WO2022166813A1 - 飞行器和飞行器的控制方法 - Google Patents

飞行器和飞行器的控制方法 Download PDF

Info

Publication number
WO2022166813A1
WO2022166813A1 PCT/CN2022/074630 CN2022074630W WO2022166813A1 WO 2022166813 A1 WO2022166813 A1 WO 2022166813A1 CN 2022074630 W CN2022074630 W CN 2022074630W WO 2022166813 A1 WO2022166813 A1 WO 2022166813A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
aircraft
state
tail
information
Prior art date
Application number
PCT/CN2022/074630
Other languages
English (en)
French (fr)
Inventor
刘静
刘迎建
Original Assignee
汉王科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 汉王科技股份有限公司 filed Critical 汉王科技股份有限公司
Publication of WO2022166813A1 publication Critical patent/WO2022166813A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C5/00Stabilising surfaces
    • B64C5/10Stabilising surfaces adjustable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/06Adjustable control surfaces or members, e.g. rudders with two or more independent movements

Definitions

  • the present disclosure relates to the field of aircraft and control thereof, and more particularly, to an aircraft and a control method of the aircraft.
  • Winged aircraft include fixed-wing aircraft, such as airplanes and gliders, and moving-wing aircraft, such as rotorcraft and flapping-wing aircraft.
  • the tail can usually be used to control the pitch angle, yaw angle and tilt angle of the aircraft to change the flight attitude.
  • the tail mainly includes horizontal tail and vertical tail.
  • the traditional dual horizontal stabilizer controls the flight of the aircraft, since the tail fins on both sides are not lifted or only one side of the tail fins are lifted, the aircraft may be too low in attack angle, which is not conducive to low-speed flight and may easily lead to falling. , and may also cause a large direction deviation, making it difficult for the aircraft to achieve smooth flight and safe steering. Therefore, a smoother and safer aircraft and corresponding control operations need to be considered.
  • the present disclosure provides an aircraft and a control method for the aircraft, which can provide an aircraft with a smoother and safer flight and corresponding control operations, and at the same time make the control of the aircraft have diversity and adaptability, and enrich user experience.
  • the present disclosure provides an aircraft, comprising: a tail, the tail includes a tail body, a left tail rudder piece and a right tail rudder piece, the left tail rudder piece can be positioned at a position relative to the tail wing body move within a first angle range from zero degrees to a first maximum angle, and the right tail rudder blade can move relative to the tail body within a second angle range from zero degrees to a second maximum angle; wherein the aircraft includes a first state, in the first state, the first angle between the left rudder blade and the empennage body is non-zero, and the second angle between the right rudder blade and the empennage body is non-zero zero degrees.
  • the aircraft further includes a controller for adjusting the aircraft from the first state to a second state, in which the left tail rudder blade and the tail wing are in the second state.
  • the angle between the bodies is smaller than the first angle; and/or the angle between the right tail rudder blade and the tail body is smaller than the second angle.
  • the first angle is a first maximum angle
  • the second angle is a second maximum angle
  • the aircraft further includes a controller for adjusting the aircraft to a third state, in which the left tail rudder blade and/or the right tail rudder blade and the The angle between the fin bodies is zero degrees.
  • the aircraft further includes at least one sensor and an acquisition unit, the at least one sensor is used to sense the flight information of the aircraft, and the acquisition unit is used to obtain the steering information of the aircraft, wherein, The steering information is used to determine at least one of the left and right tail rudder blades whose angle is to be adjusted, and the flight information is used to determine the at least one tail rudder blade whose angle is to be adjusted and the at least one tail rudder blade. Describe the size of the angle between the tail bodies.
  • the first angle is the same as the second angle.
  • the present disclosure provides a control method for an aircraft, including: obtaining first flight information of the aircraft; obtaining steering information of the aircraft; at least one tail rudder of the left tail rudder blade and the right tail rudder blade; based on the first flight information, it is determined to adjust the aircraft from a first state to a second state, wherein the at least one tail rudder The angle between the blade and the fin body is different in the first state than in the second state.
  • the step of obtaining the first flight information of the aircraft includes: measuring the current turning speed of the aircraft as the first flight information; determining to adjust the aircraft from the first state to the second state
  • the steps of the method include: obtaining a target turning speed of the aircraft; and determining an adjustment amount of the angle between the at least one tail rudder blade and the tail body based on the current turning speed and the target turning speed.
  • determining the adjustment amount of the angle between the at least one tail rudder blade and the tail body based on the current turning speed and the target turning speed includes: based on the current turning speed and the target The absolute value of the difference between the turning speeds determines the adjustment amount.
  • the step of obtaining the first flight information of the aircraft includes: measuring a current heading angle as the first flight information; the step of determining to adjust the aircraft from the first state to the second state includes: obtaining a target heading angle of the aircraft; and determining an adjustment amount of the angle between the at least one tail rudder blade and the tail body based on the current heading angle and the target heading angle.
  • determining the adjustment amount of the angle between the at least one tail rudder blade and the tail body based on the current heading angle and the target heading angle includes: based on the current heading angle and the target The absolute value of the difference between the heading angles determines the adjustment amount.
  • the first flight information includes current heading information
  • the step of obtaining steering information of the aircraft includes: obtaining target heading information; and determining steering information based on the current heading information and the target heading information.
  • determining the steering information based on the current heading information and the target heading information includes: determining a target turning direction based on the positive or negative of the difference between the current heading angle and the target heading angle.
  • the angle between the at least one rudder blade and the empennage body is smaller than the first angle in the second state.
  • the step of obtaining the first flight information of the aircraft includes: measuring a current turning speed as the first flight information; the step of determining to adjust the aircraft from the first state to the second state includes: comparing the current turn speed to a threshold speed; and determining to adjust the aircraft from a first state to a second state in response to the current turn speed being not greater than the threshold speed.
  • control method further includes: obtaining second flight information of the aircraft; and determining to adjust the aircraft from the second state to the first state based on the second flight information.
  • the step of obtaining the second flight information of the aircraft includes: measuring a current heading angle as the second flight information; the step of determining to adjust the aircraft from the second state to the first state includes: obtaining a target heading angle of the aircraft; comparing the difference between the current heading angle and the target heading angle to a threshold angle; and in response to the difference between the current heading angle and the target heading angle being less than a threshold angle When , it is determined to adjust the aircraft from the second state to the first state.
  • FIG. 1 shows a schematic diagram of a tail fin of an aircraft according to an embodiment of the present disclosure
  • 2A-2D are schematic diagrams showing the angles between the left and right rudder blades of the empennage of the aircraft and the empennage body according to an embodiment of the present disclosure
  • FIG. 3 shows an example flowchart of a control method of an aircraft according to an embodiment of the present disclosure
  • FIG. 4 shows another example flowchart of a control method of an aircraft according to an embodiment of the present disclosure
  • FIG 5 illustrates an example block diagram of an aircraft system in accordance with an embodiment of the present disclosure.
  • words such as “a,” “an,” or “the” do not denote a limitation of quantity, but rather denote the presence of at least one.
  • “Comprises” or “comprising” and similar words mean that the elements or things appearing before the word encompass the elements or things recited after the word and their equivalents, but do not exclude other elements or things. Words like “connected” or “connected” are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect.
  • the terms “installed”, “connected” and “connected” should be construed in a broad sense unless otherwise expressly specified and limited.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or an internal connection between two components. Connected.
  • the specific meanings of the above terms in the present disclosure can be understood in specific situations.
  • Aircraft according to embodiments of the present disclosure may include tailplanes. Besides, the aircraft according to the embodiments of the present disclosure may further include other components, which are not limited thereto.
  • FIG. 1 shows a schematic diagram of a tail 10 of an aircraft according to an embodiment of the present disclosure.
  • the tail 10 of the aircraft may adopt a V-shaped tail.
  • the V-shaped tail has the functions of horizontal tail and vertical tail at the same time, and can play the role of longitudinal and heading stabilization at the same time. When it is turned, it can play the role of rudder, while the horizontal tail and vertical tail can only play the role of rudder when turning.
  • the V-tail may be a lower inverted V-tail (also known as an inverted V-tail), which provides better longitudinal and heading stability. It should be understood by those skilled in the art that the above types of fins are only examples and are not limited thereto.
  • the tail 10 of the aircraft may include a tail body 101 , a left tail fin 102 and a right tail fin 103 .
  • the left rudder blade 102 can be moved relative to the empennage body 101 within a first angle range (eg, zero degrees to a first maximum angle)
  • the right rudder blade 103 can be moved relative to the empennage body 101 at a second angle Movement within an angular range (zero degrees to a second maximum angle), wherein the first angular range and the second angular range may be the same or different.
  • left tail rudder piece 102 and the right tail rudder piece 103 shown in this document may be respectively integrated as a whole, that is, a left tail rudder piece as a whole and a right tail rudder piece as a whole, but not limited to this , the left tail rudder piece and/or the right tail rudder piece can also be divided into a plurality of split tail rudder pieces.
  • the left and right tail rudder pieces are parallel to or fit on the plane of the main body of the empennage, that is, the angle between the left and right rudder pieces and the plane of the main body of the empennage. zero degrees.
  • the steering is achieved by lifting one tail fin in the corresponding direction. For example, when turning left, lift the left tail fin, and when turning right, lift the right tail fin. In this way, the downward pitching moment of the tail of the aircraft is small, and the angle of attack of the aircraft is small, which is not conducive to low-speed flight and easily leads to falling. If the height at which the rudder blade is raised is reduced to avoid falling, the steering force will be lost and the turning radius will be too large.
  • the aircraft according to the embodiment of the present disclosure may include a first state, and when the aircraft is flying in the first state, the first angle between the left rudder blade 102 of the tail 10 and the tail body 101 may be non- zero degrees, and the second angle between the right rudder blade 103 and the empennage body 101 may be non-zero degrees.
  • the first state may be the (eg, default) initial flight state of the aircraft, eg, the flight state of the upward climb phase during takeoff or flight, or the state of straight flight at a certain altitude. It should be understood by those skilled in the art that the above situations are only examples, and are not limited thereto.
  • the left tail rudder 102 and the right The tail rudder pieces 103 are all at an angle with the tail body 101, which can ensure a certain pitching moment, so that the aircraft maintains a high angle of attack, which is very beneficial for the aircraft to fly at a low speed or climb upwards.
  • the first angle between the left rudder blade 102 of the empennage 10 and the empennage body 101 may be the maximum angle within the first angle range
  • the first angle between the right rudder blade 103 of the empennage 10 and the empennage body 101 may be the maximum angle within the first angle range
  • the second angle of can be the maximum angle within the second angle range. In this way, the aircraft can have a larger pitching moment.
  • the maximum angle may be, for example, less than or equal to 90° (eg, 60°).
  • the first angle and the second angle may be the same.
  • the angles between the left rudder piece 102 and the right rudder piece 103 of the empennage 10 and the empennage body 101 are the same, it means that the aircraft flies straight without turning.
  • there may also be a certain tolerance between the first angle and the second angle there may also be a certain tolerance between the first angle and the second angle.
  • the angles between the left and right rudder blades 102 and 103 of the empennage 10 of the aircraft according to the embodiments of the present disclosure and the empennage body 101 may be adjusted to receive information, process information and send instructions, for example, through the controller of the aircraft
  • the flight state of the aircraft is changed, for example, it is adjusted according to conditions such as straight flight, upward climb, and steering.
  • the aircraft may have a first state, a second state and a third state, wherein, in the first state, as described above, the first angle between the left rudder blade 102 of the empennage 10 of the aircraft and the empennage body 101 may be is non-zero, and the second angle between the right tail rudder blade 103 and the tail body 101 can be non-zero, the first state can be performed, for example, in low-speed flight, or when climbing upwards; in the second state, the left tail
  • the angle between the rudder blade 102 and the empennage body 101 may be smaller than the first angle in the first state, and/or the angle between the right rudder blade 103 and the empennage body 101 may also be smaller than the second angle in the first state
  • the second state can be performed, for example, in the case of straight flight, or steering, etc.
  • the flight state of the aircraft can be switched among the first state, the second state and the third state, and those skilled in the art can understand that the above several states are only examples and are not limited thereto.
  • FIGS. 2A-2D are schematic diagrams showing the angles between the left rudder blade 102 and the right rudder blade 103 of the empennage 10 of the aircraft according to an embodiment of the present disclosure and the empennage body 101 .
  • the angles eg, the maximum angles
  • FIGS. 2A-2D are only examples and are not limited thereto.
  • the first angle between the left tail rudder blade 102 and the tail body 101 may be non-zero degrees, and the angle between the right tail rudder blade 103 and the tail body 101 may be non-zero degrees.
  • the second angle may be non-zero degrees.
  • the first state may be that both the first angle and the second angle are maximum angles, which may be applicable to situations such as low-speed flight, or upward climbing.
  • the angles between the left rudder blade 102 and the right rudder blade 103 and the empennage body 101 are the same and are the maximum angles (for example, the angles are both 60°), the aircraft does not turn and has Larger pitching moment.
  • the first state may be that the angles between the left rudder blade 102 and the right rudder blade 103 and the empennage body 101 are all less than the maximum angle and greater than zero degrees. At this time, the pitching moment of the aircraft Relatively small.
  • the aircraft may be adjusted from the first state to the second state, eg, the aircraft may be adjusted from the first state to the second state by the controller of the aircraft.
  • the angle between the left rudder blade 102 and the empennage body 101 may be smaller than the first angle in the first state, and/or the angle between the right rudder blade 103 and the empennage body 101 It may also be smaller than the second angle in the first state.
  • the second state may be that one of the angle between the left rudder blade 102 and the empennage body 101 and the angle between the right rudder blade 103 and the empennage body 101 is smaller than the corresponding first
  • the first angle or the second angle in one state and the other is equal to the second angle or the first angle in the corresponding first state, which may for example apply in the case of steering or the like.
  • the second state may be the angle between the left rudder blade 102 and the empennage body 101 and the angle between the right rudder blade 103 and the empennage body One of the angles between 101 is less than the maximum angle and the other is the maximum angle.
  • the second state may be that the angle between the left rudder blade 102 and the empennage body 101 and the angle between the right rudder blade 103 and the empennage body 101 are the same and smaller than the first state
  • the first angle and the second angle are greater than zero degrees, which may for example be applicable to the situation of straight flight that does not require a large pitching moment, and the like.
  • the second state may be the angle between the left rudder blade 102 and the empennage body 101 and the angle between the right rudder blade 103 and the empennage body
  • the angles between 101 are the same and both are less than the maximum angle and greater than zero degrees. As shown in FIG.
  • the second state may be that the angle between the left rudder blade 102 and the empennage body 101 and the angle between the right rudder blade 103 and the empennage body 101 are different and smaller than the first state, respectively
  • the first angle and the second angle are lower than zero degrees (not shown), which may be applicable, for example, in the case of steering that does not require a large pitching moment, and the like.
  • the aircraft may be adjusted from the first state or the second state to the third state, eg, the aircraft may be adjusted from the first state or the second state to the third state by the controller of the aircraft.
  • the angle between the left rudder blade 102 and/or the right rudder blade 103 and the empennage body 101 may be zero degrees.
  • the third state may be that the angle between the left rudder blade 102 and the empennage body 101 and the angle between the right rudder blade 103 and the empennage body 101 are both zero degrees, which may for example be applicable to not Straight flight or high-speed flight, etc. that require a large pitching moment.
  • the aircraft may not turn.
  • the third state may be that one of the angle between the left rudder blade 102 and the empennage body 101 and the angle between the right rudder blade 103 and the empennage body 101 is zero degrees and The other is non-zero degrees, which may be applicable, for example, in situations where a large pitching moment is not required for steering or the like.
  • the aircraft can turn right (left).
  • the angle between the left rudder blade 102 and/or the right rudder blade 103 and the empennage body 101 is zero degrees, which can also be applied to scenarios that do not require a large pitching moment.
  • the first state, the second state and the third state of the aircraft can be switched by adjusting the angle between the left tail rudder blade 102 and/or the right tail rudder blade 103 and the tail body 101 , for example , the angle between the left tail rudder blade 102 and/or the right tail rudder blade 103 and the tail body 101 is adjusted through the controller of the aircraft.
  • the aircraft can have Larger pitching moment.
  • the angle between one or both of the left tail rudder blade 102 and the right tail rudder blade 103 and the tail body 101 can be adjusted to a smaller angle, so that the aircraft can be adjusted to a smaller angle. Angle the rudder blade to steer in the opposite direction.
  • the angle between the right rudder blade 103 and the empennage body 101 can be adjusted to a smaller angle, while the angle between the left rudder blade 102 and the empennage body 101 can be maintained at a larger angle (eg, the first maximum angle) and vice versa.
  • a larger angle eg, the first maximum angle
  • the above-mentioned steering by adjusting the angle between one or both of the left tail rudder blade 102 and the right tail rudder blade 103 and the tail body 101 to a smaller angle is not only applicable to the aircraft for course steering (ie, to the left or to the left). sailing to the right), and also applies to adjusting the yaw of the aircraft when flying in a straight line.
  • the left and right tail rudders of the tail wing are kept at the same height, but due to the deviation in the process, the left and right tail rudders are not uniformly stressed, causing the aircraft to move towards the same height. Yaw left or right, preventing ideal straight flight.
  • the steering of the aircraft can be adjusted to the direction opposite to the yaw direction by adjusting the angle between one or both of the left tail rudder blade 102 and the right tail rudder blade 103 and the tail body 101 to a smaller angle .
  • an excessive moment will not be generated on one side of the aircraft, so that the aircraft tends to fly in an ideal straight line. This will be described in detail below.
  • FIG. 3 shows an example flowchart of a control method of an aircraft according to an embodiment of the present disclosure.
  • the control method may be applied to the aircraft itself.
  • the control method may be applied to a dedicated control device associated with the aircraft, eg, a dedicated remote controller for the aircraft.
  • the control method may be applied to other peripherals or general-purpose control devices associated with the aircraft, eg, a mobile terminal, such as a mobile terminal, that may be used to remotely control the aircraft.
  • first flight information of the aircraft is obtained.
  • the first flight information of the aircraft may be measured by sensors.
  • the sensor may be, for example, a gyroscope, an accelerometer, or the like.
  • the first flight information may include the current turning speed, the current heading angle, etc. of the aircraft, and is used to determine the size of the angle between the at least one tail rudder blade whose angle is to be adjusted and the tail body. It should be understood by those skilled in the art that the above current information is merely an example, and is not limited thereto.
  • the steering information of the aircraft is obtained.
  • the steering information of the aircraft can be obtained through the obtaining unit.
  • the acquisition unit may be, for example, a device or interface for receiving various types of user inputs, such as joysticks, buttons, touch screens, microphones, and the like included in various control devices.
  • the acquisition of the steering information can also be based on the obstacle avoidance function of the aircraft, that is, when the aircraft detects an obstacle, a steering command (including steering information) issued by the controller of the aircraft controls the aircraft to perform automatic steering.
  • the acquisition unit may be provided in the control device, or may be provided in the aircraft itself, or may be provided in both the aircraft itself and the control device operated by the user.
  • the steering information may include a target steering direction, which is used to determine which fin or both of the left fin and the right fin to be adjusted.
  • At step S120 based on the steering information, at least one of the left rudder fins 102 and the right rudder fins 103 whose angle with the empennage body 101 is to be adjusted may be determined, or based on the steering information, respectively Adjust the angle between the left rudder piece 102 and the right rudder piece 103 and the empennage 101 .
  • the steering information indicates that the target steering direction is to the left, it may be determined to adjust the angle between the right rudder blade 103 and the empennage body 101 (for example, to a smaller angle), and the left rudder blade may also be appropriately adjusted as required
  • the angle between 102 and the tail body 101 may achieve steering.
  • step S130 based on the first flight information, it may be determined to adjust the aircraft from the first state to the second state, wherein the angle between the at least one tail rudder blade to be adjusted and the tail body 101 is in the first state Different from the second state.
  • the aircraft may include a controller, and the controller may adjust the aircraft from the first state to the second state based on the received first flight information, where the first state may be the first state as described above, that is, in the first state.
  • the first angle between the left rudder blade 102 of the empennage 10 and the empennage body 101 may be non-zero degrees
  • the second angle between the right rudder blade 103 and the empennage body 101 may be non-zero degrees.
  • the second state here may be the second state as described above.
  • the angle between at least one rudder blade and the empennage body 101 is smaller than the first angle or the second angle.
  • the first state may be the (eg, default) initial flight state of the aircraft.
  • the current heading angle R c of the aircraft may also be acquired (for example, through a sensor) as the first flight information.
  • the target heading angle R t of the aircraft can also be obtained.
  • the adjustment of the angle between the at least one tail rudder blade and the tail body 101 to be adjusted can be determined. Quantity A.
  • the adjustment amount A of the angle may be determined based on the absolute value D of the difference between the current heading angle Rc and the target heading angle Rt .
  • the adjustment amount A of the angle can be calculated by the following formula (1):
  • D is the absolute value of the difference between the current heading angle R c and the target heading angle R t
  • ⁇ (D)*dt means that D is integrated, and dD/dt means that D is differentiated.
  • the range of the control amount A1 of the tail servo is set to be A L to A H (for example, corresponding to an angle of 0° to 90°), and the adjustment amount A of the angle can be limited so that it does not exceed the tail.
  • the range of the control amount A1 of the steering gear is as follows (2)-(4):
  • AL represents the minimum value of the control range of the tail servo, that is, the lowest position of the tail rudder
  • a H represents the maximum value of the control range of the tail servo, that is, the highest position of the tail
  • r1 is The scaling factor, for example, can be obtained experimentally.
  • Formula (2) indicates that the adjustment amount A of the above-mentioned angle is limited according to the proportional factor r1 to obtain the control amount A1 of the tail servo, A1 can be in the range of A L ⁇ A H , and in order to further ensure that A1 is in the range of A L ⁇ A H Within the range of A H , formulas (3) and (4) can be used to further limit the value of A1.
  • Equations (3) and (4) indicate that the maximum and minimum values of A1 are limited within the range of AL to AH .
  • the adjustment angle between at least one rudder blade whose angle is to be adjusted and the empennage body 101 determines the at least one rudder blade whose position needs to be adjusted and the tail rudder blade.
  • the adjustment angle between the rudder blade and the empennage body 101 For example, when the target steering direction is to the left, it is determined to adjust the right rudder blade 103, and its adjustment position can be AH -A or AH -A1 or AH -A1 ”, and the position of the left tail rudder piece 102 may be A H , and the position of the left tail rudder piece 102 may also be smaller than A H .
  • the specific target heading angle R t is not obtained, for example, in the case that the user performs steering through the manipulation of the joystick of the remote control, at step S100, it is also possible, for example, to use a gyro such as a gyro A sensor such as an instrument measures the current turning speed vc of the aircraft as the first flight information.
  • the target turning speed v t of the aircraft can also be obtained.
  • the adjustment amount of the angle between the at least one tail rudder blade to be adjusted and the tail body 101 is determined.
  • the adjustment amount A can be determined based on the absolute value of the difference between the current turning speed v c and the target turning speed v t , for example, the adjustment amount A can also be calculated by the above formula (1), where D is replaced by the absolute value of the difference between the current turn speed v c and the target turn speed v t .
  • the adjustment amount A may be limited so that it does not exceed the control amount range of the tail steering gear (for example, A L to A H ), which will not be repeated here.
  • the position to be adjusted is the right tail rudder blade 103, and its adjustment position can be A H -A or A H -A1 or A H -A1", and the position of the left tail rudder piece 102 may be AH , and the position of the left tail rudder piece may also be smaller than AH .
  • target heading information can also be obtained, and based on the current heading information and the target heading information, the steering information is determined,
  • the current heading information can be obtained by measuring the sensor as the first flight information.
  • the current heading information may include the current heading angle R c '
  • the target heading information may include the target heading angle R t '.
  • the current heading angle at the initial moment (for example, time t0) entering the straight or fixed route flight can be taken as the target heading angle R t ', in order to keep the aircraft in a straight line or Fixed route flight.
  • the target steering direction can be determined according to the positive or negative of the difference between the current heading angle R c ' and the target heading angle R t ', that is, how to adjust the flight direction according to the direction in which the current heading deviates from a straight line or a fixed route. Put it back on a straight or fixed course.
  • the target steering direction is determined to be left, and when the current heading angle R c ' and the target heading angle are When the difference between R t ' is negative (or less than or equal to 0), it is determined that the target turning direction is rightward.
  • the above positive and negative and left and right correspondences of the difference between the current heading angle R c ' and the target heading angle R t ' are only examples and are not limited thereto.
  • the adjustment amount A can be determined based on the absolute value of the difference between the current heading angle R c ' and the target heading angle R t ', for example, the adjustment amount A can be calculated by the above formula (1), and according to the determined A Or A1 or A1" after the clipping, to determine at least one rudder blade whose position needs to be adjusted and the adjustment angle between the rudder blade and the empennage body 101 , which will not be repeated here.
  • the yaw of straight flight is adjusted by adjusting the aircraft from the first state to the second state, so as to ensure a certain pitching moment, the side of the aircraft will not generate excessive torque, so that the The aircraft tends to fly in an ideal straight line.
  • the aircraft can perform flight operations as expected, so that the control of the aircraft has diversity and adaptability, and enriches the user experience.
  • the steering may not be performed, so as to prevent the aircraft from falling due to the excessive turning speed. For example, comparing the current turn speed, as measured by sensors, for example, with a preset threshold speed, and in response to the current turn speed not being greater than the threshold speed, it may be determined to adjust the aircraft from the first state to the second state, where the threshold speed may be is the maximum speed at which the tested aircraft will not fall due to stalling. For example, the above-described comparisons may be performed periodically or at specific times and responsive to the results of the comparisons.
  • the control method for an aircraft may further include steps S140-S150, as shown in FIG. 4 .
  • step S140 second flight information of the aircraft is obtained.
  • the second flight information of the aircraft may be measured by sensors.
  • the second flight information may include the current turning speed of the aircraft, the current heading angle, and the like. It should be understood by those skilled in the art that the above current information is merely an example, and is not limited thereto.
  • step S150 based on the second flight information, it may be determined to adjust the aircraft from the second state to the first state, for example, adjusting the aircraft from the second state to the first state by the controller of the aircraft. For example, when the aircraft completes the turn, the aircraft can be adjusted from the second state back to the first state, eg, the aircraft can be adjusted from the second state back to the first state by the controller of the aircraft.
  • the second flight information may be the information of stopping the steering input by the user. For example, when the user can control the steering through the joystick of the remote controller to stop the steering, it may be determined to adjust the aircraft from the second state to the first state, such as , and adjust the aircraft from the second state to the first state through the controller of the aircraft.
  • the second flight information may also be compared with preset threshold information, and in response to the comparison result between the second flight information and the preset threshold information, it may be determined to adjust the aircraft from the second state to the first state
  • the state for example, is adjusted by the aircraft's controller from the second state to the first state.
  • the second flight information may be, for example, the current heading angle R c ′′ measured by a sensor.
  • the difference between the current heading angle R c ′′ and the target heading angle R t ′′ and the preset threshold angle R 0 making a comparison, and determining to adjust the aircraft from the second state to the first state in response to the difference D′′ between the current heading angle R c ′′ and the target heading angle R t ′′ being less than the threshold angle R 0 , for example, by the aircraft
  • the controller adjusts the aircraft from the second state to the first state.
  • the aircraft when the aircraft is flying in a straight line or on a fixed route, by comparing the difference D" between the current heading angle R c " and the target heading angle R t " with a preset threshold angle R 0 , it can be determined whether the aircraft returns to the On a straight or fixed course, when it is determined that the aircraft returns to the straight or fixed course, it can be determined to stop turning until the aircraft deviates from the straight or fixed course again.
  • the second flight information may also be the current turning speed vc ′ measured by a sensor, for example. For example, comparing the absolute value D' of the difference between the current turning speed v c ' and the target turning speed v t ' with a preset threshold value D 0 ', and comparing the current turning speed v c ' with the target turning speed v t When the absolute value D' of the difference between ' is smaller than the threshold angle D 0 ', it is determined to adjust the aircraft from the second state to the first state, for example, the controller of the aircraft adjusts the aircraft from the second state to the first state . For example, in the process of turning the aircraft, when the absolute value D' of the difference is smaller than the preset threshold D 0 ', it can be determined that the aircraft has completed the turning, and the turning can be stopped.
  • FIG. 5 shows an example block diagram of an aircraft system 500 in accordance with an embodiment of the present disclosure.
  • an aircraft system 500 may include an aircraft 510 and a control device 520 .
  • the aircraft 510 may include at least one sensor 511 , an acquisition unit 512 , a processing unit 513 , and an execution unit 514 .
  • At least one sensor 511 may be used to sense flight information of the aircraft 510 .
  • the acquisition unit 512 can be used to acquire the steering information of the aircraft 510 , and the acquisition unit 512 can be included in the aircraft 510 (in FIG.
  • the control device 520 may be used to input user's operation commands, such as steering commands, etc., to control the aircraft to perform operations such as steering, and the control device 520 may be, for example, a remote control or a mobile terminal.
  • the processing unit 513 (which may be a controller or part of a controller of the aircraft) may be used to receive steering information and flight information to generate control signals for the empennage based on the steering information and flight information.
  • the execution unit 514 may be used to execute the adjustment between the first state, the second state and the third state of the aircraft 510 according to the control signal. For example, the left and/or right rudder blade is pulled through the swivel arm on the empennage to adjust the angle between the rudder blade and the main body of the fin. It should be understood by those skilled in the art that the above components included in the aircraft system 500 are only examples and are not limited thereto.
  • the aircraft 510 may be connected to the control device 520 via a wireless communication module, for example, in a wireless manner, so as to transmit signals.
  • the wireless method may be one or more of Bluetooth, infrared, wireless local area network, and the like. It can be understood that the above wireless manner is only an example, but not limited thereto.
  • the aircraft system may also not have the control device 520 , and the steering information is preset in the acquisition unit 512 or other modules in the aircraft 510 without the need to operate the control device 520 .
  • the present disclosure also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the method for controlling an aircraft according to any embodiment of the present disclosure is implemented.
  • the present disclosure has described the aircraft control method, the aircraft, the control device, and the computer-readable storage medium according to the embodiments of the present disclosure with reference to the accompanying drawings.
  • the left tail rudder and the The right tail rudder pieces are all angled (for example, the maximum angle) with the tail body, which can ensure a certain (for example, large) pitching moment, so that the aircraft maintains a high angle of attack, can effectively avoid falling, and at the same time obtain more Good handling stability.
  • the aircraft can be operated as expected according to the obtained different flight information and steering information, so that the control of the aircraft has diversity and adaptability, and the user experience is enriched.

Abstract

公开了一种飞行器和飞行器的控制方法。该飞行器包括尾翼(10),所述尾翼(10)包括尾翼主体(101)、左尾舵片(102)和右尾舵片(103),所述左尾舵片(102)能够相对于所述尾翼主体(101)在零度至第一最大角度的第一角度范围内运动,所述右尾舵片(103)能够相对于所述尾翼主体(101)在零度至第二最大角度的第二角度范围内运动;其中,所述飞行器包括第一状态,在所述第一状态下,所述左尾舵片(102)与所述尾翼主体(101)之间的第一角度为非零度,所述右尾舵片(103)与所述尾翼主体(101)之间的第二角度为非零度。

Description

飞行器和飞行器的控制方法 技术领域
本公开涉及飞行器及其控制领域,更具体地,涉及飞行器和飞行器的控制方法。
背景技术
近年来,飞行器受到越来越多的人的喜爱。现有飞行器主要分为有翼飞行器和无翼飞行器。有翼飞行器包括诸如飞机和滑翔机的定翼飞行器和诸如旋翼飞行器和扑翼飞行器等动翼飞行器。尾翼作为飞行器的重要组成部分,通常可以用于控制飞行器的俯仰角度、偏航角度和倾斜角度以改变飞行姿态。尾翼主要包括水平尾翼和垂直尾翼等类型。然而,传统的双水平尾翼在控制飞行器飞行时,由于其两侧尾舵片均不抬起或者仅抬起一侧尾舵片,可能由于飞行器攻角太低而不利于低速飞行且容易导致下坠,并且也可能会使方向偏移较大,从而使得飞行器难以实现平稳飞行和安全转向。因此,需要考虑更平稳、更安全的飞行器及对应的控制操作。
发明内容
有鉴于此,本公开提供了飞行器和飞行器的控制方法,其能够提供一种飞行更平稳、更安全的飞行器及对应的控制操作,同时使飞行器的控制具有多样性和适应性,丰富用户体验。
在本公开的一方面,本公开提供了一种飞行器,包括:尾翼,所述尾翼包括尾翼主体、左尾舵片和右尾舵片,所述左尾舵片能够相对于所述尾翼主体在零度至第一最大角度的第一角度范围内运动,所述右尾舵片能够相对于所述尾翼主体在零度至第二最大角度的第二角度范围内运动;其中,所述飞行器包括第一状态,在所述第一状态下,所述左尾舵片与所述尾翼主体之间的第一角度为非零度,所述右尾舵片与所述尾翼主体之间的第二角度为非零度。
在一个实施例中,所述飞行器还包括控制器,用于将所述飞行器从所述第一状态调整至第二状态,在所述第二状态下,所述左尾舵片与所述尾翼主体之间的角度小于所述第一角度;和/或所述右尾舵片与所述尾翼主体之间的角度小于所述第二角度。
在一个实施例中,所述第一角度为第一最大角度,所述第二角度为第二最大角度。
在一个实施例中,所述飞行器还包括控制器,用于将所述飞行器调整至第三状态,在所述第三状态下,所述左尾舵片和/或所述右尾舵片与所述尾翼主体之间的角度为零度。
在一个实施例中,所述飞行器还包括至少一个传感器和获取单元,所述至少一个传感器用于感测所述飞行器的飞行信息,所述获取单元用于获得所述飞行器的转向信息,其中,所述转向信息用于确定要调整角度的所述左尾舵片和右尾舵片中的至少一个尾舵片,所述飞行信息用于确定要调整角度的所述至少一个尾舵片与所述尾翼主体之间的角度大小。
在一个实施例中,所述第一角度与所述第二角度相同。
在本公开的另一方面,本公开提供了一种飞行器的控制方法,包括:获得所述飞行器的第一飞行信息;获得所述飞行器的转向信息;基于所述转向信息,确定要调整角度的所述左尾舵片和右尾舵片中的至少一个尾舵片;基于所述第一飞行信息,确定将所述飞行器从第一状态调整至第二状态,其中,所述至少一个尾舵片与所述尾翼主体之间的角度在所述第一状态下与所述第二状态下不同。
在一个实施例中,获得所述飞行器的第一飞行信息的步骤包括:测量所述飞行器的当前转弯速度,作为所述第一飞行信息;确定将所述飞行器从第一状态调整至第二状态的步骤包括:获得所述飞行器的目标转弯速度;基于所述当前转弯速度与所述目标转弯速度,确定所述至少一个尾舵片与所述尾翼主体之间的角度的调整量。
在一个实施例中,基于所述当前转弯速度与所述目标转弯速度确定所述至少一个尾舵片与所述尾翼主体之间的角度的调整量包括:基于所述当前转弯速度与所述目标转弯速度之间的差值的绝对值来确定所述调整量。
在一个实施例中,获得所述飞行器的第一飞行信息的步骤包括:测量当前航向角度,作为所述第一飞行信息;确定将所述飞行器从第一状态调整至第二状态的步骤包括:获得所述飞行器的目标航向角度;以及基于所述当前航向角度与所述目标航向角度,确定所述至少一个尾舵片与所述尾翼主体之间的角度的调整量。
在一个实施例中,基于所述当前航向角度与所述目标航向角度确定所述 至少一个尾舵片与所述尾翼主体之间的角度的调整量包括:基于所述当前航向角度与所述目标航向角度之间的差值的绝对值来确定所述调整量。
在一个实施例中,所述第一飞行信息包括当前航向信息,获得所述飞行器的转向信息的步骤包括:获得目标航向信息;基于所述当前航向信息和所述目标航向信息,确定转向信息。
在一个实施例中,基于所述当前航向信息和所述目标航向信息确定转向信息包括:基于所述当前航向角与所述目标航向角之间的差值的正负,确定目标转向方向。
在一个实施例中,在所述第二状态下所述至少一个尾舵片与所述尾翼主体之间的角度小于所述第一角度。
在一个实施例中,获得所述飞行器的第一飞行信息的步骤包括:测量当前转弯速度,作为所述第一飞行信息;确定将所述飞行器从第一状态调整至第二状态的步骤包括:比较所述当前转弯速度与阈值速度;以及响应于所述当前转弯速度不大于所述阈值速度,确定将所述飞行器从第一状态调整至第二状态。
在一个实施例中,所述控制方法还包括:获得所述飞行器的第二飞行信息;基于所述第二飞行信息,确定将所述飞行器从第二状态调整至第一状态。
在一个实施例中,获得所述飞行器的第二飞行信息的步骤包括:测量当前航向角度,作为所述第二飞行信息;确定将所述飞行器从第二状态调整至第一状态的步骤包括:获得所述飞行器的目标航向角度;比较所述当前航向角度与所述目标航向角度之间的差值和阈值角度;以及响应于所述当前航向角度与目标航向角度之间的差值小于阈值角度时,确定将所述飞行器从第二状态调整至第一状态。
附图说明
图1示出了根据本公开的实施例的飞行器的尾翼的示意图;
图2A-图2D示出了根据本公开的实施例的飞行器的尾翼的左尾舵片和右尾舵片与尾翼主体之间的角度的示意图;
图3示出了根据本公开的实施例的飞行器的控制方法的示例流程图;
图4示出了根据本公开的实施例的飞行器的控制方法的另一示例流程图;
图5示出了根据本公开的实施例的飞行器系统的示例框图。
具体实施方式
下面将结合附图对本公开的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开的保护范围。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在该词前面的元素或者物件涵盖出现在该词后面列举的元素或者物件及其等同,而不排除其他元素或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,否则术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
此外,下面所描述的本公开不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
根据本公开的实施例的飞行器可以包括尾翼。除此之外,根据本公开的实施例的飞行器还可以包括其他组件,并不限于此。
图1示出了根据本公开的实施例的飞行器的尾翼10的示意图。
根据本公开的实施例的飞行器的尾翼10可以采用V型尾翼。通常,V型尾翼同时兼有水平尾翼、垂直尾翼的功能,能同时起纵向和航向稳定作用,当左右两边的尾舵片同向偏转时,能够起到升降舵的作用;相反的,不同向 偏转时,能够起到方向舵作用,而水平尾翼、垂直尾翼只能在转向时起到方向舵的作用。例如,V型尾翼可以为下反V字型尾翼(也称为倒V字型尾翼),其能提供更好的纵向及航向稳定性。本领域技术人员应理解的是,以上尾翼类型仅为示例,并不限于此。
如图1所示,根据本公开的实施例的飞行器的尾翼10可以包括尾翼主体101、左尾舵片102和右尾舵片103。如图1所示,左尾舵片102能够相对于尾翼主体101在第一角度范围(例如,零度至第一最大角度)内运动,并且右尾舵片103能够相对于尾翼主体101在第二角度范围(零度至第二最大角度)内运动,其中第一角度范围和第二角度范围可以相同或不同。本领域技术人员应理解的是,本文所示的左尾舵片102和右尾舵片103可以是分别作为整体的,即一个左尾舵片整体和一个右尾舵片整体,但不限于此,左尾舵片和/或右尾舵片也可以划分为多个分尾舵片。
传统地,飞行器在飞行时,左尾舵片和右尾舵片与尾翼主体平面平行或贴合在尾翼主体平面上,即,左尾舵片和右尾舵片与尾翼主体平面之间的角度为零度。当飞行器转向时,通过抬起对应方向的一个尾舵片来实现转向,例如,左转向时抬起左尾舵片,右转向时抬起右尾舵片。如此以来,飞行器尾部向下的俯仰力矩较小,飞行器攻角较小,而不利于低速飞行且容易导致下坠。如果为了避免下坠而减少尾舵片抬起的高度,则会丧失转向力,导致转弯半径过大。
与此相对,根据本公开的实施例的飞行器可以包括第一状态,并且该飞行器在第一状态下飞行时,尾翼10的左尾舵片102与尾翼主体101之间的第一角度可以为非零度,并且右尾舵片103与尾翼主体101之间的第二角度可以为非零度。第一状态可以是飞行器的(例如,默认的)初始飞行状态,例如,起飞或飞行过程中向上爬升阶段的飞行状态,或者在一定高度上直线飞行的状态。本领域技术人员应理解的是,以上各种情况仅为示例,并不限于此。
结合图1描述的根据本公开的实施例的飞行器,与传统的飞行时两侧尾舵片均不抬起或者仅抬起一侧尾舵片的飞行器相比,由于左尾舵片102和右尾舵片103均与尾翼主体101成角度,能够保证一定的俯仰力矩,从而使飞行器保持较高的攻角,这对于飞行器低速飞行或向上爬升是十分有利的。
根据本公开的实施例,尾翼10的左尾舵片102与尾翼主体101之间的第 一角度可以为第一角度范围内的最大角度,尾翼10的右尾舵片103与尾翼主体101之间的第二角度可以为第二角度范围内的最大角度。如此以来,可以使飞行器具有较大的俯仰力矩。最大角度可以例如小于等于90°(例如,60°)。
根据本公开的实施例,第一角度和第二角度可以相同。在尾翼10的左尾舵片102和右尾舵片103与尾翼主体101之间的角度相同的情况下,表示飞行器直线飞行而没有转向。当然,本领域技术人员可以理解,取决于工艺条件等因素,第一角度和第二角度之间也可存在一定的容差。
根据本公开的实施例的飞行器的尾翼10的左尾舵片102和右尾舵片103与尾翼主体101之间的角度可以被调整,以例如通过飞行器的控制器接收信息、处理信息并发送指令使得飞行器的飞行状态发生变化,例如,根据直线飞行、向上爬升、转向等情况而进行调整。例如,飞行器可以具有第一状态、第二状态和第三状态,其中,在第一状态下,如上所述,飞行器的尾翼10的左尾舵片102与尾翼主体101之间的第一角度可以为非零度,并且右尾舵片103与尾翼主体101之间的第二角度可以为非零度,第一状态可以例如在低速飞行、或向上爬升等情况下进行;在第二状态下,左尾舵片102与尾翼主体101之间的角度可以小于第一状态下的第一角度,和/或右尾舵片103与尾翼主体101之间的角度也可以小于第一状态下的第二角度,第二状态可以例如在不需要较大俯仰力矩的直线飞行、或转向等情况下进行;在第三状态下,左尾舵片102和/或右尾舵片103与尾翼主体101之间的角度可以为零度,第三状态可以例如在不需要较大俯仰力矩的直线飞行或转向或高速飞行等情况下进行。飞行器的飞行状态可以在第一状态、第二状态和第三状态之间相互切换,本领域技术人员可以理解,以上几种状态仅为示例,并不限于此。
图2A-图2D示出了根据本公开的实施例的飞行器的尾翼10的左尾舵片102和右尾舵片103与尾翼主体101之间的角度的示意图。请注意,图2A-图2D中所示的角度(例如,最大角度)仅为示例,并不限于此。
根据本公开的实施例,当飞行器在第一状态下飞行时,左尾舵片102与尾翼主体101之间的第一角度可以为非零度,并且右尾舵片103与尾翼主体101之间的第二角度可以为非零度。
根据第一状态的一个示例,第一状态可以是第一角度和第二角度均为最大角度,这可以例如适用于低速飞行、或向上爬升等情况。如图2A所示,当左尾舵片102和右尾舵片103与尾翼主体101之间的角度相同且均为最大角 度(例如,角度均为60°)时,飞行器不进行转向,并且具有较大的俯仰力矩。
此外,根据第一状态的另一示例,第一状态可以是左尾舵片102和右尾舵片103与尾翼主体101之间的角度均小于最大角度且大于零度,此时,飞行器的俯仰力矩相对较小。
根据本公开的实施例,飞行器可以从第一状态调整至第二状态,例如,通过飞行器的控制器将飞行器从第一状态调整至第二状态。当飞行器在第二状态下飞行时,左尾舵片102与尾翼主体101之间的角度可以小于第一状态下的第一角度,和/或右尾舵片103与尾翼主体101之间的角度也可以小于第一状态下的第二角度。
根据第二状态的一个示例,例如,第二状态可以是左尾舵片102与尾翼主体101之间的角度和右尾舵片103与尾翼主体101之间的角度中的一者小于对应的第一状态下的第一角度或第二角度且另一者等于对应的第一状态下的第二角度或第一角度,这可以例如适用于转向的情况等。例如,在第一状态下的第一角度和第二角度均为最大角度的情况下,第二状态可以是左尾舵片102与尾翼主体101之间的角度和右尾舵片103与尾翼主体101之间的角度中的一者小于最大角度且另一者为最大角度。如图2B所示,当左尾舵片102与尾翼主体101之间的角度(例如,25°)小于最大角度且右尾舵片103与尾翼主体101之间的角度为最大角度时,由于右尾舵片103比左尾舵片102更高,受到的风阻更大,所以可以形成向右的偏转力矩,从而使飞行器向右转向。相反地,当右尾舵片103与尾翼主体101之间的角度小于最大角度且左尾舵片102为最大角度时,由于左尾舵片102比右尾舵片103更高,受到的风阻更大,所以可以形成向左的偏转力矩,从而使飞行器向左转向。
此外,根据第二状态的另一示例,第二状态可以是左尾舵片102与尾翼主体101之间的角度和右尾舵片103与尾翼主体101之间的角度相同且均小于第一状态下的第一角度和第二角度且大于零度,这可以例如适用于不需要较大俯仰力矩的直线飞行的情况等。例如,在第一状态下的第一角度和第二角度均为最大角度的情况下,第二状态可以是左尾舵片102与尾翼主体101之间的角度和右尾舵片103与尾翼主体101之间的角度相同且均小于最大角度且大于零度。如图2C所示,当尾翼的左尾舵片102和右尾舵片103与尾翼主体101之间的角度(例如,25°)相同且均小于最大角度时,由于左尾舵片102和右尾舵片103分别与尾翼主体之间的角度相同,所以飞行器不进行转 向,如进行直线飞行。左尾舵片102和右尾舵片103与尾翼主体101之间的角度小于最大角度,可以应用于不需要较大俯仰力矩的场景。
此外,根据第二状态的又一示例,第二状态可以是左尾舵片102与尾翼主体101之间的角度和右尾舵片103与尾翼主体101之间的角度不同且分别小于第一状态下的第一角度和第二角度且大于零度(未示出),这可以例如适用于不需要较大俯仰力矩的转向的情况等。
根据本公开的实施例,飞行器可以从第一状态或第二状态调整至第三状态,例如,通过飞行器的控制器将飞行器从第一状态或第二状态调整至第三状态。当飞行器在第三状态下飞行时,左尾舵片102和/或右尾舵片103与尾翼主体101之间的角度可以为零度。
根据第三状态的一个示例,第三状态可以是左尾舵片102与尾翼主体101之间的角度和右尾舵片103与尾翼主体101之间的角度均为零度,这可以例如适用于不需要较大俯仰力矩的直线飞行或高速飞行的情况等。例如,如图2D所示,当左尾舵片102和右尾舵片103与尾翼主体101之间的角度均为零度时,飞行器可以不进行转向。
此外,根据第三状态的另一示例,第三状态可以是左尾舵片102与尾翼主体101之间的角度和右尾舵片103与尾翼主体101之间的角度中的一者为零度而另一者为非零度,这可以例如适用于不需要较大俯仰力矩的转向的情况等。例如,当左尾舵片102(或者右尾舵片103)与尾翼主体101之间的角度为零度而右尾舵片103(或者左尾舵片102)与尾翼主体之间的角度为非零度时(未示出),飞行器可以向右(向左)转向。左尾舵片102和/或右尾舵片103与尾翼主体101之间的角度为零度也可以应用于不需要较大俯仰力矩的场景。
根据本公开的实施例,飞行器的第一状态、第二状态和第三状态之间可以通过调整左尾舵片102和/或右尾舵片103与尾翼主体101之间的角度进行切换,例如,通过飞行器的控制器调整左尾舵片102和/或右尾舵片103与尾翼主体101之间的角度。
结合图1和图2A-图2D描述的根据本公开的实施例的飞行器,通过使尾翼10的左尾舵片102和右尾舵片103均处于与尾翼主体101的最大角度,可以使飞行器具有较大的俯仰力矩。在飞行器要进行转向时,左尾舵片102和右尾舵片103中的一者或两者与尾翼主体101之间的角度可以被调整到较小 角度,以使飞行器向与调整到更小角度的尾舵片相反的方向转向。例如,当飞行器要向左转向时,右尾舵片103与尾翼主体101之间的角度可以被调整到较小角度,而左尾舵片102与尾翼主体101之间的角度可以保持较大角度(例如,第一最大角度),反之亦然。如此以来,与传统的转向时仅一侧尾舵片被抬起的飞行器相比,能够保证一定的俯仰力矩,增大攻角,有效地避免了下坠,能够获得更良好的低速飞行能力,同时,由于速度可以较低,使得转弯半径变得较小,获得更好的操控稳定性。
上述通过将左尾舵片102和右尾舵片103中的一者或两者与尾翼主体101之间的角度调整到较小角度来进行转向不仅适用于飞行器进行航向转向(即,向左或向右航行)的情况,还适用于在直线飞行时调整飞行器的偏航的情况。通常,在飞行器直线飞行时,尾翼的左尾舵片和右尾舵片保持在同一高度,但由于存在工艺上的偏差,使得左尾舵片和右尾舵片受力不均,导致飞行器向左或向右偏航,从而无法实现理想的直线飞行。此时,可以通过将左尾舵片102和右尾舵片103中的一者或两者与尾翼主体101之间的角度调整到较小角度来使飞行器转向调整到与偏航方向相反的方向。如此以来,可以在保证一定的俯仰力矩的情况下,不会使飞行器一侧产生过大力矩,从而使飞行器更趋于理想直线飞行。这将在下面进行详细描述。
图3示出了根据本公开的实施例的飞行器的控制方法的示例流程图。在一示例中,该控制方法可以应用于飞行器自身。在另一示例中,该控制方法可以应用于与飞行器关联的专用控制装置,例如,飞行器的专用遥控器。在又一示例中,该控制方法可以应用于与飞行器关联的其他外设或通用控制装置,例如,可用于遥控飞行器的移动终端,诸如移动终端等。
如图3所示,根据本公开的实施例的飞行器的控制方法从步骤S100处开始。在步骤S100处,获得飞行器的第一飞行信息。例如,可以通过传感器测量飞行器的第一飞行信息。所述传感器例如可以是陀螺仪、加速度计等。第一飞行信息可以包括飞行器的当前转弯速度、当前航向角度等,用于确定要调整角度的至少一个尾舵片与尾翼主体之间的角度大小。本领域技术人员应理解的是,以上当前信息仅为示例,并不限于此。
然后,在步骤S110处,获得飞行器的转向信息。例如,可以通过获取单元获得飞行器的转向信息。该获取单元例如可以是用于接收用户各种类型的输入的器件或接口,例如包含于各种控制装置中的操控杆、按键、触控屏、麦 克风等等。转向信息的获取还可以基于飞行器的避障功能,即,当飞行器检测到障碍物时由飞行器的控制器发出的转向命令(包括转向信息)控制飞行器进行自动转向。获取单元可以设置于控制装置,或者可以设置于飞行器自身,再或者可以设置于飞行器自身和用户操作的控制装置两者。其中转向信息可以包括目标转向方向,用于确定要调整左尾舵片和右尾舵片中的哪一个尾舵片或两者。
然后,在步骤S120处,基于转向信息,可以确定要调整其与尾翼主体101之间的角度的左尾舵片102和右尾舵片103中的至少一个尾舵片,也可以基于转向信息分别调整左尾舵片102和右尾舵片103与尾翼101之间的角度。例如,当转向信息指示目标转向方向向左时,可以确定要调整右尾舵片103与尾翼主体101之间的角度(例如,调整至较小角度),也可以根据需要适当调整左尾舵片102与尾翼主体101之间的角度,以实现转向。
然后,在步骤S130处,基于第一飞行信息,可以确定将飞行器从第一状态调整至第二状态,其中,要调整的至少一个尾舵片与尾翼主体101之间的角度在第一状态下与第二状态下不同。飞行器可以包括控制器,控制器可以基于接收到的第一飞行信息,将飞行器从第一状态调整至第二状态,这里的第一状态可以是如上所述的第一状态,即,在第一状态下,尾翼10的左尾舵片102与尾翼主体101之间的第一角度可以为非零度,并且右尾舵片103与尾翼主体101之间的第二角度可以为非零度。例如,这里的第二状态可以是如上所述的第二状态,例如,在第二状态下,至少一个尾舵片与尾翼主体101之间的角度小于第一角度或第二角度。例如,其中第一状态可以为飞行器的(例如,默认)初始飞行状态。
以下将结合三个实施例,描述根据本公开的飞行器的控制方法的具体实施方式。本领域技术人员应理解的是,这些具体实施方式仅为示例,并不限于此。
在第一实施例中,在步骤S100处,还可以(例如,通过传感器)获取飞行器的当前航向角度R c,作为第一飞行信息。还可以获得飞行器的目标航向角度R t,在步骤S130处,基于当前航向角度R c与目标航向角度R t,可以确定要调整角度的至少一个尾舵片与尾翼主体101之间的角度的调整量A。
例如,当用户通过程序或者以其他方式设定转向信息(例如,目标航向角度)来操作时,首先,基于(例如,通过获取单元获得的)用户输入的转向 信息(例如,目标航向角度R t),确定左尾舵片102和右尾舵片103中的至少一个尾舵片要调整其与尾翼主体101之间的角度。还可以基于飞行器获取的障碍物检测信息,获取飞行器的转向信息。然后,通过传感器测量当前航向角度R c。接下来,例如,可以基于当前航向角度R c与目标航向角度R t之间的差值的绝对值D来确定角度的调整量A。例如,可以通过下式(1)计算角度的调整量A:
A=Kp*D+Ki*∫(D)*dt+Kd*dD/dt       (1)
其中,D为当前航向角度R c与目标航向角度R t之间的差值的绝对值,Kp、Ki和Kd是常数,可以通过试验而得到,取值可以为:Kp=0.2、Ki=0.001、Kd=0.1。应当注意,Kp、Ki和Kd的取值仅仅是示例,并不限于此,本领域技术人员可以根据飞行器的参数和控制精度需要而进行适当地设置。∫(D)*dt表示对D进行积分运算,dD/dt表示对D进行微分运算。
在一示例中,设尾翼舵机的控制量A1的范围为A L~A H(例如,对应于角度0°~90°),可以对角度的调整量A进行限幅,使其不超过尾翼舵机的控制量A1的范围,如下式(2)-(4):
A1=A/r1      (2)
A1’=max(A1,A L)       (3)
A1”=min(A1’,A H)        (4)
其中,A L表示尾翼舵机的控制量范围的最小值,即表示尾舵片的最低位置,A H表示尾翼舵机的控制量范围的最大值,即表示尾舵片的最高位置,r1为比例因子,例如可以通过试验而得到。公式(2)表示对上述的角度的调整量A按比例因子r1进行限制以得到尾翼舵机的控制量A1,A1可以在A L~A H的范围内,并且为了进一步确保A1在A L~A H的范围内,还可以利用公式(3)和(4)进一步限制A1的值。公式(3)和(4)表示将A1的最大值和最小值限制在A L~A H的范围内。例如,设A L=100,A H=200,当通过公式(2)进行限制之后,得到A1=150,通过公式(3),得到限制的尾翼舵机的控制量A1’=max(150,100)=150,通过公式(4),得到进一步限制的尾翼舵机的控制量A1”=min(150,200)=150,这是因为A1=150,在100~200的范围内。又例如,当通过公式(2)进行限制之后,得到A1=50,通过公式(3),得到限制的尾翼舵机的控制量A1’=max(50,100)=100,通过公式(4),得到进一步限制的尾翼 舵机的控制量A1”=min(100,200)=100,这是因为A1=50,在100~200的范围之外,通过公式(3)和(4)将最终的尾翼舵机的控制量确定为100以限制到100~200的范围内。请注意,公式(3)和(4)可以作为公式(2)的进一步限制,以确保将Al限制在A L~A H范围之内。
然后,根据确定的A或A1或限幅后的A1”,确定要调整角度的至少一个尾舵片与尾翼主体101之间的调整角度,即确定需要调整位置的至少一个尾舵片以及该尾舵片与尾翼主体101之间的调整角度。例如,当目标转向方向为向左时,确定调整右尾舵片103,其调整位置可以为A H-A或A H-A1或A H-A1”,而左尾舵片102的位置可以为A H,左尾舵片102的位置也可以小于A H
通过基于当前航向角度R c与目标航向角度R t,确定要调整角度的至少一个尾舵片与尾翼主体101之间的角度的调整量A,可以实现精确地转向控制,同时保证了一定的俯仰力矩,有效地避免了下坠。
在第二实施例中,例如,在没有获得具体目标航向角度R t的情况下,例如,在用户通过遥控器的操纵杆操纵进行转向的情况下,在步骤S100处,还可以例如通过诸如陀螺仪等的传感器测量飞行器的当前转弯速度v c,作为第一飞行信息。还可以获得飞行器的目标转弯速度v t,在步骤S130处,基于当前转弯速度v c与目标转弯速度v t,确定要调整角度的至少一个尾舵片与尾翼主体101之间的角度的调整量A。
例如,首先,基于例如通过获取单元获得的用户输入的转向信息(例如,目标转向方向和目标转弯速度v t),确定左尾舵片和右尾舵片中的至少一个尾舵片要调整其与尾翼主体101之间的角度,然后,通过传感器测量当前转弯速度v c。接下来,例如,可以基于当前转弯速度v c与目标转弯速度v t之间的差值的绝对值来确定调整量A,例如,也可以通过上式(1)计算调整量A,其中,D被替换为当前转弯速度v c与目标转弯速度v t之间的差值的绝对值。
在一示例中,如上所述,可以对调整量A进行限幅,使其不超过尾翼舵机的控制量范围(例如,A L~A H),这里不再赘述。
然后,根据确定的A或A1或限幅后A1”,确定需要调整位置的至少一个尾舵片以及该尾舵片与尾翼主体101之间的调整角度,即确定需要调整位置的至少一个尾舵片以及该尾舵片与尾翼主体101之间的调整角度。例如,当目标转向方向为向左时,确定需要调整位置的为右尾舵片103,其调整位置 可以为A H-A或A H-A1或A H-A1”,而左尾舵片102的位置可以为A H,左尾舵片的位置也可以小于A H
通过基于当前转弯速度v c与目标转弯速度v t,确定要调整的至少一个尾舵片与尾翼主体101之间的角度的调整量A,可以在不知道具体目标航向角度的情况下,根据操作来实现实时地转向控制,同时保证了一定的俯仰力矩,有效地避免了下坠。
在第三实施例中,例如,在飞行器直线飞行或飞行器在固定航线上飞行的情况下,在步骤S110处,还可以获得目标航向信息,以及基于当前航向信息和目标航向信息,确定转向信息,其中当前航向信息可以通过传感器测量而得到,以作为第一飞行信息。
例如,当前航向信息可以包括当前航向角度R c’,目标航向信息可以包括目标航向角度R t’。在飞行器直线飞行或在固定航线上飞行的情况下,可以将进入直线或固定航线飞行的初始时刻(例如,t0时刻)的当前航向角度作为目标航向角度R t’,目的是使飞行器保持直线或固定航线飞行。可以根据当前航向角度R c’与目标航向角度R t’之间的差值的正负,确定目标转向方向,也就是说,根据当前航向偏离直线或固定航线的方向,确定需要如何调整飞行方向使其回到直线或固定航线上。例如,当当前航向角度R c’与目标航向角度R t’之间的差值为正(或者大于等于0)时,确定目标转向方向为向左,当当前航向角度R c’与目标航向角度R t’之间的差值为负(或者小于等于0)时,确定目标转向方向为向右。本领域技术人员应理解的是,以上当前航向角度R c’与目标航向角度R t’之间差值的正负和向左、向右的对应关系仅为示例,并不限于此。
接下来,与上述步骤S130一样,基于第一飞行信息,可以确定将飞行器从第一状态调整至第二状态,例如,通过飞行器的控制器将飞行器从第一状态调整至第二状态。例如,可以基于当前航向角度R c’与目标航向角度R t’之间的差值的绝对值来确定调整量A,例如,可以通过上式(1)计算调整量A,并且根据确定的A或A1或限幅后A1”,确定需要调整位置的至少一个尾舵片以及该尾舵片与尾翼主体101之间的调整角度,这里不再赘述。
通过仅抬起一侧尾舵片来调整直线飞行的偏航,可能会因为这一侧尾舵片抬起得太高而使飞行器一侧产生过大力矩进而导致飞行器的路线产生太大波动,这一侧尾舵片抬起得太低,俯仰力矩可能会偏低。相反,上述实施例中 通过将飞行器从第一状态调整至第二状态来调整直线飞行的偏航,可以在保证一定的俯仰力矩的情况下,不会使飞行器一侧产生过大力矩,从而使飞行器更趋于理想直线飞行。
通过结合图3描述的飞行器的控制方法,可以在不同情况下(例如,用户通过程序或者以其他方式设定转向信息、用户通过遥控器的操纵杆操纵进行转向、直线飞行或固定航线飞行),根据获得的不同的飞行信息和转向信息,使飞行器按照预期进行飞行操作,从而使飞行器的控制具有多样性和适应性,丰富用户体验。
根据本公开的实施例,为了提高飞行器转向的安全性,可以在当前转弯速度太大时,不进行转向,以防止飞行器因转弯速度过大而下坠。例如,对例如通过传感器测量得到的当前转弯速度与预设的阈值速度进行比较,以及响应于当前转弯速度不大于阈值速度,可以确定将飞行器从第一状态调整至第二状态,其中阈值速度可以是试验得到的飞行器不会因失速而下坠的最大速度。例如,可以周期性地或在特定时刻执行上述比较并对比较结果做出响应。
根据本公开的实施例的飞行器的控制方法还可以包括步骤S140-S150,如图4所示。在步骤S140处,获得飞行器的第二飞行信息。例如,可以通过传感器测量飞行器的第二飞行信息。第二飞行信息可以包括飞行器的当前转弯速度、当前航向角度等。本领域技术人员应理解的是,以上当前信息仅为示例,并不限于此。
然后,在步骤S150处,基于第二飞行信息,可以确定将飞行器从第二状态调整至第一状态,例如,通过飞行器的控制器将飞行器从第二状态调整至第一状态。例如,当飞行器完成转向时,可以将飞行器从第二状态调整回第一状态,例如,通过飞行器的控制器将飞行器从第二状态调整回第一状态。
在一示例中,第二飞行信息可以是用户输入的停止转向的信息,例如,当用户可以通过遥控器的操纵杆操纵停止转向时,可以确定将飞行器从第二状态调整至第一状态,例如,通过飞行器的控制器将飞行器从第二状态调整至第一状态。
在另一示例中,也可以将第二飞行信息与预设的阈值信息进行比较,响应于第二飞行信息与预设的阈值信息的比较结果,可以确定将飞行器从第二状态调整至第一状态,例如,通过飞行器的控制器将飞行器从第二状态调整至第一状态。
例如,第二飞行信息可以是例如通过传感器测量得到的当前航向角度R c”。例如,对当前航向角度R c”与目标航向角度R t”之间的差值和预设的阈值角度R 0进行比较,以及响应于当前航向角度R c”与目标航向角度R t”之间的差值D”小于阈值角度R 0时,确定将飞行器从第二状态调整至第一状态,例如,通过飞行器的控制器将飞行器从第二状态调整至第一状态。例如,在飞行器直线或固定航线飞行的情况下,通过比较当前航向角度R c”与目标航向角度R t”之间的差值D”和预设的阈值角度R 0,可以确定飞行器是否回到直线或固定航线上,当确定飞行器回到直线或固定航线上时,可以确定停止转向直到飞行器再次偏离直线或固定航线。
又例如,第二飞行信息也可以是例如通过传感器测量得到的当前转弯速度v c’。例如,比较当前转弯速度v c’与目标转弯速度v t’之间的差值的绝对值D’和预设的阈值D 0’,以及响应于当前转弯速度v c’与目标转弯速度v t’之间的差值的绝对值D’小于阈值角度D 0’时,确定将飞行器从第二状态调整至第一状态,例如,通过飞行器的控制器将飞行器从第二状态调整至第一状态。例如,在飞行器转向的过程中,当所述差值的绝对值D’小于预设的阈值D 0’时,可以确定飞行器完成转向,并且可以停止转向。
图5示出了根据本公开的实施例的飞行器系统500的示例框图。如图5所示,根据本公开的实施例的飞行器系统500可以包括飞行器510、控制装置520。飞行器510可以包括至少一个传感器511、获取单元512、处理单元513、执行单元514。至少一个传感器511可以被用于感测飞行器510的飞行信息。获取单元512可以被用于获取飞行器510的转向信息,获取单元512可以包括在飞行器510中(图5中以获取单元512包括在飞行器510中为例),也可以包括在控制装置520中。控制装置520可以被用于输入用户的操作命令,例如,转向命令等,以控制飞行器进行转向等操作,控制装置520可以例如是遥控器或者移动终端等。处理单元513(其可以作为飞行器的控制器或控制器的一部分)可以被用于接收转向信息和飞行信息,以根据转向信息和飞行信息生成对于尾翼的控制信号。执行单元514可以被用于根据控制信号执行飞行器510的第一状态、第二状态和第三状态之间的调整。例如,通过尾翼上的转臂拉动左尾舵片和/或右尾舵片以调整尾舵片与尾翼主体之间的角度。本领域技术人员应理解的是,飞行器系统500所包括的以上组件仅为示例,并不限于此。
在该示例中,飞行器510可以例如通过无线方式经由无线通讯模块与控制装置520连接,以进行信号的传输。无线方式可以是蓝牙、红外、无线局域网等中的一种或多种。可以理解,以上无线方式仅仅作为示例,但不限于此。
在另一示例中,飞行器系统也可以没有控制装置520,在飞行器510中的获取单元512或其他模块中预先设定转向信息,而无需通过控制装置520进行操作。
此外,本公开还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时实现根据本公开的任一实施例所述的飞行器的控制方法。
至此,本公开已经结合附图描述了根据本公开的实施例的飞行器的控制方法、飞行器、控制装置以及计算机可读存储介质。通过根据本公开的实施例的飞行器和飞行器的控制方法,与传统的飞行时仅一侧尾舵片被抬起或者两侧尾舵片均不抬起的飞行器相比,由于左尾舵片和右尾舵片均与尾翼主体成角度(例如,最大角度),能够保证一定的(例如,较大的)俯仰力矩,从而使飞行器保持较高的攻角,能够有效地避免下坠,同时获得更好的操控稳定性。并且,可以在不同情况下,根据获得的不同的飞行信息和转向信息,使飞行器按照预期进行操作,从而使飞行器的控制具有多样性和适应性,丰富用户体验。
需要说明的是,以上描述仅为本公开的一些实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案,例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
此外,虽然采用特定次序描绘了各操作,但是这不应当理解为要求这些操作以所示出的特定次序或以顺序次序执行来执行。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本公开的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实施例中。相反地,在单个实施例的上下文中描述的各种特征也可以单独地或以任何合适的子组合的 方式实现在多个实施例中。
本申请要求于2021年02月07日递交的中国专利申请第202110166956.9号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (17)

  1. 一种飞行器,包括:
    尾翼,所述尾翼包括尾翼主体、左尾舵片和右尾舵片,所述左尾舵片能够相对于所述尾翼主体在零度至第一最大角度的第一角度范围内运动,所述右尾舵片能够相对于所述尾翼主体在零度至第二最大角度的第二角度范围内运动;
    其中,所述飞行器包括第一状态,在所述第一状态下,所述左尾舵片与所述尾翼主体之间的第一角度为非零度,所述右尾舵片与所述尾翼主体之间的第二角度为非零度。
  2. 根据权利要求1所述的飞行器,其中,所述飞行器还包括控制器,用于将所述飞行器从所述第一状态调整至第二状态,在所述第二状态下,所述左尾舵片与所述尾翼主体之间的角度小于所述第一角度;和/或所述右尾舵片与所述尾翼主体之间的角度小于所述第二角度。
  3. 根据权利要求2所述的飞行器,其中,所述第一角度为第一最大角度,所述第二角度为第二最大角度。
  4. 根据权利要求1所述的飞行器,其中,所述飞行器还包括控制器,用于将所述飞行器调整至第三状态,在所述第三状态下,所述左尾舵片和/或所述右尾舵片与所述尾翼主体之间的角度为零度。
  5. 根据权利要求1所述的飞行器,其中,所述飞行器还包括至少一个传感器和获取单元,所述至少一个传感器用于感测所述飞行器的飞行信息,所述获取单元用于获得所述飞行器的转向信息,
    其中,所述转向信息用于确定要调整角度的所述左尾舵片和右尾舵片中的至少一个尾舵片,所述飞行信息用于确定要调整角度的所述至少一个尾舵片与所述尾翼主体之间的角度大小。
  6. 根据权利要求1-5中任一项所述的飞行器,其中,所述第一角度与所述第二角度相同。
  7. 一种用于如权利要求1所述的飞行器的控制方法,所述控制方法包括:
    获得所述飞行器的第一飞行信息;
    获得所述飞行器的转向信息;
    基于所述转向信息,确定要调整角度的所述左尾舵片和右尾舵片中的至少一个尾舵片;
    基于所述第一飞行信息,确定将所述飞行器从第一状态调整至第二状态,其中,所述至少一个尾舵片与所述尾翼主体之间的角度在所述第一状态下与所述第二状态下不同。
  8. 根据权利要求7所述的控制方法,其中,
    获得所述飞行器的第一飞行信息的步骤包括:
    测量所述飞行器的当前转弯速度,作为所述第一飞行信息;
    确定将所述飞行器从第一状态调整至第二状态的步骤包括:
    获得所述飞行器的目标转弯速度;
    基于所述当前转弯速度与所述目标转弯速度,确定所述至少一个尾舵片与所述尾翼主体之间的角度的调整量。
  9. 根据权利要求8所述的控制方法,其中,基于所述当前转弯速度与所述目标转弯速度确定所述至少一个尾舵片与所述尾翼主体之间的角度的调整量包括:基于所述当前转弯速度与所述目标转弯速度之间的差值的绝对值来确定所述调整量。
  10. 根据权利要求7所述的控制方法,其中,
    获得所述飞行器的第一飞行信息的步骤包括:
    测量当前航向角度,作为所述第一飞行信息;
    确定将所述飞行器从第一状态调整至第二状态的步骤包括:
    获得所述飞行器的目标航向角度;以及
    基于所述当前航向角度与所述目标航向角度,确定所述至少一个尾舵片与所述尾翼主体之间的角度的调整量。
  11. 根据权利要求10所述的控制方法,其中,基于所述当前航向角度与所述目标航向角度确定所述至少一个尾舵片与所述尾翼主体之间的角度的调整量包括:基于所述当前航向角度与所述目标航向角度之间的差值的绝对值来确定所述调整量。
  12. 根据权利要求7所述的控制方法,其中,所述第一飞行信息包括当前航向信息,获得所述飞行器的转向信息的步骤包括:
    获得目标航向信息;
    基于所述当前航向信息和所述目标航向信息,确定转向信息。
  13. 根据权利要求12所述的控制方法,其中,基于所述当前航向信息和所述目标航向信息确定转向信息包括:基于所述当前航向角与所述目标航向角之间的差值的正负,确定目标转向方向。
  14. 根据权利要求7所述的控制方法,其中,在所述第二状态下所述至少一个尾舵片与所述尾翼主体之间的角度小于所述第一角度。
  15. 根据权利要求7所述的控制方法,其中,
    获得所述飞行器的第一飞行信息的步骤包括:
    测量当前转弯速度,作为所述第一飞行信息;
    确定将所述飞行器从第一状态调整至第二状态的步骤包括:
    比较所述当前转弯速度与阈值速度;以及
    响应于所述当前转弯速度不大于所述阈值速度,确定将所述飞行器从第一状态调整至第二状态。
  16. 根据权利要求7所述的控制方法,其中,所述控制方法还包括:
    获得所述飞行器的第二飞行信息;
    基于所述第二飞行信息,确定将所述飞行器从第二状态调整至第一状态。
  17. 根据权利要求16所述的控制方法,其中,获得所述飞行器的第二飞行信息的步骤包括:
    测量当前航向角度,作为所述第二飞行信息;
    确定将所述飞行器从第二状态调整至第一状态的步骤包括:
    获得所述飞行器的目标航向角度;
    比较所述当前航向角度与所述目标航向角度之间的差值和阈值角度;以及
    响应于所述当前航向角度与目标航向角度之间的差值小于阈值角度时,确定将所述飞行器从第二状态调整至第一状态。
PCT/CN2022/074630 2021-02-07 2022-01-28 飞行器和飞行器的控制方法 WO2022166813A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110166956.9 2021-02-07
CN202110166956.9A CN112874760B (zh) 2021-02-07 2021-02-07 飞行器和飞行器的控制方法

Publications (1)

Publication Number Publication Date
WO2022166813A1 true WO2022166813A1 (zh) 2022-08-11

Family

ID=76055930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074630 WO2022166813A1 (zh) 2021-02-07 2022-01-28 飞行器和飞行器的控制方法

Country Status (2)

Country Link
CN (1) CN112874760B (zh)
WO (1) WO2022166813A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112874760B (zh) * 2021-02-07 2022-11-15 汉王科技股份有限公司 飞行器和飞行器的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104229138A (zh) * 2014-09-26 2014-12-24 北京航空航天大学 一种微型扑翼飞行器的分裂式差动尾翼操纵机构
US20180178910A1 (en) * 2016-12-27 2018-06-28 Korea Advanced Institute Of Science And Technology Aerial vehicle capable of vertical take-off and landing, vertical and horizontal flight and on-air energy generation
CN110615098A (zh) * 2019-09-20 2019-12-27 仿翼(北京)科技有限公司 飞行器和飞行器控制方法
CN112874760A (zh) * 2021-02-07 2021-06-01 汉王科技股份有限公司 飞行器和飞行器的控制方法
CN213735541U (zh) * 2020-10-12 2021-07-20 仿翼(北京)科技有限公司 一种扑翼飞行器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB186884A (en) * 1921-10-01 1922-10-12 Alexander Josefovich Loguin Improvements in or relating to aeronautical machines
CN202429346U (zh) * 2011-11-30 2012-09-12 中国南方航空工业(集团)有限公司 小型无人机的尾翼
CN104260883A (zh) * 2014-09-26 2015-01-07 北京航空航天大学 一种微型扑翼飞行器的分离式倒v型尾翼操纵机构
CN111846220B (zh) * 2020-09-11 2021-01-08 仿翼(北京)科技有限公司 扑翼飞行器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104229138A (zh) * 2014-09-26 2014-12-24 北京航空航天大学 一种微型扑翼飞行器的分裂式差动尾翼操纵机构
US20180178910A1 (en) * 2016-12-27 2018-06-28 Korea Advanced Institute Of Science And Technology Aerial vehicle capable of vertical take-off and landing, vertical and horizontal flight and on-air energy generation
CN110615098A (zh) * 2019-09-20 2019-12-27 仿翼(北京)科技有限公司 飞行器和飞行器控制方法
CN213735541U (zh) * 2020-10-12 2021-07-20 仿翼(北京)科技有限公司 一种扑翼飞行器
CN112874760A (zh) * 2021-02-07 2021-06-01 汉王科技股份有限公司 飞行器和飞行器的控制方法

Also Published As

Publication number Publication date
CN112874760B (zh) 2022-11-15
CN112874760A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
US11119505B1 (en) Wind finding and compensation for unmanned aircraft systems
US11181932B2 (en) Combined pitch and forward thrust control for unmanned aircraft systems
JP5837376B2 (ja) 複数のローターを有する回転翼無人機を操縦する方法
US20230182898A1 (en) Methods and Systems for Energy-Efficient Take-Offs and Landings for Vertical Take-Off and Landing (VTOL) Aerial Vehicles
WO2021023187A1 (zh) 一种倾转旋翼无人机的控制方法及倾转旋翼无人机
US11208205B2 (en) System and method for rotorcraft autorotation entry assist
JP2009083798A (ja) 電動垂直離着陸機の制御方法
WO2022037376A1 (zh) 一种无人机保护方法及无人机
CN108639332B (zh) 复合三旋翼无人机多模态飞行控制方法
WO2022166813A1 (zh) 飞行器和飞行器的控制方法
WO2020088094A1 (zh) 一种旋翼机协调转弯控制方法及系统
US20170364093A1 (en) Drone comprising lift-producing wings
WO2020237528A1 (zh) 垂直起降无人机的飞行控制方法、设备及垂直起降无人机
WO2012134447A2 (en) Flight control laws for full envelope banked turns
CN102915037A (zh) 基于混合控制的四旋翼无人机增稳控制方法
WO2021237481A1 (zh) 无人飞行器的控制方法和设备
JP2016215958A (ja) マルチコプター及びマルチコプターシステム
WO2021223474A1 (zh) 飞行器、飞行器的控制方法及计算机可读存储介质
WO2020187092A1 (zh) 一种无人机控制装置和无人机
CN109407695B (zh) 用于旋翼飞行器离岸接近的系统和方法
CN113885581B (zh) 协调飞行控制方法、装置、电子设备及可读存储介质
TWI736139B (zh) 具有夜航操作輔助功能的無人機
CN112486203B (zh) 一种飞翼无人机赫伯斯特机动飞行控制方法
JPH01119500A (ja) 飛行機の精密進入制御システム
Ramírez et al. Pilot-assist landing system for hover-capable fixed-wing unmanned aerial vehicles in all flight regimes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/01/2024)