WO2022166057A1 - 一种通过室内浊气管控避免交叉感染的建筑物 - Google Patents

一种通过室内浊气管控避免交叉感染的建筑物 Download PDF

Info

Publication number
WO2022166057A1
WO2022166057A1 PCT/CN2021/098821 CN2021098821W WO2022166057A1 WO 2022166057 A1 WO2022166057 A1 WO 2022166057A1 CN 2021098821 W CN2021098821 W CN 2021098821W WO 2022166057 A1 WO2022166057 A1 WO 2022166057A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
indoor
sealed
building
fresh air
Prior art date
Application number
PCT/CN2021/098821
Other languages
English (en)
French (fr)
Inventor
吴捷
沈景华
陈守恭
彭旭辉
田雨
李东会
田真
韩冬辰
李晓晗
张洁
徐樑
薛朝阳
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2022166057A1 publication Critical patent/WO2022166057A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H1/00Buildings or groups of buildings for dwelling or office purposes; General layout, e.g. modular co-ordination or staggered storeys
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/001Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation characterised by provisions for heat or sound insulation
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/02Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation having means for ventilation or vapour discharge
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/28Arrangement or mounting of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit

Definitions

  • the invention belongs to the technical field of house construction, and in particular relates to a building that avoids cross-infection through indoor turbid air management and control.
  • the traditional passive house fresh air unit adopts the top-to-bottom row or top-to-bottom row mode (see Figure 1 and Figure 2), and sends fresh air at a higher speed to promote indoor air mixing, so as to achieve uniform indoor temperature.
  • the top-to-bottom row and top-to-bottom row methods are ventilation methods based on the purpose of diluting indoor air. By feeding a certain amount of high-speed fresh air and indoor air, a dilution ventilation is formed to adjust the indoor temperature and reduce the concentration of pollutants.
  • an integrated unit of fresh air is generally used for heating. Outdoor fresh air and indoor exhaust air pass through a high-efficiency heat converter to effectively recover heat energy and provide it to the fresh air, which is then preheated in winter and sent into the room.
  • Dilution ventilation Dilute the whole house air with fresh air and exhaust the mixed air. Only the concentration of turbid gas can be reduced, and all turbid gas cannot be exhausted, so cross-infection cannot be avoided.
  • displacement ventilation The principle of displacement ventilation is based on the rise of hot air and the fall of cold air due to the difference in air density.
  • the air is supplied from the bottom of the room at a wind speed of less than 0.2m/s, which is lower than the indoor air temperature.
  • Displacement ventilation systems have been used in industrial buildings with high heat loads in Europe for more than 40 years. In 1978, a foundry in Berlin, Germany, first adopted a displacement ventilation system. In the past 30 years, displacement ventilation systems have gradually become popular in non-industrial buildings in Nordic countries, such as office buildings, schools, theaters, etc., such as the Copenhagen Grand Theater in Denmark.
  • Tongji University established an airflow laboratory to conduct experimental analysis and research on the airflow characteristics of displacement ventilation, and briefly analyzed its impact on airflow organization by changing the heat transfer coefficient of the envelope structure, and provided reference data for evaluating the comfort of displacement ventilation methods; An analytical study of the displacement ventilation and cooling roof composite system was also carried out.
  • Donghua University has participated in the experimental research of the French LET laboratory on the disturbance factors of the displacement ventilation system, such as the effect of water vapor on the performance of the displacement ventilation system.
  • Scholars from Huazhong University of Science and Technology applied CFD technology to study the parameter design of displacement ventilation system, and proposed a method for determining the parameters of displacement ventilation system, so that the designed system can not only ensure high indoor air quality, but also prevent the occurrence of vertical temperature difference.
  • FIG. 3 it is the indoor smoke distribution diagram during displacement ventilation.
  • Displacement ventilation replace the air in the whole house with fresh air, and discharge the original air in the house, that is, with the help of the heat plume of the indoor human body heat source to form a similar piston flow to replace the indoor air.
  • the temperature of the indoor bottom air supply is higher than the upper air Cross-infection may occur.
  • the bottom radiant heating is a comfortable heating method, the indoor surface temperature is uniform, it is not easy to cause air turbulence, and the indoor air is clean.
  • the surface temperature of the floor heating floor should be 24°C-26°C, and the upper limit of temperature should be 28°C in areas where people often stay; areas where people stay for a short time, 28°C-26°C should be used, and the upper temperature limit should be 32°C; for areas without short-term stays, 35°C-40°C should be used, and the upper temperature limit should be 42°C.
  • the upper limit of the water supply temperature is 60°C, the water supply temperature for civil buildings should be 35°C-50°C, and the temperature difference between the supply and return water should not be greater than 10°C.
  • the turbid air cannot be avoided to stay indoors after mixing the turbid air and fresh air; (2) In winter, sending hot air at the bottom of the room will cause the indoor air to mix, prolong the residence time of the dirty air in the room, and cause cross-contamination; (3) If high-speed bottom is used The air supply method will cause indoor air turbulence and fresh air to mix; (4)
  • the thermal conductivity of ceiling surface materials is generally high, aluminum alloy panel 230W/(m ⁇ K), concrete floor 1.5W/(m ⁇ K), Gypsum board 0.3W/(m ⁇ K), thermal insulation gypsum 0.07W/(m ⁇ K), cork 0.05W/(m ⁇ K), the hot and turbid gas will sink when it is cooled by the ceiling, so that the hot and turbid gas cannot be discharged quickly , causing cross-contamination; (5) For large open spaces, the distance between the airflow outlet and the discharge port is too far, and the "human-to-human" mode of blowing from one person to the next is prone to occur
  • the common building envelope (see Figure 4) has no air tightness and high thermal insulation requirements, and the surface material has high thermal conductivity, so it is difficult to meet the implementation of displacement ventilation.
  • the purpose of the present invention is to provide a building that avoids cross-infection through indoor turbid air control.
  • the "cold wind lake” formed by fresh air rises slowly due to the temperature of the human body after encountering the human body, and the fresh air wraps the human body. People inhale fresh air, and exhaled turbid air is released upward due to the relatively high temperature and is discharged from the exhaust end. If other mechanical or temperature interferences are excluded, the exhaled turbid air and fresh air will not cross or mix, thus avoiding indoor cross-infection.
  • a building that avoids cross-infection by indoor turbid air management and control comprising:
  • a sealed thermal insulation room wherein one or more personnel gathering belts are arranged in the sealed thermal insulation room;
  • the air supply system inputs fresh air into the interior of the sealed and insulated house, and the air supply system includes a fresh air outlet end communicated with the interior of the sealed and insulated house;
  • the air exhaust system discharges the air containing turbid gas inside the sealed and insulated house, and the exhaust system includes a turbid gas receiving end communicated with the inside of the sealed and insulated house;
  • a ventilation heat recovery system includes an air supply conveying device communicated with the inlet of the fresh air sending end of the air supply system and an exhaust air conveying device communicated with the outlet of the dirty gas receiving end of the exhaust system, so The air supply conveying device performs heat exchange with the exhaust air conveying device;
  • An environmental source heat exchange system includes a fluid conveying device for exchanging heat with the natural environment, the inlet of the fluid conveying device is in fluid communication with the closed internal circulation, and the fluid output from the fluid conveying device is connected to the The air in the sealed and insulated room conducts heat exchange and/or the fluid output by the fluid conveying device exchanges heat with the air fed into the sealed and insulated room;
  • the cooling and heating system includes an indoor cooling and heating device for cooling or heating the air in the sealed thermal insulation room to a set temperature, and a cooling and heating system for cooling the fresh air sent by the air supply system to a low temperature. Fresh air cooling and heating device at the set temperature;
  • the indoor cooling and heating device is a radiant cooling and heating device arranged at the bottom of the sealed and thermally insulated house;
  • the position of the fresh air sending end is lower than the position of the mouth and nose of the people gathering belt, and the position of the turbid air receiving end is higher than the position of the mouth and nose of the personnel gathering belt.
  • One or more of the fresh air delivery ends are arranged below the side, and one or more of the fresh air delivery ends are arranged between two adjacent personnel gathering belts, above or just above the other side of each personnel gathering belt.
  • One or more of the dirty gas receiving ends are arranged;
  • the air fed into the sealed thermal insulation room is firstly distributed uniformly in the lower part, and then flows upward, encounters a heat source, is heated, flows upward slowly, and is drawn out of the sealed thermal insulation room from the upper part.
  • the sealed thermal insulation room is divided into a first upright column space and a second upright column space which are alternately arranged in the horizontal direction, and the personnel gathering belt is arranged in the first upright column space.
  • the fresh air sending end is arranged in the second vertical cylindrical space
  • the dirty gas receiving end is arranged in the first vertical cylindrical space or the second vertical cylindrical space .
  • the radiant cooling and heating device is a cold and heat radiant floor.
  • the set temperature is an indoor temperature
  • the set temperature is 20°C-26°C
  • the temperature of the fresh air sent from the fresh air outlet end is lower than the set temperature by no more than 3°C.
  • the fresh air sending end is a fiber cloth air pipe.
  • the air supply system further includes an air supply fan for feeding air into the sealed thermal insulation room under positive pressure
  • the air exhaust system further includes an exhaust air for extracting negative air pressure out of the sealed thermal insulation room. fan.
  • the fluid conveying device is a ground source heat pump, a water source heat pump or an air source heat pump.
  • the air supply system further includes an air filter for filtering suspended particles, a sterilizing device for sterilizing and sterilizing, and a dehumidifying device for removing moisture.
  • the upper surface of the indoor space of the sealed and insulated house is a low thermal conductivity surface, or the upper surface of the indoor space and the upper section of the side surface of the sealed and insulated house are both low thermal conductivity surfaces, and the thermal conductivity of the low thermal conductivity surface is less than or equal to 0.1W/(mK).
  • the fresh air sending end is set at the bottom or the corner or the lower end of the wall of the sealed and insulated house, and the turbid gas receiving end is set at the bottom of the sealed and insulated house.
  • the turbid air control building is one of an ultra-low energy consumption building, a near-zero energy consumption building, a zero energy consumption building, a zero carbon building, a carbon neutral building, and a production house based on passive house technology.
  • the present invention has the following advantages compared with the prior art:
  • this technical solution pays more attention to the control and timely discharge of turbid air flow, shortening the residence time of turbid air in the room (avoiding self-locking of turbid air, and controlling the supply and exhaust air "fresh air- People (turbid air)-exhaust "path"), to avoid the flow of turbid air from people to people (the distance of air supply and exhaust is long, and the passage of different people), large space gridded fresh air technology, control and realize the airflow path "fresh air- Human body-exhaust", avoid “fresh air-human-human-exhaust", so as to avoid cross infection;
  • the buildings disclosed in the present invention are controlled by indoor turbid air to avoid cross-infection.
  • supplementary heat or supplemental cooling is needed in winter and summer, the technical system of supplementary heat or supplementary cooling by floor radiation is used to radiate evenly over a large area without disturbing the air flow;
  • a fiber fabric air duct (Sos system) is introduced into the fresh air system of the passive house as a lower air supply duct slot to achieve uniform and slow air supply. Avoid turbulence.
  • Fig. 1 is a schematic diagram of the top-feeding, top-discharging and exhausting of a passive house in the prior art
  • Fig. 2 is the schematic diagram of the upper and lower discharge and exhaust of the passive house in the prior art
  • FIG. 3 is a schematic diagram of indoor smoke distribution during displacement ventilation in the prior art
  • Fig. 4 is the non-sealed thermal insulation house body of the prior art
  • Fig. 5 is the composition block diagram of the building in the first embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the airflow flow of the building in the first embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the airflow of the building in the second embodiment of the present invention.
  • orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, and is only a relational word determined for the convenience of describing the structural relationship of each component or element of the present disclosure, and does not specifically refer to any component or element in the present disclosure, and should not be construed as a reference to the present disclosure. public restrictions.
  • terms such as “fixed connection”, “connected”, “connected”, etc. should be understood in a broad sense, indicating that it may be a fixed connection, an integral connection or a detachable connection; it may be directly connected, or through an intermediate connection. The medium is indirectly connected.
  • the specific meanings of the above terms in the present disclosure can be determined according to specific situations, and should not be construed as limitations on the present disclosure.
  • a building with indoor air pollution control to avoid cross-infection includes:
  • a sealed thermal insulation room 10 a sealed thermal insulation room 10, and one or more personnel gathering belts are arranged in the sealed thermal insulation room 10;
  • the air supply system 20, the air supply system 20 inputs fresh air to the interior of the sealed and insulated house 10, and the air supply system 20 includes a fresh air outlet 21 communicated with the interior of the sealed and insulated house 10;
  • the exhaust system 30, the exhaust system 30 discharges the air containing the turbid gas inside the sealed and insulated house 10, and the exhaust system 30 includes a turbid gas receiving end 31 communicated with the inside of the sealed and insulated house 10;
  • Ventilation heat recovery system 40 the ventilation heat recovery system 40 includes a supply air conveying device 41 communicated with the inlet of the fresh air sending end of the air supply system 20 and an exhaust air conveying device 42 communicated with the outlet of the dirty gas receiving end of the exhaust air system 30.
  • the air conveying device 41 and the exhaust conveying device 42 perform heat exchange;
  • the above-mentioned air supply conveying device 41 and the above-mentioned exhaust air conveying device 42 are pipes;
  • the environment source heat exchange system includes a fluid conveying device 51 for exchanging heat with the natural environment, the inlet of the above fluid conveying device 51 is communicated with a closed inner circulating fluid 52, and the fluid output by the fluid conveying device 51 is sealed and insulated.
  • the air in the house 10 conducts heat exchange and/or the fluid output by the fluid conveying device 51 exchanges heat with the air sent into the sealed and insulated house 10.
  • the above-mentioned fluid conveying device 51 is a ground source heat pump or a water source heat pump or an air source heat pump. ;
  • the above-mentioned cooling and heating system includes a cooling and heating device 61 for cooling or heating the air in the sealed thermal insulation room 10 to a set temperature, and a cooling and heating device 61 for cooling or heating the fresh air sent by the air supply system 20 to a temperature lower than the set temperature.
  • the indoor cooling and heating device 61 is a radiant cooling and heating device arranged at the bottom of the sealed thermal insulation house 10;
  • the position of the fresh air sending end 21 is lower than the position of the mouth and nose of the human body, and the position of the turbid air receiving end 31 is higher than the position of the mouth and nose of the human body;
  • One or more fresh air sending ends 21 are arranged under one side of each personnel gathering belt, and one or more fresh air sending ends 21 are arranged between two adjacent personnel gathering belts, above the other side of each personnel gathering belt Or one or more dirty gas receiving ends 31 are arranged directly above;
  • the air fed into the sealed and insulated house 10 is distributed evenly at the lower part first, then flows upwards, encounters a heat source, is heated, flows upwards slowly, and pulls out the sealed and insulated house 10 at the upper part.
  • the interior of the sealed thermal insulation room 10 is divided into a first vertical cylindrical space and a second vertical cylindrical space which are alternately arranged in the horizontal direction, and the personnel gathering belt is arranged in the first vertical cylindrical space.
  • the fresh air sending end 21 is arranged in the second vertical cylindrical space
  • the dirty gas receiving end 31 is arranged in the first vertical cylindrical space or the second vertical cylindrical space.
  • the indoor cooling and heating device 61 is a cold and heat radiation floor.
  • the radiant cooling and heating device may be an electric blanket.
  • the outlet of the fluid delivery device 51 is connected to the coils of the radiant floor.
  • the set temperature is the indoor temperature
  • the set temperature is 20°C-26°C
  • the temperature of the fresh air sent from the fresh air outlet 21 is not more than 3°C lower than the set temperature.
  • the set temperature may be other temperatures, as long as the temperature is suitable.
  • the fresh air sending end 21 is a fiber cloth air duct, and the fiber cloth air duct is installed in the airtight insulation room or in the strip-shaped air supply groove.
  • a diffuser or the like may be used at the fresh air sending end.
  • the air supply system 20 further includes an air supply fan 22 for feeding the air into the sealed and insulated house 10 under positive pressure, and the air exhaust system 30 also includes a negative pressure extraction of air out of the sealed and insulated house. Exhaust fan 32 outside 10.
  • the above-mentioned air supply fan is not provided, and only the exhaust fan is provided.
  • the air supply system further includes an air filter (not shown in the figure) for filtering suspended particles, a disinfection device (not shown in the figure), and a dehumidification device (not shown in the figure) .
  • the upper surface of the indoor space of the sealed thermal insulation house 10 is a low thermal conductivity surface 17, and the thermal conductivity of the low thermal conductivity surface 17 is less than or equal to 0.1W/(mK).
  • the upper surface of the indoor space and the upper section of the side surface of the sealed and insulated house body are both low thermal conductivity surfaces.
  • the low thermal conductivity surface 17 is a surface of a low thermal conductivity material coating
  • the low thermal conductivity material coating is polystyrene particle thermal insulation mortar or aerogel thermal insulation material or inorganic fiber spray thermal insulation material.
  • the low thermal conductivity surface may be the surface of the low thermal conductivity material plate body.
  • the low thermal conductivity material board body is cork board, thermal insulation gypsum board, and glass fiber board.
  • the fresh air sending end 21 is arranged at the bottom of the sealed and insulated house, and the dirty gas receiving end 31 is arranged at the top of the sealed and insulated house.
  • the fresh air sending end is set on the ground of the sealed thermal insulation room or on a side corner or the lower end of the wall parallel to the gathering belt, and the dirty gas receiving end It is installed on the top wall or the upper end of the wall of the sealed thermal insulation room.
  • the above-mentioned turbid gas control buildings are ultra-low energy buildings, near-zero energy buildings, zero energy buildings, zero carbon buildings, carbon neutral buildings, and energy-efficient buildings based on passive house technology. one.
  • the fresh air cooling and heating device adopts the cooling function; in winter, in cold or severe cold areas, the fresh air cooling and heating device adopts the heating function; in summer, the cold and heat radiation floor adopts the cooling function; in winter, the cold and hot The radiant floor adopts the heating function.
  • the fresh air outlet in order to avoid the diffusion of hot and dirty gas in the room in a large office/room, choose to arrange the fresh air outlet from the bottom between the personnel gathering belts, and the uniform delivery speed of the fresh air outlet is less than 0.2 m/s of cold air, the fresh air spreads to both sides, preventing the hot and dirty gas from one side from diffusing to the other side, through the floor heat radiation, and the heat provided by the indoor human body heat source, the cold air slowly warms up and rises, together with the heat pollution generated in the room Reach the ceiling top area and follow.
  • the ceiling top area between different human bodies is discharged outdoors, and there is almost no polluting gas in the working area, avoiding indoor cross-infection and improving indoor environmental health.
  • This method can adopt displacement ventilation in indoor winter, summer and plum rainy season (that is, the weather in southern China where dew condensation occurs in the room under natural conditions, also known as "Huangmeitian” or “Back to Nantian”), so that fresh air and indoor hot polluted gas can be fed into the room. It will not mix and form a laminar flow, and the indoor hot dirty gas will rise to the ceiling area and be discharged into the room to avoid indoor cross-infection.
  • the fresh air is cooled (the temperature of the fresh air is less than 3°C lower than the room temperature) and sent in at a low speed from the bottom of the room.
  • the fresh air slowly diffuses at the bottom of the room.
  • the outdoor fresh air is only filtered, and the heat exchanger (the fresh air temperature is less than 3°C lower than the room temperature) is directly fed into the indoor bottom at a low wind speed and slowly, forming a cold wind lake 4 near the bottom, plus the floor heat radiation, the cold wind It is heated up evenly and slowly rises, forming a laminar flow.
  • the hot and turbid air exhaled by people also rises and is discharged outside the room above the room.
  • the purpose of adding thermal insulation coating on the surface of the ceiling is to prevent the hot and dirty gas from cooling down quickly and then mixing with other air after contacting the ceiling, reducing the residence time of the hot and dirty gas in the room and avoiding indoor cross-infection.
  • displacement ventilation the turbid air does not spread laterally in the bottom area of the room, and is directly brought to the upper part of the room by the updraft, creating a comfortable and healthy environment for the work area.
  • a heat source gathering belt is distributed in the sealed thermal insulation room
  • the fresh air sending end 21 is set on the wall of the sealed thermal insulation room
  • the dirty air receives The end 31 is arranged on the wall of the sealed thermal insulation house.
  • the cold air with a velocity of less than 0.2m/s is sent down from the bottom of the indoor side, and through the heat radiation from the bottom and the heat provided by the indoor human body heat source, the cold air slowly warms up and rises, and the indoor generation
  • the hot dirt reaches the ceiling top area together, and then exits the room over the other side.
  • There is almost no polluting gas in the working area avoiding indoor cross-infection and improving the health of the indoor environment, which can effectively reduce the demand for fresh air volume and reduce energy consumption.
  • Embodiment 1 and Embodiment 2 realize indoor air flow control by regulating various factors affecting indoor temperature, wind direction and wind speed, that is, regulating factors affecting air flow, especially the path of turbid air, so as to discharge turbid air in time, thereby avoiding cross infection.
  • the specific technical measures are as follows:
  • the lower part slowly sends cold air (fresh air slightly lower than room temperature) passing through the heat exchanger at a wind speed of no more than 0.2m/s.
  • cold air fresh air slightly lower than room temperature
  • ground radiant heating is used instead of hot air to avoid turbulence and form an indoor "cold wind lake”.
  • ground radiation cooling is used to ensure a comfortable room temperature, and fresh air cooling is used to provide fresh air slightly lower than room temperature, so as to avoid turbulence and form a "cold wind lake”.
  • the return air outlet (air outlet) is as close as possible to the source of the turbid gas, and the shortest path is exhausted, but the short circuit between the air supply end and the air exhaust end should be avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Acoustics & Sound (AREA)
  • Central Air Conditioning (AREA)
  • Building Environments (AREA)

Abstract

本发明公开了一种通过室内浊气管控避免交叉感染的建筑物,包括密封保温房体、送风系统、排风系统、通风热回收系统、环境源热交换系统以及制冷制热系统,密封保温房体内分布有一个或多个人员聚集带,送风系统包括与室内空间连通的新风送出端,排风系统包括与室内空间连通的浊气接收端,制冷制热系统包括对所述密封保温房体内的空气进行制冷制热至设定室内理想温度的室内制冷制热装置和用于将送风系统所送新风进行制冷制热至低于设定室内温度限值范围的新风制冷制热装置。本发明技术中释放的浊气和新风不会交叉或混合,从而可以避免室内交叉感染。

Description

一种通过室内浊气管控避免交叉感染的建筑物 技术领域
本发明属于房屋建筑技术领域,具体涉及一种通过室内浊气管控避免交叉感染的建筑物。
背景技术
关于被动房
瑞典德隆大学的阿达姆森教授和德国的费斯特博士在1988年首先提出了被动房这一概念,是指不借助传统空调系统,依靠自身外围护结构良好的隔热保温性能和气密性来保持舒适的内部热环境的建筑。1991年,德国达姆施塔特建造了第一座“被动式房屋”。而后费斯特博士于1996年在德国达姆施塔特建立了“被动房”研究所(PHI)。在2015年,德国被动研究中心将被动房的认证标准进一步完善,分为“经典标准(Classic)”,“升级标准(Plus)”和“高级标准(Premium)”三个层次。德国最新2020版《建筑能源法》规定,近零能耗建筑有三方面要求:1)建筑的供暖、制冷、通风、热水照明等能耗必须低于该法定义基准建筑能耗75%;2)对建筑实施保温隔热措施以减少供暖、制冷能耗损失;3)一定比例的供暖、制冷能耗必须由可再生能源提供。迄今为止,世界上的被动房已经发展到6万多座,并且形成了迅猛发展之势。从2015年开始,德国的个别城市比如海德堡开始立法推动建筑物;英国法律规定2016年新建建筑开始实施近零能耗建筑;根据欧盟法令,2020年在整个欧盟的新建筑必须是近零能耗的被动式建筑。在中国,于2010年在上海建立了第一座被动房-汉堡之家。在这10年期间,被动式理念和技术在我国已经从探索慢慢走向成熟。各级政府对被动式低能耗建筑的认可度也越来越高。2015年2月27日,河北省住房和城乡建设厅发布《被动式低能耗居住建筑节能设计标准-(DB13(J)/T177-2015)》,是我国第一部被动式低能耗建筑标准。2016年8月5日,住房和城乡建设部批准 《被动式低能耗建筑-严寒和寒冷地区居住建筑-(16J908-8)》为国家建筑标准设计图集,是我国第一部被动式低能耗建筑的国标图集。到2020年,全国共发布被动式低能耗技术导则9项,设计、检测、评价标准14项。
由于被动房外围护结构具有良好的保温隔热性能和气密性,室内空气环境基本上不受外部环境影响,室内空气环境便于管理。传统的被动房新风单元采用上送下排或上送上排方式(参见图1和图2),且通过较高的速度送入新风,促使室内空气混合,从而达到室内温度均匀一致。上送上排和上送下排方式,是基于稀释室内空气为目的的通风方式。通过送入一定量高风速的新风和室内空气混合,形成稀释通风以便调节室内温度和降低污染物浓度。在被动式超低能耗建筑中一般采用新风一体机供暖,室外新鲜空气与室内排出的空气经过高效率的热转换器,有效回收热能提供给新风,冬天再通过预热后送入室内。
稀释通风:用新风稀释全屋空气,排出混合后的空气。只能降低浊气浓度,无法排出全部浊气,因而无法避免交叉感染。
二、关于置换通风
置换通风的原理是基于空气密度差形成的热空气上升和冷空气下降。以小于0.2m/s风速,低于室内空气温度从房间底部送风。置换通风系统应用于欧洲的高热负荷工业建筑已有40多年,1978年德国柏林的一家铸造车间首先采用了置换通风装置。近30年置换通风系统在北欧国家的非工业建筑中也逐渐流行起来,如写字楼、学校、剧院等,例如丹麦哥本哈根大剧院。在我国,清华大学对置换通风与混合通风(稀释通风)在供冷季运行情况进行了研究,得出置换通风更节能;同时对置换通风不同风量下颗粒分布进行了研究,结果表明,风量对不同粒径的颗粒分部影响很大,小粒径颗粒(PM2.5)在房间上部区域浓度比较大,大粒径颗粒(PM10)在房间下部区域浓度比较大。同济大学建立气流实验室对置换通风气流特性进行了试验分析研究,并通过改变围护结构的传热系数,简要分析其对气流组织的影响,提供了评价置换通风方式舒适性的参考数据;同时也开展了置换 通风和冷却顶板复合系统的分析研究。东华大学多次参与法国LET实验室关于置换通风系统干扰因素的实验研究,例如水蒸气对置换通风系统性能的影响。华中科技大学学者应用CFD技术对置换通风系统的参数设计进行了研究,提出置换通风系统各项参数的确定方法,使得设计的系统既能保证室内较高的空气品质,又能防止出现垂直温差过大及吹风感等现象。随着计算流体力学在暖通中的应用,相应开展了大量置换通风流场、温度场、浓度场和含湿量分布的数值模拟的研究,取得了不少重要成果。参见图3,为置换通风时室内烟雾分布图。
置换通风:用新风置换全屋空气,排出屋内原来的空气,即借助室内人体热源的热羽流形成近似活塞流进行室内空气的置换,在冬季,当室内底部送风温度高于上部空气时有可能产生交叉感染。
三、关于地暖
底部辐射供暖是舒适的供暖方式,室内地表温度均匀,不易造成空气紊流,使室内空气洁净。根据《地面辐射供暖技术规程(JGJ142-2004)》的规定:采用地暖地板的表面温度在人员经常停留的区域,宜采用24℃-26℃,温度上限值28℃;人员短期停留的区域,宜采用28℃-26℃,温度上限值32℃;无人员短期停留的区域,宜采用35℃-40℃,温度上限值42℃。供水温度的上限值是60℃,民用建筑的供水温度宜采用35℃-50℃,供回水温差不宜大于10℃。
综上所述,传统被动房的稀释通风和现有新风一体式的置换通风尚存在以下技术问题:(1)上送上排和上送下排通风方式会引起空气紊流,只能稀释室内浊气,无法避免浊气和新风混合后逗留室内;(2)冬季在室内底部送热风,会导致室内空气混合,使污浊空气在室内逗留时间延长,引起交叉污染;(3)若采用高速底部送风方式,会导致室内空气紊流而新风浊气混合;(4)天花板表面材料一般导热系数较高,铝合金面板230W/(m·K),混凝土楼板1.5W/(m·K),石膏板0.3W/(m·K),保温石膏0.07W/(m·K),软木0.05W/(m·K),热浊气遇天花板被冷却而下沉,导致热浊气不能迅速排出,引起交叉污染;(5)对于 开敞式大空间,气流出口和排放口距离太远,中途易发生从一个人吹向下一个人的“人传人”模式,导致交叉污染。(6)传统的置换通风采用下送上排的气流流动方式,且进行低风速送风,有利于室内空气质量置换,但对于大空间存在“人传人”的风险。
另外普通建筑围护结构(参见图4)没有气密性和高度保温要求,且表面材料导热性能较高,故难以满足置换通风的实施。
冬季被动房需要热源时,现有技术通常采用新风冷热一体机送热风,这就无法实现被动房的置换通风。因此,现有技术中还没有采用置换通风方式的被动房。
发明内容
本发明的目的在于提供一种通过室内浊气管控避免交叉感染的建筑物,由新风形成的“冷风湖”,遇到人体后因为人体温度而徐徐上升,新风包裹人体。人吸入新风,呼出浊气因温度相对较高而向上散发并由排风端排出。若排除其它机械或温度干扰,呼出的浊气和新风不会交叉或混合,从而可以避免室内交叉感染。
为实现上述目的,本发明提供以下的技术方案:一种通过室内浊气管控避免交叉感染的建筑物,包括:
密封保温房体,所述密封保温房体内布置有一个或多个人员聚集带;
送风系统,所述送风系统向所述密封保温房体内部输入新鲜空气,所述送风系统包括与所述密封保温房体内部连通的新风送出端;
排风系统,所述排风系统将所述密封保温房体内部含有浊气的空气排出,所述排风系统包括与所述密封保温房体内部连通的浊气接收端;
通风热回收系统,所述通风热回收系统包括与所述送风系统的新风送出端入口连通的送风输送装置和与所述排风系统的浊气接收端出口连通的排风输送装置,所述送风输送装置与所述排风输送装置进行热交换;
环境源热交换系统,所述环境源热交换系统包括与自然环境进行热交换的流体输送装置,所述流体输送装置的入口与封闭内循环流体连通,所述流体输送装置输出的流体与所述密封保温房体内的空气进行热交换和/或所述流体输送装置输出的流体与送入所述密封保温房体内的空气进行热交换;
制冷制热系统;
所述制冷制热系统包括对所述密封保温房体内的空气进行制冷或制热至设定温度的室内制冷制热装置和用于将所述送风系统所送新风进行制冷制热系统至低于所述设定温度的新风制冷制热装置;
所述室内制冷制热装置为设于所述密封保温房体底部的辐射式制冷制热装置;
所述新风送出端所在位置低于所述人员聚集带人体口鼻所在位置,所述浊气接收端所在位置高于所述人员聚集带人体口鼻所在位置,每个所述人员聚集带的一侧下方布置有一个或多个所述新风送出端且相邻两个所述人员聚集带之间布置有一个或多个所述新风送出端,每个人员聚集带的另一侧上方或正上方布置有一个或多个所述浊气接收端;
送入所述密封保温房体内的空气先在下部均匀分布,随后向上流动,遇到热源,受热,缓缓向上流动,并在上部抽出所述密封保温房体。
进一步的,所述密封保温房体内被划分为沿水平方向依次交替布置的第一竖立状柱形空间和第二竖立状柱形空间,所述人员聚集带布置在所述第一竖立状柱形空间中,所述新风送出端布置在所述第二竖立状柱形空间中,所述浊气接收端布置在所述第一竖立状柱形空间中或所述第二竖立状柱形空间中。
进一步的,所述辐射式制冷制热装置为冷热辐射地板。
进一步的,所述设定温度为室内温度,所述设定温度为20℃-26℃,所述新风送出端送出的新风温度低于所述设定温度不超过3℃。
进一步的,所述新风送出端为纤维布风管。
进一步的,所述送风系统还包括用于将空气正压送入所述密封保温房体内的送风风机,所述排风系统还包括将空气负压抽出所述密封保温房体外的排风风机。
进一步的,所述流体输送装置为地源热泵或水源热泵或气源热泵。
进一步的,所述送风系统还包括用于过滤悬浮微粒的空气过滤器、用于杀菌消毒的消毒装置以及用于除去湿气的除湿装置。
进一步的,所述密封保温房体的室内空间上表面为低导热表面,或者所述密封保温房体的室内空间上表面和侧表面上段均为低导热表面,所述低导热表面的导热系数小于或等于0.1W/(mK)。
进一步的,所述密封保温房体中分布有一个所述人员聚集带时,所述新风送出端设于所述密封保温房体的底部或墙角或墙壁下端,所述浊气接收端设于所述密封保温房体的顶部或墙壁上端,所述密封保温房体中分布有多个所述人员聚集带时,所述新风送出端设于所述密封保温房体的底部,所述浊气接收端设于所述密封保温房体的顶部。
进一步的,所述浊气管控建筑物为基于被动房技术的超低能耗建筑、近零能耗建筑、零能耗建筑、零碳建筑、碳中和建筑、产能房中的一者。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:
1)本发明公开的通过室内浊气管控避免交叉感染的建筑物,在建筑物技术体系中引入“冷风湖”技术方法,无论夏季还是冬季,均送冷风。送风温度略低于室内气温约1至3度。夏季对新风预冷,下送上排,达到置换通风,从而降低或避免室内交叉污染的目标,和混合通风技术方案相比,可提高新风利用率,降低新风需求量,从而可降低能耗,对于春秋季室外气温温和的季节,建议采用开窗自然通风,是避免室内交叉污染的最佳方法,冬季在室内依然下送冷风(略低 于室内温度),在被动房中引入地暖加热,使冷新风均匀受热上升,形成层流,浊气由上部排出,达到冬季置换通风,从而降低或避免室内交叉感染的目标;本发明管控浊气即用新风替换浊气,侧重管控浊气流向、路径并及时排出,无需同时置换全屋空气;在浊气排出之前,要避免交叉感染。管控浊气是置换通风的升级版,相比置换通风,本技术方案更注重浊气气流的管控和及时排出,缩短浊气在室内停留时间(避免浊气自锁,控制送排风“新风-人(浊气)-排风”路径),避免浊气从人到人的流动(送排风距离较远,途径不同人员),大空间网格化新风技术,管控并实现气流路径“新风-人体-排风”,避免“新风-人体-人体-排风”,从而避免交叉感染;
2)本发明公开的在通过室内浊气管控避免交叉感染的建筑物,对开敞式大空间,采用网格化分布式置换通风,对不同的区域和空间范围,设置下送上排通风管道,控制新风送出端和排风系统的进风端之间的距离,使人在吸入全新风的同时,浊气以最短路径被排出,避免浊气中途经过周边其他的人,或中途发生新风和浊气混合,从而避免交叉污染;
3)本发明公开的通过室内浊气管控避免交叉感染的建筑物,在天花板表面采用导热性能较低的涂料或表面材料,阻止热浊气被迅速冷却而下沉,从而使热浊气停留在天花板附近,直至排出室外,由此实现真正的置换通风,从而避免室内交叉感染;
4)本发明公开的通过室内浊气管控避免交叉感染的建筑物,冬夏季需要补热或补冷时,均用地板辐射补热或补冷的技术体系,通过大面积均匀辐射,不会干扰空气流向;
5)本发明公开的通过室内浊气管控避免交叉感染的建筑物,在被动房的新风系统中引入纤维织物风管(索斯系统),作为下送风管槽,达到均匀慢速送风,避免紊流。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为现有技术中被动房的上送上排送排气示意图;
图2为现有技术中被动房的上送下排送排气示意图;
图3为现有技术中置换通风时室内烟雾分布示意图;
图4为现有技术非密封保温房体;
图5为本发明实施例一中建筑物的组成方框图;
图6为本发明实施例一中建筑物的气流流动示意图;
图7为本发明实施例二中建筑物的气流流动示意图。
其中,10、房体;11、地面;12、地面保温层;13、墙体;14、墙体保温层;15、屋顶;16、屋顶保温层;17、低导热表面;20、送风系统;21、新风送出端;22、送风风机;30、排风系统;31、浊气接收端;32、排风风机;40、通风热回收系统;41、送风输送装置;42、排风输送装置;50、环境源热交换系统;51、流体输送装置;52、封闭内循环流体;61、室内制冷制热装置;62、新风制冷制热装置。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应 当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。在本公开中,术语如“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“侧”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,只是为了便于叙述本公开各部件或元件结构关系而确定的关系词,并非特指本公开中任一部件或元件,不能理解为对本公开的限制。本公开中,术语如“固接”、“相连”、“连接”等应做广义理解,表示可以是固定连接,也可以是一体地连接或可拆卸连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的相关科研或技术人员,可以根据具体情况确定上述术语在本公开中的具体含义,不能理解为对本公开的限制。
以下为用于说明本发明的一较佳实施例,但不用来限制本发明的范围。
实施例一
参见图5至图6,如其中的图例所示一种通过室内浊气管控避免交叉感染的建筑物,包括:
密封保温房体10,密封保温房体10内布置有一个或多个人员聚集带;
送风系统20,送风系统20向密封保温房体10内部输入新鲜空气,送风系统20包括与密封保温房体10内部连通的新风送出端21;
排风系统30,排风系统30将密封保温房体10内部含有浊气的空气排出,排风系统30包括与密封保温房体10内部连通的浊气接收端31;
通风热回收系统40,通风热回收系统40包括与送风系统20的新风送出端入口连通的送风输送装置41和与排风系统30的浊气接收端出口连通的排风输送装置42,送风输送装置41与排风输送装置42进行热交换;上述送风输送装置41和上述排风输送装置42为管道;
环境源热交换系统50,环境源热交换系统包括与自然环境进行热交换的流体 输送装置51,上述流体输送装置51的入口与封闭内循环流体52连通,流体输送装置51输出的流体与密封保温房体10内的空气进行热交换和/或流体输送装置51输出的流体与送入密封保温房体10内的空气进行热交换,上述流体输送装置51为地源热泵或水源热泵或空气源热泵;
制冷制热系统;
其中:
上述制冷制热系统包括对密封保温房体10内的空气进行制冷或制热至设定温度的制冷制热装置61和用于将送风系统20所送新风制冷或制热至低于设定温度的新风制冷制热装置62;
室内制冷制热装置61为设于密封保温房体10底部的辐射式制冷制热装置;
新风送出端21所在位置低于人员聚集带人体口鼻所在位置,浊气接收端31所在位置高于人员聚集带人体口鼻所在位置;
每个人员聚集带的一侧下方布置有一个或多个新风送出端21且相邻两个人员聚集带之间布置有一个或多个新风送出端21,每个人员聚集带的另一侧上方或正上方布置有一个或多个浊气接收端31;
送入密封保温房体10内的空气先在下部均匀分布,随后向上流动,遇到热源,受热,缓缓向上流动,并在上部抽出密封保温房体10。
本实施例中优选的实施方式,密封保温房体10内被划分为沿水平方向依次交替布置的第一竖立状柱形空间和第二竖立状柱形空间,人员聚集带布置在第一竖立状柱形空间中,新风送出端布置21在第二竖立状柱形空间中,浊气接收端31布置在第一竖立状柱形空间中或第二竖立状柱形空间中。
本实施例中优选的实施方式,室内制冷制热装置61为冷热辐射地板。在其他实施例中还可以是:辐射式制冷制热装置为电热毯。流体输送装置51的出口 与冷热辐射地板的盘管接通。
本实施例中优选的实施方式,上述设定温度为室内温度,上述设定温度为20℃-26℃,新风送出端21送出的新风温度低于设定温度不超过3℃。在其他实施例中还可以是:设定温度为其他温度,只要温度适宜即可。
本实施例中优选的实施方式,新风送出端21为纤维布风管,纤维布风管明装或暗装于密封保温房体内或暗装于条形送风槽中。在其他实施例中还可以是:新风送出端采用散流器等。
本实施例中优选的实施方式,送风系统20还包括用于将空气正压送入密封保温房体10内的送风风机22,排风系统30还包括将空气负压抽出密封保温房体10外的排风风机32。在其他实施例中还可以是:不设置上述送风风机,仅设置排风风机。
本实施例中优选的实施方式,送风系统还包括用于过滤悬浮微粒的空气过滤器(图中未示出)、消毒装置(图中未示出)、除湿装置(图中未示出)。
本实施例中优选的实施方式,密封保温房体10的室内空间上表面为低导热表面17,低导热表面17的导热系数小于或等于0.1W/(mK)。在其他实施例中还可以是:密封保温房体的室内空间上表面和侧表面上段均为低导热表面。
本实施例中优选的实施方式,低导热表面17为低导热材质涂层的表面,低导热材质涂层为聚苯颗粒保温砂浆或气凝胶保温材料或无机纤维喷涂保温材料。在其他实施例中还可以是:低导热表面为低导热材质板体的表面。所述低导热材质板体为软木板、保温石膏板、玻璃纤维板。
本实施例中优选的实施方式,密封保温房体中分布有多个人员聚集带时,新风送出端21设于密封保温房体的底部,浊气接收端31设于密封保温房体的顶部。在其他实施例中还可以是:密封保温房体中分布有一列人员聚集带时,新风送出端设于密封保温房体的地面或与聚集带平行的一侧墙角或墙壁下端,浊气接收端 设于密封保温房体的顶壁或墙壁上端。
本实施例中优选的实施方式,上述浊气管控建筑物为基于被动房技术的超低能耗建筑、近零能耗建筑、零能耗建筑、零碳建筑、碳中和建筑、产能房中的一者。
上文中,夏季时,新风制冷制热装置采用制冷功能,冬季时,在寒冷或严寒地区,新风制冷制热装置采用制热功能,夏季时,冷热辐射地板采用制冷功能,冬季时,冷热辐射地板采用制热功能。
本实施例中优选的实施方式中,在体积大的办公室/房间,为了避免在热污浊气体在室内扩散,选择从人员聚集带之间的底部布置新风送出端,新风送出端均匀送出速度小于0.2m/s的冷风,新风向两边扩散,不让一侧的热污浊气体扩散到另一侧,经地板热辐射,以及室内人体热源提供的热量,冷风缓慢升温上升,和室内产生的热污浊一起到达天花板顶部区域,随之。在不同人体之间的天花板顶部区域排出室外,在工作区几乎无污染气体,避免室内交叉感染,提高室内环境健康。同时,可提高新风利用率,降低新风需求量,从而可降低能耗。本方法可以在室内冬夏季及梅雨季节(即中国南方地区自然状态下室内会结露的天气,亦称“黄梅天”或“回南天”)采用置换通风,使送入新风与室内热污浊气体不会混合,形成层流,室内热污浊气体上升至天花板区域,排出室内,避免室内交叉感染。在夏季供冷期,新风制冷(新风温度低于室温3℃以内)后从室内底部以低速送入,新鲜空气慢慢在室内底部弥散开,遇到室内人体热源,受热,缓缓上升。在冬季供暖期,室外新风仅经过过滤,和热交换器(新风温度低于室温3℃以内)直接在室内底部低风速徐徐送入,在底部附近形成冷风湖4,加上地板热辐射,冷风均匀受热缓慢上升,形成层流。人呼出的热浊气也随着上升,在室内上方排出室外。天花板表面加保温涂层的目的是,在热浊气接触天花板后,不会迅速冷却再下沉与其他空气混合,减少热污浊气体在室内的滞留时间,避免室内交叉感染。运用置换通风,浊气在房间底部区域无横向扩散,被上升气流直接带到房间上部非人员停留区,为工作区创造了舒适又健康的环境。对于春秋季室外 气温温和的季节,建议采用开窗自然通风,是避免室内交叉感染的最佳方法。
实施例二
参见图7,如其中的图例所示,其余与实施例一相同,不同之处在于,密封保温房体内分布有一个热源聚集带,新风送出端21设于密封保温房体的墙壁,浊气接收端31设于密封保温房体的墙壁上。
本实施例中,在体积小的办公室/房间,从室内一侧底部下送速度小于0.2m/s的冷风,经底部热辐射,以及室内人体热源提供的热量,冷风缓慢升温上升,和室内产生的热污浊一起到达天花板顶部区域,随之在另一侧上方排出室内。在工作区几乎无污染气体,避免室内交叉感染提高室内环境健康,可有效减少新风量的需求,减少能耗。
本实施例一和实施例二中的建筑物通过调控影响室内气温、风向和风速等各种因素,即调控影响气流尤其是浊气路径的因素,实现室内气流管控,及时排出浊气,从而避免交叉感染。具体技术措施如下:
1.排除外部环境对室内环境的影响和干扰,采用符合被动房技术要求的高气密高保温以及机械通风(新风)系统。普通建筑容易受外部环境影响:
①气密性不好的建筑会产生渗漏风,从而导致室内空气混合;
②未使用保温隔热效果好的外门窗,门窗表面温度低导致附近空气向下流动,室内空气易循环流动;
③没有机械通风时,开窗会对气流和温度有所影响;
④房间整体温差对气流所带来的影响。
2.避免天花板表面和上部墙面散热导致降低邻近浊气气温而使浊气下沉,避免浊气在中间层自锁而无法排出,采用低导热性表面材料或涂料。
3.下部以不超过0.2m/s的风速徐徐送经过热交换器的冷风(略低于室温的新风),冬季用地面辐射采暖代替送热风,避免紊流,形成室内“冷风湖”。夏季,用地面辐射制冷保证舒适室温,用新风制冷提供略低于室温的新风,从而避免紊流,形成“冷风湖”。
4.遵循冷空气下沉、热空气上升的自然规律,采用下送冷风(新风)上排浊气。
①在需要避免交叉感染的工况下实现只对新风制冷,不使用循环风;
②在需要避免交叉感染的工况下,四季维持略低于室温且可接受的温度,温差不超过3℃。
5.冬季采用地板大面积低温采暖,避免集中热源(如暖气片)或不均衡采暖(如一侧墙面采暖)干扰室内气流。同时可避免室内垂直温度梯度过大;
6.对开敞式大空间实施网格化分布式管控气流,遵循“新风-人体-浊气-排出”的气流路径,避免“人体-浊气-人体”的气流走向:
①回风口(排风口)尽可能靠近浊气源头,最短路径排走,但要避免送风端和排风端短路。
②人流密集的正上方建立回风口,气流走向尽可能垂直向上(回风和新风形成一个垂直走向,形成垂直气流管控)总之,原则一:避免浊气“人传人”,原则二“尽快排出”浊气。
以上为对本发明实施例的描述,通过对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种通过室内浊气管控避免交叉感染的建筑物,包括:
    密封保温房体,所述密封保温房体内布置有一个或多个人员聚集带;
    送风系统,所述送风系统向所述密封保温房体内部输入新鲜空气,所述送风系统包括与所述密封保温房体内部连通的新风送出端;
    排风系统,所述排风系统将所述密封保温房体内部含有浊气的空气排出,所述排风系统包括与所述密封保温房体内部连通的浊气接收端;
    通风热回收系统,所述通风热回收系统包括与所述送风系统的新风送出端入口连通的送风输送装置和与所述排风系统的浊气接收端出口连通的排风输送装置,所述送风输送装置与所述排风输送装置进行热交换;
    环境源热交换系统,所述环境源热交换系统包括与自然环境进行热交换的流体输送装置,所述流体输送装置的入口与封闭内循环流体连通,所述流体输送装置输出的流体与所述密封保温房体内的空气进行热交换和/或所述流体输送装置输出的流体与送入所述密封保温房体内的空气进行热交换;
    制冷制热系统;
    其特征在于:
    所述制冷制热系统包括对所述密封保温房体内的空气进行制冷或制热至设定温度的室内制冷制热装置和用于将所述送风系统所送新风进行制冷制热至低于所述设定温度的新风制冷制热装置;
    所述室内制冷制热装置为设于所述密封保温房体底部的辐射式制冷制热装置;
    所述新风送出端所在位置低于所述人员聚集带人体口鼻所在位置,所述浊气接收端所在位置高于所述人员聚集带人体口鼻所在位置,每个所述人员聚集带的 一侧下方布置有一个或多个所述新风送出端且相邻两个所述人员聚集带之间布置有一个或多个所述新风送出端,每个人员聚集带的另一侧上方或正上方布置有一个或多个所述浊气接收端;
    送入所述密封保温房体内的空气先在下部均匀分布,随后向上流动,遇到热源,受热,缓缓向上流动,并在上部抽出所述密封保温房体。
  2. 如权利要求1所述的通过室内浊气管控避免交叉感染的建筑物,其特征在于,所述密封保温房体内被划分为沿水平方向依次交替布置的第一竖立状柱形空间和第二竖立状柱形空间,所述人员聚集带布置在所述第一竖立状柱形空间中,所述新风送出端布置在所述第二竖立状柱形空间中,所述浊气接收端布置在所述第一竖立状柱形空间中或所述第二竖立状柱形空间中。
  3. 如权利要求1所述的通过室内浊气管控避免交叉感染的建筑物,其特征在于,所述辐射式制冷制热装置为冷热辐射地板。
  4. 如权利要求1所述的通过室内浊气管控避免交叉感染的建筑物,其特征在于,所述设定温度为室内温度,所述设定温度为20℃-26℃,所述新风送出端送出的新风温度低于所述设定温度不超过3℃。
  5. 如权利要求1所述的通过室内浊气管控避免交叉感染的建筑物,其特征在于,所述新风送出端为纤维布风管。
  6. 如权利要求1所述的通过室内浊气管控避免交叉感染的建筑物,其特征在于,所述送风系统还包括用于将空气正压送入所述密封保温房体内的送风风机,所述排风系统还包括将空气负压抽出所述密封保温房体外的排风风机。
  7. 如权利要求1所述的通过室内浊气管控避免交叉感染的建筑物,其特征在于,所述送风系统还包括用于过滤悬浮微粒的空气过滤器、用于杀菌消毒的消毒装置以及用于除去湿气的除湿装置。
  8. 如权利要求1所述的通过室内浊气管控避免交叉感染的建筑物,其特征 在于,所述密封保温房体的室内空间上表面为低导热表面,或者所述密封保温房体的室内空间上表面和侧表面上段均为低导热表面,所述低导热表面的导热系数小于或等于0.1W/(mK)。
  9. 如权利要求1所述的通过室内浊气管控避免交叉感染的建筑物,其特征在于,所述密封保温房体中分布有一个所述人员聚集带时,所述新风送出端设于所述密封保温房体的底部或墙角或墙壁下端,所述浊气接收端设于所述密封保温房体的顶部或墙壁上端,所述密封保温房体中分布有多个所述人员聚集带时,所述新风送出端设于所述密封保温房体的底部,所述浊气接收端设于所述密封保温房体的顶部。
  10. 如权利要求1所述的通过室内浊气管控避免交叉感染的建筑物,其特征在于,所述浊气管控建筑物为基于被动房技术的超低能耗建筑、近零能耗建筑、零能耗建筑、零碳建筑、碳中和建筑、产能房中的一者。
PCT/CN2021/098821 2021-02-08 2021-06-08 一种通过室内浊气管控避免交叉感染的建筑物 WO2022166057A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110181851.0A CN112814420A (zh) 2021-02-08 2021-02-08 一种通过室内浊气管控避免交叉感染的建筑物
CN202110181851.0 2021-02-08

Publications (1)

Publication Number Publication Date
WO2022166057A1 true WO2022166057A1 (zh) 2022-08-11

Family

ID=75864976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098821 WO2022166057A1 (zh) 2021-02-08 2021-06-08 一种通过室内浊气管控避免交叉感染的建筑物

Country Status (2)

Country Link
CN (1) CN112814420A (zh)
WO (1) WO2022166057A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112781146A (zh) * 2021-02-08 2021-05-11 苏州大学 一种柔和送风的置换通风式建筑物
CN112781147A (zh) * 2021-02-08 2021-05-11 苏州大学 一种置换通风式被动房
CN112814420A (zh) * 2021-02-08 2021-05-18 苏州大学 一种通过室内浊气管控避免交叉感染的建筑物
CN112814145A (zh) * 2021-02-08 2021-05-18 苏州大学 避免浊气自锁于室内的置换通风式建筑物及室内表面材料
CN113669824A (zh) * 2021-09-23 2021-11-19 苏州大学 一种被动房中的基于防疫功能的智能式室内通风系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19826625A1 (de) * 1998-06-17 1999-12-23 Lieselotte Glas Niedrigenergiegebäude
CN204329209U (zh) * 2014-08-04 2015-05-13 冯刚克 保温模块辐射供暖供冷地面及通风空调系统
CN208473363U (zh) * 2018-06-20 2019-02-05 辽宁皓工市政工程有限公司 一种环保节能建筑
CN209310196U (zh) * 2018-12-25 2019-08-27 苏州恩基热能科技有限公司 热泵厂房结构
CN209469043U (zh) * 2018-11-29 2019-10-08 姚卫国 一种近零能耗的装配式轻钢被动房
CN110529963A (zh) * 2019-09-06 2019-12-03 江苏三一环境科技有限公司 一种通风除尘净化系统
CN112814420A (zh) * 2021-02-08 2021-05-18 苏州大学 一种通过室内浊气管控避免交叉感染的建筑物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19826625A1 (de) * 1998-06-17 1999-12-23 Lieselotte Glas Niedrigenergiegebäude
CN204329209U (zh) * 2014-08-04 2015-05-13 冯刚克 保温模块辐射供暖供冷地面及通风空调系统
CN208473363U (zh) * 2018-06-20 2019-02-05 辽宁皓工市政工程有限公司 一种环保节能建筑
CN209469043U (zh) * 2018-11-29 2019-10-08 姚卫国 一种近零能耗的装配式轻钢被动房
CN209310196U (zh) * 2018-12-25 2019-08-27 苏州恩基热能科技有限公司 热泵厂房结构
CN110529963A (zh) * 2019-09-06 2019-12-03 江苏三一环境科技有限公司 一种通风除尘净化系统
CN112814420A (zh) * 2021-02-08 2021-05-18 苏州大学 一种通过室内浊气管控避免交叉感染的建筑物

Also Published As

Publication number Publication date
CN112814420A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2022166057A1 (zh) 一种通过室内浊气管控避免交叉感染的建筑物
WO2022166052A1 (zh) 一种网格化送风的置换通风式建筑物
WO2022166053A1 (zh) 一种柔和送风的置换通风式建筑物
WO2022166055A1 (zh) 避免浊气自锁于室内的置换通风式建筑物及室内表面材料
WO2022166056A1 (zh) 一种辐射式制冷制热的被动房
WO2022166054A1 (zh) 一种置换通风式被动房
CN105780943B (zh) 一种多层建筑辐射换热空调墙体
JP2009513925A (ja) エネルギー回収/湿度制御システム
CN106524317A (zh) 一种分质热回收冷剂过冷再热空调器及其空气处理方法
CN103940010A (zh) 一种用于室内通风和净化的空气净化系统
CN206572714U (zh) 一种多路智能室内空气调控装置
CN102425820A (zh) 一种可以实现夜间通风的分体式空调器
CN214307443U (zh) 一种辐射式制冷制热的被动房
CN104534578B (zh) 一种单冷水机组诱导送风与辐射一体化空调装置
CN205957377U (zh) 洁净手术室用温湿度独立控制的恒温恒湿空调系统
CN214307435U (zh) 一种柔和送风的置换通风式建筑物
CN110260434A (zh) 一种基于太阳能与余热回收的屋顶式空调系统
CN202066128U (zh) Jzk型直流式热管热回收空调机组
CN109974261A (zh) 一种空气换热器芯体
CN214891647U (zh) 一种置换通风式被动房
Li Numerical simulation and analysis for indoor air quality in different ventilation
CN106196378A (zh) 洁净手术室用温湿度独立控制的恒温恒湿空调系统
CN204629868U (zh) 辐射制冷/热和新风制冷/热功能一体化换热装置
CN214498505U (zh) 一种通过室内浊气管控避免交叉感染的建筑物
CN204254806U (zh) 一种利用太阳能的蒸发冷却空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924064

Country of ref document: EP

Kind code of ref document: A1