JP2020162182A (ja) ワイヤレスネットワークにおけるアップリンクパイロット再使用及びユーザ近接検出
JP5585306B2 (ja) 基地局、無線通信装置、無線通信システム、無線通信方法およびプログラム
TWI446740B (zh) 在多重輸出入背景中的通信方法
Zhao et al. Clustering methods for base station cooperation
US20150341090A1 (en) Apparatus and method for processing transmission/reception signals for interference alignment in mu-mimo interfering broadcast channel
US9059752B2 (en) Multicellular cooperative communications in a decentralized network
KR20100032716A (ko) 다중사용자 mimo에서 전송 전력값 전달 및 확인 방법
JP4839182B2 (ja) マルチキャリアmimoシステム及びその通信方法
JP5603288B2 (ja) 無線通信システム、無線通信方法および基地局装置
EP2805556A1 (en) Radio network node and method therein
JP6509758B2 (ja) 指向性切替アンテナを用いた無線基地局およびアンテナ指向性切替方法
Yamazaki et al. Field experimental DL MU-MIMO evaluations of low-SHF-band C-RAN Massive MIMO system with over 100 antenna elements for 5G
CN109921835B (zh) 一种用户配对方法和接入点
Antonioli et al. Mixed coherent and non-coherent transmission for multi-CPU cell-free systems
Hoymann Mac layer concepts to support space division multiple access in ofdm based ieee 802.16
Krishnan et al. D-MIMOO–Distributed MIMO for Office Wi-Fi Networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851803

Country of ref document: EP

Kind code of ref document: A1