WO2022164097A1 - 멀티레벨 컨버터 방식의 statcom 시스템 및 동작 방법 - Google Patents
멀티레벨 컨버터 방식의 statcom 시스템 및 동작 방법 Download PDFInfo
- Publication number
- WO2022164097A1 WO2022164097A1 PCT/KR2022/000728 KR2022000728W WO2022164097A1 WO 2022164097 A1 WO2022164097 A1 WO 2022164097A1 KR 2022000728 W KR2022000728 W KR 2022000728W WO 2022164097 A1 WO2022164097 A1 WO 2022164097A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sub
- controller
- modules
- module
- vcu
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 13
- 230000004044 response Effects 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 15
- 230000006870 function Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
- H02J3/1821—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
- H02J3/1835—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
- H02J3/1842—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
- H02J3/1857—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters wherein such bridge converter is a multilevel converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
- H02J3/1821—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
- H02J3/1835—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
- H02J3/1842—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/4835—Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/10—Flexible AC transmission systems [FACTS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
Definitions
- the present disclosure relates to an MMC type STATCOM system and an operating method thereof.
- a flexible transmission system or a new power transmission system is an operating technology that increases the flexibility of the power system by introducing power electronic control technology to the AC power system.
- the flexible power transmission system may control transmission power by using a power semiconductor switching device.
- Such a flexible transmission system can maximize the facility utilization rate of the transmission line, increase the transmission capacity, and minimize voltage fluctuations.
- STATCOM Static Synchronous Compensator
- MMC forms a step-shaped sinusoidal voltage by connecting modularized half-bridge or full-bridge inverters in series. Therefore, large-capacity power transmission is possible by adjusting the number of serially connected sub-modules.
- an optical cable must be connected from the VBE (Valve Base Electronic) corresponding to the upper controller to the valve composed of N sub-modules connected in series.
- the purpose of the present disclosure is to simplify the structure of the existing control system as an intermediate controller linking with the sub-module controller (SMI) of the valve of the MMC-STATCOM system, and add/strengthen the function of the converter power converter is to implement
- SI sub-module controller
- a system includes a multi-level converter including a plurality of valve sections including a plurality of sub-modules, a plurality of VCU controllers connected to each of the plurality of valve sections, and a host controller connected to the plurality of VCU controllers
- the host controller may receive status information of each of a plurality of sub-modules from the VCU controller, generate specific sub-module control command information, and transmit it to the VCU controller.
- a space may be formed between each of the plurality of valve sections and the ground, and the VCU controller may be disposed in the space.
- the VCU controller may also include being disposed on one side of the valve section.
- the state/data/information before and after the accident can be stored in the VCU controller and the data can be checked from the outside. It is possible to enable analysis of the cause of the event situation.
- a compact type system configuration can be implemented by installing the VCU controller in the empty space of the Valve.
- FIG. 1 is a diagram illustrating a configuration of an MMC-type voltage-type high-voltage DC power transmission system according to a conventional embodiment.
- FIG. 2 is a diagram showing the configuration of a STATCOM of the conventional MMC method.
- FIG. 3 is a diagram illustrating a detailed structure of a sub-module included in a modular multi-level converter.
- FIG. 4 is a diagram illustrating a STATCOM configuration including a VCU controller according to an embodiment of the present disclosure.
- FIG. 5 is a diagram illustrating a system block diagram including a VCU controller according to an embodiment of the present disclosure.
- FIG. 6 is a block diagram illustrating a configuration of a VCU controller according to an embodiment of the present disclosure.
- FIG. 7 is a view showing a compact STATCOM system equipped with a VCU controller according to an embodiment of the present disclosure.
- FIG. 1 is a diagram illustrating a configuration of an MMC-type voltage-type high-voltage DC power transmission system according to a conventional embodiment.
- Figure 2 is a diagram showing the configuration of the conventional MMC method STATCOM.
- the STATCOM 100 of the MMC method may be a reactive power compensation device that converts a current using a modular multi-level converter (MMC).
- MMC modular multi-level converter
- the STATCOM 100 of the MMC method consists of multiple (tens to hundreds) sub-modules, collects the status information of the sub-modules within a short control cycle (eg, 100us to 200us), and turns on/off in the next control cycle. It is possible to determine which submodules should be turned off.
- the MMC type STATCOM 100 may include a modular multi-level converter 110 and a host controller 120 .
- the modular multi-level converter 110 may convert direct current into alternating current or convert alternating current into direct current by switching the plurality of sub-modules 115 . To this end, the modular multi-level converter 110 may control the timing of turn-on and turn-off of the sub-module 115 .
- Conventional modular multi-level converter 110 includes a plurality of sub-modules 115 and SMI (Sub-Module Interface, 114) that is included in each sub-module to transmit a control command and a Valve Base included in the upper controller 120 Electronics (VBE, 113) and the like.
- SMI Sub-Module Interface
- VBE Valve Base
- a plurality of sub-modules 115 may be connected in series.
- a plurality of sub-modules connected to an anode or a cathode of any one phase constituting a 3-phase may constitute one arm 130 .
- the arm 130 may be referred to as a valve according to an embodiment.
- the modular multi-level converter 110 is a three-phase MMC, and may be composed of six arms. Specifically, it may be composed of six arms including a positive electrode (+) and a negative electrode (-) for each of the three phases of the A phase, B phase, and C phase.
- the modular multi-level converter 110 includes a first arm composed of a plurality of sub-modules 115 for a phase A positive electrode, and a first arm composed of a plurality of sub-modules 115 for a phase A negative electrode. 2 arm, a third arm composed of a plurality of sub-modules 115 for phase B anode, a fourth arm composed of a plurality of sub-modules 115 for phase B cathode, a plurality of sub-modules for phase C anode It may be composed of a fifth arm composed of
- a plurality of sub-modules for one phase may constitute a leg.
- a plurality of sub-modules for anode and cathode included in one phase may constitute a leg.
- the modular multi-level converter 110 includes a phase A leg consisting of a plurality of sub-modules for phase A, a phase B leg consisting of a plurality of sub-modules for phase B, and a plurality of sub-modules for phase C. It may include a C-phase leg configured as a module.
- Each of the arms and legs composed of the plurality of sub-modules 115 may be connected to three phases of the power system, that is, the A phase, the B phase, and the C phase, respectively.
- the plurality of sub-modules 115 may constitute an anode arm (not shown) and a cathode arm (not shown) according to polarities.
- the VBE may receive a command for controlling a sub-module from the host controller 120 and transmit it to the sub-module, and may be a single controller connected to a plurality of sub-modules, respectively.
- the host controller 120 may control the overall operation of the MMC-type voltage-type high-voltage DC power transmission system 100 .
- the upper controller 120 may be a Control and Protection (C&P) system that performs an operation for controlling and protecting the HVDC system.
- C&P Control and Protection
- the figure shows the VBE and the upper controller 120 separately, the upper controller 120 may be a concept including the VBE.
- the host controller 120 may be connected to each of the plurality of sub-modules.
- FIG. 3 is a diagram illustrating a detailed structure of a sub-module included in a modular multi-level converter.
- the sub-module 115 included in the modular multi-level converter 110 may include a capacitor for storing power energy, a power semiconductor device, a switching device, and a protection circuit.
- the sub-module 115 is configured with one capacitor 101 and four IGBT elements 102 . And a plurality of sub-modules 115 are connected in series to constitute one phase. The plurality of sub-modules 115 may receive ON/OFF control commands from the VBE or other upper controller 120 to control the IGBT.
- the size of the capacitor may be set in proportion to the size of the modular multilevel converter 110 .
- the capacitance of the capacitor may be proportional to the square of the voltage.
- an appropriate operating voltage of the sub-module 115 may be set in consideration of this.
- the protection switch 103 is a switch for protecting the sub-module 115 .
- the protection switch may be implemented as a By-Pass switch.
- the modular multi-level converter 110 is designed in consideration of sufficient redundancy in order to prevent the system from being stopped due to a failure occurring in one sub-module 115 .
- bypass switch 103 may bypass the faulty sub-module 115 and operate the redundant sub-module 115 .
- An n-th sub-module (Module n) among a plurality of sub-modules according to an embodiment of the present disclosure is serially connected to an n-1 th sub-module (Module n-1) and an n+1-th sub-module (Module n+1) do.
- the current input from the n-1th sub-module (Module n-1) flows to the n+1-th sub-module (Module n+1) through the n-th sub-module (Module n).
- a modular multi-level converter system may include the following configuration.
- FIG. 4 is a diagram illustrating a system according to an embodiment of the present disclosure
- FIG. 5 is a schematic block diagram of a system according to an embodiment of the present disclosure.
- a plurality of sub-modules 115 may be connected in series.
- a plurality of sub-modules 115 connected to any one phase constituting a 3-phase may constitute one cluster.
- the cluster may be referred to as a valve section according to an embodiment.
- the modular multi-level converter 110 is a three-phase MMC, and may be composed of three clusters. Specifically, for each of the three phases of phase A, phase B, and phase C, it may be composed of a phase A cluster, a phase B cluster, and a phase C cluster.
- a cluster including a plurality of sub-modules 115 may be connected to three phases of the power system, that is, phase A, phase B, and phase C, respectively.
- a sub module interface (hereinafter referred to as SMI) is connected to the plurality of sub modules 115 and receives status information of the sub modules from the sub modules.
- SMI sub module interface
- the valve connection unit (VCU) controller 113 may receive a command to control the sub-module 115 from the upper-level controller 120 and transmit it to the sub-module 115 or the SMI 114 .
- the host controller 120 may control the overall operation of the STATCOM 100 of the MMC method.
- the upper controller 120 may be a Control and Protection (C&P) system that performs an operation for controlling and protecting the STATCOM.
- C&P Control and Protection
- the modular multi-level converter 110 includes a plurality of valve sections including a plurality of sub-modules and a plurality of valve sections included in the plurality of valve sections. It may include a VCU controller 113 and an upper controller 120 connected to each of the sub-modules.
- each of the plurality of valve sections 111 includes a plurality of sub-modules, and the VCU controller 113 is included in the sub-modules and is connected to a Sub-Module Interface (SMI) 114 that transmits control commands. It is possible.
- SI Sub-Module Interface
- each of the plurality of valve sections may be connected to the VCU controller 113 , and one VCU controller may be provided per unit valve section.
- the plurality of valve sections may include a plurality of sub-modules, and each of the plurality of sub-modules included in the valve section may be connected in series.
- each of the plurality of sub-modules and the VCU controller 113 may be connected.
- the overall control of the MMC-STATCOM system is overseen by the upper controller 120 that is the C&P level, and the valve control command value and valve information are for each phase instead of the existing VBE. It communicates with the host controller through the provided VCU (Valve Connection Unit), and the multi-level converter can be operated through SMI (Sub-Module Interface), which is the controller of the sub-module.
- VCU Value Connection Unit
- SMI Sub-Module Interface
- VCU controller A detailed block control diagram of the VCU controller will be described with reference to FIG. 6 .
- FIG. 6 is a control block diagram of a VCU controller according to an embodiment of the present disclosure.
- the VCU controller 200 may include at least some or all of the user input interface 240 , the memory 250 , the communication unit 260 , the processor 270 , and the display 280 .
- the communication unit 260 of the VCU controller 200 performs data processing through communication with a plurality of sub-module units (valve section) and the upper controller and communication for transmitting a control command value to the sub-module.
- the processor 270 of the VCU controller may control the overall operation of the VCU controller.
- the processor 270 of the VCU controller may collect status information, sensing information, and data processing of each sub-module of the valve section connected to the VCU controller.
- the information of the sub-module included in the valve section can be transmitted to the upper controller.
- the processor 270 of the VCU controller may transmit a program required for software upgrade of the sub-modules included in the valve section to the corresponding sub-module.
- the processor 270 of the VCU controller may store the state data of each sub-module when an event of the sub-module included in the valve section occurs through the memory 250 .
- VCU Value Connection Unit
- the VCU controller is provided for each phase, only the necessary data after data processing of the unit sub-module is C&P data communication. As the data to be calculated/processed is reduced compared to the VBE in the existing system, the data processing load can be reduced.
- the processor of the VCU controller can perform a quick protection function through the collection/processing/judgment of the status information and sensing information of the sub-module, it will be possible to strengthen the protection function of the sub-module and monitor through the display.
- the processor of the VCU controller will be able to store state data when a valve event occurs through memory, and data can be stored by implementing an interface through external communication.
- FIG. 7 is a diagram illustrating an arrangement of a VCU controller in a system according to an embodiment of the present disclosure.
- a space may be formed between each of the multi-level converters and the ground.
- the space may be a space formed to prevent grounding and short circuit between the ground and the multi-level converter.
- the VCU controller may be disposed in a space formed between a valve section included in the multi-level converter and the ground.
- the VCU controller may be respectively disposed.
- the VCU controller 113 may be disposed on one side of the valve section 111 .
- a mobile STATCOM system By arranging the VCU controller 113 on one side of the multi-level converter or the space formed between the valve section 111 and the ground as shown in FIG. 7, a mobile STATCOM system can be built, and a container-type STATCOM system can also be built. .
- the MMC-STATCOM system as well as the STATCOM system, which previously required a large-scale space, is configured as a mobile or compact container, the system can be built without any restrictions on the space utilization of the control system device. will be.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
복수개의 서브 모듈을 포함하는 복수개의 밸브 섹션을 포함하는 멀티레벨 컨버터, 상기 복수개의 밸브 섹션 각각과 연결된 VCU 제어기 및 상기 VCU 제어기와 연결된 상위 제어기를 포함하는 시스템에 있어서, 상기 VCU 제어기는 상기 복수개의 서브 모듈 각각으로부터 상태정보를 수신하여 상기 상위 제어기로 전달하고, 상기 상위 제어기로부터 특정 서브 모듈 제어명령 정보를 수신하고, 상기 제어명령 정보를 상기 복수개의 서브 모듈 중 특정 서브 모듈로 전송하는, 시스템을 개시한다.
Description
본 개시는 MMC 방식의 STATCOM 시스템 및 그의 동작 방법에 관한 것이다.
유연 송전 시스템 또는 신전력 송전 시스템(FACTS, Flexible AC Transmission System)은 교류 전력 계통에 전력 전자 제어 기술을 도입하여, 전력 계통의 유연성을 증대시키는 운영 기술이다. 구체적으로, 유연 송전 시스템은 전력용 반도체 스위칭 소자를 이용하여 송전 전력을 제어할 수 있다.
이러한 유연 송전 시스템은 송전 선로의 설비 이용률을 극대화하고, 송전 용량을 증대시키며, 전압 변동을 최소화할 수 있다.
FACTS기기 중 STATCOM(Static Synchronous Compensator)은 선로에 병렬로 연계되어 무효전력을 보상함으로서 전압안정도를 개선하고 전력전송용량을 증대시키는 기능을 갖는 설비이다.
초기 STATCOM의 컨버터는 2-레벨이나 3-레벨 컨버터를 기반으로 개발되었으나, 대용량 전력 전송의 한계와 높은 스위칭 손실 등의 문제점을 가지고 있었다. 이후 대용량 IGBT 소자의 개발과 모듈형 멀티레벨 컨버터(Modular Multi-level Converter: MMC)의 도입으로 대용량 송전이 가능하게 되었다.
MMC는 모듈화된 하프 브리지(Half-Bridge) 또는 풀 브리지(Full-Bridge) 인버터를 직렬로 연결하여 계단 형태의 정현파 전압을 형성한다. 따라서, 직렬 연결된 서브 모듈 개수를 조절함으로써 대용량 송전이 가능하다.
한편 MMC-STATCOM 시스템의 경우, 상위 제어기에 해당하는 VBE(Valve Base Electronic)로부터 N개 직렬 연결된 서브모듈(Sub-module)로 구성된 밸브(Valve) 로 광(optic) 케이블을 결선해야 한다.
이 경우 광(optic) 케이블 수가 많아지고, VBE와 거리가 멀어지면 optic-power가 큰 제품이나 optical loss가 작은 케이블을 선정해야 한다. 이에 따라 비용과 설치 및 제작시간이 증가되는 단점을 가지게 된다.
또한 기존 밸브의 각각의 SMI (Sub-Module Interface)의 소프트웨어 업그레이드 시 각각의 서브 모듈에 다운로드 해야 하는 불편함이 있다.
이러한 경우, 소프트웨어 업그레이드시 발생하는 물리적인 시간 증가와 작업자의 안전에 큰 영향을 미치는 문제점이 있었다.
본 개시의 목적은 MMC-STATCOM 시스템의 밸브(Valve)의 서브 모듈(Sub-module) 제어기(SMI)와 연계시키는 중간 제어기로 기존의 제어시스템 구조를 단순화시키고, Converter 전력변환기기의 기능 추가/강화를 구현하기 위함이다.
본 개시의 실시 예에 따른 시스템은, 복수개의 서브 모듈을 포함하는 복수개의 밸브 섹션을 포함하는 멀티레벨 컨버터, 상기 복수개의 밸브 섹션 각각과 연결된 복수개의 VCU 제어기 및 상기 복수개의 VCU 제어기와 연결된 상위 제어기를 포함하는 시스템에 있어서, 상기 VCU 제어기는 상기 복수개의 서브 모듈 각각으로부터 상태정보를 수신하여 상기 상위 제어기로 전달하고, 상기 상위 제어기로부터 특정 서브 모듈 제어명령 정보를 수신하고, 상기 제어명령 정보를 상기 복수개의 서브 모듈 중 특정 서브 모듈로 전송하는, 상기 복수개의 서브 모듈을 포함하는 복수개의 밸브섹션은, 상기 VCU 제어기를 통해 서브 모듈 제어명령 정보를 수신하면, 상기 제어명령에 대응하여 해당 서브 모듈의 전원 온/오프 동작을 수행할 수 있다.
상기 상위 제어기는, 상기 VCU 제어기로부터 복수개의 서브 모듈 각각의 상태정보를 수신하고, 특정 서브 모듈 제어명령 정보를 생성하여 상기 VCU 제어기로 전달할 수 있다.
또한, 상기 복수개의 밸브 섹션 각각과 지면 사이에는 공간이 형성되고, 상기 VCU 제어기는 상기 공간에 배치될 수 있다. 또한 상기 VCU 제어기는 밸브 섹션의 일측에 배치되는 것을 포함할 수 있다.
본 개시의 실시 예에 따르면, 각 상 별 VCU 제어기를 별도로 운영함으로써 케이블 결선 구조 단순화할 수 있다.
본 개시의 실시 예에 따르면, 각 상 별 VCU 제어기를 별도로 운영함으로써 데이터 처리 부하 경감, 빠른 응답을 통한 보호기능 수행할 수 있다.
본 개시의 실시 예에 따르면, 각 상 별 VCU 제어기를 별도 운영함으로써 점검 및 유지보수 시 효율을 향상시킬 수 있다.
*본 개시의 실시 예에 따르면, 각 상 별 VCU 제어기를 별도로 운영함으로써, MMC-STATCOM 시스템 운전 중 이벤트 발생시, 사고 전후의 상태/데이터/정보 등을 VCU 제어기에 저장하고 외부에서 데이터를 확인할 수 있어 이벤트 상황의 원인분석을 가능하게 할 수 있다.
본 개시의 실시 예에 따르면, 모바일 MMC-STATCOM, Container STATCOM 시스템 구성 시 Valve의 빈 공간에 VCU 제어기를 설치함으로써 컴팩트한(Compact type)의 시스템 구성을 구현할 수 있다.
도 1은 종래의 실시 예에 따른 MMC 방식의 전압형 고전압 직류 송전 시스템의 구성을 도시한 도면이다.
도 2는 종래 MMC 방식의 STATCOM의 구성을 도시한 도면이다.
도 3은 모듈형 멀티레벨 컨버터에 포함되는 서브 모듈의 상세 구조를 도시한 도면이다.
도 4는 본 개시의 실시 예에 따른 VCU 제어기를 포함하는 STATCOM 구성을 도시한 도면이다.
도 5는 본 개시의 실시 예에 따른 VCU 제어기를 포함하는 시스템 블록도를 도시한 도면이다.
도 6는 본 개시의 실시 예에 따른 VCU 제어기의 구성을 나타낸 블록도이다.
도 7는 본 개시의 실시 예에 따른 VCU 제어기가 구비된 컴팩트형 STATCOM 시스템을 나타낸 도면이다.
이하, 본 발명의 상세에 대하여 설명한다.
이하에 설명하는 실시 예는 본 발명의 일례 일 뿐이며, 본 발명은 다양한 형태로 변형 될 수있다. 따라서, 이하에 개시된 특정 구성 및 기능은 청구 범위를 제한하지 않는다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 개시의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
도 1은 종래의 실시 예에 따른 MMC 방식의 전압형 고전압 직류 송전 시스템의 구성을 도시한 도면이다. 그리고 도 2는 종래 MMC 방식의 STATCOM의 구성을 도시한 도면이다.
MMC 방식의 STATCOM(100)은 모듈형 멀티레벨 컨버터(Modular Multi-level Converter: MMC)를 사용하여 전류를 변환하는 무효 전력 보상 장치일 수 있다. MMC 방식의 STATCOM(100)은 다수(수십개~수백개)의 서브 모듈로 구성되어, 짧은 제어 주기(예를 들어, 100us~200us) 내에 서브 모듈의 상태 정보를 수집하고, 다음 제어 주기에 온/오프 되어야 할 서브 모듈을 결정할 수 있다.
도 1에 도시된 바와 같이, MMC 방식의 STATCOM(100)은 모듈형 멀티레벨 컨버터(110)와 상위 제어기(120)를 포함할 수 있다.
모듈형 멀티레벨 컨버터(110)는 복수개의 서브 모듈(115)을 스위칭 함으로써, 직류를 교류로 변환하거나 교류를 직류로 변환할 수 있다. 이를 위해, 모듈형 멀티레벨 컨버터(110)는 서브 모듈(115)의 턴 온(turn-on) 및 턴 오프(turn-off)의 타이밍을 제어할 수 있다.
종래 모듈형 멀티레벨 컨버터(110)는 복수개의 서브 모듈(115)과 각각의 서브 모듈에 포함되어 제어 명령을 전달하는 SMI(Sub-Module Interface, 114) 및 상위제어기(120)에 포함된 Valve Base Electronics(VBE, 113) 등을 포함할 수 있다.
도 2를 참고하면, 복수개의 서브 모듈(115)은 직렬로 연결될 수 있다. 이 경우, 3상(3-phase)을 구성하는 어느 하나의 상의 양극 또는 음극에 연결된 복수개의 서브 모듈은 하나의 암(Arm, 130)을 구성할 수 있다. 암(Arm, 130)은 실시 예에 따라, 밸브(Valve)로 명명될 수 있다.
일 실시 예에 의하면, 모듈형 멀티레벨 컨버터(110)는 3상 MMC로서, 6개의 암으로 구성될 수 있다. 구체적으로, A상, B상 및 C상의 3상 각각에 대해 양극(+)과 음극(-)을 포함하는 6개의 암으로 구성될 수 있다.
도 2를 참조하면, 모듈형 멀티레벨 컨버터(110)는 A상 양극에 대한 복수개의 서브 모듈(115)로 구성되는 제1암, A상 음극에 대한 복수개의 서브 모듈(115)로 구성되는 제2암, B상 양극에 대한 복수개의 서브 모듈(115)로 구성되는 제3암, B상 음극에 대한 복수개의 서브 모듈(115)로 구성되는 제4암, C상 양극에 대한 복수개의 서브 모듈로 구성되는 제5암, C상 음극에 대한 복수개의 서브 모듈로 구성되는 제6암으로 구성될 수 있다.
이 경우, 하나의 상에 대한 복수개의 서브 모듈은 레그(Leg)를 구성할 수 있다. 구체적으로, 하나의 상에 포함되는 양극 및 음극에 대한 복수개의 서브 모듈은 레그를 구성할 수 있다.
도 2에서, 모듈형 멀티레벨 컨버터(110)는 A상에 대한 복수개의 서브 모듈로 구성되는 A상 레그, B상에 대한 복수개의 서브 모듈로 구성되는 B상 레그, C상에 대한 복수개의 서브 모듈로 구성되는 C상 레그를 포함할 수 있다.
복수개의 서브 모듈(115)로 구성되는 암 및 레그 각각은 전력 계통의 3상, 즉 A 상과 B 상 및 C상과 각각 연결될 수 있다.
다른 실시 예에 의하면, 복수개의 서브 모듈(115)은 극성에 따라 양극 암(미도시)과 음극 암(미도시)을 구성할 수도 있다.
VBE는 상위 제어기(120)로부터 서브 모듈을 제어하는 명령을 수신하여 서브 모듈로 전달할 수 있으며, 복수개의 서브 모듈에 각각 연결된 하나의 제어기일 수 있다.
상위 제어기(120)는 MMC 방식의 전압형 고전압 직류 송전 시스템(100)의 전반적인 동작을 제어할 수 있다.
일 실시 예에 의하면, 상위 제어기(120)는 HVDC 시스템의 제어 및 보호를 위한 동작을 수행하는 C&P(Control and Protection) 시스템일 수 있다. 또한, 도면에서는 VBE와 상위 제어기(120)를 구분하여 도시하였으나, 상위 제어기(120)는 VBE를 포함하는 개념일 수 있다.
이 경우, 상위 제어기(120)는 복수개의 서브 모듈 각각과 연결될 수 있을 것이다.
도 3은 모듈형 멀티레벨 컨버터에 포함되는 서브 모듈의 상세 구조를 도시한 도면이다.
모듈형 멀티레벨 컨버터(110)에 포함되는 서브 모듈(115)은, 전력 에너지를 저장하는 캐패시터, 전력 반도체 소자, 스위칭 소자 및 보호 회로 등을 포함할 수 있다.
서브 모듈(115)은 1개의 캐패시터 (101)와 4개의 IGBT 소자 (102)와 구성되어 있다. 그리고 다수의 서브 모듈(115)은 직렬로 연결되어 하나의 상을 구성한다. 다수의 서브 모듈(115)은 VBE 또는 다른 상위 제어기(120)로부터 ON/OFF 제어 명령을 하달 받아서 IGBT를 제어할 수 있다.
캐패시터의 크기는 모듈형 멀티레벨 컨버터(110)의 크기에 비례하여 설정될 수 있다. 캐패시터의 용량은 전압의 제곱에 비례할 수 있다.
따라서, 이를 고려하여 서브 모듈(115)의 적정한 동작 전압이 설정될 수 있다.
보호 스위치(103)는 서브 모듈(115)을 보호하기 위한 스위치이다. 보호 스위치는 바이 패스(By-Pass) 스위치로 구현될 수 있다.
일반적으로, 모듈형 멀티레벨 컨버터(110)는 하나의 서브 모듈(115)에 발생한 고장으로 인해 시스템이 정지되는 것을 방지하기 위하여, 충분한 여분을 고려하여 설계된다.
따라서, 바이 패스 스위치(103)는 고장난 서브 모듈(115)은 바이 패스시키고, 여분의 서브 모듈(115)을 동작시킬 수 있다.
본 개시의 실시예에 따른 복수개의 서브 모듈 중 n번째 서브 모듈(Module n)은 n-1번째 서브 모듈(Module n-1) 및 n+1번째 서브 모듈(Module n+1)과 직렬로 연결된다.
*이 경우, n-1번째 서브 모듈(Module n-1)로부터 입력된 전류는 n번째 서브 모듈(Module n)을 통해 n+1번째 서브 모듈(Module n+1)로 흐르게 된다.
이하 도 4 내지 도 7에서 본 개시의 실시 예에 따른 시스템에 대하여 설명한다.
본 개시의 실시 예에 따른 모듈형 멀티레벨 컨버터 시스템을 설명하면 아래와 같은 구성을 포함할 수 있다.
도 4는 본 개시의 실시 예에 따른 시스템을 나타낸 도면이고 도 5는 본 개시의 실시 예에 따른 시스템을 블록도로 간략하게 나타낸 도면이다.
도 4를 참조하면, 복수개의 서브 모듈(115)은 직렬로 연결될 수 있다. 이 경우, 3상(3-phase)을 구성하는 어느 하나의 상에 연결된 복수개의 서브 모듈(115)은 하나의 클러스터(Cluster)를 구성할 수 있다. 클러스터(Cluster)는 실시 예에 따라, 밸브 섹션(Valve section)으로 명명될 수 있다.
일 실시 예에 의하면, 모듈형 멀티레벨 컨버터(110)는 3상 MMC로서, 3개의 클러스터로 구성될 수 있다. 구체적으로, A상, B상 및 C상의 3상 각각에 대해 A상 클러스터, B상 클러스터, C상 클러스터로 구성될 수 있다.
복수개의 서브 모듈(115)로 구성되는 클러스터는 전력 계통의 3상, 즉 A 상과 B 상 및 C상과 각각 연결될 수 있다.
서브모듈 제어기(Sub module interface, 114, 이하 SMI)는 복수개의 서브 모듈(115)과 연결되어, 서브 모듈로부터 서브 모듈의 상태 정보를 수신한다. 이때 SMI는 복수개의 서브 모듈에 각각 구비되는 것 또한 가능하다.
VCU(Valve Connection Unit) 제어기는(113)는 상위 제어기(120)로부터 서브 모듈(115)을 제어하는 명령을 수신하여 서브 모듈(115) 또는 SMI(114)로 전달할 수 있다.
상위 제어기(120)는 MMC 방식의 STATCOM(100)의 전반적인 동작을 제어할 수 있다. 일 실시 예에 의하면, 상위 제어기(120)는 STATCOM의 제어 및 보호를 위한 동작을 수행하는 C&P(Control and Protection) 시스템일 수 있다.
구체적으로 도 5를 참고하면, MMC 방식의 STATCOM(100)에 있어서 모듈형 멀티레벨 컨버터(110)는 복수개의 서브 모듈을 포함하는 복수개의 밸브 섹션(valve section)과 상기 복수개의 밸브 섹션에 포함된 서브 모듈 각각과 연결된 VCU 제어기(113) 및 상위 제어기(120)를 포함할 수 있다.
이때, 복수개의 밸브 섹션(111) 각각은 복수개의 서브 모듈을 포함하고, 상기 VCU 제어기(113)는 서브 모듈에 포함되어 제어 명령을 전달하는 SMI(Sub-Module Interface, 114)와 연결되는 것 또한 가능하다.
또한 복수개의 밸브 섹션 각각은 VCU 제어기(113)와 연결될 수 있으며, 단위 밸브 섹션 하나당 하나의 VCU 제어기가 구비될 수 있다.
복수개의 밸브 섹션은 복수개의 서브 모듈이 포함될 수 있으며 밸브 섹션에 포함된 복수개의 서브 모듈 각각은 직렬로 연결될 수 있다.
또한, 복수개의 서브 모듈 각각과 VCU 제어기(113)는 연결될 수 있다.
본 개시의 실시 예에 따르면, 도 4와 같은 시스템을 구축함으로써 MMC-STATCOM 시스템의 전체 제어는 C&P level인 상위 제어기(120)에서 총괄하고, Valve 제어 지령치, Valve 정보는 기존의 VBE 대신 각 상별로 구비된 VCU(Valve Connection Unit)를 통해 상위 제어기와 통신하고, Sub-Module의 제어기인 SMI (Sub-Module Interface)를 통해 멀티레벨 컨버터를 운전시킬 수 있다.
구체적인 VCU 제어기의 블록 제어도는 도 6에서 설명한다.
도 6은 본 개시의 실시 예에 따른 VCU 제어기의 제어 블록도이다.
본 개시의 실시 예에 따른 VCU 제어기(200)는 사용자 입력 인터페이스(240), 메모리(250), 통신부(260), 프로세서(270), 디스플레이(280) 중 적어도 일부 또는 전부를 포함할 수 있다.
본 개시의 실시 예에 따르면, VCU 제어기(200)의 통신부(260)는 복수개의 서브 모듈 단위(밸브섹션) 및 상위 제어기와 통신을 통한 데이터 처리 및 서브 모듈로 제어 지령치 전달을 위한 통신을 수행할 수 있다.
구체적으로 VCU 제어기의 프로세서(270)는 VCU 제어기의 전반적인 동작을 제어할 수 있다.
VCU 제어기의 프로세서(270)는 VCU 제어기와 연결된 밸브 섹션의 서브 모듈 각각의 상태정보, 센싱정보 취합 및 데이터 처리할 수 있다.
또한, 상위 제어기 또는 VBE와 통신하여 서브 모듈 제어와 관련된 명령을 수신하고 해당 명령을 밸브 섹션에 포함된 서브 모듈로 전달할 수 있다.
또한 밸브 섹션에 포함된 서브 모듈의 정보를 상위 제어기로 전달할 수 있다.
또한, VCU 제어기의 프로세서(270)는 밸브 섹션에 포함된 복수개의 서브 모듈에 소프트웨어 업그레이드가 필요한 경우, 해당 밸브 섹션에 포함된 서브 모듈의 소프트웨어 업그레이드에 필요한 프로그램을 해당 서브 모듈로 전달할 수 있다.
또한, VCU 제어기의 프로세서(270)는 메모리(250)를 통해 밸브 섹션에 포함된 서브 모듈의 이벤트 발생 시 서브 모듈 각각의 상태 데이터 저장할 수 있다.
상기와 같이 기존에 멀티레벨 컨버터에서 구비된 하나의 VBE와 하나의 상위 제어 대신에 VCU 제어기를 밸브 섹션에 각각 구비함으로써, 기존 C&P와 Valve 사이에 VCU(Valve Connection Unit)라는 기기가 VBE를 대체함과 동시에 각 상별로 추가됨에 따라 물리적인 인터페이스가 간단해질 수 있을 것이다.
또한, 각 상별로 VCU 제어기가 구비됨으로써 단위 Sub-module의 데이터 처리 후 필요 데이터만 C&P 데이터 통신함에 따라 기존 시스템에서의 VBE 보다 연산/처리하는 데이터 경감됨에 따라 데이터 처리 부하 저감될 수 있을 것이다.
또한, VCU 제어기의 프로세서는 서브 모듈의 상태정보, 센싱정보 취합/처리/판단을 통해서 빠른 보호기능 수행이 가능해지므로 서브모듈의 보호기능 강화 및 디스플레이를 통한 모니터링을 할 수 있을 것이다.
또한, Sub-Module 의 제어기 (SMI : Sub-Module Interface) S/W 업그레이드 시 필요 프로그램의 전송(Transfer)을 통한 기능을 추가 함에 따라 소프트웨어 보수 및 유지가 가능해질 것이다.
또한, VCU 제어기의 프로세서는 메모리를 통하여 Valve 이벤트 발생시 상태 데이터 저장, 외부 통신을 통한 인터페이스를 구현함으로써 데이터 저장할 수 있을 것이다.
도 7은 본 개시의 실시 예에 따른 시스템에서 VCU 제어기의 배치를 나타낸 도면이다.
도 7을 참고하면, 본 개시의 실시 예에 따른 시스템에 있어서, 상기 멀티레벨 컨버터 각각과 지면 사이에는 공간이 형성될 수 있다.
해당 공간은 지면과 멀티레벨 컨버터의 접지 및 합선을 방지하기 위하여 형성된 공간일 수 있다.
본 개시의 실시 예에 따른 VCU 제어기는 멀티레벨 컨버터에 포함된 밸브 섹션과 지면 사이에 형성된 공간에 배치될 수 있다.
구체적으로 복수개의 밸브 섹션 각각과 지면 사이에 형성된 공간에, VCU 제어기가 각각 배치될 수 있다.
본 개시의 또 다른 실시 예에 따른 상기 VCU 제어기(113)는 밸브 섹션(111)의 일측에 배치될 수 있다.
상기 도 7과 같이 VCU 제어기(113)를 밸브 섹션(111)과 지면 사이에 형성된 공간 또는 멀티레벨 컨버터의 일측에 배치시킴으로서 모바일 STATCOM 시스템을 구축할 수 있을 것이며, 컨테이너형 STATCOM 시스템 또한 구축이 가능할 것이다.
따라서 기존에 대규모 공간을 필요로 했던 STATCOM 시스템뿐만 아니라 MMC-STATCOM 시스템을 모바일(Mobile) 또는 컴팩트 형태의 컨테이너로 시스템을 구성 제작할 경우, 제어 시스템 기기의 공간 활용에 제약 조건 없이 시스템을 구축할 수 있을 것이다.
또한, 이상에서 서비스 및 실시 예들을 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 서비스 및 실시 예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시 예들에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부한 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
Claims (8)
- 복수개의 서브 모듈을 포함하는 복수개의 밸브 섹션을 포함하는 멀티레벨 컨버터, 상기 복수개의 밸브 섹션 각각과 연결된 복수개의 VCU 제어기 및 상기 복수개의 VCU 제어기와 연결된 상위 제어기를 포함하는 시스템에 있어서,상기 VCU 제어기는상기 복수개의 서브 모듈 각각으로부터 상태정보를 수신하여 상기 상위 제어기로 전달하고,상기 상위 제어기로부터 특정 서브 모듈 제어명령 정보를 수신하고,상기 제어명령 정보를 상기 복수개의 서브 모듈 중 특정 서브 모듈로 전송하는,시스템.
- 제 1항에 있어서,상기 복수개의 서브 모듈을 포함하는 복수개의 밸브섹션은,상기 VCU 제어기를 통해 서브 모듈 제어명령 정보를 수신하면, 상기 제어명령에 대응하여 해당서브 모듈의 전원 온/오프 동작을 수행하는,시스템.
- 제 1항에 있어서상기 상위 제어기는,상기 VCU 제어기로부터 복수개의 서브 모듈 각각의 상태정보를 수신하고, 특정 서브 모듈 제어명령 정보를 생성하여 상기 VCU 제어기로 전달하는,시스템.
- 제 1항에 있어서,상기 복수개의 밸브 섹션 각각과 지면 사이에는 공간이 형성되고,상기 VCU 제어기는 상기 공간에 배치되는,시스템.
- 제 1항에 있어서상기 VCU 제어기는 밸브 섹션의 일측에 배치되는,시스템.
- 복수개의 서브 모듈을 포함하는 복수개의 밸브 섹션을 포함하는 멀티레벨 컨버터, 상기 복수개의 밸브 섹션 각각과 연결된 VCU 제어기에 있어서,상기 복수개의 서브 모듈 각각으로부터 상태정보를 수신하여 상기 상위 제어기로 전달하고,상기 상위 제어기로부터 특정 서브 모듈 제어명령 정보를 수신하고,상기 제어명령 정보를 상기 복수개의 서브 모듈 중 특정 서브 모듈로 전송하는,VCU 제어기.
- 제 6항에 있어서,상기 복수개의 밸브 섹션 각각과 지면 사이에는 공간이 형성되고,상기 VCU 제어기는 상기 공간에 배치되는,VCU 제어기.
- 제 6항에 있어서상기 VCU 제어기는 밸브 섹션의 일측에 배치되는,VCU 제어기.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/273,703 US20240106236A1 (en) | 2021-01-27 | 2022-01-14 | Multi-level converter-type statcom system and operation method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210011703A KR102639907B1 (ko) | 2021-01-27 | 2021-01-27 | 멀티레벨 컨버터 방식의 statcom 시스템 및 동작 방법 |
KR10-2021-0011703 | 2021-01-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022164097A1 true WO2022164097A1 (ko) | 2022-08-04 |
Family
ID=82654112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/000728 WO2022164097A1 (ko) | 2021-01-27 | 2022-01-14 | 멀티레벨 컨버터 방식의 statcom 시스템 및 동작 방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240106236A1 (ko) |
KR (1) | KR102639907B1 (ko) |
WO (1) | WO2022164097A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150075601A (ko) * | 2013-12-26 | 2015-07-06 | 주식회사 효성 | 초고압 직류 송전시스템의 모듈장치 |
KR20160053873A (ko) * | 2016-04-26 | 2016-05-13 | 엘에스산전 주식회사 | 모듈형 멀티레벨 컨버터 및 그의 제어 방법 |
KR20160098896A (ko) * | 2015-02-11 | 2016-08-19 | 엘에스산전 주식회사 | Hvdc 시스템에서 전력 값 측정 방법 |
US20170317574A1 (en) * | 2014-12-11 | 2017-11-02 | Nr Electric Co., Ltd | Sub-module distributed control method, device and system |
KR20190065675A (ko) * | 2017-12-04 | 2019-06-12 | 전자부품연구원 | 멀티레벨 컨버터를 구비한 hvdc 시스템의 커패시터 용량 추정장치 및 그 커패시터 용량 추정방법 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150130863A (ko) * | 2014-05-14 | 2015-11-24 | 엘에스산전 주식회사 | 모듈형 멀티레벨 컨버터 및 그의 제어 방법 |
KR20180097062A (ko) * | 2017-02-22 | 2018-08-30 | 엘에스산전 주식회사 | 모듈형 멀티레벨 컨버터 |
-
2021
- 2021-01-27 KR KR1020210011703A patent/KR102639907B1/ko active IP Right Grant
-
2022
- 2022-01-14 US US18/273,703 patent/US20240106236A1/en active Pending
- 2022-01-14 WO PCT/KR2022/000728 patent/WO2022164097A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150075601A (ko) * | 2013-12-26 | 2015-07-06 | 주식회사 효성 | 초고압 직류 송전시스템의 모듈장치 |
US20170317574A1 (en) * | 2014-12-11 | 2017-11-02 | Nr Electric Co., Ltd | Sub-module distributed control method, device and system |
KR20160098896A (ko) * | 2015-02-11 | 2016-08-19 | 엘에스산전 주식회사 | Hvdc 시스템에서 전력 값 측정 방법 |
KR20160053873A (ko) * | 2016-04-26 | 2016-05-13 | 엘에스산전 주식회사 | 모듈형 멀티레벨 컨버터 및 그의 제어 방법 |
KR20190065675A (ko) * | 2017-12-04 | 2019-06-12 | 전자부품연구원 | 멀티레벨 컨버터를 구비한 hvdc 시스템의 커패시터 용량 추정장치 및 그 커패시터 용량 추정방법 |
Also Published As
Publication number | Publication date |
---|---|
KR102639907B1 (ko) | 2024-02-27 |
US20240106236A1 (en) | 2024-03-28 |
KR20220108562A (ko) | 2022-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019132428A1 (ko) | Mmc 컨버터 초기충전시 서브모듈 상태 진단방법 | |
WO2018221906A1 (ko) | Mmc 컨버터 및 그의 서브모듈 | |
WO2018124523A2 (ko) | Mmc 컨버터의 서브모듈 제어기용 전원장치 | |
WO2018016735A1 (ko) | 배터리 시스템 | |
WO2022114624A1 (ko) | 태양광 발전 시스템 | |
WO2013176348A1 (ko) | 3-레벨 티타입 인버터의 스위치 고장진단장치 및 방법 | |
WO2018221907A1 (ko) | Mmc 컨버터 및 그의 서브모듈 | |
WO2018124519A1 (ko) | 모듈러 멀티레벨 컨버터 시스템 | |
WO2014104839A1 (ko) | 고장전류 감소기능을 가지는 컨버터 | |
WO2018216899A1 (ko) | 군용 마이크로그리드 시스템 | |
WO2022270736A1 (ko) | 배터리 상태 검출 장치 및 배터리 보호 장치 | |
WO2011078424A1 (ko) | 부하의 세그먼테이션을 고려한 풀 브릿지 인버터 및 그 제어방법 | |
WO2022164097A1 (ko) | 멀티레벨 컨버터 방식의 statcom 시스템 및 동작 방법 | |
EP3930135A1 (en) | Power supply system | |
WO2018079918A1 (ko) | 배터리 셀 밸런싱 장치 | |
EP4138251A1 (en) | Power supply system | |
WO2020122605A1 (ko) | 무정전 전력 공급 마이크로그리드 시스템 | |
WO2022239999A1 (ko) | Dc-dc 변환을 수행하는 컨버터 및 이를 제어하는 방법 | |
WO2022131650A1 (ko) | 모듈형 멀티레벨 컨버터 | |
WO2020141838A2 (ko) | Mmc 컨버터의 서브모듈 | |
WO2022191384A1 (ko) | 서브 모듈을 스위칭 제어하기 위한 vbe 제어기 및 이를 포함하는 mmc 방식의 statcom 시스템 | |
WO2020032457A1 (ko) | Mmc 컨버터의 서브모듈 | |
CN210536522U (zh) | 一种模块化sop系统 | |
WO2016108597A1 (ko) | Mmc 컨버터의 서브모듈용 전원제어장치 | |
WO2022145708A1 (ko) | 에너지 저장 시스템의 배터리 오토 밸런싱 장치 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22746125 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18273703 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22746125 Country of ref document: EP Kind code of ref document: A1 |