WO2022163546A1 - Optical thin film laminate and method for producing same - Google Patents

Optical thin film laminate and method for producing same Download PDF

Info

Publication number
WO2022163546A1
WO2022163546A1 PCT/JP2022/002297 JP2022002297W WO2022163546A1 WO 2022163546 A1 WO2022163546 A1 WO 2022163546A1 JP 2022002297 W JP2022002297 W JP 2022002297W WO 2022163546 A1 WO2022163546 A1 WO 2022163546A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thin film
absorption layer
optical thin
refractive index
Prior art date
Application number
PCT/JP2022/002297
Other languages
French (fr)
Japanese (ja)
Inventor
洋亮 杉原
明久 箕輪
伸宏 中村
暁 渡邉
邦雄 増茂
尚洋 眞下
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2022163546A1 publication Critical patent/WO2022163546A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Definitions

  • the present invention relates to an optical thin film laminate and its manufacturing method.
  • optical thin film laminate having an optical thin film layer formed by laminating a plurality of layers on a base material.
  • Such optical thin film laminates include, for example, display elements such as OLED (Organic Light Emitting Diode), TFT (Thin Film Transistor) and organic electroluminescence (organic EL), organic EL elements, quantum dot displays, TFT arrays and thin films. It is used in optical elements such as solar cells.
  • the electrode located on the side from which light is extracted as the display element is made of a transparent thin film, while the electrode located on the opposite side is made of a metal thin film. Regardless of whether light is emitted or not, part of light incident from the outside is reflected by the counter electrode toward the light extraction surface. As a result, the visibility and contrast of the display element are lowered. Therefore, conventionally, a circularly polarizing plate is provided on the side from which light is extracted, and the reflected light from the counter electrode is shielded by the circularly polarizing plate, thereby improving the visibility and contrast of the display element.
  • a conductive substrate in which wiring made of a transparent electrode material is formed on a transparent base material.
  • transparent electrode materials such as ITO have been used for the wiring of the conductive substrate, but as the size of the panel increases, metal materials such as copper, which have low electric resistance, are also being used.
  • an object of the present invention is to provide an optical thin film laminate and a method for manufacturing the same, which can suppress reflection by providing an absorption layer with high light shielding properties adjacent to a transparent layer with a high refractive index.
  • the present inventors have found that by adjusting the optical constant of the absorption layer in accordance with the refractive index of the transparent layer disposed so as to be in contact with the absorption layer, the absorption layer and the transparent layer The present inventors have found that it is possible to suppress interfacial reflection on the contact surface with and realize low reflection, and have made the present invention.
  • the present invention includes a substrate and an optical thin film layer
  • the optical thin film layer includes an absorption layer having a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm, and a wavelength of 550 nm laminated in contact with the absorption layer. and a transparent layer having a refractive index of 1.60 to 2.50.
  • the absorption layer preferably has a physical thickness of 200 to 500 nm.
  • the resistivity of the absorption layer is 1 ⁇ 10 ⁇ 1 ⁇ cm or more.
  • the absorption layer preferably contains at least one selected from oxides, nitrides, oxynitrides and oxycarbides containing at least two kinds of metal cations.
  • the absorption layer preferably contains at least one element selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ru and Ag.
  • the absorption layer contains Cr and Si, and the atomic ratio of Cr to the total amount of Cr and Si in the absorption layer is in the range of 0.10 or more and 0.70 or less. Preferably.
  • the absorption layer contains Cr and Al, and the atomic ratio of Cr to the total amount of Cr and Al in the absorption layer is in the range of 0.10 or more and 0.50 or less. Preferably.
  • the absorption layer contains Cu and Si, and the atomic ratio of Cu to the total amount of Cu and Si in the absorption layer is in the range of 0.10 or more and 0.95 or less. Preferably.
  • the absorption layer contains Cu and Al, and the atomic ratio of Cu to the total amount of Cu and Al in the absorption layer is in the range of 0.30 or more and 0.95 or less. Preferably.
  • the absorption layer can be patterned by etching.
  • the present invention includes a substrate and an optical thin film layer, A light-emitting device in which the optical thin film layer includes at least an absorption layer, a lower electrode, a light-emitting layer and an upper electrode, and extracts light above a substrate, the lower electrode is laminated in contact with the absorption layer;
  • the absorption layer has a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm
  • the present invention relates to a light emitting device including the optical thin film laminate of the present invention, wherein the lower electrode is a transparent layer having a refractive index of 1.60 to 2.50 at a wavelength of 550 nm.
  • the present invention includes a substrate and an optical thin film layer, the optical thin film layer includes an absorption layer between a metal wire and an insulating layer laminated on top of the metal wire;
  • the absorption layer is laminated so as to be in contact with the metal wiring and the insulating layer,
  • the absorption layer has a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm,
  • the present invention relates to an electric circuit including the optical thin film laminate, wherein the insulating layer is a transparent layer having a refractive index of 1.60 to 2.50 at a wavelength of 550 nm.
  • the present invention includes a substrate and a plurality of thin film transistors, the thin film transistor includes a semiconductor layer, an absorption layer, and an insulating layer disposed between the semiconductor layer and the absorption layer;
  • the insulating layer is laminated so as to be in contact with the absorbing layer,
  • the absorption layer has a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm
  • the thin film transistor array includes the optical thin film laminate of the present invention, wherein the insulating layer is the transparent layer having a refractive index of 1.60 to 2.50 at a wavelength of 550 nm.
  • the present invention provides a method for manufacturing an optical thin film laminate comprising forming an optical thin film layer on a substrate, comprising: The formation of the optical thin film layer includes: forming an absorption layer having a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm; The present invention relates to a method for producing an optical thin film laminate, including forming a transparent layer having a refractive index of 1.60 to 2.50.
  • the present invention also provides a sputtering target material used in the method for producing an optical thin film laminate of the present invention,
  • the present invention relates to a sputtering target material for forming the absorption layer having a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm by sputtering.
  • the optical thin film laminate of the present invention comprises an optical thin film layer provided on a substrate, the optical thin film layer being laminated in contact with an absorbing layer having a specific range of refractive index and extinction coefficient, and being in contact with the absorbing layer.
  • an absorbing layer having a specific range of refractive index and extinction coefficient
  • the optical thin film laminate of the present invention can achieve low reflection by the absorption layer with respect to light incident on the contact surface between the transparent layer and the absorption layer.
  • FIG. 1(a) is a diagram obtained by analyzing the correlation between the refractive index (n2) of the transparent layer, the refractive index (n1) of the absorbing layer, and the extinction coefficient (k1).
  • FIG. 1(b) is a diagram showing the relationship between n1 and k1 that satisfy a reflectance of 1%.
  • 2(a) to 2(d) are sectional views showing an embodiment of the optical thin film laminate of the present invention.
  • FIG. 3(a) is a partial cross-sectional view showing the light emitting device according to the first embodiment of the present invention.
  • FIG. 3(b) is a partial cross-sectional view of an example of a conventional light emitting device.
  • FIG. 4(a) is a plan view showing an electric circuit according to a second embodiment of the present invention
  • FIG. 4(b) is a partial cross-sectional view of the electric circuit
  • FIG. 5(a) is a plan view showing a conventional electric circuit
  • FIG. 5(b) is a partial sectional view of the electric circuit
  • FIG. 6(a) shows a partial cross-sectional view of a thin film transistor array according to a third embodiment of the present invention
  • FIG. 6(b) shows a partial cross-sectional view of an example of a conventional thin film transistor array.
  • FIG. 1(a) of FIG. 1 shows the refractive index (n2) of the transparent layer when light is incident on the optical thin film layer composed of an absorption layer and a transparent layer laminated so as to be in contact with the absorption layer from the transparent layer side. , the refractive index (n1) and the extinction coefficient (k1) of the absorption layer.
  • FIG. 1(b) shows the relationship between the refractive index (n2) of the transparent layer and the optical constants (refractive index n1, extinction coefficient k1) of the absorbing layer, which satisfy a reflectance of 1%.
  • the present inventors Based on the above correlation, the present inventors adjusted the optical constant of the absorption layer placed in contact with the transparent layer in accordance with the refractive index of the transparent layer to a specific range, whereby the transparent layer and the absorption layer It was found that the interfacial reflection on the contact surface with can be suppressed.
  • the optical thin film laminate of the present invention comprises an absorption layer having a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm, and is laminated in contact with the absorption layer.
  • Interfacial reflection of light incident on the contact surface between the transparent layer and the absorption layer by including a structure composed of a transparent layer having a refractive index of 1.60 to 2.50 at a wavelength of 550 nm in the optical thin film layer. can be reduced, the amount of light absorbed in the absorption layer can be increased, and low reflection can be realized.
  • the interface reflectance of light incident on the contact surface between the absorbing layer and the transparent layer which are laminated in contact with each other is preferably 3% or less, more preferably 1% or less. More preferably, it is 0.5% or less.
  • the interface reflectance is determined by optical calculation.
  • FIG. 2( a ) is cross-sectional views showing one mode of the optical thin film laminate of the present invention and its modification.
  • the optical thin film layered product 1 shown in FIG. 2( a ) has an optical thin film layer 11 provided on a substrate 6 , and the optical thin film layer 11 is an absorption layer 2 and a transparent layer laminated so as to be in contact with the absorption layer 2 . and layer 3.
  • the thin film layer 202 includes a layer structure in which a first absorption layer 203, a second absorption layer 204, a first transparent layer 205, and a second transparent layer 206 are sequentially laminated, and a second substrate 207 is further laminated.
  • a first absorption layer 203, a second absorption layer 204, a first transparent layer 205, and a second transparent layer 206 are sequentially laminated, and a second substrate 207 is further laminated.
  • the optical thin film laminate 208 has an optical thin film layer 210 provided on a substrate 209.
  • the optical thin film layer 210 includes a first absorption layer 211, a first transparent layer, and a first absorption layer 211. 212, the second absorption layer 213, and the second transparent layer 214 may be sequentially laminated.
  • a first absorption layer 218 and a first transparent layer 219 are sequentially laminated, and a second absorption layer 221 and a second transparent layer 222 are sequentially laminated via a functional layer 220 having a specific function.
  • the number of layers composed of the absorption layer and the transparent layer laminated in contact with the absorption layer may be 1 or may be plural, It can be appropriately determined depending on the material to be used and the application of the optical thin film laminate.
  • the optical constants of the absorption layer and the transparent layer constituting the layer structure may be different from each other as long as they are within the range specified in the present invention. It can be appropriately determined depending on the material to be used and the application of the optical thin film laminate.
  • optical constants of the refractive index and the extinction coefficient of each material constituting the optical thin film layer 11 are determined using the spectroscopic ellipsometry method. is determined by measuring the change in
  • the absorption layer 2 has a refractive index of 1.60 to 2.50 at a wavelength of 550 nm and an extinction coefficient of 0.20 to 0.50. If either one of the refractive index and the extinction coefficient is out of the above range, the reflectance of light incident on the surface where the absorption layer 2 and the transparent layer 3 are in contact cannot be reduced.
  • the refractive index and extinction coefficient of the absorption layer 2 at a wavelength of 550 nm can be appropriately determined within the above ranges according to the use of the optical thin film laminate.
  • the refractive index of the absorption layer 2 at a wavelength of 550 nm is, for example, preferably 1.7 to 2.4, more preferably 1.8 to 2.3.
  • the extinction coefficient of the absorption layer is, for example, preferably 0.25 to 0.45, more preferably 0.3 to 0.4.
  • the materials, refractive indices and extinction coefficients thereof may be different from each other or may be the same. can be appropriately selected according to the purpose of providing the .
  • the physical thickness of the absorption layer 2 is preferably 200-500 nm, more preferably 300-450 nm.
  • the physical film thickness of the absorption layer 2 is preferably 200-500 nm, more preferably 300-450 nm.
  • the absorption layer 2 preferably has a high resistivity.
  • the resistivity of the absorption layer 2 is preferably 1 ⁇ 10 ⁇ 1 ⁇ cm or more, more preferably 1 ⁇ 10 2 ⁇ cm or more, from the viewpoint of preventing capacitive coupling with other wirings or electrodes. It is preferably 1 ⁇ 10 3 ⁇ cm or more.
  • the absorption layer 2 preferably contains at least one selected from oxides, nitrides, oxynitrides and oxycarbides containing at least two kinds of metal cations.
  • the refractive index of the absorbing layer 2 can be decreased, the extinction coefficient can be increased, and interfacial reflection at the contact surface between the transparent layer 3 and the absorbing layer 2 can be suppressed.
  • the metal cation contained in the absorption layer 2 contains at least one element selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ru and Ag from the viewpoint of increasing the extinction coefficient. Among these, Cr or Cu is preferable.
  • the metal cation contained in the absorption layer 2 preferably contains at least one element selected from the group consisting of Si, Al and B. Among these, Si or Al is preferably contained. It is more preferable to include
  • the absorption layer 2 preferably contains at least a combination of an element with a large extinction coefficient and an element with a small refractive index among the above elements.
  • Specific examples of such combinations include Si and Cr, Si and Cu, Al and Cr, and Al and Cu.
  • the absorption layer 2 preferably contains Cr and Si from the viewpoint of decreasing the refractive index and increasing the extinction coefficient.
  • the atomic ratio of Cr to the total amount of Cr and Si in the absorption layer 2 is preferably 0.10 or more and 0.70 or less, more preferably 0.15 or more and 0.60. or less, more preferably 0.20 or more and 0.50 or less.
  • the absorption layer 2 preferably contains Cr and Al from the viewpoint of decreasing the refractive index and increasing the extinction coefficient.
  • the atomic ratio of Cr to the total amount of Cr and Al in the absorption layer 2 is preferably 0.10 or more and 0.50 or less, more preferably 0.12 or more and 0.40. It is below. It is more preferably 0.15 or more and 0.30 or less.
  • the absorption layer 2 preferably contains Cu and Si from the viewpoint of decreasing the refractive index and increasing the extinction coefficient.
  • the atomic ratio of Cu to the total amount of Cu and Si in the absorption layer 2 (Cu/Cu+Si) is preferably 0.10 or more and 0.95 or less, more preferably 0.20 or more and 0.90. It is below. It is more preferably 0.30 or more and 0.85 or less.
  • the absorption layer 2 preferably contains Cu and Al from the viewpoint of decreasing the refractive index and increasing the extinction coefficient.
  • the atomic ratio (Cu/Cu+Al) of Cu to the total amount of Cu and Al in the absorption layer 2 is preferably 0.30 or more and 0.95 or less, more preferably 0.40 or more and 0.90. It is below. It is more preferably 0.50 or more and 0.85 or less.
  • the absorption layer 2 can be patterned by etching.
  • the etching method is not particularly limited, and conventionally known methods such as dry etching and wet etching can be used as appropriate. From the viewpoint of manufacturing cost , the etching method used in the manufacture of displays is particularly preferable. A chlorine-based dry etch using gas, BCl3 gas, or the like is preferred.
  • an etchant containing a mixed acid of phosphoric acid/acetic acid/nitric acid, ammonium fluoride solution, hydrofluoric acid, hydrochloric acid, ferric chloride, oxalic acid, sulfuric acid, hydrogen peroxide solution, etc. is preferable. .
  • the absorption layer 2 preferably has e ⁇ d [ ⁇ : absorption coefficient (unit: cm ⁇ 1 ), d: film thickness (unit: nm)] of 0.15 or less, more preferably 0.10 or less. More preferably, it is 0.05 or less. By setting the e - ⁇ d of the absorbing layer 2 to 0.15 or less, the interface reflectance can be lowered.
  • the transparent layer 3 is a layer having a refractive index of 1.60 to 2.50 at a wavelength of 550 nm.
  • the refractive index of the transparent layer 3 at a wavelength of 550 nm can be appropriately determined within the above range according to the application of the optical thin film laminate 1 .
  • the refractive index of the transparent layer 3 at a wavelength of 550 nm is, for example, preferably 1.7 to 2.3, more preferably 1.8 to 2.2.
  • the materials and refractive indices thereof may be different from each other or may be the same. can be adjusted accordingly.
  • the physical thickness of the transparent layer 3 is not particularly limited, and can be appropriately adjusted according to the use of the optical thin film laminate 1 and the purpose of providing the transparent layer 3. For example, it is preferably 10 to 1000 nm, more preferably 10 to 1000 nm. 20 to 800 nm, more preferably 25 to 500 nm.
  • Materials for the transparent layer 3 include, for example, ITO (Indium Tin Oxide), IZO ( Indium Zinc Oxide), Ag, SiNx , SiON, PbTe, Y2O3 , ThO2 , Bi2O3 , Gd2O3 . , La2O3 , Pr6O11 , HfO2 , Nd2O3 , SiOx , ZnO , Sb2O3 , ZrO2 , Ta2O5 , CeO2 , Cr2O3 , Nb2O5 , TiO 2 , ZnS , SiC, ZnSe, Sb2S3 , Si, etc., or mixtures thereof.
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • Ag SiNx , SiON, PbTe
  • e ⁇ d [ ⁇ : absorption coefficient (unit: cm ⁇ 1 ), d: film thickness (unit: nm)] is preferably 0.80 or more, more preferably 0.90 or more, More preferably, it is 0.95 or more.
  • the e - ⁇ d of the transparent layer 3 is 0.80 or more, the brightness of the display can be increased.
  • the optical thin film laminate 1 of the present invention may have the absorption layer 2 and the transparent layer 3 provided on the substrate 6 .
  • the substrate 6 preferably has transparency.
  • the substrate 6 is not particularly limited, and examples thereof include glass, resin, glass-ceramics, and sapphire.
  • the substrate may or may not be reinforced.
  • the substrate may be an amorphous substrate or a crystalline substrate or a combination thereof.
  • glass examples include soda lime glass, aluminosilicate glass, borosilicate glass, aluminoborosilicate glass, quartz glass, alkali-free glass, and lead glass.
  • resins include acrylic resins, styrene resins, polycarbonate resins, epoxy resins, polyethylene resins, polyester resins, polyimide resins, and silicone resins.
  • the substrate may include amorphous or crystalline films.
  • the shape of the substrate 6 is not particularly limited, and examples thereof include a plate shape and a roll shape.
  • the thickness of the substrate 6 is appropriately selected according to the intended use, and is preferably 0.2 mm to 2.0 mm, for example. When the thickness of the substrate 6 is 0.2 mm or more, the bending strength of the substrate 6 can be improved. When the thickness of the substrate 6 is 2.0 mm or less, the weight of the optical thin film laminate 1 can be reduced.
  • the thickness of the substrate 6 is more preferably 0.4 mm or more, still more preferably 0.5 mm or more.
  • the thickness of the substrate 6 is more preferably 1.8 mm or less, still more preferably 1.6 mm or less.
  • the surface of the substrate 6 is preferably smooth.
  • the surface of the substrate 6 may be surface-treated as necessary.
  • Examples of surface treatment methods here include corona treatment, vapor deposition, electron beam treatment, high-frequency discharge plasma treatment, sputtering, ion beam treatment, atmospheric pressure glow discharge plasma treatment, and alkali treatment. , an acid treatment method, and the like.
  • optical thin film laminate 1 of the present invention An embodiment of the optical thin film laminate 1 of the present invention will be described in detail with reference to the drawings.
  • the embodiment described below shows a preferred specific example. Therefore, the numerical values, shapes, materials, components, arrangement positions and connection forms of components, etc. shown in the following embodiments are examples and are not intended to limit the present disclosure.
  • Each figure is a schematic diagram and is not necessarily strictly illustrated. Moreover, in each figure, the same code
  • a first embodiment of the present invention is a light-emitting device that includes the above-described optical thin film laminate of the present invention and extracts light above a substrate, comprising a substrate and an optical thin film layer, the optical thin film layer comprising: It includes at least an absorption layer, a bottom electrode, a light emitting layer and a top electrode.
  • the absorption layer is the absorption layer 2
  • the lower electrode is the transparent layer 3
  • the lower electrode is stacked in contact with the absorption layer.
  • the lower electrode may be laminated on the absorption layer 2 by arranging a transparent conductive film.
  • FIG. 3(a) shows a cross-sectional view of the light emitting element 7 of the first embodiment.
  • the light-emitting element 7 of FIG. 3A comprises a TFT backplane 302, an absorption layer 312, a lower electrode 313, a first organic layer 304, a light-emitting layer 305, and a second organic layer 306 on a first substrate 301.
  • an upper electrode 307 , a thin film encapsulating layer 308 , a resin layer 309 and a second substrate 310 are stacked in this order, and emits light upward from the first substrate 301 .
  • the absorption layer 312 is an absorption layer having a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm. is a transparent layer having a refractive index of 1.60 to 2.50 at a wavelength of 550 nm.
  • a lower electrode 313 is stacked in contact with the absorption layer 312 .
  • FIG. 3 is a cross-sectional view of an example of a conventional light-emitting device.
  • the light-emitting element 8 of FIG. 3B comprises a TFT backplane 302, a reflective electrode 303, a first organic layer 304, a light-emitting layer 305, a second organic layer 306, and an upper electrode 307 on a first substrate 301.
  • a thin film encapsulating layer 308 , a resin layer 309 , a second substrate 310 , and a circularly polarizing plate 311 are laminated in this order, and emits light upward from the first substrate 301 .
  • An example of such a conventional light-emitting device is an organic EL device provided with a polarizing layer described in Japanese Patent Laid-Open No. 7-142170.
  • the conventional light-emitting element 8 shown in FIG. 3B external light 320 and light 321 from the light-emitting layer 305 are reflected by the internal metal electrode (reflective electrode 303), making it difficult to obtain a clear black display. Luminous efficiency from layer 305 is reduced. To address such a problem, the conventional light-emitting element 8 can suppress reflection of external light 320 and light 321 from the light-emitting layer 305 incident on the reflective electrode 303 by the circularly polarizing plate 311 provided on the viewing surface. .
  • the circularly polarizing plate is expensive, and there is a problem that the product price is high.
  • the material exemplified as the material of the substrate 6 can be used for the first substrate 301 .
  • glass or resin is preferable.
  • the TFT backplane 302 is a circuit for driving an organic light emitting diode (OLED) arranged in each pixel, and includes scanning lines, data lines, and thin film transistors.
  • OLED organic light emitting diode
  • the materials exemplified above as the material for the absorbent layer 2 can be used. If the absorption layer 312 is conductive, the potential may change due to the potential of an adjacent pixel. Therefore, the absorption layer 312 is preferably an insulator. From the viewpoint of ensuring sufficient insulation, the material of the absorption layer 312 preferably contains Cu and Si.
  • the lower electrode 313 preferably contains a conductive metal oxide such as ITO, IZO, GZO (Gadoped ZnO), AZO (Aldoped ZnO).
  • the lower electrode 313 functions as an anode.
  • the lower electrode 313 is a layer provided mainly to provide a suitable work function for hole injection.
  • the physical film thickness of the lower electrode is preferably 10 to 100 nm, more preferably 20 to 50 nm, from the viewpoint of surface flatness.
  • the lower electrode 313 may be provided by disposing a transparent conductive film on the absorption layer 312 .
  • the first organic layer 304 includes a hole injection layer and a hole transport layer from the lower electrode 313 side.
  • the hole injection layer is required to have a small ionization potential difference in order to lower the hole injection barrier from the lower electrode 313 . Improving the charge injection efficiency from the electrode interface in the hole injection layer reduces the drive voltage of the device and increases the charge injection efficiency.
  • Polystyrene sulfonic acid (PSS)-doped polyethylenedioxythiophene (PEDOT:PSS) is widely used as a polymer, and phthalocyanine-based copper phthalocyanine (CuPc) is widely used as a low molecule.
  • the hole transport layer serves to transport holes injected from the hole injection layer to the light emitting layer 305 . It is necessary to have suitable ionization potential and hole mobility.
  • the hole transport layer include triphenylamine derivatives, N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPD), N,N'-diphenyl-N,N'-bis[N-phenyl-N-(2-naphthyl)-4'-aminobiphenyl-4-yl]-1,1'-biphenyl-4, 4′-diamine (NPTE), 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (HTM2) and N,N′-diphenyl-N,N′-bis(3-methylphenyl)-1, 1'-diphenyl-4,4'-diamine (TPD) and the like
  • the light-emitting layer 305 is a layer that provides a field for recombination of injected electrons and holes, and is preferably made of a material with high light-emitting efficiency.
  • the light-emitting host material and light-emitting dye doping material used in the light-emitting layer 305 function as recombination centers for holes and electrons injected from the lower electrode 313 and the upper electrode 307 .
  • Doping luminescent dyes into the luminescent host material in the luminescent layer 305 provides high luminous efficiency and converts the emission wavelength.
  • the light-emitting material is not limited to organic materials, and may be quantum dots or perovskite materials.
  • the light-emitting host material and light-emitting dye doping material used in the light-emitting layer 305 materials that have an appropriate energy level for charge injection, are excellent in chemical stability and heat resistance, and form a homogeneous amorphous thin film are used. preferable. In addition, it is preferable to use a material which is excellent in the kind of emission color and color purity and which has high luminous efficiency.
  • Light-emitting materials that are organic materials include low-molecular-weight materials and high-molecular-weight materials. Further, they are classified into fluorescent materials and phosphorescent materials according to their light emission mechanism.
  • the light-emitting host material and light-emitting dye doping material used in the light-emitting layer 305 include tris(8-quinolinolato)aluminum complex (Alq 3 ), bis(8-hydroxy)quinaldine aluminum phenoxide (Alq ' 2 OPh), bis(8-hydroxy)quinaldine aluminum-2,5-dimethylphenoxide (BAlq), mono(2,2,6,6-tetramethyl-3,5-heptanedionato)lithium complex ( Liq), mono(8-quinolinolato) sodium complex (Naq), mono(2,2,6,6-tetramethyl-3,5-heptanedionato)lithium complex, mono(2,2,6,6-tetra metal complexes of quinoline derivatives such as methyl-3,5-heptanedionate) sodium complex and bis(8-quinolinolate) calcium complex (Caq 2 ), tetraphenylbutadiene,
  • a quinolinolate complex is preferable as the light-emitting host material, and an aluminum complex containing 8-quinolinol or a derivative thereof as a ligand is particularly preferable.
  • Quantum dots include, for example, CdTe, ZnCdSe/ZnS, CdSe/ZnS and Cu-In-S/ZnS.
  • the second organic layer 306 includes an electron transport layer and an electron injection layer from the lower electrode 313 side.
  • Electron-transporting layers include, for example, quinolinole aluminum complexes (Alq3), oxadiazole derivatives [such as 2,5-bis(1-naphthyl)-1,3,4-oxadiazole (BND) and 2-(4- t-butylphenyl)-5-(4-biphenyl)-1,3,4-oxadiazole (PBD)], triazole derivatives, bathophenanthroline derivatives, silole derivatives and the like.
  • quinolinole aluminum complexes Alq3
  • oxadiazole derivatives such as 2,5-bis(1-naphthyl)-1,3,4-oxadiazole (BND) and 2-(4- t-butylphenyl)-5-(4-biphenyl)-1,3,4-oxadiazole (PBD)
  • triazole derivatives such as 2,5-bis(1-naphthyl)-1,3,
  • the electron injection layer is preferably one that enhances electron injection efficiency.
  • the electron injection layer is preferably a layer in which the cathode interface is doped with an alkali metal such as lithium (Li) or cesium (Cs).
  • the upper electrode 307 can be formed using the same material as the lower electrode 313 and by the same method.
  • the top electrode 307 preferably contains a conductive metal oxide such as IZO, ITO, Ag, AgMg, for example.
  • the upper electrode 307 preferably has a transmittance of 80% or more, more preferably 90% or more, for light with a wavelength of 400 to 800 nm.
  • the physical thickness of the upper electrode 307 is preferably 30 nm or more, more preferably in the range of 100 to 300 nm, in order to provide a sufficiently low resistivity.
  • the thin film encapsulating layer 308 is a thin film made of an inorganic material and covering the laminate on the first substrate 301 .
  • the thin film encapsulating layer 308 has a role of protecting each laminate before forming the encapsulating structure and suppressing permeation of moisture from inside and outside of the encapsulating structure after forming the encapsulating structure.
  • the material of the thin film sealing layer 308 is preferably resin, silicon, carbon or aluminum oxide, nitride or oxynitride.
  • resin silicon, carbon or aluminum oxide
  • nitride or oxynitride Specific examples include epoxy resin, silicon nitride, silicon oxide, silicon oxynitride, carbon oxide, carbon nitride, and aluminum oxide.
  • Examples of the method for forming the thin film encapsulating layer 308 include dry processes such as vacuum deposition, electron beam deposition, sputtering, reactive sputtering, ion plating, and vapor deposition. It is preferred to use the method.
  • the resin layer 309 is a layer arranged between the thin film encapsulating layer 308 and the second substrate 310, increases the adhesion between the second substrate 310 and the thin film encapsulating layer 308, and increases the strength of the light emitting element 7. It has a role to improve
  • the resin layer 309 examples include curable resins such as epoxy resins, acrylic resins, and silicone resins.
  • curable resins such as epoxy resins, acrylic resins, and silicone resins.
  • the resin layer 309 since the light emitting element 7 is of a top emission type, the resin layer 309 also has high light transmittance like the thin film sealing layer 308, and has a refractive index different from that of the adjacent thin film sealing layer 308 and the second substrate 310. It is preferable to use materials with a small difference.
  • Examples of methods for forming the resin layer 309 include the following methods. First, a curable resin is uniformly applied onto the thin film sealing layer 308 or the second substrate 310 by various coating methods such as a dispensing method, a printing method, and a die coating method. After bonding the first substrate 301 and the second substrate 310 together, the resin layer 309 can be formed by curing the curable resin with heat, light, a curing agent, or the like.
  • the material exemplified as the material of the substrate 6 can be used for the second substrate 310 .
  • resin is preferable.
  • a TFT back plane, a lower electrode, an absorption layer, a light emitting layer, an organic layer, an upper electrode, a thin film sealing layer, a resin layer, and a substrate are sequentially laminated on a substrate.
  • a light-emitting element having a structure and extracting light upward from a substrate can be mentioned.
  • the light-emitting layer is laminated in contact with the absorption layer, and the absorption layer has a refractive index of 1.60 to 2.50 at a wavelength of 550 nm and an extinction coefficient of 0.20 to 0.50.
  • the absorption layer 2 is the light-emitting layer, and the transparent layer 3 has a refractive index of 1.60 to 2.50 at a wavelength of 550 nm.
  • a second embodiment of the present invention includes the above-described optical thin film laminate of the present invention, wherein an absorbing layer is provided between the metal wiring formed on the substrate and the insulating layer formed on the metal wiring. An electric circuit is formed in contact with the metal wiring and the insulating layer.
  • the absorbing layer is the absorbing layer 2 and the lower electrode is the transparent layer 3 .
  • FIG. 4(a) shows a plan view of the electric circuit 9 of the second embodiment
  • FIG. 4(b) shows a partial cross-sectional view thereof [a cross-sectional view of the dashed line portion in FIG. 4(a)].
  • the electric circuit 9 includes a first substrate 401 and a second substrate 402 which are arranged to face each other, and an electric circuit between the first substrate 401 and the second substrate 402.
  • a liquid crystal layer 403 is provided on the first substrate 401 , and metal wirings (gate wirings 404 and auxiliary capacitor wirings 405 ) are arranged on the first substrate 401 .
  • a first absorption layer 406 is laminated on the gate wiring 404 .
  • a second absorption layer 413 is laminated on the auxiliary capacitance wiring 405 , a source electrode 408 , a drain electrode 409 and a pixel electrode 410 are arranged with a gate insulating film 407 interposed therebetween.
  • a semiconductor element 411 is located.
  • the first absorption layer 406 and the second absorption layer 413 and the gate insulating film 407 are arranged in contact with each other.
  • a third absorption layer 412 is laminated on the source electrode 408 and a fourth absorption layer 416 is laminated on the drain electrode 409 .
  • a protective film 414 is arranged in contact with the third absorption layer 412 and the fourth absorption layer 416 .
  • a color filter 415 is arranged between the liquid crystal layer 403 and the second substrate 402 .
  • FIG. 5(a) shows a plan view of an example of a conventional electric circuit
  • FIG. 5(b) shows a partial cross-sectional view thereof [a cross-sectional view of the broken line portion in FIG. 5(a)].
  • the electric circuit 10 shown in FIG. 5B is not arranged so that the absorption layers are in contact with the gate wiring 404, the auxiliary capacitor wiring 405, the source electrode 408, and the drain electrode 409, respectively. It is different from the electric circuit 9 shown in (b).
  • the electric circuit 10 includes a first substrate 401 and a second substrate 402 arranged to face each other, and a first substrate 401 and a second substrate 402.
  • a liquid crystal layer 403 is provided therebetween, and metal wirings (gate wirings 404 and auxiliary capacitance wirings 405) are arranged on the first substrate 401 .
  • a source electrode 408, a drain electrode 409, and a pixel electrode 410 are arranged above the gate wiring 404 and the auxiliary capacitance wiring 405 with a gate insulating film 407 interposed therebetween.
  • a semiconductor element 411 is positioned between.
  • a protective film 414 is arranged between the source electrode 408 and the drain electrode 409 and the liquid crystal layer 403 .
  • a color filter 415 is arranged between the liquid crystal layer 403 and the second substrate 402 .
  • the metal wiring (drain electrode 409, source electrode 408, auxiliary capacitor wiring 405, gate wiring 404) is formed of a metal material containing copper (Cu).
  • a metal material containing copper Cu
  • the first absorption layer 406, the second absorption layer 413, the third absorption layer 412, and the fourth absorption layer 416 have a refractive index of 1.60 at a wavelength of 550 nm. ⁇ 2.50 and an absorption layer with an extinction coefficient of 0.20 to 0.50.
  • the gate insulating film 407 and protective film 414 are transparent layers having a refractive index of 1.60 to 2.50 at a wavelength of 550 nm.
  • the surface of the metal wiring can be blackened by the absorption layer to prevent a brown appearance.
  • the interface reflection between the gate insulating film 407, the protective film 414, and the metal wiring is suppressed, the reflection of the external light 420 is reduced, and a deeper black color can be exhibited.
  • Materials exemplified as the material of the substrate 6 can be used for the first substrate 401 and the second substrate 402 .
  • glass is preferable in terms of adhesion to the metal wiring.
  • the materials exemplified as the material for the absorbent layer 2 can be used.
  • the first absorption layer 406, the second absorption layer 413, the third absorption layer 412, and the fourth absorption layer 416 may be conductors or insulators. can be adjusted accordingly.
  • Materials exemplified as the material of the transparent layer 3 can be used for the gate insulating film 407 and the protective film 414 .
  • the materials for the transparent layer 3 described above SiN x , AlO x , AlN, ZnO, TiO 2 , Ga 2 O 3 , Y 2 O 3 , HfO 2 and Ta 2 O 5 are preferable in terms of refractive index.
  • a third embodiment of the present invention is a thin film transistor array including the optical thin film laminate of the present invention described above and having a plurality of thin film transistors provided on a substrate, the thin film transistors comprising a semiconductor layer, an absorption layer, the semiconductor A thin film transistor array comprising an insulating layer disposed between a layer and said absorber layer.
  • the absorption layer is the absorption layer 2 and the insulating layer is the transparent layer 3 .
  • FIG. 6(a) shows a partial cross-sectional view of the thin film transistor array 15 of the third embodiment.
  • the thin film transistor array 15 includes a semiconductor layer 602, an absorption layer 603, and a light shielding insulating layer 604 disposed between the semiconductor layer 602 and the absorption layer 603 on a substrate 601. .
  • a gate insulating layer 605 , a source electrode 606 , and a drain electrode 607 are provided over the light-shielding insulating layer 604 .
  • a source electrode 606 and a drain electrode 607 are electrically connected to the semiconductor layer 602 .
  • a gate electrode 608 is provided on the gate insulating layer 605, and an interlayer insulating layer 609 and a protective layer 610 are sequentially stacked.
  • a pixel electrode 611 electrically connected to the drain electrode 607 is provided over the protective layer 610 .
  • FIG. 6B A partial cross-sectional view of an example of a conventional thin film transistor array 16 is shown in (b) of FIG.
  • the thin film transistor array 16 of FIG. 6B differs from the thin film transistor array 15 of the third embodiment in that a light shielding layer 612 is arranged instead of the absorption layer 603 in the thin film transistor array 15 of the third embodiment. is different.
  • An example of such a conventional thin film transistor array is disclosed in Japanese Patent Application Laid-Open No. 8-220558.
  • the light shielding layer 612 is arranged so as to be in contact with the semiconductor layer 602 to block light.
  • the conventional thin film transistor array 16 has a problem that it cannot completely prevent the stray light 62 from entering the semiconductor layer 602 .
  • the light-shielding layer 612 is a layer containing metal, it forms a capacitance with the source electrode 606 and the drain electrode 607, causing crosstalk and degrading image quality.
  • the absorption layer 603 has a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm.
  • the light shielding insulating layer 604 is a transparent layer having a refractive index of 1.60 to 2.50 at a wavelength of 550 nm. This suppresses reflection of incident light at the interface between the light shielding insulating layer 604 and the absorbing layer 603, and the stray light 62 can be sufficiently absorbed.
  • formation of capacitance with the source electrode 606 and the drain electrode 607 can be suppressed, and crosstalk can be prevented.
  • the material exemplified as the material of the substrate 6 can be used for the substrate 601 .
  • glass is preferable in terms of adhesion to the light shielding film.
  • the material exemplified as the material of the absorbent layer 2 can be used for the absorbent layer 603 .
  • the absorption layer 603 is preferably an insulator from the viewpoint of preventing the above-described capacitance crosstalk.
  • Materials exemplified as the material of the transparent layer 3 can be used for the light shielding insulating layer 604 .
  • the materials for the transparent layer 3 described above SiN x , AlO x , AlN, ZnO, TiO 2 , Ga 2 O 3 , Y 2 O 3 , HfO 2 and Ta 2 O 5 are preferable in terms of refractive index.
  • An optical thin film laminate is obtained by laminating an optical thin film including a transparent layer and an absorbing layer on the surface of a substrate.
  • Optical thin films can be manufactured using coating, deposition and methods known in the art.
  • the optical thin film can be applied by physical vapor deposition (eg, vacuum deposition, ion plating, sputtering) or chemical vapor deposition (eg, thermal CVD, plasma CVD, optical CVD).
  • the sputtering method is preferable because it is excellent in uniformity of film thickness and productivity.
  • the manufacturing method of the present invention is a method for manufacturing an optical thin film laminate including forming an optical thin film layer on a substrate. 50 and an extinction coefficient of 0.20 to 0.50, and a refractive index of 1.60 to 2.50 at a wavelength of 550 nm to be laminated in contact with the absorption layer
  • the method is characterized by including forming a transparent layer.
  • the absorption layer having a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm in the manufacturing method of the present invention is formed by a sputtering method.
  • the composition of the sputtering target material is adjusted according to the desired composition of the absorption layer.
  • the composition of the sputtering target material is similar to the composition of the absorption layer 2 described above.
  • an alloy material target may be used, chips processed into thin plates may be uniformly arranged on a pure metal target, or a pure metal target may be divided into pieces and uniformly backed. You may arrange
  • the sputtering target material contains 10 to 95 atomic % of at least one element selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ru and Ag. is preferred, more preferably 12 to 90 atomic %, still more preferably 15 to 85 atomic %.
  • Example 1 ⁇ Preparation of optical thin film laminate> An optical thin film laminate having a square plate glass (AN-100 manufactured by AGC) of 50 mm ⁇ 50 mm ⁇ 0.5 mm as a substrate, and having an absorption layer and a transparent layer composed of the materials shown in Table 1 on one surface of the substrate. were sequentially laminated by a sputtering method.
  • Examples 1 to 11 are examples, and Examples 12 to 18 are comparative examples.
  • the interfacial reflectance was obtained by optical calculation at the contact surface between the transparent layer and the absorbing layer.
  • an absorption layer having a refractive index of 1.60 to 2.50 at a wavelength of 550 nm and an extinction coefficient of 0.20 to 0.50 is laminated in contact with the absorption layer.
  • Example 2 An experimental example of etching of the absorber layer is shown. Examples 19-23 are examples.
  • a spin coater was used to apply a photoresist (OFPR800-LB manufactured by Tokyo Ohka Kogyo Co., Ltd.) on each absorption layer. Specifically, after dropping the photoresist, the substrate was first rotated at 500 rpm for 5 seconds and then at 2500 rpm for 20 seconds to apply the photoresist.
  • a photoresist OFPR800-LB manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • the substrate was then heated on a hot plate at 110° C. for 90 seconds to adhere the photoresist to the black film.
  • the photoresist was exposed using an exposure machine so as to obtain a desired pattern.
  • the photoresist was developed for 30 seconds using a developing solution (NMD-W manufactured by Tokyo Ohka Kogyo Co., Ltd.) to remove unnecessary photoresist portions.
  • the substrate was heated on a hot plate at 120° C. for 60 seconds to re-adhere the photoresist to the black film.
  • ⁇ Resist stripping ⁇ step measurement> After the absorption layer on the substrate was etched by each etching method to be described later, the photoresist was peeled off and the step was measured with a stylus type step gauge. The photoresist was removed by immersing the substrate in acetone at room temperature for 3 minutes, removing the resist, immersing the substrate in isopropyl alcohol for 3 minutes, rinsing the substrate in ultrapure water, and then drying the substrate.
  • Example 19 The substrate was introduced into a reactive ion etching apparatus (DEM-451 manufactured by Niommen Anelva), and the absorption film formed to a thickness of 200 nm under the conditions of Example 1 was dry-etched.
  • a reactive ion etching apparatus DEM-451 manufactured by Niommen Anelva
  • As an etching gas 40 sccm of CF 4 gas and 10 sccm of O 2 gas were flowed, the pressure was maintained at 27 Pa, and etching was performed for 180 seconds with a 250 W RF discharge. After stripping the photoresist, the step was measured with a stylus profilometer and found to be etched by 72 nm.
  • Example 20 The substrate was introduced into a reactive ion etching apparatus (DEM-451 manufactured by Niommen Anelva), and the absorption film formed to a thickness of 200 nm under the conditions of Example 1 was dry-etched. 50 sccm of C 2 F 6 gas was flowed as an etching gas, the pressure was maintained at 13 Pa, and etching was performed for 180 seconds with a 250 W RF discharge. After peeling off the photoresist, the step was measured with a stylus profilometer and found to be etched by 20 nm.
  • DEM-451 reactive ion etching apparatus manufactured by Niommen Anelva
  • Example 3 (Metal Cu + CuO raw material) A mixed powder of metallic Cu powder, CuO powder and amorphous SiO 2 powder at a molar ratio of 52.5:17.5:30, respectively, was used as a raw material to prepare a sintered body by a hot pressing method.
  • the conditions for the hot press treatment were a heat treatment temperature of about 950° C. and a pressure of about 8 MPa.
  • XRD measurement revealed that the obtained sintered body contained Cu 2 O crystals and Cu crystals. Moreover, the resistivity of the sintered body was 2.8 ⁇ 10 ⁇ 4 ⁇ cm. This sintered body was processed into a disk shape with a diameter of 152.4 mm and a thickness of 5 mm, and then bonded to a copper backing plate to prepare a sputtering target.
  • a sintered body was produced by a hot press method using a mixed powder of metal Cu powder and amorphous SiO 2 powder at a molar ratio of 70:30, respectively, as a raw material. XRD measurement revealed that the obtained sintered body contained Cu crystals. Moreover, the resistivity of the sintered body was 4.7 ⁇ 10 ⁇ 5 ⁇ cm.
  • CuO raw material A mixed powder of CuO powder and amorphous SiO 2 powder at a molar ratio of 70:30, respectively, was used as a raw material to prepare a sintered body by a hot press method. Also, the resistivity of the sintered body was greater than 1 ⁇ 10 ⁇ 3 ⁇ cm.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

The purpose of the present invention is to provide: an optical thin film laminate in which interface reflection is suppressed in the contact surface of an absorption layer with high light-shielding properties and a transparent layer with a high refractive index; and a method for producing the optical thin film laminate. The present invention relates to an optical thin film laminate that includes a substrate and an optical thin film layer and in which the optical thin film layer has a layer structure comprising an absorption layer with a refractive index of 1.60-2.50 at a wavelength of 550 nm and an extinction coefficient of 0.20-0.50, and a transparent layer that is layered in contact with the absorption layer and has a refractive index of 1.60-2.50 at a wavelength of 550 nm. The present invention also relates to a method for producing the optical thin film laminate.

Description

光学薄膜積層体及びその製造方法Optical thin film laminate and its manufacturing method
 本発明は、光学薄膜積層体及びその製造方法に関する。 The present invention relates to an optical thin film laminate and its manufacturing method.
 従来から、基材上に複数層を積層してなる光学薄膜層を有する光学薄膜積層体がある。このような光学薄膜積層体は、例えば、OLED(Organic Light Emitting Diode)、TFT(Thin Film Transistor)及び有機エレクトロルミネッセンス(有機EL)などの表示素子、有機EL素子、量子ドットディスプレイ、TFTアレイ及び薄膜太陽電池等の光学素子に用いられている。 Conventionally, there is an optical thin film laminate having an optical thin film layer formed by laminating a plurality of layers on a base material. Such optical thin film laminates include, for example, display elements such as OLED (Organic Light Emitting Diode), TFT (Thin Film Transistor) and organic electroluminescence (organic EL), organic EL elements, quantum dot displays, TFT arrays and thin films. It is used in optical elements such as solar cells.
 OLED素子を構成する1対の電極のうち、表示素子として光を取り出す側に位置する電極は透明薄膜からなるが、反対側に位置する電極は金属薄膜からなる。発光時または非発光時に関わらず、外部から入射した光の一部は対向電極によって光取り出し面側に反射される。このため、表示素子の視認性やコントラストが低下する。そこで、従来は光を取り出す側に円偏光板が設けられており、対向電極からの反射光は円偏光板に遮蔽され、表示素子の視認性やコントラストの改善が図られている。 Of the pair of electrodes that constitute the OLED element, the electrode located on the side from which light is extracted as the display element is made of a transparent thin film, while the electrode located on the opposite side is made of a metal thin film. Regardless of whether light is emitted or not, part of light incident from the outside is reflected by the counter electrode toward the light extraction surface. As a result, the visibility and contrast of the display element are lowered. Therefore, conventionally, a circularly polarizing plate is provided on the side from which light is extracted, and the reflected light from the counter electrode is shielded by the circularly polarizing plate, thereby improving the visibility and contrast of the display element.
 また、TFTアレイなど光学素子では、透明基材に透明電極材料からなる配線が形成された導電基板が用いられている。導電基板の配線には、従来からITOなどの透明電極材料が適用されてきたが、パネルの大型化に伴い、電気抵抗が低い銅などの金属材料も使用されている。 In addition, in optical elements such as TFT arrays, a conductive substrate is used in which wiring made of a transparent electrode material is formed on a transparent base material. Conventionally, transparent electrode materials such as ITO have been used for the wiring of the conductive substrate, but as the size of the panel increases, metal materials such as copper, which have low electric resistance, are also being used.
日本国特開平7-142170号公報Japanese Patent Laid-Open No. 7-142170
 しかしながら、円偏光板は高価であり、製品価格が高くなるという問題や表示素子の厚みを薄くできない問題などがある。また、液晶用TFTアレイではディスプレイがオフ状態の時に光取り出し面側から入射した光の一部が銅配線で反射されて、赤みを帯びた色彩として見えるという問題もある。 However, circularly polarizing plates are expensive, and there are problems such as high product prices and the inability to reduce the thickness of the display element. Another problem with the TFT array for liquid crystals is that when the display is in an off state, part of the light incident from the light extraction surface side is reflected by the copper wiring, resulting in a reddish color.
 したがって、本発明は、遮光性の高い吸収層を高屈折率の透明層と隣接させて設けることで、反射を抑制し得る、光学薄膜積層体及びその製造方法の提供を目的とする。 Therefore, an object of the present invention is to provide an optical thin film laminate and a method for manufacturing the same, which can suppress reflection by providing an absorption layer with high light shielding properties adjacent to a transparent layer with a high refractive index.
 上記課題を検討したところ、本発明者らは、吸収層と接するように配置された透明層の屈折率に合わせて、該吸収層の光学定数を調整することにより、該吸収層と該透明層との接触面における界面反射を抑制し、低反射を実現できることを見出し、本発明をなした。 As a result of studying the above problems, the present inventors have found that by adjusting the optical constant of the absorption layer in accordance with the refractive index of the transparent layer disposed so as to be in contact with the absorption layer, the absorption layer and the transparent layer The present inventors have found that it is possible to suppress interfacial reflection on the contact surface with and realize low reflection, and have made the present invention.
 すなわち、本発明は、基板と、光学薄膜層とを含み、
 前記光学薄膜層が、波長550nmにおける屈折率が1.60~2.50で、且つ消衰係数が0.20~0.50である吸収層と、前記吸収層に接して積層される波長550nmにおける屈折率が1.60~2.50である透明層と、を備える層構成を含む、光学薄膜積層体に関する。
That is, the present invention includes a substrate and an optical thin film layer,
The optical thin film layer includes an absorption layer having a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm, and a wavelength of 550 nm laminated in contact with the absorption layer. and a transparent layer having a refractive index of 1.60 to 2.50.
 本発明の光学薄膜積層体は、前記吸収層の物理膜厚が200~500nmであることが好ましい。 In the optical thin film laminate of the present invention, the absorption layer preferably has a physical thickness of 200 to 500 nm.
 本発明の光学薄膜積層体は、前記吸収層の抵抗率が1×10-1Ωcm以上であることが好ましい。 In the optical thin film laminate of the present invention, it is preferable that the resistivity of the absorption layer is 1×10 −1 Ωcm or more.
 本発明の光学薄膜積層体は、前記吸収層が、少なくとも2種以上の金属カチオンを含む、酸化物、窒化物、酸窒化物及び酸炭化物から選ばれる少なくとも1を含むことが好ましい。 In the optical thin film laminate of the present invention, the absorption layer preferably contains at least one selected from oxides, nitrides, oxynitrides and oxycarbides containing at least two kinds of metal cations.
 本発明の光学薄膜積層体は、前記吸収層が、Cr、Mn、Fe、Co、Ni、Cu、Ru及びAgからなる群より選択される少なくとも1種以上の元素を含むことが好ましい。 In the optical thin film laminate of the present invention, the absorption layer preferably contains at least one element selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ru and Ag.
 本発明の光学薄膜積層体は、前記吸収層がCr及びSiを含み、前記吸収層におけるCr及びSiの合計量に対するCrの原子数比は、0.10以上、0.70以下の範囲内であることが好ましい。 In the optical thin film laminate of the present invention, the absorption layer contains Cr and Si, and the atomic ratio of Cr to the total amount of Cr and Si in the absorption layer is in the range of 0.10 or more and 0.70 or less. Preferably.
 本発明の光学薄膜積層体は、前記吸収層がCr及びAlを含み、前記吸収層におけるCr及びAlの合計量に対するCrの原子数比は、0.10以上、0.50以下の範囲内であることが好ましい。 In the optical thin film laminate of the present invention, the absorption layer contains Cr and Al, and the atomic ratio of Cr to the total amount of Cr and Al in the absorption layer is in the range of 0.10 or more and 0.50 or less. Preferably.
 本発明の光学薄膜積層体は、前記吸収層がCu及びSiを含み、前記吸収層におけるCu及びSiの合計量に対するCuの原子数比は、0.10以上、0.95以下の範囲内であることが好ましい。 In the optical thin film laminate of the present invention, the absorption layer contains Cu and Si, and the atomic ratio of Cu to the total amount of Cu and Si in the absorption layer is in the range of 0.10 or more and 0.95 or less. Preferably.
 本発明の光学薄膜積層体は、前記吸収層がCu及びAlを含み、前記吸収層におけるCu及びAlの合計量に対するCuの原子数比は、0.30以上、0.95以下の範囲内であることが好ましい。 In the optical thin film laminate of the present invention, the absorption layer contains Cu and Al, and the atomic ratio of Cu to the total amount of Cu and Al in the absorption layer is in the range of 0.30 or more and 0.95 or less. Preferably.
 本発明の光学薄膜積層体は、前記吸収層は、エッチングによってパターニングが可能であることが好ましい。 In the optical thin film laminate of the present invention, it is preferable that the absorption layer can be patterned by etching.
 また、本発明は、基板と、光学薄膜層とを含み、
 前記光学薄膜層が、少なくとも、吸収層、下部電極、発光層及び上部電極を含む、基板上方に光を取り出す発光素子であって、
 前記下部電極は前記吸収層に接して積層され、
 前記吸収層が、波長550nmにおける屈折率が1.60~2.50であり、且つ消衰係数が0.20~0.50である吸収層であり、
 前記下部電極が、前記波長550nmにおける屈折率が1.60~2.50である透明層である、本発明の光学薄膜積層体を含む、発光素子に関する。
Further, the present invention includes a substrate and an optical thin film layer,
A light-emitting device in which the optical thin film layer includes at least an absorption layer, a lower electrode, a light-emitting layer and an upper electrode, and extracts light above a substrate,
the lower electrode is laminated in contact with the absorption layer;
The absorption layer has a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm,
The present invention relates to a light emitting device including the optical thin film laminate of the present invention, wherein the lower electrode is a transparent layer having a refractive index of 1.60 to 2.50 at a wavelength of 550 nm.
 本発明は、基板と、光学薄膜層とを含み、
 前記光学薄膜層が、金属配線と前記金属配線の上部に積層された絶縁層との間に、吸収層を含み、
 前記吸収層は、前記金属配線及び前記絶縁層に接するように積層され、
 前記吸収層が、波長550nmにおける屈折率が1.60~2.50であり、且つ消衰係数が0.20~0.50である吸収層であり、
 前記絶縁層が、波長550nmにおける屈折率が1.60~2.50である透明層である、本発明の光学薄膜積層体を含む電気回路に関する。
The present invention includes a substrate and an optical thin film layer,
the optical thin film layer includes an absorption layer between a metal wire and an insulating layer laminated on top of the metal wire;
The absorption layer is laminated so as to be in contact with the metal wiring and the insulating layer,
The absorption layer has a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm,
The present invention relates to an electric circuit including the optical thin film laminate, wherein the insulating layer is a transparent layer having a refractive index of 1.60 to 2.50 at a wavelength of 550 nm.
 本発明は、基板と、複数の薄膜トランジスタとを含み、
 前記薄膜トランジスタは、半導体層、吸収層、前記半導体層と前記吸収層との間に配置された絶縁層を含み、
 前記絶縁層は前記吸収層に接するように積層され、
 前記吸収層が、波長550nmにおける屈折率が1.60~2.50であり、且つ消衰係数が0.20~0.50である吸収層であり、
 前記絶縁層が、波長550nmにおける屈折率が1.60~2.50である前記透明層である、本発明の光学薄膜積層体を含む、薄膜トランジスタアレイに関する。
The present invention includes a substrate and a plurality of thin film transistors,
the thin film transistor includes a semiconductor layer, an absorption layer, and an insulating layer disposed between the semiconductor layer and the absorption layer;
The insulating layer is laminated so as to be in contact with the absorbing layer,
The absorption layer has a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm,
The thin film transistor array includes the optical thin film laminate of the present invention, wherein the insulating layer is the transparent layer having a refractive index of 1.60 to 2.50 at a wavelength of 550 nm.
 本発明は、基板上に光学薄膜層を形成することを含む光学薄膜積層体の製造方法であって、
 前記光学薄膜層の形成は、
 波長550nmにおける屈折率が1.60~2.50で、且つ消衰係数が0.20~0.50である吸収層を形成すること及び
 前記吸収層に接して積層されるように波長550nmにおける屈折率が1.60~2.50である透明層を形成することを含む、光学薄膜積層体の製造方法に関する。
The present invention provides a method for manufacturing an optical thin film laminate comprising forming an optical thin film layer on a substrate, comprising:
The formation of the optical thin film layer includes:
forming an absorption layer having a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm; The present invention relates to a method for producing an optical thin film laminate, including forming a transparent layer having a refractive index of 1.60 to 2.50.
 また、本発明は、本発明の光学薄膜積層体の製造方法に用いるスパッタリングターゲット材料であって、
 波長550nmにおける屈折率が1.60~2.50であり、且つ消衰係数が0.20~0.50である前記吸収層をスパッタリング法により形成するためのスパッタリングターゲット材料に関する。
The present invention also provides a sputtering target material used in the method for producing an optical thin film laminate of the present invention,
The present invention relates to a sputtering target material for forming the absorption layer having a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm by sputtering.
 本発明の光学薄膜積層体は、基板上に光学薄膜層が設けられ、該光学薄膜層が、屈折率及び消衰係数が特定範囲である吸収層と、該吸収層に接して積層される、屈折率が特定範囲である透明層と、を備える層構成を含むことにより、該透明層と該吸収層との接触面における界面反射が抑制される。これにより、本発明の光学薄膜積層体は、該透明層と該吸収層との接触面への入射光に対して該吸収層による低反射を実現できる。 The optical thin film laminate of the present invention comprises an optical thin film layer provided on a substrate, the optical thin film layer being laminated in contact with an absorbing layer having a specific range of refractive index and extinction coefficient, and being in contact with the absorbing layer. By including a layer structure including a transparent layer having a refractive index within a specific range, interfacial reflection at the contact surface between the transparent layer and the absorption layer is suppressed. As a result, the optical thin film laminate of the present invention can achieve low reflection by the absorption layer with respect to light incident on the contact surface between the transparent layer and the absorption layer.
図1の(a)は、透明層の屈折率(n2)、吸収層の屈折率(n1)、消衰係数(k1)との相関関係を解析した図である。図1の(b)は、反射率1%を満たすn1とk1との関係を示す図である。FIG. 1(a) is a diagram obtained by analyzing the correlation between the refractive index (n2) of the transparent layer, the refractive index (n1) of the absorbing layer, and the extinction coefficient (k1). FIG. 1(b) is a diagram showing the relationship between n1 and k1 that satisfy a reflectance of 1%. 図2の(a)~(d)は、本発明の光学薄膜積層体の一実施形態を示す断面図である。2(a) to 2(d) are sectional views showing an embodiment of the optical thin film laminate of the present invention. 図3の(a)は、本発明の第1の実施形態の発光素子を示す一部断面図である。図3の(b)は従来の発光素子の一例の一部断面図である。FIG. 3(a) is a partial cross-sectional view showing the light emitting device according to the first embodiment of the present invention. FIG. 3(b) is a partial cross-sectional view of an example of a conventional light emitting device. 図4の(a)は、本発明の第2の実施形態の電気回路を示す平面図であり、図4の(b)は該電気回路の一部断面図である。FIG. 4(a) is a plan view showing an electric circuit according to a second embodiment of the present invention, and FIG. 4(b) is a partial cross-sectional view of the electric circuit. 図5の(a)は、従来の電気回路を示す平面図であり、図5の(b)は該電気回路の一部断面図である。FIG. 5(a) is a plan view showing a conventional electric circuit, and FIG. 5(b) is a partial sectional view of the electric circuit. 図6の(a)は、本発明の第3の実施形態の薄膜トランジスタアレイの一部断面図を示す。図6の(b)は従来の薄膜トランジスタアレイの一例の一部断面図を示す。FIG. 6(a) shows a partial cross-sectional view of a thin film transistor array according to a third embodiment of the present invention. FIG. 6(b) shows a partial cross-sectional view of an example of a conventional thin film transistor array.
 本明細書において数値範囲を示す「~」とは、特段の定めがない限り、その前後に記載された数値を下限値及び上限値として含む意味で使用される。 In this specification, the term "~" used to indicate a numerical range is used to include the numerical values before and after it as lower and upper limits unless otherwise specified.
 本発明者らが、低反射実現のための透明層の屈折率と吸収層の光学定数の関係について解析したところ、図1の(a)に示す相関関係を有することがわかった。図1の(a)は、吸収層と、該吸収層に接するように積層した透明層から構成される光学薄膜層に対し、透明層側から光を入射して透明層の屈折率(n2)、吸収層の屈折率(n1)、消衰係数(k1)との相関関係を解析したものである。図1の(b)は、反射率1%を満たす、透明層の屈折率(n2)と、吸収層の光学定数(屈折率n1、消衰係数k1)との関係を示す。 When the present inventors analyzed the relationship between the refractive index of the transparent layer and the optical constant of the absorption layer for realizing low reflection, it was found that there is a correlation shown in FIG. 1(a). (a) of FIG. 1 shows the refractive index (n2) of the transparent layer when light is incident on the optical thin film layer composed of an absorption layer and a transparent layer laminated so as to be in contact with the absorption layer from the transparent layer side. , the refractive index (n1) and the extinction coefficient (k1) of the absorption layer. FIG. 1(b) shows the relationship between the refractive index (n2) of the transparent layer and the optical constants (refractive index n1, extinction coefficient k1) of the absorbing layer, which satisfy a reflectance of 1%.
 本発明者らは、前記相関関係に基づき、透明層と接して配置される吸収層の光学定数を、透明層の屈折率に合わせて調整し、特定範囲とすることにより、透明層と吸収層との接触面における界面反射を抑制し得ることを見出した。 Based on the above correlation, the present inventors adjusted the optical constant of the absorption layer placed in contact with the transparent layer in accordance with the refractive index of the transparent layer to a specific range, whereby the transparent layer and the absorption layer It was found that the interfacial reflection on the contact surface with can be suppressed.
 本発明の光学薄膜積層体は、波長550nmにおける屈折率が1.60~2.50で、且つ消衰係数が0.20~0.50である吸収層と該吸収層に接して積層される波長550nmにおける屈折率が1.60~2.50である透明層とから構成される構造を光学薄膜層に含むことにより、該透明層と該吸収層との接触面に入射する光の界面反射を低減し、該吸収層における光吸収量を増加させ、低反射を実現できる。 The optical thin film laminate of the present invention comprises an absorption layer having a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm, and is laminated in contact with the absorption layer. Interfacial reflection of light incident on the contact surface between the transparent layer and the absorption layer by including a structure composed of a transparent layer having a refractive index of 1.60 to 2.50 at a wavelength of 550 nm in the optical thin film layer. can be reduced, the amount of light absorbed in the absorption layer can be increased, and low reflection can be realized.
 本発明の光学薄膜積層体において、互いに接して積層している吸収層と透明層との接触面に入射する光の界面反射率は3%以下であることが好ましく、より好ましくは1%以下、さらに好ましくは0.5%以下である。界面反射率は、光学計算により求める。 In the optical thin film laminate of the present invention, the interface reflectance of light incident on the contact surface between the absorbing layer and the transparent layer which are laminated in contact with each other is preferably 3% or less, more preferably 1% or less. More preferably, it is 0.5% or less. The interface reflectance is determined by optical calculation.
<光学薄膜積層体>
 以下、本発明の実施の形態について、図面を参照して説明する。なお、図面は図解のために提供されるものであり、本発明はそれらの図面に何ら限定されない。
<Optical thin film laminate>
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the drawings are provided for illustrative purposes and the present invention is in no way limited to those drawings.
 図2の(a)~(d)は、本発明の光学薄膜積層体の一態様及びその変形例を示す断面図である。図2の(a)に示す光学薄膜積層体1は、基板6上に、光学薄膜層11が設けられ、光学薄膜層11は、吸収層2と該吸収層2に接するように積層された透明層3とを備える層構成を含む。 (a) to (d) of FIG. 2 are cross-sectional views showing one mode of the optical thin film laminate of the present invention and its modification. The optical thin film layered product 1 shown in FIG. 2( a ) has an optical thin film layer 11 provided on a substrate 6 , and the optical thin film layer 11 is an absorption layer 2 and a transparent layer laminated so as to be in contact with the absorption layer 2 . and layer 3.
 図2の(a)に示す態様の変形例として、図2の(c)に示すように、光学薄膜積層体200は、第1の基板201上に、光学薄膜層202が設けられ、該光学薄膜層202は第1の吸収層203、第2の吸収層204、第1の透明層205、第2の透明層206が順次積層された層構成を含み、さらに第2の基板207が積層されていてもよい。 As a modification of the embodiment shown in FIG. 2A, as shown in FIG. The thin film layer 202 includes a layer structure in which a first absorption layer 203, a second absorption layer 204, a first transparent layer 205, and a second transparent layer 206 are sequentially laminated, and a second substrate 207 is further laminated. may be
 図2の(b)に示すように、光学薄膜積層体208は、基板209上に、光学薄膜層210が設けられ、該光学薄膜層210は、第1の吸収層211、第1の透明層212、第2の吸収層213、第2の透明層214が順次積層されたものであってもよい。 As shown in FIG. 2B, the optical thin film laminate 208 has an optical thin film layer 210 provided on a substrate 209. The optical thin film layer 210 includes a first absorption layer 211, a first transparent layer, and a first absorption layer 211. 212, the second absorption layer 213, and the second transparent layer 214 may be sequentially laminated.
 図2の(b)に示す態様の変形例として、図2の(d)に示すように、光学薄膜積層体215は、基板216上に、光学薄膜層217が設けられ、該光学薄膜層217は、第1の吸収層218及び第1の透明層219が順次積層され、特定の機能を有する機能層220を介して、第2の吸収層221及び第2の透明層222、が順次積層されていてもよい。 As a modification of the embodiment shown in FIG. 2B, as shown in FIG. A first absorption layer 218 and a first transparent layer 219 are sequentially laminated, and a second absorption layer 221 and a second transparent layer 222 are sequentially laminated via a functional layer 220 having a specific function. may be
 本発明における光学薄膜積層体において、前記吸収層と該吸収層に接して積層される前記透明層とから構成される層構成の数は1であってもよいし、複数であってもよく、使用する材料及び光学薄膜積層体の用途によって適宜決定できる。 In the optical thin film laminate according to the present invention, the number of layers composed of the absorption layer and the transparent layer laminated in contact with the absorption layer may be 1 or may be plural, It can be appropriately determined depending on the material to be used and the application of the optical thin film laminate.
 また、光学薄膜積層体に複数の前記層構成が含まれる場合、該層構成を構成する吸収層及び透明層の光学定数は本発明において規定する範囲内であれば、互いに異なっていてもよく、使用する材料及び光学薄膜積層体の用途によって適宜決定できる。 In addition, when the optical thin film laminate includes a plurality of the above-mentioned layer structures, the optical constants of the absorption layer and the transparent layer constituting the layer structure may be different from each other as long as they are within the range specified in the present invention. It can be appropriately determined depending on the material to be used and the application of the optical thin film laminate.
 光学薄膜層11を構成する各材料における屈折率及び消衰係数の光学定数は、分光エリプソメトリー法を用い、透明層3の試料、吸収層2の試料の表面から反射してくる光の偏光状態の変化を測定することにより求められる。 The optical constants of the refractive index and the extinction coefficient of each material constituting the optical thin film layer 11 are determined using the spectroscopic ellipsometry method. is determined by measuring the change in
 本明細書において「消衰係数」とは、光がある物質に入射したとき、その物質がどれくらいの光を吸収するのかを示す定数をいい、ベールの法則によれば、物質をある距離通過したときの光の強度Iと入射した光の強度Iと消衰係数kとの間には次式の関係がある。
 I=I-αZ
 α=4πk/λ
 (z:光の進入の深さ、α:吸収係数、λ:波長)
 前記式から明らかなように、消衰係数は波長依存性があり、本明細書においては、特に断らない限り、波長550nmにおける消衰係数をいう。
As used herein, the term "extinction coefficient" refers to a constant that indicates how much light a substance absorbs when light is incident on it. There is a relationship of the following equation between the intensity I of the light at the moment, the intensity I0 of the incident light, and the extinction coefficient k.
I=I 0 e −αZ
α=4πk/λ
(z: penetration depth of light, α: absorption coefficient, λ: wavelength)
As is clear from the above formula, the extinction coefficient has wavelength dependence, and in this specification, unless otherwise specified, the extinction coefficient at a wavelength of 550 nm is used.
<<吸収層>>
 吸収層2は、波長550nmにおける屈折率が1.60~2.50であり、且つ消衰係数が0.20~0.50である。屈折率及び消衰係数のいずれか一方でも前記範囲を外れると、吸収層2と透明層3とが接する面に入射する光の反射率を低減できない。吸収層2の波長550nmにおける屈折率及び消衰係数は光学薄膜積層体の用途に応じて前記範囲において適宜決定できる。吸収層2の波長550nmにおける屈折率は、例えば、好ましくは1.7~2.4であり、より好ましくは1.8~2.3である。吸収層の消衰係数は、例えば、好ましくは0.25~0.45であり、より好ましくは0.3~0.4である。
<<Absorptive Layer>>
The absorption layer 2 has a refractive index of 1.60 to 2.50 at a wavelength of 550 nm and an extinction coefficient of 0.20 to 0.50. If either one of the refractive index and the extinction coefficient is out of the above range, the reflectance of light incident on the surface where the absorption layer 2 and the transparent layer 3 are in contact cannot be reduced. The refractive index and extinction coefficient of the absorption layer 2 at a wavelength of 550 nm can be appropriately determined within the above ranges according to the use of the optical thin film laminate. The refractive index of the absorption layer 2 at a wavelength of 550 nm is, for example, preferably 1.7 to 2.4, more preferably 1.8 to 2.3. The extinction coefficient of the absorption layer is, for example, preferably 0.25 to 0.45, more preferably 0.3 to 0.4.
 光学薄膜積層体1が前記吸収層を複数含む場合、その材料、屈折率及び消衰係数は互いに異なっていてもよいし、同一であってもよく、光学薄膜積層体1の用途や吸収層2を設ける目的などに合わせて適宜選択できる。 When the optical thin film laminate 1 includes a plurality of the absorption layers, the materials, refractive indices and extinction coefficients thereof may be different from each other or may be the same. can be appropriately selected according to the purpose of providing the .
 吸収層2の物理膜厚は、200~500nmであることが好ましく、より好ましくは300~450nmである。吸収層2の物理膜厚を200nm以上とすることにより、光吸収機能を十分に発揮できる。また、吸収層2の物理膜厚を500nm以下とすることにより生産性を向上できる。 The physical thickness of the absorption layer 2 is preferably 200-500 nm, more preferably 300-450 nm. By setting the physical film thickness of the absorption layer 2 to 200 nm or more, the light absorption function can be sufficiently exhibited. Further, productivity can be improved by setting the physical film thickness of the absorption layer 2 to 500 nm or less.
 光学薄膜積層体1の用途によっては、吸収層2は抵抗率が高いことが好ましい。その場合、吸収層2の抵抗率は、他の配線や電極と容量結合するのを防ぐ観点から、1×10-1Ωcm以上であることが好ましく、より好ましくは1×10Ωcm以上、さらに好ましくは1×10Ωcm以上である。 Depending on the application of the optical thin film laminate 1, the absorption layer 2 preferably has a high resistivity. In that case, the resistivity of the absorption layer 2 is preferably 1×10 −1 Ωcm or more, more preferably 1×10 2 Ωcm or more, from the viewpoint of preventing capacitive coupling with other wirings or electrodes. It is preferably 1×10 3 Ωcm or more.
 吸収層2は、少なくとも2種以上の金属カチオンを含む、酸化物、窒化物、酸窒化物及び酸炭化物から選ばれる少なくとも1を含むことが好ましい。少なくとも2種以上の金属カチオンを含むことにより、吸収層2の屈折率を小さくするとともに、消衰係数を大きくでき、透明層3と吸収層2との接触面における界面反射を抑制できる。 The absorption layer 2 preferably contains at least one selected from oxides, nitrides, oxynitrides and oxycarbides containing at least two kinds of metal cations. By containing at least two kinds of metal cations, the refractive index of the absorbing layer 2 can be decreased, the extinction coefficient can be increased, and interfacial reflection at the contact surface between the transparent layer 3 and the absorbing layer 2 can be suppressed.
 吸収層2に含まれる金属カチオンとしては、消衰係数を大きくする観点から、Cr、Mn、Fe、Co、Ni、Cu、Ru及びAgからなる群より選択される少なくとも1種以上の元素を含むことが好ましく、これらの中でもCr又はCuが好ましい。 The metal cation contained in the absorption layer 2 contains at least one element selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ru and Ag from the viewpoint of increasing the extinction coefficient. Among these, Cr or Cu is preferable.
 吸収層2に含まれる金属カチオンとしては、屈折率を小さくする観点から、Si、Al及びBからなる群より選択される少なくとも1種以上の元素を含むことが好ましく、これらの中でもSi又はAlを含むことがより好ましい。 From the viewpoint of reducing the refractive index, the metal cation contained in the absorption layer 2 preferably contains at least one element selected from the group consisting of Si, Al and B. Among these, Si or Al is preferably contained. It is more preferable to include
 吸収層2は、前記元素のうち、消衰係数が大きいものと、屈折率が小さいものとの組み合わせを少なくとも含むことが好ましい。このような組み合わせとして、具体的には例えば、SiとCr、SiとCu、AlとCr、AlとCuが挙げられる。 The absorption layer 2 preferably contains at least a combination of an element with a large extinction coefficient and an element with a small refractive index among the above elements. Specific examples of such combinations include Si and Cr, Si and Cu, Al and Cr, and Al and Cu.
 吸収層2は、屈折率を小さくし、消衰係数を大きくする観点から、Cr及びSiを含有することが好ましい。この場合、吸収層2におけるCr及びSiの合計量に対するCrの原子数比(Cr/Cr+Si)は、0.10以上0.70以下であることが好ましく、より好ましくは0.15以上0.60以下であり、さらに好ましくは0.20以上0.50以下である。吸収層2におけるCr及びSiの合計量に対するCrの原子数比を前記範囲とすることにより、吸収層2の屈折率を小さくし、消衰係数を大きくできる。 The absorption layer 2 preferably contains Cr and Si from the viewpoint of decreasing the refractive index and increasing the extinction coefficient. In this case, the atomic ratio of Cr to the total amount of Cr and Si in the absorption layer 2 (Cr/Cr+Si) is preferably 0.10 or more and 0.70 or less, more preferably 0.15 or more and 0.60. or less, more preferably 0.20 or more and 0.50 or less. By setting the atomic ratio of Cr to the total amount of Cr and Si in the absorbing layer 2 within the above range, the refractive index of the absorbing layer 2 can be decreased and the extinction coefficient can be increased.
 吸収層2は、屈折率を小さくし、消衰係数を大きくする観点から、Cr及びAlを含有することが好ましい。この場合、吸収層2におけるCr及びAlの合計量に対するCrの原子数比(Cr/Cr+Al)は、0.10以上0.50以下であることが好ましく、より好ましくは0.12以上0.40以下である。さらに好ましくは0.15以上0.30以下である。吸収層2におけるCr及びAlの合計量に対するCrの原子数比を前記範囲とすることにより、吸収層2の屈折率を小さくし、消衰係数を大きくできる。 The absorption layer 2 preferably contains Cr and Al from the viewpoint of decreasing the refractive index and increasing the extinction coefficient. In this case, the atomic ratio of Cr to the total amount of Cr and Al in the absorption layer 2 (Cr/Cr+Al) is preferably 0.10 or more and 0.50 or less, more preferably 0.12 or more and 0.40. It is below. It is more preferably 0.15 or more and 0.30 or less. By setting the atomic ratio of Cr to the total amount of Cr and Al in the absorbing layer 2 within the above range, the refractive index of the absorbing layer 2 can be decreased and the extinction coefficient can be increased.
 吸収層2は、屈折率を小さくし、消衰係数を大きくする観点から、Cu及びSiを含有することが好ましい。この場合、吸収層2におけるCu及びSiの合計量に対するCuの原子数比(Cu/Cu+Si)は、0.10以上0.95以下であることが好ましく、より好ましくは0.20以上0.90以下である。さらに好ましくは0.30以上0.85以下である。吸収層2におけるCu及びSiの合計量に対するCuの原子数比を前記範囲とすることにより、吸収層2の屈折率を小さくし、消衰係数を大きくできる。 The absorption layer 2 preferably contains Cu and Si from the viewpoint of decreasing the refractive index and increasing the extinction coefficient. In this case, the atomic ratio of Cu to the total amount of Cu and Si in the absorption layer 2 (Cu/Cu+Si) is preferably 0.10 or more and 0.95 or less, more preferably 0.20 or more and 0.90. It is below. It is more preferably 0.30 or more and 0.85 or less. By setting the atomic ratio of Cu to the total amount of Cu and Si in the absorbing layer 2 within the above range, the refractive index of the absorbing layer 2 can be decreased and the extinction coefficient can be increased.
 吸収層2は、屈折率を小さくし、消衰係数を大きくする観点から、Cu及びAlを含有することが好ましい。この場合、吸収層2におけるCu及びAlの合計量に対するCuの原子数比(Cu/Cu+Al)は、0.30以上0.95以下であることが好ましく、より好ましくは0.40以上0.90以下である。さらに好ましくは0.50以上0.85以下である。吸収層2におけるCu及びAlの合計量に対するCuの原子数比を前記範囲とすることにより、吸収層2の屈折率を小さくし、消衰係数を大きくできる。 The absorption layer 2 preferably contains Cu and Al from the viewpoint of decreasing the refractive index and increasing the extinction coefficient. In this case, the atomic ratio (Cu/Cu+Al) of Cu to the total amount of Cu and Al in the absorption layer 2 is preferably 0.30 or more and 0.95 or less, more preferably 0.40 or more and 0.90. It is below. It is more preferably 0.50 or more and 0.85 or less. By setting the atomic ratio of Cu to the total amount of Cu and Al in the absorbing layer 2 within the above range, the refractive index of the absorbing layer 2 can be decreased and the extinction coefficient can be increased.
 吸収層2は、エッチングによるパターニング処理が可能であることが好ましい。エッチングの方法は特に限定されず、例えば、ドライエッチング、ウェットエッチング等の従来公知の方法を適宜採用できる。製造コストの観点から、特にディスプレイ製造で用いられているエッチング方法が好ましく、例えばドライエッチングであれば、CFガス、Cガス、CHFガス等を用いるフッ素系ドライエッチ、あるいはClガス、BClガス等を用いる塩素系ドライエッチが好ましい。またウェットエッチングであれば、りん酸・酢酸・硝酸の混酸、フッ化アンモニウム溶液、フッ酸、塩酸、塩化第二鉄、シュウ酸、硫酸、過酸化水素水、等を成分とするエッチング液が好ましい。 Preferably, the absorption layer 2 can be patterned by etching. The etching method is not particularly limited, and conventionally known methods such as dry etching and wet etching can be used as appropriate. From the viewpoint of manufacturing cost , the etching method used in the manufacture of displays is particularly preferable. A chlorine-based dry etch using gas, BCl3 gas, or the like is preferred. For wet etching, an etchant containing a mixed acid of phosphoric acid/acetic acid/nitric acid, ammonium fluoride solution, hydrofluoric acid, hydrochloric acid, ferric chloride, oxalic acid, sulfuric acid, hydrogen peroxide solution, etc. is preferable. .
 吸収層2は、e-αd[α:吸収係数(単位:cm-1)、d:膜厚(単位:nm)]が0.15以下であることが好ましく、より好ましくは0.10以下、さらに好ましくは0.05以下である。吸収層2のe-αdが0.15以下であることにより、界面反射率を低くできる。 The absorption layer 2 preferably has e −αd [α: absorption coefficient (unit: cm −1 ), d: film thickness (unit: nm)] of 0.15 or less, more preferably 0.10 or less. More preferably, it is 0.05 or less. By setting the e -αd of the absorbing layer 2 to 0.15 or less, the interface reflectance can be lowered.
<<透明層>>
 透明層3は、波長550nmにおける屈折率が1.60~2.50の層である。透明層3の波長550nmにおける屈折率は光学薄膜積層体1の用途に応じて前記範囲において適宜決定できる。透明層3の波長550nmにおける屈折率は、例えば、好ましくは1.7~2.3であり、より好ましくは1.8~2.2である。
<<transparent layer>>
The transparent layer 3 is a layer having a refractive index of 1.60 to 2.50 at a wavelength of 550 nm. The refractive index of the transparent layer 3 at a wavelength of 550 nm can be appropriately determined within the above range according to the application of the optical thin film laminate 1 . The refractive index of the transparent layer 3 at a wavelength of 550 nm is, for example, preferably 1.7 to 2.3, more preferably 1.8 to 2.2.
 光学薄膜積層体1が前記透明層を複数含む場合、その材料、屈折率は互いに異なっていてもよいし、同一であってもよく、光学薄膜積層体1の用途や透明層3を設ける目的などに合わせて適宜調整できる。 When the optical thin film laminate 1 includes a plurality of transparent layers, the materials and refractive indices thereof may be different from each other or may be the same. can be adjusted accordingly.
 透明層3の物理膜厚は、特に限定されず、光学薄膜積層体1の用途や透明層3を設ける目的などに合わせて適宜調整でき、例えば、10~1000nmであることが好ましく、より好ましくは20~800nmであり、さらに好ましくは25~500nmである。 The physical thickness of the transparent layer 3 is not particularly limited, and can be appropriately adjusted according to the use of the optical thin film laminate 1 and the purpose of providing the transparent layer 3. For example, it is preferably 10 to 1000 nm, more preferably 10 to 1000 nm. 20 to 800 nm, more preferably 25 to 500 nm.
 透明層3の材料としては、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、Ag、SiN、SiON、PbTe、Y、ThO、Bi、Gd、La、Pr11、HfO、Nd、SiO、ZnO、Sb、ZrO、Ta、CeO、Cr、NbO5、TiO、ZnS、SiC、ZnSe、Sb、Si等、またはこれらの混合物が挙げられる。 Materials for the transparent layer 3 include, for example, ITO (Indium Tin Oxide), IZO ( Indium Zinc Oxide), Ag, SiNx , SiON, PbTe, Y2O3 , ThO2 , Bi2O3 , Gd2O3 . , La2O3 , Pr6O11 , HfO2 , Nd2O3 , SiOx , ZnO , Sb2O3 , ZrO2 , Ta2O5 , CeO2 , Cr2O3 , Nb2O5 , TiO 2 , ZnS , SiC, ZnSe, Sb2S3 , Si, etc., or mixtures thereof.
 透明層3は、e-αd[α:吸収係数(単位:cm-1)、d:膜厚(単位:nm)]が0.80以上であることが好ましく、より好ましくは0.90以上、さらに好ましくは0.95以上である。透明層3のe-αdが0.80以上であることにより、ディスプレイの高輝度化が可能である。 In the transparent layer 3, e −αd [α: absorption coefficient (unit: cm −1 ), d: film thickness (unit: nm)] is preferably 0.80 or more, more preferably 0.90 or more, More preferably, it is 0.95 or more. When the e -αd of the transparent layer 3 is 0.80 or more, the brightness of the display can be increased.
<<基板>>
 本発明の光学薄膜積層体1は、基板上6に吸収層2、透明層3が設けられたものであってもよい。基板6は透明性を有しているものが好ましい。基板6としては特に限定されず、例えば、ガラス、樹脂、ガラス-セラミックス、サファイヤが挙げられる。基板は、強化されていてもよく、強化されていなくてもよい。基板は、非晶質基板若しくは結晶質基板又はそれらの組み合わせであってもよい。
<<Substrate>>
The optical thin film laminate 1 of the present invention may have the absorption layer 2 and the transparent layer 3 provided on the substrate 6 . The substrate 6 preferably has transparency. The substrate 6 is not particularly limited, and examples thereof include glass, resin, glass-ceramics, and sapphire. The substrate may or may not be reinforced. The substrate may be an amorphous substrate or a crystalline substrate or a combination thereof.
 ガラスとしては、例えば、ソーダライムガラス、アルミノシリケートガラス、ホウ珪酸ガラス、アルミノボロシリケートガラス、石英ガラス、無アルカリガラス、鉛ガラスが挙げられる。樹脂としては、例えば、アクリル樹脂、スチレン樹脂、ポリカーボネート樹脂、エポキシ樹脂、ポリエチレン樹脂、ポリエステル樹脂、ポリイミド樹脂、シリコン樹脂が挙げられる。基板は、非晶質膜又は結晶質膜を含んでいてもよい。 Examples of glass include soda lime glass, aluminosilicate glass, borosilicate glass, aluminoborosilicate glass, quartz glass, alkali-free glass, and lead glass. Examples of resins include acrylic resins, styrene resins, polycarbonate resins, epoxy resins, polyethylene resins, polyester resins, polyimide resins, and silicone resins. The substrate may include amorphous or crystalline films.
 基板6の形状としては特に限定されず、例えば、板状、ロール状等が挙げられる。 The shape of the substrate 6 is not particularly limited, and examples thereof include a plate shape and a roll shape.
 基板6の厚さは目的の用途に応じて適宜選択され、例えば、0.2mm~2.0mmが好ましい。基板6の厚さが0.2mm以上であると、基板6の曲げ強度を向上できる。基板6の厚さが2.0mm以下であると、光学薄膜積層体1を軽量化できる。基板6の厚さは、より好ましくは0.4mm以上、さらに好ましくは0.5mm以上である。基板6の厚さは、より好ましくは1.8mm以下、さらに好ましくは1.6mm以下である。 The thickness of the substrate 6 is appropriately selected according to the intended use, and is preferably 0.2 mm to 2.0 mm, for example. When the thickness of the substrate 6 is 0.2 mm or more, the bending strength of the substrate 6 can be improved. When the thickness of the substrate 6 is 2.0 mm or less, the weight of the optical thin film laminate 1 can be reduced. The thickness of the substrate 6 is more preferably 0.4 mm or more, still more preferably 0.5 mm or more. The thickness of the substrate 6 is more preferably 1.8 mm or less, still more preferably 1.6 mm or less.
 基板6の表面は平滑であることが好ましい。基板6の表面は、必要に応じて表面処理を施してもよい。ここでの表面処理法としては、例えば、コロナ処理法、蒸着処理法、電子ビーム処理法、高周波放電プラズマ処理法、スパッタリング処理法、イオンビーム処理法、大気圧グロー放電プラズマ処理法、アルカリ処理法、酸処理法等が挙げられる。 The surface of the substrate 6 is preferably smooth. The surface of the substrate 6 may be surface-treated as necessary. Examples of surface treatment methods here include corona treatment, vapor deposition, electron beam treatment, high-frequency discharge plasma treatment, sputtering, ion beam treatment, atmospheric pressure glow discharge plasma treatment, and alkali treatment. , an acid treatment method, and the like.
<光学薄膜積層体の実施形態>
 本発明の光学薄膜積層体1の実施形態を、図面を参照して詳細に説明する。以下に説明する実施形態は、好ましい一具体例を示すものである。したがって、以下の実施形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であって、本開示を限定する主旨ではない。なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
<Embodiment of optical thin film laminate>
An embodiment of the optical thin film laminate 1 of the present invention will be described in detail with reference to the drawings. The embodiment described below shows a preferred specific example. Therefore, the numerical values, shapes, materials, components, arrangement positions and connection forms of components, etc. shown in the following embodiments are examples and are not intended to limit the present disclosure. Each figure is a schematic diagram and is not necessarily strictly illustrated. Moreover, in each figure, the same code|symbol is attached|subjected to the substantially same structure, and the overlapping description is abbreviate|omitted or simplified.
<<第1の実施形態-発光素子>>
 本発明の第1の実施形態は、上述した本発明の光学薄膜積層体を含み、光を基板上方に取り出す発光素子であって、基板と、光学薄膜層とを含み、該光学薄膜層が、少なくとも、吸収層、下部電極、発光層及び上部電極を含む。本実施形態の発光素子において、該吸収層が吸収層2であり、該下部電極が透明層3であり、該下部電極は該吸収層に接して積層されている。下部電極は透明導電膜を配して吸収層2に積層されていてもよい。
<<First Embodiment-Light Emitting Device>>
A first embodiment of the present invention is a light-emitting device that includes the above-described optical thin film laminate of the present invention and extracts light above a substrate, comprising a substrate and an optical thin film layer, the optical thin film layer comprising: It includes at least an absorption layer, a bottom electrode, a light emitting layer and a top electrode. In the light-emitting device of this embodiment, the absorption layer is the absorption layer 2, the lower electrode is the transparent layer 3, and the lower electrode is stacked in contact with the absorption layer. The lower electrode may be laminated on the absorption layer 2 by arranging a transparent conductive film.
 図3の(a)に第1の実施形態の発光素子7の断面図を示す。図3の(a)の発光素子7は、第1の基板301上に、TFTバックプレーン302、吸収層312、下部電極313、第1の有機層304、発光層305、第2の有機層306、上部電極307、薄膜封止層308、樹脂層309、第2の基板310が順次積層された構造を有し、光を第1の基板301の上方に取り出す発光素子である。 FIG. 3(a) shows a cross-sectional view of the light emitting element 7 of the first embodiment. The light-emitting element 7 of FIG. 3A comprises a TFT backplane 302, an absorption layer 312, a lower electrode 313, a first organic layer 304, a light-emitting layer 305, and a second organic layer 306 on a first substrate 301. , an upper electrode 307 , a thin film encapsulating layer 308 , a resin layer 309 and a second substrate 310 are stacked in this order, and emits light upward from the first substrate 301 .
 第1の実施形態においては、吸収層312が、波長550nmにおける屈折率が1.60~2.50であり且つ消衰係数が0.20~0.50である吸収層であり、下部電極313が、波長550nmにおける屈折率が1.60~2.50である透明層である。下部電極313は吸収層312に接して積層されている。 In the first embodiment, the absorption layer 312 is an absorption layer having a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm. is a transparent layer having a refractive index of 1.60 to 2.50 at a wavelength of 550 nm. A lower electrode 313 is stacked in contact with the absorption layer 312 .
 図3の(b)は従来の発光素子の一例の断面図である。図3の(b)の発光素子8は、第1の基板301上に、TFTバックプレーン302、反射電極303、第1の有機層304、発光層305、第2の有機層306、上部電極307、薄膜封止層308、樹脂層309、第2の基板310、円偏光板311が順次積層された構造を有し、光を第1の基板301の上方に取り出す発光素子である。かかる従来の発光素子の一例として、例えば、日本国特開平7-142170号公報に記載の偏光層を設けた有機EL素子が挙げられる。 (b) of FIG. 3 is a cross-sectional view of an example of a conventional light-emitting device. The light-emitting element 8 of FIG. 3B comprises a TFT backplane 302, a reflective electrode 303, a first organic layer 304, a light-emitting layer 305, a second organic layer 306, and an upper electrode 307 on a first substrate 301. , a thin film encapsulating layer 308 , a resin layer 309 , a second substrate 310 , and a circularly polarizing plate 311 are laminated in this order, and emits light upward from the first substrate 301 . An example of such a conventional light-emitting device is an organic EL device provided with a polarizing layer described in Japanese Patent Laid-Open No. 7-142170.
 図3の(b)に示す従来の発光素子8は、外光320及び発光層305からの光321が、内部の金属電極(反射電極303)により反射されて明瞭な黒表示を得にくく、発光層305からの発光効率が低下する。このような問題に対して、従来の発光素子8は、視認面に設けられた円偏光板311により、反射電極303に入射する、外光320及び発光層305からの光321の反射を抑制できる。しかしながら、円偏光板は高価であり、製品価格が高くなるという問題がある。 In the conventional light-emitting element 8 shown in FIG. 3B, external light 320 and light 321 from the light-emitting layer 305 are reflected by the internal metal electrode (reflective electrode 303), making it difficult to obtain a clear black display. Luminous efficiency from layer 305 is reduced. To address such a problem, the conventional light-emitting element 8 can suppress reflection of external light 320 and light 321 from the light-emitting layer 305 incident on the reflective electrode 303 by the circularly polarizing plate 311 provided on the viewing surface. . However, the circularly polarizing plate is expensive, and there is a problem that the product price is high.
 本発明の第1の実施形態においては、波長550nmにおける屈折率が1.60~2.50であり且つ消衰係数が0.20~0.50である吸収層312と、前記吸収層312に接して積層される波長550nmにおける屈折率が1.60~2.50の透明層である下部電極313と、を備える層構成を含む。かかる構成により、高価な円偏光板を用いなくても、外光320及び発光層305からの光321の反射を、効果的に抑制できる。 In the first embodiment of the present invention, an absorption layer 312 having a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm, and and a lower electrode 313 which is a transparent layer having a refractive index of 1.60 to 2.50 at a wavelength of 550 nm and which is laminated in contact therewith. With such a configuration, reflection of external light 320 and light 321 from the light emitting layer 305 can be effectively suppressed without using an expensive circularly polarizing plate.
 第1の基板301には、基板6の材料として例示した材料を使用できる。上記した基板6の材料の中でも、ガラス又は樹脂が好ましい。 The material exemplified as the material of the substrate 6 can be used for the first substrate 301 . Among the materials for the substrate 6 described above, glass or resin is preferable.
 TFTバックプレーン302は、各画素に配置された有機発光ダイオード(OLED、Organic Light Emitting Diode)を駆動するための回路であり、走査線、データ線、薄膜トランジスタを含む。 The TFT backplane 302 is a circuit for driving an organic light emitting diode (OLED) arranged in each pixel, and includes scanning lines, data lines, and thin film transistors.
 吸収層312には、吸収層2の材料として上記において例示した材料を使用できる。吸収層312が導電性であると、隣接する画素の電位に影響されて電位が変化することがあるため、吸収層312は絶縁体であることが好ましい。十分な絶縁性を確保する点から吸収層312の材料としては、Cu及びSiを含有することが好ましい。 For the absorbent layer 312, the materials exemplified above as the material for the absorbent layer 2 can be used. If the absorption layer 312 is conductive, the potential may change due to the potential of an adjacent pixel. Therefore, the absorption layer 312 is preferably an insulator. From the viewpoint of ensuring sufficient insulation, the material of the absorption layer 312 preferably contains Cu and Si.
 下部電極313には、透明層3の材料として上記において例示した材料を使用できる。下部電極313は、例えば、ITO、IZO、GZO(Ga doped ZnO)、AZO(Al doped ZnO)などの導電性金属酸化物を含むことが好ましい。下部電極313は、陽極として機能する。下部電極313は、主として正孔注入に好適な仕事関数を提供するために設けられる層である。下部電極の物理膜厚は、表面平坦性の点から、好ましくは10~100nm、より好ましくは20~50nmである。下部電極313は、吸収層312上に透明導電膜を配して設けられていてもよい。 For the lower electrode 313, the materials exemplified above as the material of the transparent layer 3 can be used. The lower electrode 313 preferably contains a conductive metal oxide such as ITO, IZO, GZO (Gadoped ZnO), AZO (Aldoped ZnO). The lower electrode 313 functions as an anode. The lower electrode 313 is a layer provided mainly to provide a suitable work function for hole injection. The physical film thickness of the lower electrode is preferably 10 to 100 nm, more preferably 20 to 50 nm, from the viewpoint of surface flatness. The lower electrode 313 may be provided by disposing a transparent conductive film on the absorption layer 312 .
 第1の有機層304は、下部電極313側から、正孔注入層、正孔輸送層を含む。 The first organic layer 304 includes a hole injection layer and a hole transport layer from the lower electrode 313 side.
 正孔注入層は、下部電極313からの正孔注入障壁を低くするために、イオン化ポテンシャルの差が小さいものが要求される。正孔注入層における電極界面からの電荷の注入効率の向上は、素子の駆動電圧を下げるとともに、電荷の注入効率を高める。高分子では、ポリスチレンスルフォン酸(PSS)がドープされたポリエチレンジオキシチオフェン(PEDOT:PSS)、低分子ではフタロシアニン系の銅フタロシアニン(CuPc)が広く用いられる。 The hole injection layer is required to have a small ionization potential difference in order to lower the hole injection barrier from the lower electrode 313 . Improving the charge injection efficiency from the electrode interface in the hole injection layer reduces the drive voltage of the device and increases the charge injection efficiency. Polystyrene sulfonic acid (PSS)-doped polyethylenedioxythiophene (PEDOT:PSS) is widely used as a polymer, and phthalocyanine-based copper phthalocyanine (CuPc) is widely used as a low molecule.
 正孔輸送層は、正孔注入層から注入された正孔を発光層305に輸送する役割をする。適切なイオン化ポテンシャルと正孔移動度を有することが必要である。正孔輸送層には、具体的には例えば、トリフェニルアミン誘導体、N,N’-ビス(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン(NPD)、N,N’-ジフェニル-N,N’-ビス[N-フェニル-N-(2-ナフチル)-4’-アミノビフェニル-4-イル]-1,1’-ビフェニル-4,4’-ジアミン(NPTE)、1,1-ビス[(ジ-4-トリルアミノ)フェニル]シクロヘキサン(HTM2)及びN,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-1,1’-ジフェニル-4,4’-ジアミン(TPD)などが用いられる。正孔輸送層の厚さは、10nm~150nmが好ましい。正孔輸送層の厚さは薄ければ薄いほど低電圧化できるが、電極間短絡の問題から10nm~150nmであることが特に好ましい。 The hole transport layer serves to transport holes injected from the hole injection layer to the light emitting layer 305 . It is necessary to have suitable ionization potential and hole mobility. Specific examples of the hole transport layer include triphenylamine derivatives, N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPD), N,N'-diphenyl-N,N'-bis[N-phenyl-N-(2-naphthyl)-4'-aminobiphenyl-4-yl]-1,1'-biphenyl-4, 4′-diamine (NPTE), 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (HTM2) and N,N′-diphenyl-N,N′-bis(3-methylphenyl)-1, 1'-diphenyl-4,4'-diamine (TPD) and the like are used. The thickness of the hole transport layer is preferably 10 nm to 150 nm. The thinner the hole transport layer is, the lower the voltage can be. However, the thickness is preferably 10 nm to 150 nm because of the problem of short circuit between electrodes.
 発光層305は、注入された電子と正孔が再結合する場を提供する層であり、発光効率の高い材料を用いることが好ましい。詳細に説明すると、発光層305に用いられる発光ホスト材料及び発光色素のドーピング材料は、下部電極313及び上部電極307から注入された正孔及び電子の再結合中心として機能する。発光層305における発光ホスト材料への発光色素のドーピングは、高い発光効率を得ると共に、発光波長を変換させる。また発光材料は有機材料に限らず、量子ドットであってもよいし、ペロブスカイト材料でもよい。 The light-emitting layer 305 is a layer that provides a field for recombination of injected electrons and holes, and is preferably made of a material with high light-emitting efficiency. Specifically, the light-emitting host material and light-emitting dye doping material used in the light-emitting layer 305 function as recombination centers for holes and electrons injected from the lower electrode 313 and the upper electrode 307 . Doping luminescent dyes into the luminescent host material in the luminescent layer 305 provides high luminous efficiency and converts the emission wavelength. Further, the light-emitting material is not limited to organic materials, and may be quantum dots or perovskite materials.
 発光層305に用いられる発光ホスト材料及び発光色素のドーピング材料としては、電荷注入のための適切なエネルギーレベルを有すること、化学的安定性や耐熱性に優れ、均質なアモルファス薄膜を形成する材料が好ましい。また、発光色の種類や色純度が優れ、発光効率の高い材料が好ましい。有機材料である発光材料には、低分子系と高分子系の材料がある。さらに、発光機構によって、蛍光材料、りん光材料に分類される。 As the light-emitting host material and light-emitting dye doping material used in the light-emitting layer 305, materials that have an appropriate energy level for charge injection, are excellent in chemical stability and heat resistance, and form a homogeneous amorphous thin film are used. preferable. In addition, it is preferable to use a material which is excellent in the kind of emission color and color purity and which has high luminous efficiency. Light-emitting materials that are organic materials include low-molecular-weight materials and high-molecular-weight materials. Further, they are classified into fluorescent materials and phosphorescent materials according to their light emission mechanism.
 発光層305に用いられる発光ホスト材料及び発光色素のドーピング材料としては、具体的には例えば、トリス(8-キノリノラート)アルミニウム錯体(Alq)、ビス(8-ヒドロキシ)キナルジンアルミニウムフェノキサイド(Alq′OPh)、ビス(8-ヒドロキシ)キナルジンアルミニウム-2,5-ジメチルフェノキサイド(BAlq)、モノ(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート)リチウム錯体(Liq)、モノ(8-キノリノラート)ナトリウム錯体(Naq)、モノ(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート)リチウム錯体、モノ(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート)ナトリウム錯体及びビス(8-キノリノラート)カルシウム錯体(Caq)などのキノリン誘導体の金属錯体、テトラフェニルブタジエン、フェニルキナクドリン(QD)、アントラセン、ペリレン並びにコロネンなどの蛍光性物質が挙げられる。 Specific examples of the light-emitting host material and light-emitting dye doping material used in the light-emitting layer 305 include tris(8-quinolinolato)aluminum complex (Alq 3 ), bis(8-hydroxy)quinaldine aluminum phenoxide (Alq ' 2 OPh), bis(8-hydroxy)quinaldine aluminum-2,5-dimethylphenoxide (BAlq), mono(2,2,6,6-tetramethyl-3,5-heptanedionato)lithium complex ( Liq), mono(8-quinolinolato) sodium complex (Naq), mono(2,2,6,6-tetramethyl-3,5-heptanedionato)lithium complex, mono(2,2,6,6-tetra metal complexes of quinoline derivatives such as methyl-3,5-heptanedionate) sodium complex and bis(8-quinolinolate) calcium complex (Caq 2 ), tetraphenylbutadiene, phenylquinacdrine (QD), anthracene, perylene and coronene, etc. of fluorescent substances.
 発光ホスト材料としては、キノリノラート錯体が好ましく、特に、8-キノリノール及びその誘導体を配位子としたアルミニウム錯体が好ましい。量子ドットとしては、例えば、CdTe、ZnCdSe/ZnS、CdSe/ZnS及びCu-In-S/ZnSなどが挙げられる。ペロブスカイト材料としては、例えば、CHNHPbI、CsPbX(X=Cl、Br又はI)などが挙げられる。 A quinolinolate complex is preferable as the light-emitting host material, and an aluminum complex containing 8-quinolinol or a derivative thereof as a ligand is particularly preferable. Quantum dots include, for example, CdTe, ZnCdSe/ZnS, CdSe/ZnS and Cu-In-S/ZnS. Examples of perovskite materials include CH 3 NH 3 PbI 3 and CsPbX 3 (X=Cl, Br or I).
 第2の有機層306は、下部電極313側から、電子輸送層、電子注入層を含む。 The second organic layer 306 includes an electron transport layer and an electron injection layer from the lower electrode 313 side.
 電子輸送層は、上部電極307から注入された電子を輸送するための層である。電子輸送層は、例えば、キノリノールアルミニウム錯体(Alq3)、オキサジアゾール誘導体[例えば、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール(BND)及び2-(4-t-ブチルフェニル)-5-(4-ビフェニル)-1,3,4-オキサジアゾール(PBD)など]、トリアゾール誘導体、バソフェナントロリン誘導体、シロール誘導体などを含むことが好ましい。 The electron transport layer is a layer for transporting electrons injected from the upper electrode 307 . Electron-transporting layers include, for example, quinolinole aluminum complexes (Alq3), oxadiazole derivatives [such as 2,5-bis(1-naphthyl)-1,3,4-oxadiazole (BND) and 2-(4- t-butylphenyl)-5-(4-biphenyl)-1,3,4-oxadiazole (PBD)], triazole derivatives, bathophenanthroline derivatives, silole derivatives and the like.
 電子注入層は、電子の注入効率を高めるものであることが好ましい。電子注入層としては、具体的には、陰極界面にリチウム(Li)、セシウム(Cs)等のアルカリ金属をドープした層が好ましい。 The electron injection layer is preferably one that enhances electron injection efficiency. Specifically, the electron injection layer is preferably a layer in which the cathode interface is doped with an alkali metal such as lithium (Li) or cesium (Cs).
 上部電極307は下部電極313と同様の材料を用い、同様の方法で形成できる。上部電極307は、例えば、IZO、ITO、Ag、AgMgなどの導電性金属酸化物を含むことが好ましい。上部電極307は、波長400~800nmの光に対して、好ましくは80%以上、より好ましくは90%以上の透過率を有することが好ましい。また、発光効率を向上させるために、上部電極307の物理膜厚は、充分に低い抵抗率を与える点から、好ましくは30nm以上、より好ましくは100~300nmの範囲内である。 The upper electrode 307 can be formed using the same material as the lower electrode 313 and by the same method. The top electrode 307 preferably contains a conductive metal oxide such as IZO, ITO, Ag, AgMg, for example. The upper electrode 307 preferably has a transmittance of 80% or more, more preferably 90% or more, for light with a wavelength of 400 to 800 nm. Also, in order to improve the luminous efficiency, the physical thickness of the upper electrode 307 is preferably 30 nm or more, more preferably in the range of 100 to 300 nm, in order to provide a sufficiently low resistivity.
 薄膜封止層308は、無機材料からなり、第1の基板301上の積層物を覆う薄膜である。薄膜封止層308は、封止構造形成前の各積層物の保護及び封止構造形成後の封止構造内外からの水分などの浸透を抑制する役割を有する。 The thin film encapsulating layer 308 is a thin film made of an inorganic material and covering the laminate on the first substrate 301 . The thin film encapsulating layer 308 has a role of protecting each laminate before forming the encapsulating structure and suppressing permeation of moisture from inside and outside of the encapsulating structure after forming the encapsulating structure.
 薄膜封止層308には、水分や酸素などの透過性が低い材料、すなわち緻密な構造を有する材料を用いることが好ましい。特に、薄膜封止層308の材料は、樹脂、珪素、炭素又はアルミニウムの酸化物、窒化物又は酸窒化物であることが好ましい。具体的には、例えば、エポキシ樹脂、窒化シリコン、酸化シリコン、酸窒化シリコン、酸化炭素、窒化炭素、酸化アルミニウムなどが挙げられる。 For the thin film sealing layer 308, it is preferable to use a material with low permeability to moisture, oxygen, etc., that is, a material having a dense structure. In particular, the material of the thin film sealing layer 308 is preferably resin, silicon, carbon or aluminum oxide, nitride or oxynitride. Specific examples include epoxy resin, silicon nitride, silicon oxide, silicon oxynitride, carbon oxide, carbon nitride, and aluminum oxide.
 薄膜封止層308の形成方法としては、例えば、真空蒸着法、電子ビーム蒸着法、スパッタリング法、反応性スパッタリング法、イオンプレーティング法、気相成長法などの乾式プロセスが挙げられ、反応性スパッタリング法を用いることが好ましい。 Examples of the method for forming the thin film encapsulating layer 308 include dry processes such as vacuum deposition, electron beam deposition, sputtering, reactive sputtering, ion plating, and vapor deposition. It is preferred to use the method.
 樹脂層309は、薄膜封止層308と第2の基板310との間に配置された層であり、第2の基板310と薄膜封止層308との密着性を高め、発光素子7の強度を向上させる役割を有する。 The resin layer 309 is a layer arranged between the thin film encapsulating layer 308 and the second substrate 310, increases the adhesion between the second substrate 310 and the thin film encapsulating layer 308, and increases the strength of the light emitting element 7. It has a role to improve
 樹脂層309の材料としては、例えば、エポキシ樹脂、アクリル樹脂、シリコン樹脂などの硬化性樹脂などが挙げられる。また、発光素子7はトップエミッション型であるため、樹脂層309も薄膜封止層308と同様に、光透過性が高く、隣接する薄膜封止層308及び第2の基板310との屈折率の差が小さい材料を用いることが好ましい。 Examples of materials for the resin layer 309 include curable resins such as epoxy resins, acrylic resins, and silicone resins. In addition, since the light emitting element 7 is of a top emission type, the resin layer 309 also has high light transmittance like the thin film sealing layer 308, and has a refractive index different from that of the adjacent thin film sealing layer 308 and the second substrate 310. It is preferable to use materials with a small difference.
 樹脂層309の形成方法としては、例えば、次の方法が挙げられる。まずディスペンス法、印刷法、ダイコート法などの各種塗布法によって薄膜封止層308上又は第2の基板310上に硬化性樹脂を一様に塗布する。そして、第1の基板301と第2の基板310とを貼り合わせた後に、熱、光又は硬化剤などで硬化性樹脂を硬化させることにより、樹脂層309を形成できる。 Examples of methods for forming the resin layer 309 include the following methods. First, a curable resin is uniformly applied onto the thin film sealing layer 308 or the second substrate 310 by various coating methods such as a dispensing method, a printing method, and a die coating method. After bonding the first substrate 301 and the second substrate 310 together, the resin layer 309 can be formed by curing the curable resin with heat, light, a curing agent, or the like.
 第2の基板310には、基板6の材料として例示した材料を使用できる。上記した基板6の材料の中でも、樹脂が好ましい。 The material exemplified as the material of the substrate 6 can be used for the second substrate 310 . Among the materials for the substrate 6 described above, resin is preferable.
 本発明の第1の実施形態の変形例として、基板上に、TFTバックプレーン、下部電極、吸収層、発光層、有機層、上部電極、薄膜封止層、樹脂層、基板が順次積層された構造を有し、光を基板の上方に取り出す発光素子が挙げられる。当該変形例において、吸収層に接して発光層が積層されており、吸収層が波長550nmにおける屈折率が1.60~2.50であり且つ消衰係数が0.20~0.50である吸収層2であり、発光層が波長550nmにおける屈折率が1.60~2.50である透明層3である。 As a modification of the first embodiment of the present invention, a TFT back plane, a lower electrode, an absorption layer, a light emitting layer, an organic layer, an upper electrode, a thin film sealing layer, a resin layer, and a substrate are sequentially laminated on a substrate. A light-emitting element having a structure and extracting light upward from a substrate can be mentioned. In this modification, the light-emitting layer is laminated in contact with the absorption layer, and the absorption layer has a refractive index of 1.60 to 2.50 at a wavelength of 550 nm and an extinction coefficient of 0.20 to 0.50. The absorption layer 2 is the light-emitting layer, and the transparent layer 3 has a refractive index of 1.60 to 2.50 at a wavelength of 550 nm.
<<第2の実施形態>>
 本発明の第2の実施形態は、上述した本発明の光学薄膜積層体を含み、基板上に形成された金属配線と該金属配線の上部に形成された絶縁層との間に、吸収層が該金属配線及び該絶縁層に接するように形成された電気回路である。本実施形態の電気回路において、該吸収層が吸収層2であり、該下部電極が透明層3である。
<<Second Embodiment>>
A second embodiment of the present invention includes the above-described optical thin film laminate of the present invention, wherein an absorbing layer is provided between the metal wiring formed on the substrate and the insulating layer formed on the metal wiring. An electric circuit is formed in contact with the metal wiring and the insulating layer. In the electric circuit of this embodiment, the absorbing layer is the absorbing layer 2 and the lower electrode is the transparent layer 3 .
 図4の(a)に第2の実施形態の電気回路9の平面図を、その一部断面図[図4の(a)中の破線部分の断面図]を図4の(b)に示す。図4の(b)に示すように、電気回路9は、互いに対向して配置された第1の基板401と第2の基板402と、第1の基板401と第2の基板402との間に液晶層403を有し、第1の基板401上に金属配線(ゲート配線404及び容量補助配線405)が配置される。 FIG. 4(a) shows a plan view of the electric circuit 9 of the second embodiment, and FIG. 4(b) shows a partial cross-sectional view thereof [a cross-sectional view of the dashed line portion in FIG. 4(a)]. . As shown in (b) of FIG. 4, the electric circuit 9 includes a first substrate 401 and a second substrate 402 which are arranged to face each other, and an electric circuit between the first substrate 401 and the second substrate 402. A liquid crystal layer 403 is provided on the first substrate 401 , and metal wirings (gate wirings 404 and auxiliary capacitor wirings 405 ) are arranged on the first substrate 401 .
 ゲート配線404には第1の吸収層406が積層される。容量補助配線405には第2の吸収層413が積層され、ゲート絶縁膜407を介して、ソース電極408、ドレイン電極409及び画素電極410が配置され、ソース電極408とドレイン電極409との間に半導体素子411が位置する。第1の吸収層406及び第2の吸収層413とゲート絶縁膜407とは接して配置される。 A first absorption layer 406 is laminated on the gate wiring 404 . A second absorption layer 413 is laminated on the auxiliary capacitance wiring 405 , a source electrode 408 , a drain electrode 409 and a pixel electrode 410 are arranged with a gate insulating film 407 interposed therebetween. A semiconductor element 411 is located. The first absorption layer 406 and the second absorption layer 413 and the gate insulating film 407 are arranged in contact with each other.
 ソース電極408には第3の吸収層412が、ドレイン電極409には第4の吸収層416が積層される。第3の吸収層412及び第4の吸収層416と液晶層403との間には、保護膜414が第3の吸収層412及び第4の吸収層416に接して配置される。液晶層403と第2の基板402との間にカラーフィルタ415が配置される。 A third absorption layer 412 is laminated on the source electrode 408 and a fourth absorption layer 416 is laminated on the drain electrode 409 . Between the third absorption layer 412 and the fourth absorption layer 416 and the liquid crystal layer 403 , a protective film 414 is arranged in contact with the third absorption layer 412 and the fourth absorption layer 416 . A color filter 415 is arranged between the liquid crystal layer 403 and the second substrate 402 .
 図5の(a)に従来の電気回路の一例の平面図を、図5の(b)にその一部断面図[図5の(a)中の破線部分の断面図]を示す。図5の(b)の電気回路10は、ゲート配線404、容量補助配線405、ソース電極408、ドレイン電極409に吸収層がそれぞれ接するように配置されていない点で、図4の(a)及び(b)に示す電気回路9とは異なる。 FIG. 5(a) shows a plan view of an example of a conventional electric circuit, and FIG. 5(b) shows a partial cross-sectional view thereof [a cross-sectional view of the broken line portion in FIG. 5(a)]. The electric circuit 10 shown in FIG. 5B is not arranged so that the absorption layers are in contact with the gate wiring 404, the auxiliary capacitor wiring 405, the source electrode 408, and the drain electrode 409, respectively. It is different from the electric circuit 9 shown in (b).
 すなわち、図5の(b)に示すように、電気回路10は、互いに対向して配置された第1の基板401と第2の基板402と、第1の基板401と第2の基板402との間に液晶層403を有し、第1の基板401上に金属配線(ゲート配線404及び容量補助配線405)が配置される。 That is, as shown in FIG. 5(b), the electric circuit 10 includes a first substrate 401 and a second substrate 402 arranged to face each other, and a first substrate 401 and a second substrate 402. A liquid crystal layer 403 is provided therebetween, and metal wirings (gate wirings 404 and auxiliary capacitance wirings 405) are arranged on the first substrate 401 .
 従来の電気回路10において、ゲート配線404及び容量補助配線405の上部に、ゲート絶縁膜407を介して、ソース電極408、ドレイン電極409及び画素電極410が配置され、ソース電極408とドレイン電極409との間に半導体素子411が位置する。 In the conventional electric circuit 10, a source electrode 408, a drain electrode 409, and a pixel electrode 410 are arranged above the gate wiring 404 and the auxiliary capacitance wiring 405 with a gate insulating film 407 interposed therebetween. A semiconductor element 411 is positioned between.
 従来の電気回路10において、ソース電極408及びドレイン電極409と液晶層403との間には、保護膜414が配置される。液晶層403と第2の基板402との間にはカラーフィルタ415が配置される。 In the conventional electric circuit 10 , a protective film 414 is arranged between the source electrode 408 and the drain electrode 409 and the liquid crystal layer 403 . A color filter 415 is arranged between the liquid crystal layer 403 and the second substrate 402 .
 従来の電気回路10においては、金属配線(ドレイン電極409、ソース電極408、容量補助配線405、ゲート配線404)が銅(Cu)を含有する金属材料で形成されるため、金属配線に入射した外光420が反射して、外観が茶色を帯びる、という問題があった。金属配線が銅を含有する金属で構成される電気回路の一例として、例えば、日本国特開2020-88014号公報に記載のものが挙げられる。 In the conventional electric circuit 10, the metal wiring (drain electrode 409, source electrode 408, auxiliary capacitor wiring 405, gate wiring 404) is formed of a metal material containing copper (Cu). There was a problem that the light 420 was reflected and the appearance was tinged with brown. An example of an electric circuit in which metal wiring is made of a metal containing copper is described in Japanese Patent Application Laid-Open No. 2020-88014.
 第2の実施形態の電気回路9においては、第1の吸収層406、第2の吸収層413、第3の吸収層412、第4の吸収層416が、波長550nmにおける屈折率が1.60~2.50であり且つ消衰係数が0.20~0.50である吸収層である。また、ゲート絶縁膜407、保護膜414が波長550nmにおける屈折率が1.60~2.50である透明層である。第2の実施形態の電気回路9によれば、金属配線の表面が吸収層により黒色化して茶色の外観を防止できる。また、ゲート絶縁膜407、保護膜414と金属配線との界面反射を抑制して外光420の反射を低減し、より深い黒色を呈することが可能となる。 In the electric circuit 9 of the second embodiment, the first absorption layer 406, the second absorption layer 413, the third absorption layer 412, and the fourth absorption layer 416 have a refractive index of 1.60 at a wavelength of 550 nm. ˜2.50 and an absorption layer with an extinction coefficient of 0.20 to 0.50. The gate insulating film 407 and protective film 414 are transparent layers having a refractive index of 1.60 to 2.50 at a wavelength of 550 nm. According to the electric circuit 9 of the second embodiment, the surface of the metal wiring can be blackened by the absorption layer to prevent a brown appearance. In addition, the interface reflection between the gate insulating film 407, the protective film 414, and the metal wiring is suppressed, the reflection of the external light 420 is reduced, and a deeper black color can be exhibited.
 第1の基板401及び第2の基板402には、基板6の材料として例示した材料を使用できる。上記した基板6の材料の中でも、金属配線との密着性の点で、ガラスが好ましい。 Materials exemplified as the material of the substrate 6 can be used for the first substrate 401 and the second substrate 402 . Among the materials for the substrate 6 described above, glass is preferable in terms of adhesion to the metal wiring.
 第1の吸収層406、第2の吸収層413、第3の吸収層412、第4の吸収層416には、吸収層2の材料として例示した材料を使用できる。第1の吸収層406、第2の吸収層413、第3の吸収層412、第4の吸収層416は導電体であっても絶縁体であってもよく、電気回路9の用途及び材料等に応じて適宜調整できる。 For the first absorbent layer 406, the second absorbent layer 413, the third absorbent layer 412, and the fourth absorbent layer 416, the materials exemplified as the material for the absorbent layer 2 can be used. The first absorption layer 406, the second absorption layer 413, the third absorption layer 412, and the fourth absorption layer 416 may be conductors or insulators. can be adjusted accordingly.
 ゲート絶縁膜407、保護膜414には、透明層3の材料として例示した材料を使用できる。上記した透明層3の材料の中でも、屈折率の点で、SiN、AlO、AlN、ZnO、TiO、Ga、Y、HfO又はTaが好ましい。  Materials exemplified as the material of the transparent layer 3 can be used for the gate insulating film 407 and the protective film 414 . Among the materials for the transparent layer 3 described above, SiN x , AlO x , AlN, ZnO, TiO 2 , Ga 2 O 3 , Y 2 O 3 , HfO 2 and Ta 2 O 5 are preferable in terms of refractive index.
<<第3の実施形態>>
 本発明の第3の実施形態は、上述した本発明の光学薄膜積層体を含み、基板上に複数の薄膜トランジスタが設けられた薄膜トランジスタアレイであって、該薄膜トランジスタは、半導体層、吸収層、該半導体層と前記吸収層との間に配置された絶縁層を含む薄膜トランジスタアレイである。本実施形態の薄膜トランジスタアレイにおいて、該吸収層が吸収層2であり、該絶縁層が透明層3である。
<<Third Embodiment>>
A third embodiment of the present invention is a thin film transistor array including the optical thin film laminate of the present invention described above and having a plurality of thin film transistors provided on a substrate, the thin film transistors comprising a semiconductor layer, an absorption layer, the semiconductor A thin film transistor array comprising an insulating layer disposed between a layer and said absorber layer. In the thin film transistor array of this embodiment, the absorption layer is the absorption layer 2 and the insulating layer is the transparent layer 3 .
 図6の(a)に第3の実施形態の薄膜トランジスタアレイ15の一部断面図を示す。図6の(a)に示すように、薄膜トランジスタアレイ15は、基板601上に半導体層602、吸収層603、該半導体層602と該吸収層603との間に遮光絶縁層604が配置されている。遮光絶縁層604上にゲート絶縁層605、ソース電極606、ドレイン電極607が設けられている。ソース電極606及びドレイン電極607は半導体層602と電気的に接続する。ゲート絶縁層605上に、ゲート電極608が設けられ、層間絶縁層609、保護層610が順次積層されている。保護層610上に、ドレイン電極607と電気的に接続する画素電極611が設けられている。 FIG. 6(a) shows a partial cross-sectional view of the thin film transistor array 15 of the third embodiment. As shown in FIG. 6A, the thin film transistor array 15 includes a semiconductor layer 602, an absorption layer 603, and a light shielding insulating layer 604 disposed between the semiconductor layer 602 and the absorption layer 603 on a substrate 601. . A gate insulating layer 605 , a source electrode 606 , and a drain electrode 607 are provided over the light-shielding insulating layer 604 . A source electrode 606 and a drain electrode 607 are electrically connected to the semiconductor layer 602 . A gate electrode 608 is provided on the gate insulating layer 605, and an interlayer insulating layer 609 and a protective layer 610 are sequentially stacked. A pixel electrode 611 electrically connected to the drain electrode 607 is provided over the protective layer 610 .
 図6の(b)に従来の薄膜トランジスタアレイ16の一例の一部断面図を示す。図6の(b)の薄膜トランジスタアレイ16は、第3の実施形態の薄膜トランジスタアレイ15における吸収層603の代わりに、遮光層612が配置されている点で、第3の実施形態の薄膜トランジスタアレイ15とは異なる。かかる従来の薄膜トランジスタアレイの一例として、例えば、日本国特開平8-220558号公報に記載のものが挙げられる。 A partial cross-sectional view of an example of a conventional thin film transistor array 16 is shown in (b) of FIG. The thin film transistor array 16 of FIG. 6B differs from the thin film transistor array 15 of the third embodiment in that a light shielding layer 612 is arranged instead of the absorption layer 603 in the thin film transistor array 15 of the third embodiment. is different. An example of such a conventional thin film transistor array is disclosed in Japanese Patent Application Laid-Open No. 8-220558.
 従来の薄膜トランジスタアレイ16においては、バックライト光13や迷光62が半導体層602に入射すると、薄膜トランジスタアレイ16にリーク電流が生じるため、遮光層612を半導体層602と接するように配置し、遮光している。しかしながら、従来の薄膜トランジスタアレイ16においては、迷光62が半導体層602に入射するのを防ぎきれないという問題がある。また、遮光層612が金属を含む層であることによりソース電極606及びドレイン電極607と容量を形成してクロストークの原因となり、画質の品質が劣化するという問題がある。 In the conventional thin film transistor array 16, when the backlight light 13 or the stray light 62 is incident on the semiconductor layer 602, a leakage current is generated in the thin film transistor array 16. Therefore, the light shielding layer 612 is arranged so as to be in contact with the semiconductor layer 602 to block light. there is However, the conventional thin film transistor array 16 has a problem that it cannot completely prevent the stray light 62 from entering the semiconductor layer 602 . In addition, since the light-shielding layer 612 is a layer containing metal, it forms a capacitance with the source electrode 606 and the drain electrode 607, causing crosstalk and degrading image quality.
 第3の実施形態の薄膜トランジスタアレイ15においては、吸収層603が、波長550nmにおける屈折率が1.60~2.50であり且つ消衰係数が0.20~0.50である吸収層である。また、遮光絶縁層604が波長550nmにおける屈折率が1.60~2.50である透明層である。これにより遮光絶縁層604と吸収層603との界面での入射光の反射が抑制され、迷光62を十分に吸収できる。また、吸収層603を絶縁体とすることにより、ソース電極606及びドレイン電極607との容量形成を抑制でき、クロストークを防止できる。 In the thin film transistor array 15 of the third embodiment, the absorption layer 603 has a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm. . Also, the light shielding insulating layer 604 is a transparent layer having a refractive index of 1.60 to 2.50 at a wavelength of 550 nm. This suppresses reflection of incident light at the interface between the light shielding insulating layer 604 and the absorbing layer 603, and the stray light 62 can be sufficiently absorbed. In addition, by using an insulator for the absorption layer 603, formation of capacitance with the source electrode 606 and the drain electrode 607 can be suppressed, and crosstalk can be prevented.
 基板601には、基板6の材料として例示した材料を使用できる。上記した基板6の材料の中でも、遮光膜との密着性の点で、ガラスが好ましい。 The material exemplified as the material of the substrate 6 can be used for the substrate 601 . Among the materials for the substrate 6 described above, glass is preferable in terms of adhesion to the light shielding film.
 吸収層603には、吸収層2の材料として例示した材料を使用できる。吸収層603は、上記した容量のクロストークを防ぐ観点から、絶縁体であることが好ましい。 The material exemplified as the material of the absorbent layer 2 can be used for the absorbent layer 603 . The absorption layer 603 is preferably an insulator from the viewpoint of preventing the above-described capacitance crosstalk.
 遮光絶縁層604には、透明層3の材料として例示した材料を使用できる。上記した透明層3の材料の中でも、屈折率の点で、SiN、AlO、AlN、ZnO、TiO、Ga、Y、HfO又はTaが好ましい。 Materials exemplified as the material of the transparent layer 3 can be used for the light shielding insulating layer 604 . Among the materials for the transparent layer 3 described above, SiN x , AlO x , AlN, ZnO, TiO 2 , Ga 2 O 3 , Y 2 O 3 , HfO 2 and Ta 2 O 5 are preferable in terms of refractive index.
<光学薄膜積層体の製造方法>
 光学薄膜積層体は、基板の表面に、透明層及び吸収層を含む光学薄膜を積層したものである。光学薄膜は、塗布、析出及び当該技術分野において既知の方法を用いて製造できる。光学薄膜は、物理的蒸着法(例えば、真空蒸着法、イオンプレーティング法、スパッタリング法)、化学的蒸着法(例えば、熱CVD法、プラズマCVD法、光CVD法)で塗布できる。中でも、スパッタリング法が膜厚の均一性及び生産性に優れるので、好ましい。
<Method for producing optical thin film laminate>
An optical thin film laminate is obtained by laminating an optical thin film including a transparent layer and an absorbing layer on the surface of a substrate. Optical thin films can be manufactured using coating, deposition and methods known in the art. The optical thin film can be applied by physical vapor deposition (eg, vacuum deposition, ion plating, sputtering) or chemical vapor deposition (eg, thermal CVD, plasma CVD, optical CVD). Among them, the sputtering method is preferable because it is excellent in uniformity of film thickness and productivity.
 本発明の製造方法は、基板上に光学薄膜層を形成することを含む光学薄膜積層体の製造方法であって、前記光学薄膜層の形成は、波長550nmにおける屈折率が1.60~2.50で、且つ消衰係数が0.20~0.50である吸収層を形成すること及び前記吸収層に接して積層されるように波長550nmにおける屈折率が1.60~2.50である透明層を形成することを含むことを特徴とする。 The manufacturing method of the present invention is a method for manufacturing an optical thin film laminate including forming an optical thin film layer on a substrate. 50 and an extinction coefficient of 0.20 to 0.50, and a refractive index of 1.60 to 2.50 at a wavelength of 550 nm to be laminated in contact with the absorption layer The method is characterized by including forming a transparent layer.
<スパッタリングターゲット材料>
 本発明の一実施形態として、本発明の製造方法における波長550nmにおける屈折率が1.60~2.50であり、且つ消衰係数が0.20~0.50である前記吸収層をスパッタリング法により形成するためのスパッタリングターゲット材料が挙げられる。
<Sputtering target material>
As an embodiment of the present invention, the absorption layer having a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm in the manufacturing method of the present invention is formed by a sputtering method. Sputtering target materials for forming by.
 スパッタリングターゲット材料は、吸収層の所望する組成に合わせてその組成を調整する。スパッタリングターゲット材料の組成は、上記した吸収層2の組成と同様である。ターゲットとしては、合金材料ターゲットを用いてもよいし、純金属ターゲットの上に薄い板状に加工したチップを均一に配置してもよいし、純金属ターゲットを分割して作製し、均一にバッキングプレートに貼り付けて配置してもよい。 The composition of the sputtering target material is adjusted according to the desired composition of the absorption layer. The composition of the sputtering target material is similar to the composition of the absorption layer 2 described above. As the target, an alloy material target may be used, chips processed into thin plates may be uniformly arranged on a pure metal target, or a pure metal target may be divided into pieces and uniformly backed. You may arrange|position by sticking on a plate.
 具体的には例えば、スパッタリングターゲット材料は、Cr、Mn、Fe、Co、Ni、Cu、Ru及びAgからなる群より選択される少なくとも1種以上の元素の添加量が10~95原子%であることが好ましく、より好ましくは12~90原子%、さらに好ましくは15~85原子%である。 Specifically, for example, the sputtering target material contains 10 to 95 atomic % of at least one element selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ru and Ag. is preferred, more preferably 12 to 90 atomic %, still more preferably 15 to 85 atomic %.
 以上、本発明のいくつかの実施形態及びそれらの変形例を説明したが、本発明は、以上説明した実施の形態の記載内容に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更可能であることはいうまでもない。 Although several embodiments of the present invention and modifications thereof have been described above, the present invention is not limited to the description of the above-described embodiments, and is within the scope of the present invention. Needless to say, it can be changed as appropriate.
 次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[実験例1]  
<光学薄膜積層体の作製>
 50mm×50mm×0.5mmの角板状のガラス(AGC社製AN-100)を基板とし、その一方の面に表1に示す材料から構成される吸収層、透明層を有する光学薄膜積層体をスパッタ法により順に積層した。なお、表1及び2において、例1~11は実施例、例12~18は比較例である。
[Experimental example 1]
<Preparation of optical thin film laminate>
An optical thin film laminate having a square plate glass (AN-100 manufactured by AGC) of 50 mm × 50 mm × 0.5 mm as a substrate, and having an absorption layer and a transparent layer composed of the materials shown in Table 1 on one surface of the substrate. were sequentially laminated by a sputtering method. In Tables 1 and 2, Examples 1 to 11 are examples, and Examples 12 to 18 are comparative examples.
(吸収層の形成)
 マグネトロンスパッタ装置のチャンバー内に、表1及び2に記載した金属チップ(縦10mm×横10mm×厚さ1mm)を金属ターゲット(Φ6インチ)の上に積載して配置し、50mm×50mm×0.5mmの角板状のガラス(AGC社製AN-100)を基板ホルダーに装着して、3×10-4Pa以下になるまで真空排気した。表1に記載した構成でガスを導入し、圧力を3×10-1Paに調整してターゲットにパルス直流電圧500Wを印加しプラズマを生成し、スパッタリングにより化合物を基板上に形成した。ターゲットに積載する金属チップの枚数を変えることで吸収層の化学組成を制御した。
(Formation of absorption layer)
In the chamber of a magnetron sputtering apparatus, the metal chips (10 mm long, 10 mm wide, 1 mm thick) shown in Tables 1 and 2 were placed on a metal target (6 inches in diameter) to form a 50 mm x 50 mm x 0.5 mm chip. A 5 mm rectangular plate-shaped glass (AN-100 manufactured by AGC) was mounted on a substrate holder and evacuated to 3×10 −4 Pa or less. Gases were introduced in the configuration shown in Table 1, the pressure was adjusted to 3×10 −1 Pa, a pulse DC voltage of 500 W was applied to the target to generate plasma, and a compound was formed on the substrate by sputtering. The chemical composition of the absorbing layer was controlled by changing the number of metal chips loaded on the target.
(透明層の形成)
 マグネトロンスパッタ装置のチャンバー内に、表1及び2に示すターゲットを配置し、吸収層を成膜したガラスを基板ホルダーに装着して、3×10-4Pa以下になるまで真空排気した。表1及び2に記載した構成でガスを導入し、圧力を3×10-1Paに調整してターゲットにパルス直流電圧500Wを印加しプラズマを生成し、スパッタリングにより化合物を基板上に形成した。
(Formation of transparent layer)
The targets shown in Tables 1 and 2 were placed in the chamber of the magnetron sputtering apparatus, the glass with the absorption layer formed thereon was mounted on the substrate holder, and the chamber was evacuated to 3×10 −4 Pa or less. Gases were introduced in the configurations shown in Tables 1 and 2, the pressure was adjusted to 3×10 −1 Pa, a pulse DC voltage of 500 W was applied to the target to generate plasma, and a compound was formed on the substrate by sputtering.
<屈折率、消衰係数、膜厚の測定>
 分光エリプソメーター(ジェー・エー・ウーラムジャパン社、M-2000DI)を用いて50°、60°、70°の入射角で測定し、解析ソフト(ジェー・エー・ウーラムジャパン社、WVASE32)を用いて光学モデルのフィッティングを行った。吸収層及び透明層の屈折率nと消衰係数kを算出し、550nmの波長での値を表1及び2に示す。また、e-αd[α:吸収係数(単位:cm-1)、d:膜厚(単位:nm)]を計算した値を表1及び2に示す。
<Measurement of refractive index, extinction coefficient, and film thickness>
Measured at an incident angle of 50 °, 60 °, 70 ° using a spectroscopic ellipsometer (JA Woollam Japan Co., M-2000DI), analysis software (JA Woollam Japan Co., WVASE32) was used to fit the optical model. The refractive index n and extinction coefficient k of the absorbing layer and the transparent layer were calculated and the values at a wavelength of 550 nm are shown in Tables 1 and 2. Tables 1 and 2 show calculated values of e −αd [α: absorption coefficient (unit: cm −1 ), d: film thickness (unit: nm)].
<元素比の測定>
 例1~18で作製した吸収層の化学組成について、X線光電子分光法(XPS)分析装置を使用してXPS法デプスプロファイル分析より分析した。表1及び2にCr及びSiの合計量に対するCrの原子数比、Cr及びAlの合計量に対するCrの原子数比、Cu及びSiの合計量に対するCuの原子数比、Cr及びAlの合計量に対するCrの原子数比をそれぞれ計算した値を表1及び2に示す。
<Measurement of element ratio>
The chemical compositions of the absorbing layers prepared in Examples 1-18 were analyzed by XPS method depth profile analysis using an X-ray photoelectron spectroscopy (XPS) analyzer. Tables 1 and 2 show the atomic ratio of Cr to the total amount of Cr and Si, the atomic ratio of Cr to the total amount of Cr and Al, the atomic ratio of Cu to the total amount of Cu and Si, and the total amount of Cr and Al. Tables 1 and 2 show the calculated atomic number ratios of Cr to .
<抵抗率の測定> 
 超絶縁計(日置電機株式会社、SM-8220)と平板試料用電極(日置電機株式会社、SME-8311)を使用して、吸収層のシート抵抗を測定した。また、このシート抵抗と吸収層の膜厚とを使用して、下記の式により抵抗率を求めた。 
 抵抗率[Ω・cm]=シート抵抗値[Ω/□]×吸収層の膜厚[cm]
<Measurement of resistivity>
The sheet resistance of the absorbing layer was measured using a super megohmmeter (Hioki Electric Co., Ltd., SM-8220) and a plate sample electrode (Hioki Electric Co., Ltd., SME-8311). Also, using this sheet resistance and the film thickness of the absorption layer, the resistivity was determined by the following formula.
Resistivity [Ω cm] = sheet resistance value [Ω/□] x film thickness of absorption layer [cm]
<界面反射率>
 界面反射率は、透明層と吸収層との接触面において、光学計算により、求めた。
<Interface reflectance>
The interfacial reflectance was obtained by optical calculation at the contact surface between the transparent layer and the absorbing layer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び2に示すように、波長550nmにおける屈折率が1.60~2.50で、且つ消衰係数が0.20~0.50である吸収層と前記吸収層に接して積層される波長550nmにおける屈折率が1.60~2.50である透明層を備える層構成を含む例1~11は、比較例と比して、界面反射率が低い。この結果から、実施例においては、透明層と吸収層との接触面に入射する光の界面反射が抑制され、低反射が実現できていることがわかる。 As shown in Tables 1 and 2, an absorption layer having a refractive index of 1.60 to 2.50 at a wavelength of 550 nm and an extinction coefficient of 0.20 to 0.50 is laminated in contact with the absorption layer. Examples 1 to 11, which include a layer structure including a transparent layer having a refractive index of 1.60 to 2.50 at a wavelength of 550 nm, have lower interface reflectance than the comparative example. From this result, it can be seen that the interface reflection of light incident on the contact surface between the transparent layer and the absorption layer is suppressed, and low reflection is realized in the example.
[実験例2]
 吸収層のエッチングの実験例を示す。例19~23は実施例である。
<フォトレジストパターン形成>
 まず、スピンコータを用いて、各吸収層の上にフォトレジスト(東京応化工業製OFPR800-LB)を塗布した。具体的には、フォトレジストを滴下した後、最初に500rpmで5秒間、引き続き2500rpmで20秒間基板を回転させ、フォトレジストを塗布した。
[Experimental example 2]
An experimental example of etching of the absorber layer is shown. Examples 19-23 are examples.
<Photoresist pattern formation>
First, a spin coater was used to apply a photoresist (OFPR800-LB manufactured by Tokyo Ohka Kogyo Co., Ltd.) on each absorption layer. Specifically, after dropping the photoresist, the substrate was first rotated at 500 rpm for 5 seconds and then at 2500 rpm for 20 seconds to apply the photoresist.
 次に、基板を110℃のホットプレート上で90秒間加熱し、フォトレジストを黒色膜に密着させた。次に、露光機を用いて、所望のパターンが得られるように、フォトレジストを露光した。その後、現像液(東京応化工業製NMD-W)を用いて、フォトレジストを30秒間現像し、不要なフォトレジスト部分を除去した。
 その後、120℃のホットプレート上で基板を60秒間加熱し、フォトレジストを黒色膜に再密着させた。
The substrate was then heated on a hot plate at 110° C. for 90 seconds to adhere the photoresist to the black film. Next, the photoresist was exposed using an exposure machine so as to obtain a desired pattern. Thereafter, the photoresist was developed for 30 seconds using a developing solution (NMD-W manufactured by Tokyo Ohka Kogyo Co., Ltd.) to remove unnecessary photoresist portions.
After that, the substrate was heated on a hot plate at 120° C. for 60 seconds to re-adhere the photoresist to the black film.
<レジスト剥離~段差測定>
 基板上の吸収層を後述する各エッチング方法によりエッチングした後、フォトレジストを剥離し、触針式段差計で段差を測定した。フォトレジストの剥離は、基板を、室温のアセトンに3分間浸漬させ、レジストを除去した後、基板をイソプロピルアルコール中に3分間浸漬し、その後超純水中でリンス後基板を乾燥させた。
<Resist stripping ~ step measurement>
After the absorption layer on the substrate was etched by each etching method to be described later, the photoresist was peeled off and the step was measured with a stylus type step gauge. The photoresist was removed by immersing the substrate in acetone at room temperature for 3 minutes, removing the resist, immersing the substrate in isopropyl alcohol for 3 minutes, rinsing the substrate in ultrapure water, and then drying the substrate.
(エッチング 例19)
 基板をリアクティヴイオンエッチング装置(日電アネルバ製DEM-451)に導入し、例1の条件で200nm成膜した吸収膜をドライエッチングした。エッチングガスとしてCFガスを40sccm、Oガスを10sccm流し、圧力27Paに維持し250WのRF放電で180秒間エッチングした。フォトレジストを剥離した後、触針式段差計で段差を測定すると72nmエッチングされていることがわかった。
 また例2の成膜条件の吸収膜について同様のエッチング試験を行ったところ、29nmエッチングされていることがわかった。さらに実施例5の成膜条件の吸収膜については19nm、例6の成膜条件の吸収膜については30nmエッチングされていることがわかった。
(Etching example 19)
The substrate was introduced into a reactive ion etching apparatus (DEM-451 manufactured by Nichiden Anelva), and the absorption film formed to a thickness of 200 nm under the conditions of Example 1 was dry-etched. As an etching gas, 40 sccm of CF 4 gas and 10 sccm of O 2 gas were flowed, the pressure was maintained at 27 Pa, and etching was performed for 180 seconds with a 250 W RF discharge. After stripping the photoresist, the step was measured with a stylus profilometer and found to be etched by 72 nm.
When the same etching test was performed on the absorbing film under the film forming conditions of Example 2, it was found that the film was etched by 29 nm. Further, it was found that the absorbing film under the film forming conditions of Example 5 was etched by 19 nm, and the absorbing film under the film forming conditions of Example 6 was etched by 30 nm.
(エッチング 例20)
 基板をリアクティヴイオンエッチング装置(日電アネルバ製DEM-451)に導入し、例1の条件で200nm成膜した吸収膜をドライエッチングした。エッチングガスとしてCガスを50sccm流し、圧力13Paに維持し250WのRF放電で180秒間エッチングした。フォトレジストを剥離した後、触針式段差計で段差を測定すると20nmエッチングされていることがわかった。
(Etching example 20)
The substrate was introduced into a reactive ion etching apparatus (DEM-451 manufactured by Nichiden Anelva), and the absorption film formed to a thickness of 200 nm under the conditions of Example 1 was dry-etched. 50 sccm of C 2 F 6 gas was flowed as an etching gas, the pressure was maintained at 13 Pa, and etching was performed for 180 seconds with a 250 W RF discharge. After peeling off the photoresist, the step was measured with a stylus profilometer and found to be etched by 20 nm.
(エッチング 例21)
 基板を高密度プラズマエッチング装置(アルバック製NE-550)に導入し、例1の条件で200nm成膜した吸収膜をドライエッチングした。エッチングガスとしてClガスを20sccm、BClガスを10sccm流し、圧力0.8Paに維持し、アンテナ電力150W、バイアス電力20Wで120秒間エッチングした。フォトレジストを剥離した後、触針式段差計で段差を測定すると20nmエッチングされていることがわかった。また例2の成膜条件の吸収膜について同様のエッチング試験を行ったところ、63nmエッチングされていることがわかった。
(Etching example 21)
The substrate was introduced into a high-density plasma etching apparatus (NE-550 manufactured by Ulvac), and the absorption film formed to a thickness of 200 nm under the conditions of Example 1 was dry-etched. 20 sccm of Cl 2 gas and 10 sccm of BCl 3 gas were flowed as etching gases, the pressure was maintained at 0.8 Pa, and etching was performed for 120 seconds with antenna power of 150 W and bias power of 20 W. After peeling off the photoresist, the step was measured with a stylus profilometer and found to be etched by 20 nm. Further, when the same etching test was performed on the absorbing film under the film forming conditions of Example 2, it was found that the film was etched by 63 nm.
(エッチング 例22)
 ウェットエッチングにより、例3の成膜条件の吸収膜をエッチングした。エッチング液として、関東化学製KSMF-250エッチング液(非開示添加剤入りフッ化アンモニウム水溶液)を液温室温で用いた。180秒間エッチングしたところ吸収膜がエッチング除去されたことが視認できた。フォトレジストを剥離した後、触針式段差計で段差を測定すると膜厚は209nmであった。
 また例4の成膜条件の吸収膜について同様のエッチング試験を行ったところ、75秒間で吸収膜がエッチング除去されたことが視認でき膜厚は194nmであった。
 さらに例7の成膜条件の吸収膜について同様のエッチング試験を行ったところ、60秒以内に吸収膜がエッチング除去されたことが視認でき膜厚は47nmであった。
 さらに例9の成膜条件の吸収膜について同様のエッチング試験を行ったところ、180秒間のエッチング後に吸収膜はまだ残存していたが、12nmエッチングされていることがわかった。
(Etching example 22)
The absorption film was etched under the film forming conditions of Example 3 by wet etching. As an etchant, Kanto Kagaku KSMF-250 etchant (an ammonium fluoride aqueous solution containing an undisclosed additive) was used at a liquid temperature of room temperature. After etching for 180 seconds, it was visually confirmed that the absorption film was etched away. After peeling off the photoresist, the thickness was 209 nm when the step was measured with a stylus profilometer.
When the same etching test was performed on the absorbing film under the film forming conditions of Example 4, it was confirmed that the absorbing film was removed by etching in 75 seconds, and the film thickness was 194 nm.
Further, when the same etching test was performed on the absorbing film under the film forming conditions of Example 7, it was confirmed that the absorbing film was removed by etching within 60 seconds, and the film thickness was 47 nm.
Furthermore, when the same etching test was performed on the absorbing film under the film forming conditions of Example 9, it was found that the absorbing film still remained after etching for 180 seconds, but was etched by 12 nm.
(エッチング 例23)
 ウェットエッチングにより、例4の成膜条件の吸収膜をエッチングした。エッチング液として、関東化学製Alエッチング液(りん酸、酢酸及び硝酸の混合溶液)を35℃に加熱して用いた。17秒間エッチングしたところ吸収膜がエッチング除去されたことが視認できた。フォトレジストを剥離した後、触針式段差計で段差を測定すると膜厚は188nmであった。
(Etching example 23)
By wet etching, the absorbing film under the film forming conditions of Example 4 was etched. As an etchant, Kanto Kagaku's Al etchant (mixed solution of phosphoric acid, acetic acid and nitric acid) was heated to 35° C. and used. After etching for 17 seconds, it was visually confirmed that the absorption film was removed by etching. After peeling off the photoresist, the thickness was 188 nm when the step was measured with a stylus profilometer.
[実験例3]
(金属Cu+CuO原料)
 金属Cu粉末、CuO粉末および非晶質SiO粉末を、それぞれ、モル比で、52.5:17.5:30とした混合粉を原料として、ホットプレス法により焼結体を作製した。ホットプレス処理の条件は、熱処理温度が約950℃、圧力は約8MPaとした。XRD測定より、得られた焼結体は、CuO結晶とCu結晶とを含むことが分かった。また、焼結体の抵抗率は2.8×10-4Ω・cmであった。この焼結体を、直径152.4mm、厚み5mmの円盤状に加工したのち、銅製のバッキングプレートにボンディングを行い、スパッタターゲットを作製した。
[Experimental example 3]
(Metal Cu + CuO raw material)
A mixed powder of metallic Cu powder, CuO powder and amorphous SiO 2 powder at a molar ratio of 52.5:17.5:30, respectively, was used as a raw material to prepare a sintered body by a hot pressing method. The conditions for the hot press treatment were a heat treatment temperature of about 950° C. and a pressure of about 8 MPa. XRD measurement revealed that the obtained sintered body contained Cu 2 O crystals and Cu crystals. Moreover, the resistivity of the sintered body was 2.8×10 −4 Ω·cm. This sintered body was processed into a disk shape with a diameter of 152.4 mm and a thickness of 5 mm, and then bonded to a copper backing plate to prepare a sputtering target.
(金属Cu原料)
 金属Cu粉末と非晶質SiO粉末を、それぞれ、モル比で、70:30とした混合粉を原料として、ホットプレス法により焼結体を作製した。XRD測定より、得られた焼結体は、Cu結晶を含むことが分かった。また、焼結体の抵抗率は4.7×10-5Ω・cmであった。
(Cu metal raw material)
A sintered body was produced by a hot press method using a mixed powder of metal Cu powder and amorphous SiO 2 powder at a molar ratio of 70:30, respectively, as a raw material. XRD measurement revealed that the obtained sintered body contained Cu crystals. Moreover, the resistivity of the sintered body was 4.7×10 −5 Ω·cm.
(CuO原料) 
 CuO粉末と非晶質SiO粉末を、それぞれ、モル比で、70:30とした混合粉を原料として、ホットプレス法により焼結体を作製した。また、焼結体の抵抗率は1×10-3Ω・cmよりも大きかった。
(CuO raw material)
A mixed powder of CuO powder and amorphous SiO 2 powder at a molar ratio of 70:30, respectively, was used as a raw material to prepare a sintered body by a hot press method. Also, the resistivity of the sintered body was greater than 1×10 −3 Ω·cm.
 以上のことから、原子数比で、Cu:Si=70:30であり、導電性を示すスパッタターゲットを作製できることが分かった。 From the above, it was found that the atomic number ratio of Cu:Si = 70:30 and that a sputtering target exhibiting conductivity could be produced.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2021年1月27日付けで出願された日本特許出願(特願2021-011395)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。 Although the present invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application (Japanese Patent Application No. 2021-011395) filed on January 27, 2021, the entirety of which is incorporated by reference. Also, all references cited herein are incorporated in their entirety.
1 光学薄膜積層体
2 吸収層
3 透明層
6 基板
7,8 発光素子
9,10 電気回路 
15,16 薄膜トランジスタアレイ
Reference Signs List 1 optical thin film laminate 2 absorption layer 3 transparent layer 6 substrates 7 and 8 light emitting elements 9 and 10 electric circuit
15, 16 thin film transistor array

Claims (15)

  1.  基板と、光学薄膜層とを含み、
     前記光学薄膜層が、波長550nmにおける屈折率が1.60~2.50で、且つ消衰係数が0.20~0.50である吸収層と、前記吸収層に接して積層される波長550nmにおける屈折率が1.60~2.50である透明層と、を備える層構成を含む、光学薄膜積層体。
    comprising a substrate and an optical thin film layer;
    The optical thin film layer includes an absorption layer having a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm, and a wavelength of 550 nm laminated in contact with the absorption layer. and a transparent layer having a refractive index of 1.60 to 2.50.
  2.  前記吸収層の物理膜厚が200~500nmである、請求項1に記載の光学薄膜積層体。  The optical thin film laminate according to claim 1, wherein the absorption layer has a physical thickness of 200 to 500 nm. 
  3.  前記吸収層の抵抗率が1×10-1Ωcm以上である、請求項1または2に記載の光学薄膜積層体。 3. The optical thin film laminate according to claim 1, wherein the resistivity of said absorption layer is 1×10 −1 Ωcm or more.
  4.  前記吸収層が、少なくとも2種以上の金属カチオンを含む、酸化物、窒化物、酸窒化物及び酸炭化物から選ばれる少なくとも1を含む、請求項1~3いずれか1項に記載の光学薄膜積層体。 The optical thin film laminate according to any one of claims 1 to 3, wherein the absorption layer contains at least one selected from oxides, nitrides, oxynitrides and oxycarbides containing at least two kinds of metal cations. body.
  5.  前記吸収層が、Cr、Mn、Fe、Co、Ni、Cu、Ru及びAgからなる群より選択される少なくとも1種以上の元素を含む、請求項1~4いずれか1項に記載の光学薄膜積層体。 The optical thin film according to any one of claims 1 to 4, wherein the absorption layer contains at least one element selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ru and Ag. laminate.
  6.  前記吸収層がCr及びSiを含み、前記吸収層におけるCr及びSiの合計量に対するCrの原子数比は、0.10以上、0.70以下の範囲内である、請求項5に記載の光学薄膜積層体。 6. The optical system according to claim 5, wherein the absorbing layer contains Cr and Si, and the atomic number ratio of Cr to the total amount of Cr and Si in the absorbing layer is in the range of 0.10 to 0.70. Thin film laminate.
  7.  前記吸収層がCr及びAlを含み、前記吸収層におけるCr及びAlの合計量に対するCrの原子数比は、0.10以上、0.50以下の範囲内である、請求項5に記載の光学薄膜積層体。 6. The optical system according to claim 5, wherein the absorbing layer contains Cr and Al, and the atomic ratio of Cr to the total amount of Cr and Al in the absorbing layer is in the range of 0.10 to 0.50. Thin film laminate.
  8.  前記吸収層がCu及びSiを含み、前記吸収層におけるCu及びSiの合計量に対するCuの原子数比は、0.10以上、0.95以下の範囲内である、請求項5に記載の光学薄膜積層体。 6. The optical system according to claim 5, wherein the absorption layer contains Cu and Si, and the atomic ratio of Cu to the total amount of Cu and Si in the absorption layer is in the range of 0.10 or more and 0.95 or less. Thin film laminate.
  9.  前記吸収層がCu及びAlを含み、前記吸収層におけるCu及びAlの合計量に対するCuの原子数比は、0.30以上、0.95以下の範囲内である、請求項5に記載の光学薄膜積層体。 6. The optical system according to claim 5, wherein the absorption layer contains Cu and Al, and the atomic ratio of Cu to the total amount of Cu and Al in the absorption layer is in the range of 0.30 or more and 0.95 or less. Thin film laminate.
  10.  前記吸収層は、エッチングによってパターニングが可能である、請求項1~9のいずれか1項に記載の光学薄膜積層体。 The optical thin film laminate according to any one of claims 1 to 9, wherein the absorption layer can be patterned by etching.
  11.  基板と、光学薄膜層とを含み、
     前記光学薄膜層が、少なくとも、吸収層、下部電極、発光層及び上部電極を含む、基板上方に光を取り出す発光素子であって、
     前記下部電極は前記吸収層に接して積層され、
     前記吸収層が、波長550nmにおける屈折率が1.60~2.50であり、且つ消衰係数が0.20~0.50である吸収層であり、
     前記下部電極が、前記波長550nmにおける屈折率が1.60~2.50である透明層である、請求項1~10のいずれか1項に記載の光学薄膜積層体を含む、発光素子。
    comprising a substrate and an optical thin film layer;
    A light-emitting device in which the optical thin film layer includes at least an absorption layer, a lower electrode, a light-emitting layer and an upper electrode, and extracts light above a substrate,
    the lower electrode is laminated in contact with the absorption layer;
    The absorption layer has a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm,
    A light emitting device comprising the optical thin film laminate according to any one of claims 1 to 10, wherein said lower electrode is a transparent layer having a refractive index of 1.60 to 2.50 at said wavelength of 550 nm.
  12.  基板と、光学薄膜層とを含み、
     前記光学薄膜層が、金属配線と前記金属配線の上部に積層された絶縁層との間に、吸収層を含み、
     前記吸収層は、前記金属配線及び前記絶縁層に接するように積層され、
     前記吸収層が、波長550nmにおける屈折率が1.60~2.50であり、且つ消衰係数が0.20~0.50である吸収層であり、
     前記絶縁層が、波長550nmにおける屈折率が1.60~2.50である透明層である、請求項1~10いずれか1項に記載の光学薄膜積層体を含む電気回路。
    comprising a substrate and an optical thin film layer;
    the optical thin film layer includes an absorption layer between a metal wire and an insulating layer laminated on top of the metal wire;
    The absorption layer is laminated so as to be in contact with the metal wiring and the insulating layer,
    The absorption layer has a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm,
    An electric circuit comprising an optical thin film laminate according to any one of claims 1 to 10, wherein said insulating layer is a transparent layer having a refractive index of 1.60 to 2.50 at a wavelength of 550 nm.
  13.  基板と、複数の薄膜トランジスタとを含み、
     前記薄膜トランジスタは、半導体層、吸収層、前記半導体層と前記吸収層との間に配置された絶縁層を含み、
     前記絶縁層は前記吸収層に接するように積層され、
     前記吸収層が、波長550nmにおける屈折率が1.60~2.50であり、且つ消衰係数が0.20~0.50である吸収層であり、
     前記絶縁層が、波長550nmにおける屈折率が1.60~2.50である前記透明層である、請求項1~10いずれか1項に記載の光学薄膜積層体を含む、薄膜トランジスタアレイ。
    including a substrate and a plurality of thin film transistors;
    the thin film transistor includes a semiconductor layer, an absorption layer, and an insulating layer disposed between the semiconductor layer and the absorption layer;
    The insulating layer is laminated so as to be in contact with the absorbing layer,
    The absorption layer has a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm,
    A thin film transistor array comprising the optical thin film laminate according to any one of claims 1 to 10, wherein said insulating layer is said transparent layer having a refractive index of 1.60 to 2.50 at a wavelength of 550 nm.
  14.  基板上に光学薄膜層を形成することを含む光学薄膜積層体の製造方法であって、
     前記光学薄膜層の形成は、
     波長550nmにおける屈折率が1.60~2.50で、且つ消衰係数が0.20~0.50である吸収層を形成すること及び
     前記吸収層に接して積層されるように波長550nmにおける屈折率が1.60~2.50である透明層を形成することを含む、光学薄膜積層体の製造方法。
    A method for manufacturing an optical thin film laminate comprising forming an optical thin film layer on a substrate,
    The formation of the optical thin film layer includes:
    forming an absorption layer having a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm; A method for producing an optical thin film laminate, comprising forming a transparent layer having a refractive index of 1.60 to 2.50.
  15.  請求項14に記載の光学薄膜積層体の製造方法に用いるスパッタリングターゲット材料であって、
     波長550nmにおける屈折率が1.60~2.50であり、且つ消衰係数が0.20~0.50である前記吸収層をスパッタリング法により形成するためのスパッタリングターゲット材料。
    A sputtering target material used in the method for producing an optical thin film laminate according to claim 14,
    A sputtering target material for forming the absorption layer having a refractive index of 1.60 to 2.50 and an extinction coefficient of 0.20 to 0.50 at a wavelength of 550 nm by sputtering.
PCT/JP2022/002297 2021-01-27 2022-01-21 Optical thin film laminate and method for producing same WO2022163546A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-011395 2021-01-27
JP2021011395 2021-01-27

Publications (1)

Publication Number Publication Date
WO2022163546A1 true WO2022163546A1 (en) 2022-08-04

Family

ID=82653550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002297 WO2022163546A1 (en) 2021-01-27 2022-01-21 Optical thin film laminate and method for producing same

Country Status (2)

Country Link
TW (1) TW202232777A (en)
WO (1) WO2022163546A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116992A (en) * 1991-04-04 1993-05-14 Asahi Glass Co Ltd Anti-iridescence transparent body
JPH1096801A (en) * 1996-06-12 1998-04-14 Asahi Glass Co Ltd Light-absorbing reflection preventing body and its production
JP2000338302A (en) * 1999-05-26 2000-12-08 Sony Corp Antireflection film and image display device
JP2009083183A (en) * 2007-09-28 2009-04-23 Toppan Printing Co Ltd Optical membrane laminate
JP2013148844A (en) * 2012-01-23 2013-08-01 Asahi Glass Co Ltd Light absorber and imaging apparatus using the same
WO2015194587A1 (en) * 2014-06-18 2015-12-23 ジオマテック株式会社 Laminate, method for manufacturing same, and electronic device
WO2016031801A1 (en) * 2014-08-27 2016-03-03 住友金属鉱山株式会社 Laminate film, electrode substrate film, and manufacturing method therefor
US20180149935A1 (en) * 2015-05-06 2018-05-31 Lg Chem, Ltd. Liquid crystal display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116992A (en) * 1991-04-04 1993-05-14 Asahi Glass Co Ltd Anti-iridescence transparent body
JPH1096801A (en) * 1996-06-12 1998-04-14 Asahi Glass Co Ltd Light-absorbing reflection preventing body and its production
JP2000338302A (en) * 1999-05-26 2000-12-08 Sony Corp Antireflection film and image display device
JP2009083183A (en) * 2007-09-28 2009-04-23 Toppan Printing Co Ltd Optical membrane laminate
JP2013148844A (en) * 2012-01-23 2013-08-01 Asahi Glass Co Ltd Light absorber and imaging apparatus using the same
WO2015194587A1 (en) * 2014-06-18 2015-12-23 ジオマテック株式会社 Laminate, method for manufacturing same, and electronic device
WO2016031801A1 (en) * 2014-08-27 2016-03-03 住友金属鉱山株式会社 Laminate film, electrode substrate film, and manufacturing method therefor
US20180149935A1 (en) * 2015-05-06 2018-05-31 Lg Chem, Ltd. Liquid crystal display device

Also Published As

Publication number Publication date
TW202232777A (en) 2022-08-16

Similar Documents

Publication Publication Date Title
US7250634B2 (en) Light-emitting device, method of manufacturing the same, and display unit
CN100472839C (en) Laminated structure, and manufacturing method, display device, and display unit employing same
CN101599536B (en) Organic light emitting diode display device
EP2178343B1 (en) Translucent substrate, method for manufacturing the translucent substrate and organic led element
CN102257649B (en) Organic electroluminescence element
JP2008171637A (en) Transparent conductive film laminate, organic el device using this transparent conductive film laminate, and manufacturing method of these
US8487299B2 (en) Organic EL device and method of manufacturing same
JP5172961B2 (en) Organic EL device and manufacturing method thereof
KR20080084620A (en) Organic el device
JP2010198921A (en) Organic el element using transparent conductive film laminate, and manufacturing method of these
JP7007366B2 (en) Light emitting elements, display devices, and electronic devices
WO2010010622A1 (en) Organic el device and process for producing the same
JP2003203771A (en) Organic light emitting element, display device, and illumination device
JPH10308286A (en) Organic electroluminescent light emitting device
KR101347471B1 (en) Organic el device and method of manufacturing organic el device
KR20140048796A (en) Organic electro luminescence device and method of manufacturing the same
TWI396313B (en) Organic light emitting device
CN101499516B (en) Light-emitting device, method of manufacturing the same, and display unit
WO2022163546A1 (en) Optical thin film laminate and method for producing same
JP2002184566A (en) Electroluminescent element and manufacturing method
KR101889950B1 (en) Organic Light Emitting Display Device
TWI384901B (en) Organic electroluminescent element
KR20180041298A (en) Organic light emitting diode display and manufacturing method thereof
JP2004039409A (en) Organic light emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP