WO2022163487A1 - 射出装置および制御方法 - Google Patents

射出装置および制御方法 Download PDF

Info

Publication number
WO2022163487A1
WO2022163487A1 PCT/JP2022/001947 JP2022001947W WO2022163487A1 WO 2022163487 A1 WO2022163487 A1 WO 2022163487A1 JP 2022001947 W JP2022001947 W JP 2022001947W WO 2022163487 A1 WO2022163487 A1 WO 2022163487A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
bush
torque
motor
injection device
Prior art date
Application number
PCT/JP2022/001947
Other languages
English (en)
French (fr)
Inventor
大澤卓也
関口彰太朗
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to CN202280011084.1A priority Critical patent/CN116783052A/zh
Priority to DE112022000315.4T priority patent/DE112022000315T5/de
Priority to JP2022517215A priority patent/JP7082254B1/ja
Priority to US18/273,189 priority patent/US20240051207A1/en
Publication of WO2022163487A1 publication Critical patent/WO2022163487A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating

Definitions

  • the present invention relates to an injection device and a control method.
  • Japanese Patent Application Laid-Open No. 2019-055488 discloses a motor control unit that controls a linear motion motor and a rotary motion motor.
  • the linear motion motor is a motor that moves the bush in the axial direction of the screw.
  • the rotational motion motor is a motor that rotates the bush around the axis of the screw.
  • the motor control unit controls the linear motion motor to advance the bushing in the direction of approaching the screw from the state separated from the screw.
  • the motor control section controls the motor for rotary motion to rotate the bush.
  • the motor control section stops advancing the bush when a predetermined condition is satisfied.
  • the predetermined condition is that the torque of the linear motion motor falls below a second torque smaller than the first torque before the rotation angle of the bush reaches 360 degrees, or the rotation angle of the bush reaches 360 degrees or more. This is the case where the torque of the linear motion motor does not fall below the second torque.
  • JP-A-2019-055488 only direct torque is monitored. Therefore, when the spline shaft comes into contact with the bottom surface of the spline hole and the torque becomes equal to or greater than the first torque, the bush is rotated 360 degrees even after the spline fitting is completed. Therefore, the work of rotating the bush is wasted.
  • the present invention provides an injection device and a control method that can improve the working efficiency of spline fitting.
  • a first aspect of the present invention is a screw disposed along a front-rear direction for injecting an injection resin and a rearward direction opposite to the forward direction; and a bush formed so as to be spline-fitted with the screw,
  • An injection device for spline-fitting a screw and the bush a linear motion motor for moving the bush forward and backward in the longitudinal direction with respect to the screw; a rotary motor that rotates the bushing with respect to the screw; a first detection unit that detects a linear motion torque of the linear motion motor; a second detection unit that detects the rotational torque of the rotary motor; a motor control unit that executes control processing for controlling the linear motion motor and the rotary motor while monitoring the linear motion torque and the rotational torque so that the bush is spline-fitted to the screw; Prepare.
  • a second aspect of the present invention is a screw arranged along a front-rear direction in which an injection resin is injected and a rearward direction opposite to the forward direction; a bush formed so as to be spline-fittable with the screw; a linear motion motor for moving the bush forward and backward in the longitudinal direction with respect to the screw; a rotary motor that rotates the bushing with respect to the screw; a first detection unit that detects a linear motion torque of the linear motion motor; a second detection unit that detects the rotational torque of the rotary motor;
  • a control method for controlling the linear motion motor and the rotary motor while monitoring the linear motion torque and the rotary torque so that the screw and the bush are spline-fitted in an injection device comprising: a rotational advancement step of rotating and advancing the bush with respect to the screw; a rotation stopping step of stopping rotation of the bush when the rotational torque exceeds a rotational torque threshold; an advance stop step of stopping the advance of the bush when the linear torque exceeds a linear torque threshold; including
  • a third aspect of the present invention is a screw arranged along a front-rear direction in which an injection resin is injected and a rearward direction opposite to the forward direction; a bush formed so as to be spline-fittable with the screw; a linear motion motor for moving the bush forward and backward in the longitudinal direction with respect to the screw; a rotary motor that rotates the bushing with respect to the screw; a first detection unit that detects a linear motion torque of the linear motion motor; a second detection unit that detects the rotational torque of the rotary motor;
  • a control method for controlling the linear motion motor and the rotary motor while monitoring the linear motion torque and the rotary torque so that the screw and the bush are spline-fitted in an injection device comprising: a rotating advance step that alternately repeats a forward motion of advancing the bush for a first prescribed time period and a rotating motion of rotating the bushing for a second prescribed time period; an advancing step that continues to advance the bush if the rotational torque exceeds a rotational torque threshold
  • FIG. 1 is a schematic diagram showing an injection device according to one embodiment.
  • FIG. 2 shows a screw and bushing.
  • FIG. 3 is a flow chart showing a first processing mode of control processing executed by the motor control section to spline-fit the screw and bush.
  • FIG. 4 is a flow chart showing a second processing mode of control processing executed by the motor control unit to spline-fit the screw and bush.
  • FIG. 5 is a diagram showing a screw and bush of Modification 1.
  • FIG. FIG. 6 is a diagram showing the screw and bush of Modification 2.
  • FIG. 7 is a diagram showing a screw and a bush of Modification 3.
  • FIG. 8A is a cross-sectional view of the screw of FIG. 7, and
  • FIG. 8B is a cross-sectional view of the bushing of FIG.
  • FIG. 9 is a diagram showing a screw and bush of Modification 4.
  • FIG. 1 is a schematic diagram showing an injection device according to one embodiment.
  • FIG. 2 shows a screw
  • FIG. 1 is a schematic diagram illustrating an injection device 10 according to one embodiment.
  • the injection device 10 injects molding resin into a mold.
  • the injection direction for injecting the molding resin is the forward direction
  • the direction opposite to the injection direction is the rearward direction.
  • the injection device 10 is provided with a screw 12 , a bush 14 , a bush fastening portion 16 and a drive mechanism 18 .
  • the screw 12 is accommodated in the through hole 20H of the cylinder 20.
  • the screw 12 rotates to forward the molding resin introduced into the through-hole 20H.
  • a nozzle 22 is provided at the front end of the cylinder 20 , and the molding resin fed by the screw 12 is injected from the nozzle 22 .
  • the screw 12 has a screw portion 12A and a spline portion 12B.
  • the screw part 12A is the front part of the screw 12.
  • a spiral protrusion 12P is formed on the outer peripheral surface of the screw portion 12A.
  • the spline portion 12B is the rear portion of the screw 12 and is connected to the rear end of the screw portion 12A.
  • An outer peripheral surface of the spline portion 12B is formed with protrusions and recesses that can be spline-fitted with the bush 14 .
  • the bushing 14 is spline-fitted with the screw 12 .
  • the bushing 14 has a through hole 14H penetrating in the front-rear direction.
  • the inner peripheral surface of the through-hole 14H is formed with irregularities that can be spline-fitted with the spline portion 12B.
  • the bush 14 is provided with an annular projection 14A projecting rearward from the rear end surface of the bush 14 .
  • the bush fastening portion 16 is a member that can fix the bush 14 .
  • the bush fastening portion 16 has a concave portion 16A in which the convex portion 14A of the bush 14 is accommodated.
  • the bushing 14, in which the convex portion 14A is accommodated in the concave portion 16A, is fixed to the bush fastening portion 16 with a bolt.
  • the drive mechanism 18 is a mechanism that drives at least one of the screw 12 and the bush 14 so as to move the bush 14 relative to the screw 12 .
  • the drive mechanism 18 that drives the bush 14 is used.
  • the drive mechanism 18 includes a linear motor 24 , a rotary motor 26 and a motor control section 28 .
  • the direct-acting motor 24 is a motor that advances and retracts the bush 14 in the front-rear direction.
  • a motor shaft of the direct-acting motor 24 is connected to a ball screw 30 that rotates together with the motor shaft.
  • a sliding portion 32 is attached to the ball screw 30 so as to move the ball screw 30 back and forth in accordance with the rotation of the direct-acting motor 24 .
  • a linear motion gear 34 is rotatably attached to the sliding portion 32 .
  • the linear motion gear 34 is fixed to the rear end of the bush fastening portion 16 .
  • the linear motor 24 is provided with an encoder 36 that detects the rotation angle of the linear motor 24 and a first detector 38 that detects the linear torque of the linear motor 24 .
  • the rotary motor 26 is a motor that rotates the bush 14 with respect to the screw 12 .
  • a rotation gear 40 that meshes with the linear motion gear 34 is connected to the motor shaft of the rotation motor 26 .
  • the rotary motor 26 is provided with an encoder 42 that detects the rotation angle of the rotary motor 26 and a second detector 44 that detects the rotational torque of the rotary motor 26 .
  • the direct-acting gear 34 moves back and forth via the ball screw 30 and the sliding portion 32 in accordance with the rotation of the direct-acting motor 24 .
  • the rotation gear 40 and the rotary motor 26 meshing with the linear motion gear 34 move in the longitudinal direction, and the bush 14 moves in the longitudinal direction via the bush fastening portion 16 to which the linear motion gear 34 is fixed.
  • the rotation gear 40 rotates according to the rotation of the rotary motor 26 .
  • the linear motion gear 34 meshing with the rotation gear 40 rotates, and the bush 14 rotates via the bush fastening portion 16 to which the linear motion gear 34 is fixed.
  • the motor control unit 28 advances and retreats the bush 14 with respect to the screw 12 by controlling the linear motion motor 24 so that the rotation angle detected by the encoder 36 becomes a target value. Further, the motor control unit 28 rotates the bush 14 by controlling the rotary motor 26 so that the rotation angle detected by the encoder 42 becomes a target value.
  • the motor control unit 28 executes control processing for controlling the linear motion motor 24 and the rotary motor 26 so that the bush 14 is spline-fitted to the screw 12 .
  • the motor control unit 28 controls the linear motor 24 and the rotary motor 26 while monitoring the linear torque detected by the first detector 38 and the rotational torque detected by the second detector 44. .
  • FIG. 2 is a diagram showing the screw 12 and the bush 14.
  • FIG. 1 is a diagram showing the screw 12 and the bush 14.
  • FIG. 1 A plurality of outer peripheral protrusions 50 are formed on the outer peripheral surface of the spline portion 12B and extend in the front-rear direction at intervals in the peripheral direction of the spline portion 12B.
  • Each of the plurality of outer peripheral protrusions 50 is divided by a fitting groove 52 that makes a round along the circumferential direction of the spline portion 12B.
  • An annular retainer 46 ( FIG. 1 ) is fitted in the fitting groove 52 .
  • each of the plurality of outer peripheral projections 50 is the same. Only one of the plurality of outer peripheral protrusions 50 will be described below regarding the shape of the outer peripheral protrusion 50 .
  • An outer peripheral protrusion slope 50S is formed at one rear end portion of both side surfaces 50F1 and 50F2 of the outer peripheral protrusion 50 in the circumferential direction of the screw 12 .
  • the outer peripheral protrusion slope 50S is inclined so that the outer peripheral protrusion width 50W along the circumferential direction of the screw 12 becomes smaller toward the rear end.
  • a plurality of inner peripheral protrusions 60 are formed on the inner peripheral surface of the through hole 14H of the bush 14 and extend in the front-rear direction at intervals in the peripheral direction of the through hole 14H.
  • Each of the plurality of inner peripheral projections 60 has the same shape. Only one of the plurality of inner peripheral protrusions 60 will be described below regarding the shape of the inner peripheral protrusion 60 .
  • An inner peripheral protrusion inclined surface 60S is formed at one front end portion of both side surfaces 60F1 and 60F2 of the inner peripheral protrusion 60 in the circumferential direction of the through hole 14H.
  • the inner peripheral protrusion slope 60S is inclined such that the inner peripheral protrusion width 60W along the circumferential direction of the through hole 14H becomes smaller toward the front end.
  • control processing executed by the motor control unit 28 for spline-fitting the screw 12 and the bush 14 will be described separately for a first processing mode and a second processing mode.
  • FIG. 3 is a flowchart showing a first processing mode of control processing executed by the motor control unit 28 to spline-fit the screw 12 and the bush 14 together.
  • This control process is started after the bush 14 is moved to a predetermined fitting start position spaced rearward from the rear end surface of the screw 12 .
  • the rotation center line LN1 (FIG. 2) of the screw 12 and the center line LN2 (FIG. 2) of the through hole 14H of the bush 14 are preferably aligned, but the rotation center line LN1 and the center line LN2 may be slightly deviated.
  • step S ⁇ b>1 the motor control unit 28 advances the bush 14 toward the screw 12 while rotating the bush 14 .
  • the control process proceeds to step S2.
  • step S2 the motor control section 28 compares the rotational torque detected by the second detection section 44 with a predetermined rotational torque threshold.
  • the control process remains at step S2.
  • the control process proceeds to step S3.
  • the phenomenon in which the rotational torque exceeds the rotational torque threshold in step S2 occurs in the following state. That is, the screw 12 and the bush 14 are in a fitted state in which they are spline-fitted, or in a guided state in which they are guided to be spline-fitted.
  • the guidance state is one of the following three states. One is a state in which the front end of the inner peripheral protrusion 60 of the bush 14 is in contact with the outer peripheral protrusion slope 50S of the screw 12 . The other is a state in which the rear end of the outer peripheral protrusion 50 of the screw 12 is in contact with the inner peripheral protrusion slope 60S of the bush 14 . The other is a state in which the inner peripheral protrusion slope 60S of the bush 14 is in contact with the outer peripheral protrusion slope 50S of the screw 12 .
  • step S3 the motor control unit 28 stops the rotation of the bush 14.
  • step S4 the control process proceeds to step S4.
  • step S4 the motor control unit 28 compares the linear motion torque detected by the first detection unit 38 while the bush 14 is moving forward with the linear motion torque threshold.
  • the control process remains at step S4.
  • the control process proceeds to step S5.
  • step S4 the phenomenon in which the linear torque exceeds the linear torque threshold in step S4 occurs in the following state. That is, the rear end surface of the screw 12 spline-fitted with the bush 14 is in contact with the bottom surface of the concave portion 16A of the bush fastening portion 16 .
  • step S5 the motor control unit 28 terminates the control process by stopping the forward movement of the bush 14 when the direct torque exceeds the direct torque threshold.
  • FIG. 4 is a flowchart showing a second processing form of control processing executed by the motor control unit 28 to spline-fit the screw 12 and the bush 14 together.
  • This control process is started after the bush 14 is moved to the fitting start position, as in the first process mode.
  • the rotation center line LN1 (FIG. 2) of the screw 12 and the center line LN2 (FIG. 2) of the through hole 14H of the bush 14 are preferably aligned, but the rotation center line LN1 and the center line LN2 may be slightly deviated.
  • step S11 the motor control unit 28 starts advancing the bush 14 for the first specified time.
  • step S12 the control process proceeds to step S12.
  • step S12 the motor control unit 28 compares the rotational torque detected by the second detection unit 44 during the forward motion with the rotational torque threshold. Here, if the rotational torque does not exceed the rotational torque threshold, the control process proceeds to step S13. On the other hand, when the rotational torque exceeds the rotational torque threshold, the control process proceeds to step S15.
  • step S13 the motor control unit 28 starts a rotation operation to rotate the bush 14 for the second specified time at the position where the forward movement ended.
  • the second specified time may be the same as or different from the first specified time.
  • step S14 the motor control unit 28 compares the rotational torque detected by the second detection unit 44 during the rotation operation with the rotational torque threshold.
  • the control process returns to step S11. In this case, the motor control unit 28 starts forward movement from the position (phase) when the rotation movement ends.
  • the control process proceeds to step S15. It should be noted that the phenomenon that the rotational torque exceeds the rotational torque threshold in step S14 occurs in the fitted state. On the other hand, the phenomenon that the rotational torque exceeds the rotational torque threshold in step S12 occurs in the guiding state.
  • step S15 the motor control unit 28 continues advancing the bush 14 without rotating it.
  • the control process proceeds to step S16.
  • step S16 the motor control unit 28 compares the linear motion torque detected by the first detection unit 38 while the bush 14 is moving forward with the linear motion torque threshold.
  • the control process remains at step S16.
  • the control process proceeds to step S17.
  • a phenomenon in which the linear torque exceeds the linear torque threshold occurs when the rear end of the spline-fitted screw 12 is in contact with the bottom surface of the concave portion 16A of the bush fastening portion 16 .
  • step S17 the motor control unit 28 terminates the control process by stopping the forward movement of the bush 14 when the direct torque exceeds the direct torque threshold.
  • the motor control unit 28 controls the linear motion motor 24 and the linear motion motor 24 while monitoring the linear motion torque and the rotational torque so that the screw 12 and the bush 14 are spline-fitted.
  • a control process for controlling the rotary motor 26 is executed. Accordingly, it is possible to monitor not only the linear motion torque but also the rotational torque to determine whether or not the spline is fitted. Therefore, useless rotation of the bush 14 can be reduced, and as a result, work efficiency of spline fitting can be improved.
  • the motor control unit 28 moves the bush 14 forward while rotating it with respect to the screw 12, stops the rotation of the bush 14 when the rotation torque exceeds the rotation torque threshold, and the linear motion torque is The control process is terminated when the direct torque threshold is exceeded. Thereby, the rotation of the bush 14 after the spline fitting can be suppressed.
  • the motor control unit 28 alternately repeats the forward movement and the rotational movement, and advances the bush 14 when the rotational torque exceeds the rotational torque threshold during forward movement or rotational movement. continue. After that, the motor control unit 28 terminates the control process when the direct torque exceeds the direct torque threshold. Thereby, similarly to the first processing mode, it is possible to suppress the rotation of the bush 14 after the spline fitting.
  • the forward speed of each of the plurality of forward motions may be the same or different. Further, the advancing speed of the forward motion when alternately repeating the rotating motion and the forward motion when the bushing 14 is continued to move forward until the linear motion torque exceeds the linear motion torque threshold value without executing the rotating motion is the same. may be different.
  • an outer peripheral protrusion slope 50S is formed on each outer peripheral protrusion 50 on the outer peripheral surface on the rear end side of the screw 12 .
  • an inner peripheral protrusion slope 60S is formed on each inner peripheral protrusion 60 on the inner peripheral surface of the bush 14 on the front end side.
  • the other is a state in which the inner peripheral protrusion slope 60S of the bush 14 is in contact with the outer peripheral protrusion slope 50S of the screw 12 . Therefore, it is possible to reduce the rotation of the bush 14 until the spline fitting is performed, compared to the case where the outer peripheral protrusion slope 50S and the inner peripheral protrusion slope 60S are not formed.
  • FIG. 5 is a diagram showing the screw 12 and bushing 14 of Modification 1. As shown in FIG. In FIG. 5, the same reference numerals are assigned to the same configurations as those described in the embodiment. In addition, in this modification, the description which overlaps with embodiment is omitted.
  • the rear end of the outer peripheral protrusion 50 of the screw 12 and the front end of the inner peripheral protrusion 60 of the bush 14 do not have a flat surface.
  • the rear end of the outer peripheral protrusion 50 and the front end of the inner peripheral protrusion 60 are formed in a sharp or rounded shape. This avoids a situation in which the rear end surface of the outer peripheral projection 50 and the front end surface of the inner peripheral projection 60 come into contact with each other and the bush 14 does not move forward. Therefore, the reliability of spline fitting can be further enhanced compared to the embodiment. Also, the rotation of the bush 14 until spline fitting can be reduced.
  • FIG. 6 is a diagram showing the screw 12 and bushing 14 of Modification 2. As shown in FIG. 6, the same reference numerals are assigned to the same configurations as those described in the embodiment. In addition, in this modification, the description which overlaps with embodiment is omitted.
  • the outer peripheral protrusion slope 50S of the outer peripheral protrusion 50 is formed on each of the two side surfaces 50F1 and 50F2 of the screw 12 in the circumferential direction.
  • inner peripheral projection slopes 60S of the inner peripheral projection 60 are formed on both side surfaces 60F1 and 60F2 of the through hole 14H in the circumferential direction.
  • spline fitting can be achieved by simply advancing the bush 14 without rotating it in the following situations.
  • the front end of the inner peripheral protrusion slope 60S is in contact with the outer peripheral protrusion slope 50S.
  • the rear end of the outer peripheral protrusion slope 50S is in contact with the inner peripheral protrusion slope 60S.
  • FIG. 7 is a diagram showing the screw 12 and bushing 14 of Modification 3.
  • FIG. 8A is a view showing a cross section of the screw 12 of FIG. 7.
  • FIG. 8B is a diagram showing a cross section of bushing 14 of FIG.
  • the same reference numerals are assigned to the same configurations as those described in the embodiment.
  • the description which overlaps with embodiment is omitted.
  • a second outer peripheral protrusion slope 50SS is formed on the outer peripheral protrusion 50 of this modified example.
  • the second outer peripheral protrusion slope 50SS is inclined so that the outer diameter of the screw 12 decreases toward the rear end of the outer peripheral protrusion 50 . That is, the second outer peripheral projection slope 50SS is inclined so that the radius R1 (FIG. 8A) of the screw 12 from the rotation center line LN1 of the screw 12 becomes smaller toward the rear end of the outer peripheral projection 50.
  • a second inner peripheral protrusion slope 60SS is formed on the inner peripheral protrusion 60 of this modification.
  • the second inner peripheral protrusion slope 60SS is inclined so that the inner diameter of the bush 14 increases toward the front end of the inner peripheral protrusion 60 . That is, the second inner peripheral projection slope 60SS is inclined such that the radius R2 (FIG. 8B) of the through hole 14H from the center line LN2 of the through hole 14H increases toward the front end of the inner peripheral projection 60.
  • the second outer peripheral projection slope 50SS and the second inner peripheral protrusion slope 60SS By forming the second outer peripheral projection slope 50SS and the second inner peripheral protrusion slope 60SS, contact between the rear end surface of the outer peripheral projection 50 and the front end surface of the inner peripheral projection 60 is reduced. Therefore, the situation in which the bush 14 does not move forward is reduced. As a result, compared to the case where the second outer peripheral protrusion slope 50SS and the second inner peripheral protrusion slope 60SS are not formed, the reliability of the spline fitting is enhanced.
  • FIG. 9 is a diagram showing the screw 12 and bushing 14 of Modification 4. As shown in FIG. 9, the same reference numerals are assigned to the same configurations as those described above. In addition, in this modification, the overlapping description is omitted.
  • the second outer peripheral protrusion slope 50SS is formed between the outer peripheral protrusions 50 in addition to the outer peripheral protrusions 50 .
  • the second inner peripheral protrusion inclined surface 60SS is formed between the inner peripheral protrusions 60 and the inner peripheral protrusions 60.
  • the second outer peripheral projection slope 50SS may be formed around the entire axis of the screw 12 from the side surface to the rear end surface of the screw 12 (see FIG. 9).
  • the second inner peripheral projection slope 60SS may be formed all around the axis of the bush 14 from the inner peripheral surface to the front end surface (see FIG. 9).
  • the second outer peripheral protrusion slope 50SS may be formed only between the outer peripheral protrusions 50 and 50 .
  • the second inner peripheral protrusion slope 60SS may be formed only between the inner peripheral protrusions 60 and 60 .
  • the rear end of the outer peripheral protrusion 50 may be positioned on the same plane as the rear end surface of the screw 12 or may be positioned on the front end side of the rear end surface of the screw 12 .
  • the rear end of the outer peripheral projection 50 in the embodiment, modified example 1, modified example 2, or modified example 3 may be positioned closer to the front end than the rear end surface of the screw 12 .
  • the rear end of the outer peripheral projection 50 in Modification 4 may be positioned on the same plane as the rear end surface of the screw 12 .
  • the front end of the inner peripheral projection 60 may be positioned on the same plane as the front end face of the bush 14 or may be positioned on the rear end side of the front end face of the bush 14 . That is, the front end of the inner peripheral projection 60 in the embodiment, modified example 1, modified example 2, or modified example 3 may be located on the rear end side of the front end surface of the bush 14 . Further, the front end of the inner peripheral projection 60 in Modification 4 may be positioned on the same plane as the front end surface of the bush 14 .
  • the outer peripheral projecting slope 50S and the inner peripheral projecting slope 60S may not be formed, and the second outer peripheral projecting slope 50SS and the second inner peripheral projecting slope 60SS may be formed. Further, the outer peripheral protrusion slope 50S and the inner peripheral protrusion slope 60S, and the second outer peripheral protrusion slope 50SS and the second inner peripheral protrusion slope 60SS may not be formed.
  • a first aspect of the present invention comprises a screw (12) disposed along a front-rear direction in which a resin for injection is injected and a rearward direction opposite to the forward direction, and a screw (12) formed so as to be spline-fittable with the screw.
  • an injection device (10) for spline-fitting the screw and the bush comprising a direct-acting motor (14) for advancing and retracting the bush in the longitudinal direction relative to the screw ( 24), a rotary motor (26) that rotates the bush with respect to the screw, a first detector (38) that detects the linear motion torque of the linear motion motor, and a rotational torque of the rotary motor.
  • the motor control unit advances the bush while rotating the screw with respect to the screw, stops the rotation of the bush when the rotational torque exceeds a rotational torque threshold, and the direct-acting torque increases to the direct-acting torque.
  • the control process may be terminated when the threshold value is exceeded. Thereby, the rotation of the bush after the spline fitting can be suppressed.
  • the motor control unit alternately repeats an advancing operation for advancing the bushing for a first specified time period and a rotating operation for rotating the bushing for a second specified time period.
  • the bush When the rotational torque exceeds the rotational torque threshold, the bush may be continued to advance, and the control process may be terminated when the direct torque exceeds the direct torque threshold. Thereby, the rotation of the bush after the spline fitting can be suppressed.
  • the motor control section may start the rotational movement at the position where the forward movement is completed. As a result, it is possible to quickly shift from the forward motion to the rotating motion.
  • the motor control section may start the forward movement at the phase when the rotational movement is completed. As a result, it is possible to quickly shift from the rotating motion to the forward motion.
  • the screw has a plurality of outer peripheral protrusions (50) formed on the outer peripheral surface of the rear end side of the screw and extending along the front-rear direction at intervals in the peripheral direction of the screw, and the plurality of outer peripheral protrusions is formed with an outer peripheral projection slope (50S) inclined so that the outer peripheral projection width (50W) along the circumferential direction of the screw becomes smaller toward the rear end, and the bush extends in the front-rear direction.
  • 50S outer peripheral projection slope
  • Each of the inner peripheral protrusions may be formed with an inner peripheral protrusion slope (60S) inclined so that the inner peripheral protrusion width (60W) along the circumferential direction of the through hole becomes smaller toward the front end.
  • a second outer peripheral projection slope (50SS) is formed so that the outer diameter of the screw decreases toward the rear end.
  • a second inner circumferential projection slope (60SS) may be formed so that the inner diameter of the bush increases toward the end. This reduces the situation in which the rear end face of the outer peripheral protrusion and the front end face of the inner peripheral protrusion come into contact with each other and the bush does not move forward. Therefore, the reliability of the spline fitting can be enhanced compared to the case where the second outer peripheral protrusion slope and the second inner peripheral protrusion slope are not formed.
  • the second outer peripheral protrusion slope may be formed on the outer peripheral protrusion, and the second inner peripheral protrusion slope may be formed on the inner peripheral protrusion.
  • the second outer peripheral protrusion slope may be formed between the outer peripheral protrusion and the outer peripheral protrusion, and the second inner peripheral protrusion slope may be formed between the inner peripheral protrusion and the inner peripheral protrusion. good. Thereby, the reliability of the spline fitting can be enhanced.
  • a screw is arranged along the front-rear direction for injecting an injection resin and the rearward direction opposite to the front-rear direction, and a bush is formed so as to be spline-fitted with the screw.
  • a linear motion motor for moving the bush forward and backward with respect to the screw;
  • a rotary motor for rotating the bush with respect to the screw;
  • An injection device comprising a detector and a second detector for detecting the rotational torque of the rotary motor monitors the linear motion torque and the rotational torque so that the screw and the bush are spline-fitted.
  • a control method for controlling the linear motion motor and the rotary motor while rotating wherein a rotary advance step is performed to advance the bush while rotating it with respect to the screw, and when the rotary torque exceeds a rotary torque threshold, a rotation stop step of stopping rotation of the bush; and an advance stop step of stopping the advance of the bush when the direct acting torque exceeds a direct acting torque threshold. Accordingly, it is possible to monitor not only the linear motion torque but also the rotational torque to determine whether or not the spline is fitted. Therefore, it is possible to suppress the rotation of the bush after the spline fitting, and as a result, it is possible to improve the working efficiency of the spline fitting.
  • a screw is arranged along a front-rear direction in which an injection resin is injected and a rearward direction opposite to the front direction, and a bush is formed so as to be spline-fitted with the screw.
  • a linear motion motor for moving the bush forward and backward with respect to the screw;
  • a rotary motor for rotating the bush with respect to the screw;
  • An injection device comprising a detector and a second detector for detecting the rotational torque of the rotary motor monitors the linear motion torque and the rotational torque so that the screw and the bush are spline-fitted.
  • a control method for controlling the direct-acting motor and the rotary motor wherein a forward motion for advancing the bush for a first specified time and a rotating motion for rotating the bush for a second specified time are alternately repeated.
  • an advancing step if the rotational torque exceeds a rotational torque threshold during the forward movement or the rotational movement, an advancing step of continuing to advance the bushing, wherein the linear torque exceeds the linear torque threshold; and an advance stop step of stopping the advance of the bush when the bushing is stopped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

一実施形態による射出装置(10)は、直動モータ(24)の直動トルクを検出する第1検出部(38)と、回転モータ(26)の回転トルクを検出する第2検出部(44)とを用いて、スクリュー(12)に対してブッシュ(14)がスプライン嵌合するように、直動トルクおよび回転トルクを監視しながら直動モータ(24)および回転モータ(26)を制御する。

Description

射出装置および制御方法
 本発明は、射出装置、および、制御方法に関する。
 特開2019-055488号公報には、直動運動用モータと、回転運動用モータとを制御するモータ制御部が開示されている。直動運動用モータは、スクリューの軸方向にブッシュを移動させるモータである。回転運動用モータは、スクリューの軸回りにブッシュを回転させるモータである。
 モータ制御部は、直動運動用モータを制御して、スクリューと離間した状態からブッシュをスクリューに接近する方向に前進させる。ブッシュの前進中に、直動運動用モータのトルクが第1トルク以上となった場合、モータ制御部は、回転運動用モータを制御してブッシュを回転させる。その後、モータ制御部は、所定の条件を満たしたときに、ブッシュの前進を停止させる。所定の条件は、ブッシュの回転角度が360度になるまでに直動運動用モータのトルクが第1トルクよりも小さい第2トルクを下回る場合、もしくは、ブッシュの回転角度が360度以上になっても直動運動用モータのトルクが第2トルクを下回らない場合である。
 特開2019-055488号公報では、直動運動用モータのトルクが第1トルク以上となる場合として、2つの場合が考えられる。すなわち、1つ目は、スプライン軸とスプライン孔とが嵌合せずにスクリューにブッシュが接触する場合である。2つ目は、スプライン軸と嵌合したブッシュが前進し続けて、スプライン孔の底面にスプライン軸が接触する場合である。
 しかし、特開2019-055488号公報では、直動トルクのみを監視している。そのため、スプライン孔の底面にスプライン軸が接触して第1トルク以上となった場合、スプライン嵌合が完了しても、ブッシュを360度回転させる。したがって、ブッシュを回転させる作業が無駄になる。
 そこで、本発明は、スプライン嵌合の作業効率を高め得る射出装置および制御方法を提供する。
 本発明の第1の態様は、
 射出用樹脂を射出する前方向と、前記前方向とは逆の後方向との前後方向に沿って配置されるスクリューと、前記スクリューとスプライン嵌合可能に形成されるブッシュとを有し、前記スクリューと前記ブッシュとをスプライン嵌合させる射出装置であって、
 前記スクリューに対して、前記前後方向に前記ブッシュを進退させる直動モータと、
 前記スクリューに対して、前記ブッシュを回転させる回転モータと、
 前記直動モータの直動トルクを検出する第1検出部と、
 前記回転モータの回転トルクを検出する第2検出部と、
 前記スクリューに対して前記ブッシュがスプライン嵌合するように、前記直動トルクおよび前記回転トルクを監視しながら前記直動モータおよび前記回転モータを制御する制御処理を実行するモータ制御部と、
 を備える。
 本発明の第2の態様は、
 射出用樹脂を射出する前方向と、前記前方向とは逆の後方向との前後方向に沿って配置されるスクリューと、
 前記スクリューとスプライン嵌合可能に形成されるブッシュと、
 前記スクリューに対して、前記前後方向に前記ブッシュを進退させる直動モータと、
 前記スクリューに対して、前記ブッシュを回転させる回転モータと、
 前記直動モータの直動トルクを検出する第1検出部と、
 前記回転モータの回転トルクを検出する第2検出部と、
 を備える射出装置が、前記スクリューと前記ブッシュとがスプライン嵌合するように、前記直動トルクおよび前記回転トルクを監視しながら前記直動モータおよび前記回転モータを制御する制御方法であって、
 前記スクリューに対して前記ブッシュを回転させながら前進させる回転前進ステップと、
 前記回転トルクが回転トルク閾値を超えた場合には、前記ブッシュの回転を停止させる回転停止ステップと、
 前記直動トルクが直動トルク閾値を超えたときに前記ブッシュの前進を停止させる前進停止ステップと、
 を含む。
 本発明の第3の態様は、
 射出用樹脂を射出する前方向と、前記前方向とは逆の後方向との前後方向に沿って配置されるスクリューと、
 前記スクリューとスプライン嵌合可能に形成されるブッシュと、
 前記スクリューに対して、前記前後方向に前記ブッシュを進退させる直動モータと、
 前記スクリューに対して、前記ブッシュを回転させる回転モータと、
 前記直動モータの直動トルクを検出する第1検出部と、
 前記回転モータの回転トルクを検出する第2検出部と、
 を備える射出装置が、前記スクリューと前記ブッシュとがスプライン嵌合するように、前記直動トルクおよび前記回転トルクを監視しながら前記直動モータおよび前記回転モータを制御する制御方法であって、
 第1規定時間だけ前記ブッシュを前進させる前進動作と、第2規定時間だけ前記ブッシュを回転させる回転動作とを交互に繰り返す回転前進ステップと、
 前記前進動作または前記回転動作の動作中に前記回転トルクが回転トルク閾値を超えた場合には、前記ブッシュを前進させ続ける前進ステップと、
 前記直動トルクが直動トルク閾値を超えたときに前記ブッシュの前進を停止させる前進停止ステップと、
 を含む。
 本発明の態様によれば、直動トルクのみならず回転トルクを監視してスプライン嵌合がされているか否かを把握することができる。したがって、無駄にブッシュを回転させることを低減することができ、この結果、スプライン嵌合の作業効率を高めることができる。
図1は、一実施形態による射出装置を示す概略図である。 図2は、スクリューおよびブッシュを示す図である。 図3は、スクリューとブッシュとをスプライン嵌合するためにモータ制御部が実行する制御処理の第1処理形態を示すフローチャートである。 図4は、スクリューとブッシュとをスプライン嵌合するためにモータ制御部が実行する制御処理の第2処理形態を示すフローチャートである。 図5は、変形例1のスクリューおよびブッシュを示す図である。 図6は、変形例2のスクリューおよびブッシュを示す図である。 図7は、変形例3のスクリューおよびブッシュを示す図である。 図8Aは、図7のスクリューの断面を示す図であり、図8Bは、図7のブッシュの断面を示す図である。 図9は、変形例4のスクリューおよびブッシュを示す図である。
[実施形態]
 図1は、一実施形態による射出装置10を示す概略図である。射出装置10は、金型に対して成形用樹脂を射出する。本実施形態では、成形用樹脂を射出する射出方向は前方向とし、射出方向とは逆の方向は後方向とする。射出装置10には、スクリュー12と、ブッシュ14と、ブッシュ締結部16と、駆動機構18とが備えられる。
 スクリュー12は、シリンダ20の貫通孔20Hに収容される。スクリュー12は、回転することで、貫通孔20Hに投入される成形用樹脂を前方向に送る。シリンダ20の前端にはノズル22が設けられ、スクリュー12によって送られる成形用樹脂がノズル22から射出される。スクリュー12は、スクリュー部12Aとスプライン部12Bとを有する。
 スクリュー部12Aは、スクリュー12の前部である。スクリュー部12Aの外周面には、螺旋状の突起12Pが形成される。スプライン部12Bは、スクリュー12の後部であり、スクリュー部12Aの後端に連接する。スプライン部12Bの外周面には、ブッシュ14とスプライン嵌合可能な凹凸が形成される。
 ブッシュ14は、スクリュー12とスプライン嵌合される。ブッシュ14は、前後方向に貫通する貫通孔14Hを有する。貫通孔14Hの内周面には、スプライン部12Bとスプライン嵌合可能な凹凸が形成される。ブッシュ14には、ブッシュ14の後端面から後方に突出する環状の凸部14Aが設けられる。
 ブッシュ締結部16は、ブッシュ14を固定し得る部材である。ブッシュ締結部16は、ブッシュ14の凸部14Aが収容される凹部16Aを有する。凹部16Aに凸部14Aが収容されるブッシュ14がボルトによりブッシュ締結部16に固定される。
 駆動機構18は、スクリュー12に対してブッシュ14を相対移動させるように、スクリュー12およびブッシュ14の少なくとも一方を駆動する機構である。本実施形態は、ブッシュ14を駆動する駆動機構18とする。駆動機構18には、直動モータ24と、回転モータ26と、モータ制御部28とが備えられる。
 直動モータ24は、前後方向にブッシュ14を進退させるモータである。直動モータ24のモータ軸には、モータ軸と一緒に回転するボールねじ30が連結される。ボールねじ30には、直動モータ24の回転に応じてボールねじ30を前後方向に進退するように摺動部32が取り付けられる。摺動部32には、直動用ギア34が回転可能に取り付けられる。直動用ギア34は、ブッシュ締結部16の後端に固定される。直動モータ24には、直動モータ24の回転角を検出するエンコーダ36と、直動モータ24の直動トルクを検出する第1検出部38とが設けられる。 
 回転モータ26は、スクリュー12に対して、ブッシュ14を回転させるモータである。回転モータ26のモータ軸には、直動用ギア34と噛み合う回転用ギア40が連結される。回転モータ26には、回転モータ26の回転角を検出するエンコーダ42と、回転モータ26の回転トルクを検出する第2検出部44とが設けられる。
 駆動機構18では、直動モータ24が回転した場合、直動モータ24の回転に応じて、ボールねじ30および摺動部32を介して前後方向に直動用ギア34が移動する。この場合、直動用ギア34と噛み合う回転用ギア40および回転モータ26が前後方向に移動するとともに、直動用ギア34が固定されるブッシュ締結部16を介して、ブッシュ14が前後方向に移動する。一方、回転モータ26が回転した場合、回転モータ26の回転に応じて回転用ギア40が回転する。この場合、回転用ギア40と噛み合う直動用ギア34が回転し、直動用ギア34が固定されるブッシュ締結部16を介して、ブッシュ14が回転する。
 モータ制御部28は、エンコーダ36で検出される回転角が目標値となるように直動モータ24を制御することで、スクリュー12に対してブッシュ14を進退させる。また、モータ制御部28は、エンコーダ42で検出される回転角が目標値となるように回転モータ26を制御することで、ブッシュ14を回転させる。
 また、モータ制御部28は、スクリュー12に対してブッシュ14がスプライン嵌合するように、直動モータ24および回転モータ26を制御する制御処理を実行する。この場合、モータ制御部28は、第1検出部38で検出される直動トルクと、第2検出部44で検出される回転トルクとを監視しながら直動モータ24および回転モータ26を制御する。
 図2は、スクリュー12およびブッシュ14を示す図である。スプライン部12Bの外周面には、スプライン部12Bの周方向に間隔をあけて前後方向に沿って延びる複数の外周突起50が形成される。複数の外周突起50の各々は、スプライン部12Bの周方向に沿って一周する嵌合溝52によって分断される。嵌合溝52には、環状のリテーナ46(図1)が嵌合される。
 複数の外周突起50の各々の形状は同じである。以下、外周突起50の形状に関する説明は、複数の外周突起50の中の1つのみとする。スクリュー12の周方向における外周突起50の両側面50F1、50F2の一方の後端部には、外周突起斜面50Sが形成される。外周突起斜面50Sは、スクリュー12の周方向に沿った外周突起幅50Wが後端に向かうほど小さくなるように、傾斜する。
 ブッシュ14の貫通孔14Hの内周面には、貫通孔14Hの周方向に間隔をあけて前後方向に沿って延びる複数の内周突起60が形成される。複数の内周突起60の各々の形状は同じである。以下、内周突起60の形状に関する説明は、複数の内周突起60の中の1つのみとする。貫通孔14Hの周方向における内周突起60の両側面60F1、60F2の一方の前端部には、内周突起斜面60Sが形成される。内周突起斜面60Sは、貫通孔14Hの周方向に沿った内周突起幅60Wが、前端に向かうほど小さくなるように、傾斜する。
 ここで、スクリュー12とブッシュ14とをスプライン嵌合するためにモータ制御部28が実行する制御処理を、第1処理形態と第2処理形態とに分けて説明する。
 図3は、スクリュー12とブッシュ14とをスプライン嵌合するためにモータ制御部28が実行する制御処理の第1処理形態を示すフローチャートである。本制御処理は、スクリュー12の後端面から後方向に離間する所定の嵌合開始位置にブッシュ14が移動された後に開始される。なお、嵌合開始位置では、スクリュー12の回転中心線LN1(図2)と、ブッシュ14の貫通孔14Hの中心線LN2(図2)とは一致していることが望ましいが、回転中心線LN1と中心線LN2とが僅かにずれていてもよい。
 ステップS1において、モータ制御部28は、ブッシュ14を回転させながら、スクリュー12に向かってブッシュ14を前進させる。ブッシュ14の前進が開始されると、制御処理はステップS2に移行する。
 ステップS2において、モータ制御部28は、第2検出部44で検出される回転トルクを、所定の回転トルク閾値と比較する。ここで、回転トルクが回転トルク閾値を超えない場合、制御処理はステップS2に留まる。一方、回転トルクが回転トルク閾値を超える場合、制御処理はステップS3に移行する。
 なお、ステップS2において回転トルクが回転トルク閾値を超える現象は、次のような状態で生じる。すなわち、スクリュー12とブッシュ14とがスプライン嵌合している嵌合状態、もしくは、スプライン嵌合するように案内されている案内状態である。案内状態は、具体的には、次の3つの状態のいずれかである。1つは、スクリュー12の外周突起斜面50Sに、ブッシュ14の内周突起60の前端が接触している状態である。もう1つは、スクリュー12の外周突起50の後端に、ブッシュ14の内周突起斜面60Sが接触している状態である。もう1つは、スクリュー12の外周突起斜面50Sに、ブッシュ14の内周突起斜面60Sが接触している状態である。
 ステップS3において、モータ制御部28は、ブッシュ14の回転を停止させる。ブッシュ14の回転が停止されると、制御処理はステップS4に移行する。
 ステップS4において、モータ制御部28は、ブッシュ14の前進中に第1検出部38で検出される直動トルクを、直動トルク閾値と比較する。ここで、直動トルクが直動トルク閾値を超えない場合、制御処理はステップS4に留まる。一方、直動トルクが直動トルク閾値を超える場合、制御処理はステップS5に移行する。
 なお、ステップS4において直動トルクが直動トルク閾値を超える現象は、次のような状態で生じる。すなわち、ブッシュ14とスプライン嵌合したスクリュー12の後端面が、ブッシュ締結部16の凹部16Aの底面と接触した状態である。
 ステップS5において、モータ制御部28は、直動トルクが直動トルク閾値を超えたときを契機としてブッシュ14の前進を停止することで制御処理を終了する。
 図4は、スクリュー12とブッシュ14とをスプライン嵌合するためにモータ制御部28が実行する制御処理の第2処理形態を示すフローチャートである。本制御処理は、第1処理形態と同様に、嵌合開始位置にブッシュ14が移動された後に開始される。なお、嵌合開始位置では、スクリュー12の回転中心線LN1(図2)と、ブッシュ14の貫通孔14Hの中心線LN2(図2)とは一致していることが望ましいが、回転中心線LN1と中心線LN2とが僅かにずれていてもよい。
 ステップS11において、モータ制御部28は、第1規定時間だけブッシュ14を前進させる前進動作を開始する。前進動作が開始されると、制御処理はステップS12に移行する。
 ステップS12において、モータ制御部28は、前進動作の動作中に第2検出部44で検出される回転トルクを、回転トルク閾値と比較する。ここで、回転トルクが回転トルク閾値を超えない場合、制御処理はステップS13に移行する。一方、回転トルクが回転トルク閾値を超える場合、制御処理はステップS15に移行する。
 ステップS13において、モータ制御部28は、前進動作が終了したときの位置で、第2規定時間だけブッシュ14を回転させる回転動作を開始する。第2規定時間は、第1規定時間と同じであってもよく、異なっていてもよい。回転動作が開始されると、制御処理はステップS14に移行する。
 ステップS14において、モータ制御部28は、回転動作の動作中に第2検出部44で検出される回転トルクを、回転トルク閾値と比較する。ここで、回転トルクが回転トルク閾値を超えない場合、制御処理はステップS11に戻る。この場合、モータ制御部28は、回転動作が終了したときの位置(位相)から前進動作を開始する。一方、回転トルクが回転トルク閾値を超える場合、制御処理はステップS15に移行する。なお、回転トルクがステップS14で回転トルク閾値を超える現象は嵌合状態で生じる。一方、回転トルクがステップS12で回転トルク閾値を超える現象は案内状態で生じる。
 ステップS15において、モータ制御部28は、ブッシュ14を回転させずに前進させ続ける。ブッシュ14の前進が開始されると、制御処理はステップS16に移行する。
 ステップS16において、モータ制御部28は、ブッシュ14の前進中に第1検出部38で検出される直動トルクを、直動トルク閾値と比較する。ここで、直動トルクが直動トルク閾値を超えない場合、制御処理はステップS16に留まる。一方、直動トルクが直動トルク閾値を超える場合、制御処理はステップS17に移行する。なお、直動トルクが直動トルク閾値を超える現象は、スプライン嵌合したスクリュー12の後端がブッシュ締結部16の凹部16Aの底面と接触した状態で生じる。
 ステップS17において、モータ制御部28は、直動トルクが直動トルク閾値を超えたときを契機としてブッシュ14の前進を停止することで制御処理を終了する。
 このように、モータ制御部28は、第1処理形態および第2処理形態ともに、スクリュー12とブッシュ14とがスプライン嵌合するように、直動トルクおよび回転トルクを監視しながら直動モータ24および回転モータ26を制御する制御処理を実行する。これにより、直動トルクのみならず回転トルクを監視してスプライン嵌合がされているか否かを把握することができる。したがって、無駄にブッシュ14を回転させることを低減することができ、この結果、スプライン嵌合の作業効率を高めることができる。
 モータ制御部28は、第1処理形態では、スクリュー12に対してブッシュ14を回転させながら前進させ、回転トルクが回転トルク閾値を超えた場合にはブッシュ14の回転を停止させ、直動トルクが直動トルク閾値を超えたときを契機として制御処理を終了する。これにより、スプライン嵌合した以降のブッシュ14の回転を抑制することができる。
 モータ制御部28は、第2処理形態では、前進動作と回転動作とを交互に繰り返し、前進動作または回転動作の動作中に回転トルクが回転トルク閾値を超えた場合には、ブッシュ14を前進させ続ける。その後、モータ制御部28は、直動トルクが直動トルク閾値を超えたときを契機として前記制御処理を終了する。これにより、第1処理形態と同様に、スプライン嵌合した以降のブッシュ14の回転を抑制することができる。
 なお、回転動作と交互に繰り返すときの前進動作が複数実行される場合、複数の前進動作の各々の前進速度は同じであってもよく異なっていてもよい。また、回転動作と交互に繰り返すときの前進動作と、回転動作を実行せずに直動トルクが直動トルク閾値を超えるまでブッシュ14を前進させ続けるときの前進動作との前進速度は同じであってもよく異なっていてもよい。
 ところで、スクリュー12の後端側の外周面の各外周突起50には外周突起斜面50Sが形成される。また、ブッシュ14の前端側の内周面の各内周突起60には内周突起斜面60Sが形成される。これにより、次のいくつかの状態のときには、ブッシュ14を回転させずに前進させるだけでスプライン嵌合できる。1つは、外周突起斜面50Sに内周突起斜面60Sの前端が接触した状態である。もう1つは、内周突起斜面60Sに外周突起斜面50Sの後端が接触した状態である。もう1つは、スクリュー12の外周突起斜面50Sにブッシュ14の内周突起斜面60Sが接触した状態である。したがって、外周突起斜面50Sおよび内周突起斜面60Sが非形成である場合に比べて、スプライン嵌合するまでのブッシュ14の回転を低減することができる。
[変形例]
 上記の実施形態は、以下のように変形してもよい。
(変形例1)
 図5は、変形例1のスクリュー12およびブッシュ14を示す図である。図5では、実施形態において説明した構成と同等の構成には同一の符号が付されている。なお、本変形例では、実施形態と重複する説明は割愛する。
 本変形例では、スクリュー12の外周突起50の後端と、ブッシュ14の内周突起60の前端とには平面がない。外周突起50の後端および内周突起60の前端は、尖った形状または丸みを帯びた形状に形成される。これにより、外周突起50の後端面と内周突起60の前端面とが接触してブッシュ14が前進しないといった事態が回避される。したがって、実施形態に比べてスプライン嵌合の確実性をより高めることができる。また、スプライン嵌合するまでのブッシュ14の回転を低減することができる。
(変形例2)
 図6は、変形例2のスクリュー12およびブッシュ14を示す図である。図6では、実施形態において説明した構成と同等の構成には同一の符号が付されている。なお、本変形例では、実施形態と重複する説明は割愛する。
 本変形例では、外周突起50の外周突起斜面50Sが、スクリュー12の周方向の両側面50F1、50F2の各々に形成される。また、内周突起60の内周突起斜面60Sが、貫通孔14Hの周方向の両側面60F1、60F2の各々に形成される。本変形例であっても、次の状態の場合には、ブッシュ14を回転させずに前進させるだけでスプライン嵌合できる。具体的には、外周突起斜面50Sに内周突起斜面60Sの前端が接触した状態である。或いは、内周突起斜面60Sに外周突起斜面50Sの後端が接触した状態である。或いは、外周突起斜面50Sに内周突起斜面60Sが接触した状態である。したがって、外周突起斜面50Sおよび内周突起斜面60Sが非形成である場合に比べて、スプライン嵌合するまでのブッシュ14の回転を低減することができる。
(変形例3)
 図7は、変形例3のスクリュー12およびブッシュ14を示す図である。図8Aは、図7のスクリュー12の断面を示す図である。図8Bは、図7のブッシュ14の断面を示す図である。図7、図8Aおよび図8Bでは、実施形態において説明した構成と同等の構成には同一の符号が付されている。なお、本変形例では、実施形態と重複する説明は割愛する。
 本変形例の外周突起50には、変形例2の外周突起斜面50Sに加えて、第2の外周突起斜面50SSが形成される。第2の外周突起斜面50SSは、外周突起50の後端に向かうほどスクリュー12の外径が縮径するように、傾斜する。つまり、第2の外周突起斜面50SSは、外周突起50の後端に向かうほど、スクリュー12の回転中心線LN1からのスクリュー12の半径R1(図8A)が小さくなるように、傾斜する。
 また、本変形例の内周突起60には、変形例2の内周突起斜面60Sに加えて、第2の内周突起斜面60SSが形成される。第2の内周突起斜面60SSは、内周突起60の前端に向かうほどブッシュ14の内径が拡径するように、傾斜する。つまり、第2の内周突起斜面60SSは、内周突起60の前端に向かうほど、貫通孔14Hの中心線LN2からの貫通孔14Hの半径R2(図8B)が大きくなるように、傾斜する。
 第2の外周突起斜面50SSおよび第2の内周突起斜面60SSが形成されていることにより、外周突起50の後端面と内周突起60の前端面との接触が低減される。したがって、ブッシュ14が前進しないといった事態が低減される。その結果、第2の外周突起斜面50SSおよび第2の内周突起斜面60SSが形成されていない場合に比べて、スプライン嵌合の確実性が高まる。
(変形例4)
 図9は、変形例4のスクリュー12およびブッシュ14を示す図である。図9では、上述した構成と同等の構成には同一の符号が付されている。なお、本変形例では、重複する説明は割愛する。
 本変形例では、第2の外周突起斜面50SSは、外周突起50に加えて、外周突起50と外周突起50との間に形成される。また、第2の内周突起斜面60SSは、内周突起60に加えて、内周突起60と内周突起60との間に形成される。これにより、スクリュー12の回転中心線LN1に対して、ブッシュ14の貫通孔14Hの中心線LN2がスクリュー12の径方向にずれていても、スクリュー12に向けてブッシュ14を前進することによってスプライン嵌合することができる。
 なお、第2の外周突起斜面50SSは、スクリュー12の軸回り全体に、スクリュー12の側面から後端面までにわたって形成されてもよい(図9参照)。同様に、第2の内周突起斜面60SSは、ブッシュ14の軸回り全体に、内周面から前端面までにわたって形成されてもよい(図9参照)。第2の外周突起斜面50SSは、外周突起50と外周突起50との間のみに形成されていてもよい。同様に、第2の内周突起斜面60SSは、内周突起60と内周突起60との間のみに形成されていてもよい。
(変形例5)
 外周突起50の後端は、スクリュー12の後端面と同一面上に位置していてもよく、スクリュー12の後端面よりも前端側に位置していてもよい。つまり、実施形態、変形例1、変形例2または変形例3における外周突起50の後端が、スクリュー12の後端面よりも前端側に位置していてもよい。また、変形例4における外周突起50の後端が、スクリュー12の後端面と同一面上に位置していてもよい。
 内周突起60の前端は、ブッシュ14の前端面と同一面上に位置していてもよく、ブッシュ14の前端面よりも後端側に位置していてもよい。つまり、実施形態、変形例1、変形例2または変形例3における内周突起60の前端が、ブッシュ14の前端面よりも後端側に位置していてもよい。また、変形例4における内周突起60の前端が、ブッシュ14の前端面と同一面上に位置していてもよい。
(変形例6)
 外周突起斜面50Sおよび内周突起斜面60Sが非形成であり、第2の外周突起斜面50SSおよび第2の内周突起斜面60SSが形成されていてもよい。また、外周突起斜面50Sおよび内周突起斜面60Sと、第2の外周突起斜面50SSおよび第2の内周突起斜面60SSとが非形成であってもよい。
(変形例7)
 上記の実施形態および変形例は、矛盾の生じない範囲で任意に組み合わされてもよい。
 以上をまとめると以下のようになる。
 第1の発明は、射出用樹脂を射出する前方向と、前記前方向とは逆の後方向との前後方向に沿って配置されるスクリュー(12)と、前記スクリューとスプライン嵌合可能に形成されるブッシュ(14)とを有し、前記スクリューと前記ブッシュとをスプライン嵌合させる射出装置(10)であって、前記スクリューに対して、前記前後方向に前記ブッシュを進退させる直動モータ(24)と、前記スクリューに対して、前記ブッシュを回転させる回転モータ(26)と、前記直動モータの直動トルクを検出する第1検出部(38)と、前記回転モータの回転トルクを検出する第2検出部(44)と、前記スクリューに対して前記ブッシュがスプライン嵌合するように、前記直動トルクおよび前記回転トルクを監視しながら前記直動モータおよび前記回転モータを制御する制御処理を実行するモータ制御部(28)と、を備える。
 これにより、直動トルクのみならず回転トルクを監視してスプライン嵌合がされているか否かを把握することができる。したがって、無駄にブッシュを回転させることを低減することができ、この結果、スプライン嵌合の作業効率を高めることができる。
 前記モータ制御部は、前記スクリューに対して前記ブッシュを回転させながら前進させ、前記回転トルクが回転トルク閾値を超えた場合には、前記ブッシュの回転を停止させ、前記直動トルクが直動トルク閾値を超えたときを契機として前記制御処理を終了してもよい。
 これにより、スプライン嵌合した以降のブッシュの回転を抑制することができる。
 前記モータ制御部は、第1規定時間だけ前記ブッシュを前進させる前進動作と、第2規定時間だけ前記ブッシュを回転させる回転動作とを交互に繰り返し、前記前進動作または前記回転動作の動作中に前記回転トルクが回転トルク閾値を超えた場合には、前記ブッシュを前進させ続け、前記直動トルクが直動トルク閾値を超えたときを契機として前記制御処理を終了してもよい。
 これにより、スプライン嵌合した以降のブッシュの回転を抑制することができる。
 前記モータ制御部は、前記前進動作の動作中に前記回転トルクが前記回転トルク閾値を超えない場合には、前記前進動作が終了したときの位置で前記回転動作を開始してもよい。
 これにより、前進動作から回転動作を速やかに移行することができる。
 前記モータ制御部は、前記回転動作の動作中に前記回転トルクが前記回転トルク閾値を超えない場合には、前記回転動作が終了したときの位相で前記前進動作を開始してもよい。
 これにより、回転動作から前進動作を速やかに移行することができる。
 前記スクリューは、前記スクリューの後端側の外周面に形成され、前記スクリューの周方向に間隔をあけて前記前後方向に沿って延びる複数の外周突起(50)を有し、複数の前記外周突起の各々には、後端に向かうほど前記スクリューの周方向に沿った外周突起幅(50W)が小さくなるように傾斜する外周突起斜面(50S)が形成され、前記ブッシュは、前記前後方向に延びる貫通孔(14H)と、前記貫通孔の内周面に形成され、前記貫通孔の周方向に間隔をあけて前記前後方向に沿って延びる複数の内周突起(60)を有し、複数の前記内周突起の各々には、前端に向かうほど前記貫通孔の周方向に沿った内周突起幅(60W)が小さくなるように傾斜する内周突起斜面(60S)が形成されてもよい。
 これにより、外周突起斜面に内周突起斜面の前端が接触し、または、内周突起斜面に外周突起斜面の後端が接触し、または、外周突起斜面に内周突起斜面が接触しているときには、ブッシュを回転させずに前進させるだけでスプライン嵌合できる。したがって、外周突起斜面および内周突起斜面が非形成である場合に比べて、スプライン嵌合するまでのブッシュの回転を低減することができる。
 前記スクリューの後端側には、後端に向かうほど前記スクリューの外径が縮径するように傾斜する第2の外周突起斜面(50SS)が形成され、前記ブッシュの前端側には、前端に向かうほど前記ブッシュの内径が拡径するように傾斜する第2の内周突起斜面(60SS)が形成されてもよい。
 これにより、外周突起の後端面と内周突起の前端面とが接触してブッシュが前進しないといった事態が低減される。したがって、第2の外周突起斜面および第2の内周突起斜面が形成されていない場合に比べてスプライン嵌合の確実性を高めることができる。
 前記第2の外周突起斜面は、前記外周突起に形成され、前記第2の内周突起斜面は、前記内周突起に形成されてもよい。
 これにより、スプライン嵌合の確実性を高めることができる。
 前記第2の外周突起斜面は、前記外周突起と前記外周突起との間に形成され、前記第2の内周突起斜面は、前記内周突起と前記内周突起との間に形成されてもよい。
 これにより、スプライン嵌合の確実性を高めることができる。
 第2の発明は、射出用樹脂を射出する前方向と、前記前方向とは逆の後方向との前後方向に沿って配置されるスクリューと、前記スクリューとスプライン嵌合可能に形成されるブッシュと、前記スクリューに対して、前記前後方向に前記ブッシュを進退させる直動モータと、前記スクリューに対して、前記ブッシュを回転させる回転モータと、前記直動モータの直動トルクを検出する第1検出部と、前記回転モータの回転トルクを検出する第2検出部と、を備える射出装置が、前記スクリューと前記ブッシュとがスプライン嵌合するように、前記直動トルクおよび前記回転トルクを監視しながら前記直動モータおよび前記回転モータを制御する制御方法であって、前記スクリューに対して前記ブッシュを回転させながら前進させる回転前進ステップと、前記回転トルクが回転トルク閾値を超えた場合には、前記ブッシュの回転を停止させる回転停止ステップと、前記直動トルクが直動トルク閾値を超えたときに前記ブッシュの前進を停止させる前進停止ステップと、を含む。
 これにより、直動トルクのみならず回転トルクを監視してスプライン嵌合がされているか否かを把握することができる。したがって、スプライン嵌合した以降のブッシュの回転を抑制することができ、この結果、スプライン嵌合の作業効率を高めることができる。
 第3の発明は、射出用樹脂を射出する前方向と、前記前方向とは逆の後方向との前後方向に沿って配置されるスクリューと、前記スクリューとスプライン嵌合可能に形成されるブッシュと、前記スクリューに対して、前記前後方向に前記ブッシュを進退させる直動モータと、前記スクリューに対して、前記ブッシュを回転させる回転モータと、前記直動モータの直動トルクを検出する第1検出部と、前記回転モータの回転トルクを検出する第2検出部と、を備える射出装置が、前記スクリューと前記ブッシュとがスプライン嵌合するように、前記直動トルクおよび前記回転トルクを監視しながら前記直動モータおよび前記回転モータを制御する制御方法であって、第1規定時間だけ前記ブッシュを前進させる前進動作と、第2規定時間だけ前記ブッシュを回転させる回転動作とを交互に繰り返す回転前進ステップと、前記前進動作または前記回転動作の動作中に前記回転トルクが回転トルク閾値を超えた場合には、前記ブッシュを前進させ続ける前進ステップと、前記直動トルクが直動トルク閾値を超えたときに前記ブッシュの前進を停止させる前進停止ステップと、を含む。
 これにより、直動トルクのみならず回転トルクを監視してスプライン嵌合がされているか否かを把握することができる。したがって、スプライン嵌合した以降のブッシュの回転を抑制することができ、この結果、スプライン嵌合の作業効率を高めることができる。

Claims (11)

  1.  射出用樹脂を射出する前方向と、前記前方向とは逆の後方向との前後方向に沿って配置されるスクリュー(12)と、前記スクリューとスプライン嵌合可能に形成されるブッシュ(14)とを有し、前記スクリューと前記ブッシュとをスプライン嵌合させる射出装置(10)であって、
     前記スクリューに対して、前記前後方向に前記ブッシュを進退させる直動モータ(24)と、
     前記スクリューに対して、前記ブッシュを回転させる回転モータ(26)と、
     前記直動モータの直動トルクを検出する第1検出部(38)と、
     前記回転モータの回転トルクを検出する第2検出部(44)と、
     前記スクリューに対して前記ブッシュがスプライン嵌合するように、前記直動トルクおよび前記回転トルクを監視しながら前記直動モータおよび前記回転モータを制御する制御処理を実行するモータ制御部(28)と、
     を備える、射出装置。
  2.  請求項1に記載の射出装置であって、
     前記モータ制御部は、前記スクリューに対して前記ブッシュを回転させながら前進させ、前記回転トルクが回転トルク閾値を超えた場合には、前記ブッシュの回転を停止させ、前記直動トルクが直動トルク閾値を超えたときを契機として前記制御処理を終了する、射出装置。
  3.  請求項1に記載の射出装置であって、
     前記モータ制御部は、第1規定時間だけ前記ブッシュを前進させる前進動作と、第2規定時間だけ前記ブッシュを回転させる回転動作とを交互に繰り返し、前記前進動作または前記回転動作の動作中に前記回転トルクが回転トルク閾値を超えた場合には、前記ブッシュを前進させ続け、前記直動トルクが直動トルク閾値を超えたときを契機として前記制御処理を終了する、射出装置。
  4.  請求項3に記載の射出装置であって、
     前記モータ制御部は、前記前進動作の動作中に前記回転トルクが前記回転トルク閾値を超えない場合には、前記前進動作が終了したときの位置で前記回転動作を開始する、射出装置。
  5.  請求項3に記載の射出装置であって、
     前記モータ制御部は、前記回転動作の動作中に前記回転トルクが前記回転トルク閾値を超えない場合には、前記回転動作が終了したときの位相で前記前進動作を開始する、射出装置。
  6.  請求項1~5のいずれか1項に記載の射出装置であって、
     前記スクリューは、前記スクリューの後端側の外周面に形成され、前記スクリューの周方向に間隔をあけて前記前後方向に沿って延びる複数の外周突起(50)を有し、
     複数の前記外周突起の各々には、後端に向かうほど前記スクリューの周方向に沿った外周突起幅(50W)が小さくなるように傾斜する外周突起斜面(50S)が形成され、
     前記ブッシュは、前記前後方向に延びる貫通孔(14H)と、前記貫通孔の内周面に形成され、前記貫通孔の周方向に間隔をあけて前記前後方向に沿って延びる複数の内周突起(60)を有し、
     複数の前記内周突起の各々には、前端に向かうほど前記貫通孔の周方向に沿った内周突起幅(60W)が小さくなるように傾斜する内周突起斜面(60S)が形成される、射出装置。
  7.  請求項6に記載の射出装置であって、
     前記スクリューの後端側には、後端に向かうほど前記スクリューの外径が縮径するように傾斜する第2の外周突起斜面(50SS)が形成され、
     前記ブッシュの前端側には、前端に向かうほど前記ブッシュの内径が拡径するように傾斜する第2の内周突起斜面(60SS)が形成される、射出装置。
  8.  請求項7に記載の射出装置であって、
     前記第2の外周突起斜面は、前記外周突起に形成され、
     前記第2の内周突起斜面は、前記内周突起に形成される、射出装置。
  9.  請求項7または8に記載の射出装置であって、
     前記第2の外周突起斜面は、前記外周突起と前記外周突起との間に形成され、
     前記第2の内周突起斜面は、前記内周突起と前記内周突起との間に形成される、射出装置。
  10.  射出用樹脂を射出する前方向と、前記前方向とは逆の後方向との前後方向に沿って配置されるスクリューと、
     前記スクリューとスプライン嵌合可能に形成されるブッシュと、
     前記スクリューに対して、前記前後方向に前記ブッシュを進退させる直動モータと、
     前記スクリューに対して、前記ブッシュを回転させる回転モータと、
     前記直動モータの直動トルクを検出する第1検出部と、
     前記回転モータの回転トルクを検出する第2検出部と、
     を備える射出装置が、前記スクリューと前記ブッシュとがスプライン嵌合するように、前記直動トルクおよび前記回転トルクを監視しながら前記直動モータおよび前記回転モータを制御する制御方法であって、
     前記スクリューに対して前記ブッシュを回転させながら前進させる回転前進ステップと、
     前記回転トルクが回転トルク閾値を超えた場合には、前記ブッシュの回転を停止させる回転停止ステップと、
     前記直動トルクが直動トルク閾値を超えたときに前記ブッシュの前進を停止させる前進停止ステップと、
     を含む、制御方法。
  11.  射出用樹脂を射出する前方向と、前記前方向とは逆の後方向との前後方向に沿って配置されるスクリューと、
     前記スクリューとスプライン嵌合可能に形成されるブッシュと、
     前記スクリューに対して、前記前後方向に前記ブッシュを進退させる直動モータと、
     前記スクリューに対して、前記ブッシュを回転させる回転モータと、
     前記直動モータの直動トルクを検出する第1検出部と、
     前記回転モータの回転トルクを検出する第2検出部と、
     を備える射出装置が、前記スクリューと前記ブッシュとがスプライン嵌合するように、前記直動トルクおよび前記回転トルクを監視しながら前記直動モータおよび前記回転モータを制御する制御方法であって、
     第1規定時間だけ前記ブッシュを前進させる前進動作と、第2規定時間だけ前記ブッシュを回転させる回転動作とを交互に繰り返す回転前進ステップと、
     前記前進動作または前記回転動作の動作中に前記回転トルクが回転トルク閾値を超えた場合には、前記ブッシュを前進させ続ける前進ステップと、
     前記直動トルクが直動トルク閾値を超えたときに前記ブッシュの前進を停止させる前進停止ステップと、
     を含む、制御方法。
PCT/JP2022/001947 2021-01-29 2022-01-20 射出装置および制御方法 WO2022163487A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280011084.1A CN116783052A (zh) 2021-01-29 2022-01-20 注射装置及控制方法
DE112022000315.4T DE112022000315T5 (de) 2021-01-29 2022-01-20 Einspritzvorrichtung und Steuerungsverfahren
JP2022517215A JP7082254B1 (ja) 2021-01-29 2022-01-20 射出装置および制御方法
US18/273,189 US20240051207A1 (en) 2021-01-29 2022-01-20 Injection device and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-013460 2021-01-29
JP2021013460 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022163487A1 true WO2022163487A1 (ja) 2022-08-04

Family

ID=82654484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001947 WO2022163487A1 (ja) 2021-01-29 2022-01-20 射出装置および制御方法

Country Status (1)

Country Link
WO (1) WO2022163487A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018044642A (ja) * 2016-09-15 2018-03-22 株式会社リコー 駆動伝達装置および画像形成装置
JP2019055488A (ja) * 2017-09-20 2019-04-11 ファナック株式会社 射出成形機および射出成形機の制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018044642A (ja) * 2016-09-15 2018-03-22 株式会社リコー 駆動伝達装置および画像形成装置
JP2019055488A (ja) * 2017-09-20 2019-04-11 ファナック株式会社 射出成形機および射出成形機の制御方法

Similar Documents

Publication Publication Date Title
JP5935728B2 (ja) 直動アクチュエータ
JP3071563B2 (ja) スクリュードライバーにおけるクラッチ装置
JP5815620B2 (ja) ロック装置
WO2022163487A1 (ja) 射出装置および制御方法
CN105680619A (zh) 电机组件及车辆起动机
JP2004003638A (ja) 中間の回転要素を備えた駆動装置
JP7082254B1 (ja) 射出装置および制御方法
WO2022163486A1 (ja) 射出装置および制御方法
JP3053807B1 (ja) Vベルト式自動変速機
WO2022163488A1 (ja) 射出装置
JP2010249314A (ja) 電動ブレーキ装置
US4073348A (en) Impact drilling tool
JP7082255B1 (ja) 射出装置および制御方法
US5657667A (en) End of travel stop for transfer case actuator
CN1070590C (zh) 单向离合器
JP3076099B2 (ja) スクリュヘッド構造体
JPH1151146A (ja) 間欠伝動機構
JP2004358902A (ja) 射出成形機の射出機構
JP2001280440A (ja) ボルトナット
JP4334944B2 (ja) シンクロナイズ機構付きねじ締め機
JPS633112B2 (ja)
JP2004019726A (ja) 逆入力遮断クラッチ
JP2004036831A (ja) ボールねじ装置
JP2024139875A (ja) 射出装置
JP2019143668A (ja) 変速機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022517215

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745708

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18273189

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280011084.1

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 22745708

Country of ref document: EP

Kind code of ref document: A1