WO2022163373A1 - 光検出装置および測距装置 - Google Patents

光検出装置および測距装置 Download PDF

Info

Publication number
WO2022163373A1
WO2022163373A1 PCT/JP2022/000991 JP2022000991W WO2022163373A1 WO 2022163373 A1 WO2022163373 A1 WO 2022163373A1 JP 2022000991 W JP2022000991 W JP 2022000991W WO 2022163373 A1 WO2022163373 A1 WO 2022163373A1
Authority
WO
WIPO (PCT)
Prior art keywords
photodetector
semiconductor layer
section
semiconductor substrate
conductivity type
Prior art date
Application number
PCT/JP2022/000991
Other languages
English (en)
French (fr)
Inventor
悠介 大竹
壽史 若野
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2022578227A priority Critical patent/JPWO2022163373A1/ja
Priority to CN202280011062.5A priority patent/CN116802809A/zh
Priority to US18/258,063 priority patent/US20240072080A1/en
Publication of WO2022163373A1 publication Critical patent/WO2022163373A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/1461Pixel-elements with integrated switching, control, storage or amplification elements characterised by the photosensitive area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present disclosure relates to, for example, a photodetector using an avalanche photodiode and a rangefinder including the same.
  • Patent Document 1 discloses a photodetector in which an avalanche photodiode is provided for each pixel, and adjacent pixels are separated by providing a semiconductor region surrounding the avalanche photodiode.
  • a photodetector includes a semiconductor substrate having a first surface and a second surface facing each other and having a pixel array section in which a plurality of pixels are arranged in an array; a semiconductor layer provided on the first surface side; a light-receiving section provided inside the semiconductor substrate for each pixel and generating carriers according to the amount of light received by photoelectric conversion; a multiplication section having a first conductivity type region and a second conductivity type region, wherein at least the second conductivity type region is provided in a semiconductor layer and avalanche multiplies carriers generated in the light receiving section; a first electrode provided on the first surface side and electrically connected to the light receiving section; and a second electrode provided on the first surface side and electrically connected to the multiplier section. It is.
  • a distance measuring device includes an optical system, a photodetector, and a signal processing circuit that calculates a distance to an object to be measured from an output signal of the photodetector. As a device, it has the photodetector of one embodiment of the present disclosure.
  • a semiconductor layer is provided on the first surface side of a semiconductor substrate having a first surface and a second surface facing each other, and a multiplier section At least the second conductivity type region of the first conductivity type region and the second conductivity type region constituting the semiconductor layer is provided in the semiconductor layer. This secures a space between the first electrode electrically connected to the light receiving section and the second conductivity type region forming the multiplication section.
  • FIG. 1 is a cross-sectional schematic diagram showing a configuration example of a photodetector according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram showing an example of a schematic configuration of the photodetector shown in FIG. 1
  • FIG. 2 is an example of an equivalent circuit diagram of a unit pixel of the photodetector shown in FIG. 1.
  • FIG. FIG. 4 is a schematic cross-sectional view showing a configuration example of a photodetector according to Modification 1 of the present disclosure;
  • FIG. 5 is a schematic cross-sectional view showing a configuration example of a photodetector according to Modification 2 of the present disclosure
  • 6 is a schematic diagram showing an example of a planar shape of a semiconductor layer in a unit pixel of the photodetector shown in FIG. 5.
  • FIG. 6 is a schematic diagram showing another example of the planar shape of the semiconductor layer in the unit pixel of the photodetector shown in FIG. 5.
  • FIG. 6 is a schematic diagram showing another example of the planar shape of the semiconductor layer in the unit pixel of the photodetector shown in FIG. 5.
  • FIG. FIG. 11 is a schematic cross-sectional view showing a configuration example of a photodetector according to Modification 3 of the present disclosure;
  • FIG. 11 is a schematic cross-sectional view showing a configuration example of a photodetector according to Modification 4 of the present disclosure
  • FIG. 11 is a schematic cross-sectional view showing a configuration example of a photodetector according to Modification 5 of the present disclosure
  • FIG. 12 is a schematic cross-sectional view showing a configuration example of a photodetector according to Modification 6 of the present disclosure
  • FIG. 11 is a schematic cross-sectional view showing a configuration example of a photodetector according to Modification 7 of the present disclosure
  • FIG. 12 is a schematic cross-sectional view showing a configuration example of a photodetector according to Modification 8 of the present disclosure
  • 13 is a schematic plan view showing a planar layout example of a p-type semiconductor region and an n-type semiconductor region in a unit pixel of the photodetector shown in FIG. 12.
  • FIG. FIG. 12 is a schematic cross-sectional view showing a configuration example of a photodetector according to Modification 9 of the present disclosure
  • 15 is a schematic plan view showing an example of a layout of a reflective layer in a unit pixel of the photodetector shown in FIG. 14.
  • FIG. 21 is a schematic cross-sectional view showing a configuration example of a photodetector according to Modification 10 of the present disclosure
  • 17 is a schematic plan view showing an example of a wiring layout for a reflective layer in a unit pixel of the photodetector shown in FIG. 16.
  • FIG. FIG. 20 is a schematic cross-sectional view showing a configuration example of a photodetector according to Modification 11 of the present disclosure
  • 2 is a functional block diagram showing an example of an electronic device using the photodetector shown in FIG. 1 and the like
  • FIG. 1 is a block diagram showing an example of a schematic configuration of a vehicle control system
  • FIG. FIG. 4 is an explanatory diagram showing an example of installation positions of an outside information detection unit and an imaging unit;
  • Embodiment photodetector in which an n-type semiconductor region constituting a multiplier section is provided in a semiconductor layer provided on a semiconductor substrate
  • Configuration of photodetector 1-2 Manufacturing method of photodetector 1-3.
  • Action and effect 2.
  • Modification 2-1 Modification 2-1.
  • Modification 1 Example in which an n-type semiconductor region and a p-type semiconductor region that constitute a multiplier section are provided in a semiconductor layer
  • Modification 2 Example in which a semiconductor layer is provided for each pixel and an insulating layer is provided around it
  • Modification 3 Example in which an n-type semiconductor region and a p-type semiconductor region, which constitute a multiplication section, are provided in a semiconductor layer provided for each pixel
  • Modification 4 Example in which the pixel separation part protrudes into the semiconductor layer
  • Modification 5 Example in which the side surface of the semiconductor layer is an inclined surface
  • Modification 6 (Example in which an n-type semiconductor region forming a multiplier section is provided inside the side surface of the semiconductor layer) 2-7.
  • Modification 7 (Example in which an n-type semiconductor region and a p-type semiconductor region forming a multiplier are provided inside the side surface of the semiconductor layer) 2-8.
  • Modification 8 (Example in which a plurality of n-type semiconductor regions constituting a multiplier section are provided in the semiconductor layer) 2-9.
  • Modification 9 (Example of providing a reflective layer in the insulating layer around the semiconductor layer) 2-10.
  • Modification 10 (Example of using the reflective layer as a resistance element of the readout circuit) 2-11.
  • Modification 11 (Example of using wiring in a multilayer wiring layer as a reflective layer) 3.
  • FIG. 1 schematically illustrates an example of a cross-sectional configuration of a photodetector (photodetector 1) according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram showing a schematic configuration of the photodetector 1 shown in FIG. 1
  • FIG. 3 shows an example of an equivalent circuit of the unit pixel P of the photodetector 1 shown in FIG. is.
  • the photodetector 1 is applied to, for example, a distance image sensor (distance image apparatus 1000 described later, see FIG. 19), an image sensor, or the like, which measures distance by the ToF (Time-of-Flight) method.
  • ToF Time-of-Flight
  • the photodetector 1 has, for example, a pixel array section 100A in which a plurality of unit pixels P are arranged in an array in row and column directions.
  • the photodetector 1 has a pixel array section 100A and a bias voltage application section 110, as shown in FIG.
  • the bias voltage applying section 110 applies a bias voltage to each unit pixel P of the pixel array section 100A. In this embodiment, a case of reading electrons as signal charges will be described.
  • the unit pixel P includes a light receiving element 12, a quenching resistance element 120 composed of a p-type MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), and an inverter 130 composed of, for example, a complementary MOSFET. and
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the light receiving element 12 converts incident light into an electric signal by photoelectric conversion and outputs the electric signal. Additionally, the light-receiving element 12 converts incident light (photons) into an electrical signal by photoelectric conversion, and outputs a pulse corresponding to the incidence of the photons.
  • the light-receiving element 12 is, for example, a SPAD element, and the SPAD element forms an avalanche multiplication region (depletion layer) 12X, for example, by applying a large negative voltage to the cathode, and generates in response to the incidence of one photon. It has the characteristic that electrons cause avalanche multiplication and a large current flows.
  • the light receiving element 12 has, for example, an anode connected to the bias voltage application section 110 and a cathode connected to the source terminal of the quenching resistance element 120 .
  • a device voltage VB is applied to the anode of the light receiving element 12 from a device voltage applying section.
  • the quenching resistance element 120 is connected in series with the light receiving element 12, has a source terminal connected to the cathode of the light receiving element 12, and a drain terminal connected to a power supply (not shown).
  • An excitation voltage VE is applied to the drain terminal of the quenching resistance element 120 from a power supply.
  • VBD negative voltage
  • the inverter 130 has an input terminal connected to the cathode of the light receiving element 12 and the source terminal of the quenching resistance element 120, and an output terminal connected to a subsequent arithmetic processing section (not shown).
  • the inverter 130 outputs a received light signal based on the carrier (signal charge) multiplied by the light receiving element 12 . More specifically, the inverter 130 shapes the voltage generated by the electrons multiplied by the light receiving element 12 . Starting from the arrival time of one font, the inverter 130 outputs a light reception signal (APD OUT) generating a pulse waveform shown in FIG. 3, for example, to the arithmetic processing unit.
  • APD OUT light reception signal
  • the arithmetic processing unit performs arithmetic processing to obtain the distance to the subject based on the timing at which a pulse indicating the arrival time of one font is generated in each light receiving signal, and obtains the distance for each unit pixel P. Based on these distances, a distance image is generated in which the distances to the subject detected by the plurality of unit pixels P are arranged in a plane.
  • the logic substrate 20 is laminated on the surface side of the sensor substrate 10 (for example, the surface (first surface 11S1) side of the semiconductor substrate 11 constituting the sensor substrate 10), and the rear surface side of the sensor substrate 10 is stacked. It is a so-called back-illuminated photodetector that receives light from the back surface (second surface 11S2) of the semiconductor substrate 11 constituting the sensor substrate 10, for example.
  • the photodetector 1 of this embodiment has a light receiving element 12 for each unit pixel P. As shown in FIG.
  • the light-receiving element 12 has a light-receiving portion 13 and a multiplier portion 14 , and the light-receiving portion 13 is embedded in the semiconductor substrate 11 .
  • the semiconductor substrate 11 further includes, on the first surface 11S1, a p-type semiconductor region (p + ) of the p-type semiconductor region (p + ) 14X and the n-type semiconductor region (n + ) 14Y that constitute the multiplier section 14 . 14X is provided.
  • a semiconductor layer 15 is provided on the side of the first surface 11S1 of the semiconductor substrate 11, and the semiconductor layer 15 is provided with an n-type semiconductor region (n + ) 14Y that constitutes the multiplication section .
  • the sensor substrate 10 has, for example, a semiconductor substrate 11 made of a silicon substrate, a semiconductor layer 15, and a multilayer wiring layer 18.
  • the semiconductor substrate 11 has a first surface 11S1 and a second surface 11S2 facing each other.
  • the semiconductor substrate 11 has a p-well (p) 111 common to a plurality of unit pixels P.
  • the semiconductor substrate 11 is provided with an n-type semiconductor region (n) 112 whose impurity concentration is controlled to be n-type, for example, for each unit pixel P, thereby forming a light receiving element 12 for each unit pixel P.
  • n semiconductor region
  • the semiconductor substrate 11 is further provided with a pixel separating portion 17 extending between the first surface 1S1 and the second surface 11S2.
  • the light receiving element 12 has a multiplication region (avalanche multiplication region) that avalanche multiplies carriers by a high electric field region. It is a SPAD element capable of forming a depletion layer) and avalanche-multiplying electrons generated by the incidence of one photon.
  • a multiplication region that avalanche multiplies carriers by a high electric field region. It is a SPAD element capable of forming a depletion layer) and avalanche-multiplying electrons generated by the incidence of one photon.
  • the light-receiving element 12 is composed of a light-receiving section 13 and a multiplier section 14 .
  • the light receiving unit 13 corresponds to a specific example of the “light receiving unit” of the present disclosure, and has a photoelectric conversion function of absorbing light incident from the second surface 11S2 side of the semiconductor substrate 11 and generating carriers according to the amount of received light. It has The light receiving portion 13 includes the n-type semiconductor region (n) 112 whose impurity concentration is controlled to be n-type, as described above. is transferred to the multiplication unit 14 by .
  • the multiplication unit 14 corresponds to a specific example of the “multiplication unit” of the present disclosure, and avalanche multiplies the carriers (here, electrons) generated in the light receiving unit 13 .
  • the multiplication unit 14 includes, for example, a p-type semiconductor region (p + ) 14X having an impurity concentration higher than that of the p-well (p) 111 and an n-type semiconductor region ( n + ) 14Y.
  • the p-type semiconductor region (p + ) 14X is provided in the semiconductor substrate 11 so as to face the first surface 11S1.
  • the n-type semiconductor region (n + ) 14Y is provided so as to protrude from the first surface 11S1 of the semiconductor substrate 11 .
  • it is embedded in the semiconductor layer 15 provided on the first surface of the semiconductor substrate 11 so as to face the second surface 15S2 of the semiconductor layer 15 .
  • a p-type semiconductor region (p + ) 14X provided facing the first surface 11S1 of the semiconductor substrate 11 and an n-type semiconductor region provided facing the second surface 15S2 of the semiconductor layer 15 are formed.
  • An avalanche multiplication region 12X is formed at the junction with (n + ) 14Y.
  • the avalanche multiplication region 12X is a high electric field region (depletion layer) formed at the interface between the p-type semiconductor region (p + ) 14X and the n-type semiconductor region (n + ) 14Y by a large negative voltage applied to the cathode. is.
  • electrons (e ⁇ ) generated by one photon incident on the light receiving element 12 are multiplied.
  • the semiconductor layer 15 is a semiconductor layer made of silicon, for example, formed on the first surface 11S1 of the semiconductor substrate 11 using, for example, an epitaxial crystal growth method, and corresponds to a specific example of the "semiconductor layer" of the present disclosure. It is.
  • the semiconductor layer 15 has a first surface 15S1 and a second surface 15S2 facing each other.
  • the first surface 15 S 1 faces the multilayer wiring layer 18 and the second surface 15 S 2 faces the semiconductor substrate 11 .
  • the semiconductor layer 15 is embedded with the n-type semiconductor region (n + ) 14Y facing the second surface 15S2.
  • the semiconductor layer 15 further includes a contact electrode 16 for electrically connecting the cathode, which corresponds to a specific example of the "second electrode" of the present disclosure, to the multiplier section 14.
  • the n-type semiconductor region ( n + ) 14Y so as to face the first surface 15S1.
  • the contact electrode 16 is composed of, for example, an n-type semiconductor region (n ++ ) having a higher impurity concentration than the n-type semiconductor region (n + ) 14Y.
  • the pixel separating section 17 electrically and/or optically separates adjacent unit pixels P, and is provided in a grid pattern in the pixel array section 100A, for example.
  • the pixel separating portion 17 includes, for example, a light shielding film 17A extending between the first surface 11S1 and the second surface 11S2 of the semiconductor substrate 11, an insulating film 17B provided between the light shielding film 17A and the semiconductor substrate 11, 17C.
  • the light-shielding film 17A has a light-shielding portion 17X formed on the second surface 11S2 of the semiconductor substrate 11 to extend.
  • the light shielding portion 17X suppresses crosstalk of obliquely incident light between adjacent unit pixels P. As shown in FIG.
  • the light shielding film 17A and the light shielding portion 17X are formed using, for example, a conductive material having a light shielding property. Examples of such materials include tungsten (W), silver (Ag), copper (Cu), aluminum (Al), an alloy of Al and copper (Cu), and the like.
  • the insulating films 17B and 17C are formed using, for example, a silicon oxide (SiO x ) film or the like.
  • a p-type semiconductor region (p + ) 113 having an impurity concentration higher than that of the p-well 111 is provided around the pixel isolation portion 17 .
  • the p-type semiconductor region (p + ) 113 extends toward the inside of the unit pixel P in the vicinity of the first surface 11S1 of the semiconductor substrate 11 (extended portion 113X).
  • the extended portion 113X also serves as a contact electrode that electrically connects the anode corresponding to one specific example of the “first electrode” of the present disclosure and the light receiving portion 13 .
  • the p-type semiconductor region (p + ) 113 further extends, for example, over the pixel array section 100A in the vicinity of the second surface 11S2 of the semiconductor substrate 11 .
  • a multilayer wiring layer 18 is provided on the first surface 11S1 side opposite to the light incident surface (second surface 11S2) of the semiconductor substrate 11 with the semiconductor layer 15 interposed therebetween.
  • a wiring layer 181 made up of one or more wirings is formed within an interlayer insulating layer 182 .
  • the wiring layer 181 is for, for example, supplying a voltage to be applied to the semiconductor substrate 11 and the light receiving element 12 and extracting carriers generated in the light receiving element 12 .
  • a part of the wiring of the wiring layer 181 is electrically connected to the contact electrode 16 and the extended portion 113X through the via V1.
  • a plurality of pad electrodes 183 are embedded in the surface of the interlayer insulating layer 182 opposite to the semiconductor substrate 11 side (the surface 18S1 of the multilayer wiring layer 18).
  • the plurality of pad electrodes 183 are electrically connected to some wirings of the wiring layer 181 via vias V2.
  • FIG. 1 shows an example in which one wiring layer 181 is formed in the multilayer wiring layer 18, the total number of wiring layers in the multilayer wiring layer 18 is not limited, and two or more wiring layers are formed. may be formed.
  • the interlayer insulating layer 182 is, for example, a single layer film made of one of silicon oxide (SiO x ), TEOS, silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), or the like, or It is composed of a laminated film composed of two or more kinds.
  • the wiring layer 181 is formed using, for example, aluminum (Al), copper (Cu), tungsten (W), or the like.
  • the pad electrode 183 is exposed on the joint surface (surface 18S1 of the multilayer wiring layer 18) with the logic substrate 20, and is used for connection with the logic substrate 20, for example.
  • the pad electrode 183 is formed using copper (Cu), for example.
  • the logic board 20 has, for example, a semiconductor substrate 21 made of a silicon substrate and a multilayer wiring layer 22 .
  • the logic board 20 includes, for example, the above-described bias voltage application section 110, a readout circuit for outputting pixel signals based on charges output from the unit pixels P of the pixel array section 100A, a vertical drive circuit, a column signal processing circuit, A logic circuit including a horizontal driving circuit, an output circuit, and the like is configured.
  • the multi-layered wiring layer 22 includes, for example, a gate wiring 221 of a transistor constituting a readout circuit and wiring layers 222, 223, 224, and 225 including one or a plurality of wirings with an interlayer insulating layer 226 interposed therebetween on the semiconductor substrate 21 side. are stacked in order from A plurality of pad electrodes 227 are embedded in the surface of the interlayer insulating layer 226 opposite to the semiconductor substrate 21 (the surface 22S1 of the multilayer wiring layer 22). The plurality of pad electrodes 227 are electrically connected to some wirings of the wiring layer 225 via vias V3.
  • the interlayer insulating layer 117 is made of, for example, one of silicon oxide (SiO x ), TEOS, silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), and the like. It is composed of a layered film or a laminated film composed of two or more of these.
  • the gate wiring 221 and the wiring layers 222, 223, 224, and 225 are formed using, for example, aluminum (Al), copper (Cu), or tungsten (W), like the wiring layer 181.
  • the pad electrode 227 is exposed on the joint surface (surface 22S1 of the multilayer wiring layer 22) with the sensor substrate 10, and is used for connection with the sensor substrate 10, for example.
  • the pad electrode 227 is formed using copper (Cu), for example, like the pad electrode 183 .
  • the pad electrode 183 and the pad electrode 227 are, for example, CuCu bonded.
  • the cathode of the light receiving element 12 is electrically connected to the quenching resistance element 120 provided on the logic substrate 20 side, and the anode of the light receiving element 12 is electrically connected to the bias voltage applying section 110 .
  • a microlens 33 is provided, for example, for each unit pixel P via a passivation film 31 and a color filter 32, for example.
  • the microlens 33 converges the light incident from above onto the light receiving element 12, and is made of, for example, silicon oxide ( SiOx ).
  • the sensor substrate 10 can be manufactured, for example, as follows. First, by ion implantation, a p-well (p) 111, an n-type semiconductor region (n) 112 and a p-type semiconductor region (p + ) 14X are formed in the semiconductor substrate 11 by controlling the concentration of p-type or n-type impurities. do. Next, after patterning an oxide film such as silicon oxide (SiO x ) or a nitride film such as (SiN x ) as a hard mask on the first surface 11S1 of the semiconductor substrate 11, the semiconductor substrate 11 is etched, for example. A through-hole is formed.
  • the insulating films 17B and 17C and the light shielding film 17A are sequentially formed in the through holes by, for example, a CVD (Chemical Vapor Deposition) method, a PVD (Physical Vapor Deposition) method, an ALD (Atomic Layer Deposition) method, or a vapor deposition method. do.
  • CVD Chemical Vapor Deposition
  • PVD Physical Vapor Deposition
  • ALD Atomic Layer Deposition
  • a semiconductor layer 15 made of, for example, silicon (Si) is formed on the first surface 11S1 of the semiconductor substrate 11 by an epitaxial crystal growth method such as a metal organic chemical vapor deposition (MOCVD) method. do.
  • MOCVD metal organic chemical vapor deposition
  • the semiconductor layer 15 is then implanted with ions to form an n-type semiconductor region (n + ) 14Y and a contact electrode 16 (n-type).
  • a semiconductor region (n ++ )) is formed.
  • the n-type semiconductor region (n + ) 14Y can be formed with a film thickness of 1 ⁇ m or less, for example.
  • the multilayer wiring layer 18 is formed on the first surface 15S1 of the semiconductor layer 15.
  • a logic substrate 20 prepared separately is pasted together.
  • the plurality of pad electrodes 183 exposed on the bonding surface (surface 18S1) of the multilayer wiring layer 18 and the plurality of pad portions 217 exposed on the bonding surface (surface 22S) of the multilayer wiring layer 22 on the logic substrate 20 side are CuCu bonding.
  • the photodetector 1 shown in FIG. 1 is completed.
  • a semiconductor layer 15 is provided on a first surface 1S1 of a semiconductor substrate 11, and an n-type semiconductor region (n + ) 14Y constituting a multiplier section 14 is formed in the semiconductor layer 15. I set it up. This secures a space between the anode electrically connected to the light receiving section 13 and the n-type semiconductor region (n + ) 14Y and the cathode forming the multiplier section 14 . This will be explained below.
  • a lateral distance between the anode and the n-type semiconductor region of the avalanche photodiode (APD) is required to suppress edge breakdown. . Therefore, it is unsuitable for miniaturization.
  • a possible solution to this problem is an embedded structure in which the anode is embedded inside the silicon substrate.
  • this structure complicates the manufacturing process because the contact ion implantation is performed after the anode opening is formed in the silicon substrate.
  • the semiconductor layer 15 is provided on the first surface 1S1 of the semiconductor substrate 11 by using, for example, an epitaxial crystal growth method, and the multiplication section 14 is formed in the semiconductor layer 15.
  • type semiconductor region (n + ) 14Y is provided by ion implantation.
  • the n-type semiconductor region (n + ) 14Y and the cathode can be secured, and unintended edge breakdown can be suppressed.
  • the n-type semiconductor region (n + ) 14Y forming the multiplier section 14 is provided in the semiconductor layer 15, so that the n-type semiconductor region (n + ) 14Y Accordingly, the light receiving area (light receiving portion 13) can be enlarged. Therefore, sensitivity can be improved.
  • FIG. 4 schematically illustrates an example of a cross-sectional configuration of a photodetector (photodetector 1A) according to Modification 1 of the present disclosure.
  • the photodetector 1A is applied to, for example, a distance image sensor (distance image apparatus 1000) or an image sensor that performs distance measurement by the ToF method, as in the above embodiments.
  • the photodetector 1A of this modified example is characterized in that both the p-type semiconductor region (p + ) 14X and the n-type semiconductor region (n + ) 14Y constituting the multiplication section 14 are provided in the semiconductor layer 15. , is different from the above embodiment.
  • both the p-type semiconductor region (p + ) 14X and the n-type semiconductor region (n + ) 14Y that constitute the multiplier section 14 are formed in the semiconductor layer 15. I made it thereby, in addition to the effects of the above embodiment, the light receiving region (light receiving portion 13) can be further enlarged by the p-type semiconductor region (p + ) 14X. Therefore, it becomes possible to further improve the sensitivity.
  • FIG. 5 schematically illustrates an example of a cross-sectional configuration of a photodetector (photodetector 1B) according to Modification 2 of the present disclosure.
  • the photodetector 1B is applied to, for example, a distance image sensor (distance image apparatus 1000) or an image sensor that performs distance measurement by the ToF method, as in the above embodiments.
  • the photodetector 1B of this modified example differs from the above embodiment in that the semiconductor layer 15 is partially provided on the first surface 11S1 of the semiconductor substrate 11 for each unit pixel P.
  • FIG. 6A to 6C schematically show an example of the planar shape of the semiconductor layer 15.
  • the semiconductor layer 15 may have a rectangular shape like the unit pixel P as shown in FIG. 6A, or may have a polygonal shape other than a rectangle as shown in FIG. 6B. Alternatively, it may be circular as shown in FIG. 6C.
  • the circular shape shown in FIG. 6C is preferable from the viewpoint of alleviating the edge electric field in the horizontal direction (for example, the XY plane direction).
  • Such a semiconductor layer 15 can be manufactured as follows. For example, a p-well (p) 111, an n-type semiconductor region (n) 112 and a p-type semiconductor region (p + ) 14X are formed in the semiconductor substrate 11 in the same manner as in the above embodiments. Subsequently, an insulating layer 19 having openings at predetermined positions is patterned on the first surface 11S1 of the semiconductor substrate 11 .
  • the insulating layer 19 can be formed using, for example, silicon oxide (SiO x ) or silicon nitride (SiN x ). After that, a semiconductor layer 15 is formed in the opening by an epitaxial crystal growth method.
  • the semiconductor substrate 11 may be processed to form a convex structure, and this convex structure portion may be used as the semiconductor layer 15. can.
  • the semiconductor layer 15 is embedded in the insulating layer 19 for each unit pixel P, and the semiconductor layer 15 contains the n-type semiconductor region that constitutes the multiplier section 14. (n + ) 14Y is provided.
  • the distance between the anode and the n-type semiconductor region (n + ) 14Y forming the multiplier section 14 can be secured more reliably than in the above embodiment. Therefore, in addition to the effects of the above embodiment, it is possible to further suppress unintended edge breakdown.
  • FIG. 7 schematically illustrates an example of a cross-sectional configuration of a photodetector (photodetector 1C) according to Modification 3 of the present disclosure.
  • the photodetector 1C is applied to, for example, a distance image sensor (distance image apparatus 1000) or an image sensor that performs distance measurement by the ToF method, as in the above embodiments.
  • the photodetector 1C of this modified example is a combination of the modified examples 1 and 2.
  • the semiconductor layer 15 is partially provided on the first surface 11S1 of the semiconductor substrate 11 for each unit pixel P, Both the p-type semiconductor region (p + ) 14X and the n-type semiconductor region (n + ) 14Y that constitute the multiplier section 14 are provided in the semiconductor layer 15 .
  • the semiconductor layer 15 is partially provided for each unit pixel P, and in the semiconductor layer 15, the p-type semiconductor region (p + ) 14X and the n-type semiconductor region (n + ) 14X constituting the multiplier section 14 are provided. 14Y may be provided.
  • the distance between the anode and the n - type semiconductor region (n + ) 14Y forming the multiplier section 14 can be more reliably secured, and the light-receiving region (light-receiving section 13) can be further expanded. Therefore, unintended edge breakdown can be further suppressed, and sensitivity can be further improved.
  • FIG. 8 schematically illustrates an example of a cross-sectional configuration of a photodetector (photodetector 1D) according to Modification 4 of the present disclosure.
  • the photodetector 1D is applied to, for example, a distance image sensor (distance image apparatus 1000) or an image sensor that measures distance by the ToF method, as in the above embodiments.
  • the photodetector 1 ⁇ /b>D of this modified example differs from the above embodiment in that the pixel separation section 17 further extends into the semiconductor layer 15 and the pixel separation section 17 penetrates the semiconductor layer 15 .
  • the p-type semiconductor region (p + ) 113 extends into the semiconductor layer 15 together with the pixel separation portion 17, and extends inside the unit pixel P in the vicinity of the first surface 15S1 of the semiconductor layer 15. It is extended toward (extended portion 113X).
  • the pixel separating portion 17 extends from the semiconductor substrate 11 to the inside of the semiconductor layer 15, and the semiconductor layer 15 is separated for each unit pixel P by the pixel separating portion 17. did. This makes it possible to suppress crosstalk due to light emission during avalanche multiplication in the multiplication section 14 . Therefore, it is possible to improve device characteristics in addition to the effects of the above embodiments.
  • FIG. 9 schematically illustrates an example of a cross-sectional configuration of a photodetector (photodetector 1E) according to Modification 5 of the present disclosure.
  • the photodetector 1E is applied to, for example, a distance image sensor (distance image apparatus 1000) or an image sensor that performs distance measurement by the ToF method, as in the above embodiments.
  • the photodetector 1E of this modified example has a configuration in which the modified examples 1 and 2 are combined. different from the form of
  • the angle of the side surface of the semiconductor layer 15 partially provided for each unit pixel P is not particularly limited, and may be perpendicular to the first surface 11S1 of the semiconductor substrate 11 or may be inclined.
  • FIG. 10 schematically illustrates an example of a cross-sectional configuration of a photodetector (photodetector 1F) according to Modification 6 of the present disclosure.
  • the photodetector 1F is applied to, for example, a distance image sensor (distance image apparatus 1000) or an image sensor that performs distance measurement by the ToF method, as in the above embodiments.
  • the photodetector 1F of this modified example is a further modified example of the above-described modified example 2, and the end face of the n-type semiconductor region (n + ) 14Y formed in the semiconductor layer 15 partially provided for each unit pixel P is It is different from the above embodiment in that it is formed inside the side surface of the semiconductor layer 15 .
  • the end surface of the n-type semiconductor region (n + ) 14Y is formed inside the side surface of the semiconductor layer 15 provided for each unit pixel P, A region where the n-type semiconductor region (n + ) 14Y is not formed is provided in the peripheral portion. This makes it possible to reduce the avalanche multiplication of the dark current generated at the interface on the side surface of the semiconductor layer 15 .
  • FIG. 11 schematically illustrates an example of a cross-sectional configuration of a photodetector (photodetector 1G) according to Modification 7 of the present disclosure.
  • the photodetector 1G is applied to, for example, a distance image sensor (distance image apparatus 1000) or an image sensor that performs distance measurement by the ToF method, as in the above embodiments.
  • the photodetector 1G of this modified example is a combination of the modified examples 1 and 6.
  • the p-type semiconductor region (p + ) 14X and the n-type semiconductor region (n + ) 14Y are formed inside the side surfaces of the semiconductor layer 15 partially provided for each unit pixel P. As shown in FIG.
  • FIG. 12 schematically illustrates an example of a cross-sectional configuration of a photodetector (photodetector 1H) according to Modification 8 of the present disclosure.
  • FIG. 13 schematically shows a planar layout of the p-type semiconductor region (p + ) 14X and the n-type semiconductor region (n + ) 14Y in the unit pixel P of the photodetector 1H shown in FIG.
  • the photodetector 1H is applied to, for example, a distance image sensor (distance image apparatus 1000) or an image sensor that performs distance measurement by the ToF method, as in the above embodiments.
  • a plurality of semiconductor layers 15 each having an n-type semiconductor region (n + ) 14Y forming a multiplier 14 are provided for each unit pixel P, which is different from that of the modified example 2 described above. different from
  • a plurality of semiconductor layers 15 formed with the n-type semiconductor regions (n + ) 14Y constituting the multiplication section 14 may be provided in the unit pixel P.
  • FIG. This makes it possible to improve the light absorption efficiency in addition to the effects of the above embodiments.
  • FIG. 14 schematically illustrates an example of a cross-sectional configuration of a photodetector (photodetector 1I) according to Modification 9 of the present disclosure.
  • FIG. 15 schematically shows an example of a planar layout of the reflective layer 41 in the unit pixel P of the photodetector 1I shown in FIG.
  • the photodetector 1I is applied to, for example, a distance image sensor (distance image apparatus 1000) or an image sensor that performs distance measurement by the ToF method, as in the above embodiments.
  • a reflective layer 41 is provided in the insulating layer 19 provided around the semiconductor layer 15 so as to surround the semiconductor layer 15, for example. It is.
  • the reflective layer 41 can be formed using, for example, a wiring material having light reflectivity such as aluminum (Al).
  • the reflective layer 41 surrounding the semiconductor layer 15 is provided in the insulating layer 19 provided around the semiconductor layer 15 .
  • the light transmitted through the light receiving section 13 without being absorbed is reflected by the reflective layer 41 and enters the light receiving section 13 again. Therefore, in addition to the effects of Modification 2, sensitivity can be further improved.
  • FIG. 16 schematically illustrates an example of a cross-sectional configuration of a photodetector (photodetector 1J) according to Modification 10 of the present disclosure.
  • FIG. 17 schematically shows an example of wiring layout for the reflective layer 41 shown in FIG.
  • the photodetector 1J is applied to, for example, a distance image sensor (distance image apparatus 1000) or an image sensor that performs distance measurement by the ToF method, as in the above embodiments.
  • the reflective layer 41 is partially divided, one end of which is electrically connected to the cathode (contact electrode 16) via, for example, a via V1, and the other end is electrically connected to the readout circuit. good too. Thereby, the reflective layer 41 can be used as a resistance element of the readout circuit. Therefore, it is possible to improve the area efficiency of the readout circuit.
  • FIG. 18 schematically illustrates an example of a cross-sectional configuration of a photodetector (photodetector 1K) according to Modification 11 of the present disclosure.
  • the photodetector 1K is applied to, for example, a distance image sensor (distance image apparatus 1000) or an image sensor that performs distance measurement by the ToF method, as in the above embodiments.
  • the reflective layer 41 is provided in the insulating layer 19 provided around the semiconductor layer 15 so that the light that has passed through the light receiving section 13 without being absorbed is made to enter the light receiving section 13 again.
  • FIG. 19 shows an example of a schematic configuration of a distance imaging device 1000 as an electronic device including the photodetector (for example, photodetector 1) according to the embodiment and Modifications 1 to 11 described above.
  • This range imaging device 1000 corresponds to a specific example of the "range finding device" of the present disclosure.
  • the distance imaging device 1000 has, for example, a light source device 1100, an optical system 1200, a photodetector device 1, an image processing circuit 1300, a monitor 1400, and a memory 1500.
  • the distance imaging device 1000 projects light from the light source device 1100 toward the object to be irradiated 2000 and receives light (modulated light or pulsed light) reflected from the surface of the object to be irradiated 2000 . It is possible to acquire a distance image corresponding to the distance of .
  • the optical system 1200 includes one or more lenses, guides the image light (incident light) from the irradiation object 2000 to the photodetector 1, and directs it to the light receiving surface (sensor section) of the photodetector 1. to form an image.
  • the image processing circuit 1300 performs image processing for constructing a distance image based on the distance signal supplied from the photodetector 1, and the distance image (image data) obtained by the image processing is supplied to the monitor 1400. It is displayed, or is supplied to the memory 1500 and stored (recorded).
  • the distance imaging device 1000 configured in this way, by applying the above-described photodetector (for example, the photodetector 1), the irradiation object 2000 can be detected based only on the light reception signal from the unit pixel P with high stability. It is possible to calculate the distance to and generate a highly accurate distance image. That is, the distance imaging device 1000 can acquire a more accurate distance image.
  • the photodetector for example, the photodetector 1
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure can be applied to any type of movement such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, robots, construction machinery, agricultural machinery (tractors), etc. It may also be implemented as a body-mounted device.
  • FIG. 20 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • a vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an exterior information detection unit 12030, an interior information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio/image output section 12052, and an in-vehicle network I/F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps.
  • the body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
  • the vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed.
  • the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 .
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light.
  • the imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • the in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
  • the microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on information on the inside and outside of the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit.
  • a control command can be output to 12010 .
  • the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation of vehicles, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, etc. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation of vehicles, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, etc. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation of vehicles, follow-up driving based on inter-vehicle distance, vehicle speed
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
  • the audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 21 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the imaging unit 12031 has imaging units 12101, 12102, 12103, 12104, and 12105.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose, side mirrors, rear bumper, back door, and windshield of the vehicle 12100, for example.
  • An imaging unit 12101 provided in the front nose and an imaging unit 12105 provided above the windshield inside the vehicle mainly acquire images of the front of the vehicle 12100 .
  • Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 .
  • An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 .
  • the imaging unit 12105 provided above the windshield in the passenger compartment is mainly used to detect preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 21 shows an example of the imaging range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of an imaging unit 12104 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the course of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
  • automatic brake control including following stop control
  • automatic acceleration control including following start control
  • the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 .
  • recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian.
  • the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the photodetector of the present disclosure need not include all of the constituent elements described in the above embodiments and the like, and conversely, may include other layers.
  • the photodetector 1 detects light other than visible light (for example, near-infrared light (IR))
  • the color filter 32 may be omitted.
  • the polarities of the semiconductor regions forming the photodetector of the present disclosure may be reversed.
  • the photodetector of the present disclosure may use holes as signal charges.
  • the respective potentials are not limited as long as avalanche multiplication is caused by applying a reverse bias between the anode and the cathode.
  • the semiconductor substrate 11 and the semiconductor layer 15 may be, for example, germanium (Ge) or silicon (Si) and germanium ( Ge) and compound semiconductors (eg, silicon germanium (SiGe)) can also be used.
  • a semiconductor layer is provided on the first surface side of a semiconductor substrate having a first surface and a second surface facing each other, and a first conductivity type region and a Of the second conductivity type regions, at least the second conductivity type region is provided in the semiconductor layer.
  • a semiconductor substrate having first and second surfaces facing each other and having a pixel array section in which a plurality of pixels are arranged in an array; a semiconductor layer provided on the first surface side of the semiconductor substrate; a light receiving unit provided inside the semiconductor substrate for each pixel and configured to generate carriers according to the amount of light received by photoelectric conversion; having a first conductivity type region and a second conductivity type region stacked in order on the first surface side, at least the second conductivity type region being provided in the semiconductor layer; a multiplication unit that avalanche multiplies the generated carrier; a first electrode provided on the first surface side and electrically connected to the light receiving section; and a second electrode provided on the first surface side and electrically connected to the multiplier section.
  • the semiconductor substrate further includes a pixel separating portion penetrating between the first surface and the second surface while partitioning each of the plurality of pixels.
  • the photodetector according to (6), wherein the pixel separation section further penetrates the semiconductor layer.
  • Photodetector. (10) further having a second conductivity type impurity region in the semiconductor layer; According to any one of (1) to (9), the multiplication section and the second electrode are electrically connected via the impurity region of the second conductivity type.
  • photodetector. (11) The photodetector according to any one of (3) to (10), further comprising a reflective layer provided within the insulating layer and surrounding the semiconductor layer.
  • the photodetector is a semiconductor substrate having first and second surfaces facing each other and having a pixel array section in which a plurality of pixels are arranged in an array; a semiconductor layer provided on the first surface side of the semiconductor substrate; a light receiving unit provided inside the semiconductor substrate for each pixel and configured to generate carriers according to the amount of light received by photoelectric conversion; having a first conductivity type region and a second conductivity type region stacked in order on the first surface side, at least the second conductivity type region being provided in the semiconductor layer; a multiplication unit that avalanche multiplies the generated carrier; a first electrode provided on the first surface side and electrically connected to the light receiving section; and a second electrode provided on the first surface side and electrically connected to the multiplier.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

本開示の一実施形態の光検出装置は、対向する第1の面および第2の面を有すると共に、複数の画素がアレイ状に配置された画素アレイ部を有する半導体基板と、半導体基板の第1の面側に設けられた半導体層と、画素毎に半導体基板の内部に設けられ、受光量に応じたキャリアを光電変換により生成する受光部と、第1の面側に順に積層された第1の導電型領域と第2の導電型領域とを有し、少なくとも第2の導電型領域が半導体層に設けられると共に、受光部において生成されたキャリアをアバランシェ増倍する増倍部と、第1の面側に設けられ、受光部と電気的に接続された第1の電極と、第1の面側に設けられ、増倍部と電気的に接続された第2の電極とを備える。

Description

光検出装置および測距装置
 本開示は、例えば、アバランシェフォトダイオードを用いた光検出装置およびこれを備えた測距装置に関する。
 例えば、特許文献1では、画素毎にアバランシェフォトダイオードが設けられ、アバランシェフォトダイオードの周囲を囲う半導体領域を設けることにより隣り合う画素間を分離する光検出器が開示されている。
国際公開第2018/074530号
 ところで、測距装置を構成する光検出装置では、意図しないエッジブレイクダウンの抑制が求められている。
 意図しないエッジブレイクダウンを抑制することが可能な光検出装置および測距装置を提供することが望ましい。
 本開示の一実施形態の光検出装置は、対向する第1の面および第2の面を有すると共に、複数の画素がアレイ状に配置された画素アレイ部を有する半導体基板と、半導体基板の第1の面側に設けられた半導体層と、画素毎に半導体基板の内部に設けられ、受光量に応じたキャリアを光電変換により生成する受光部と、第1の面側に順に積層された第1の導電型領域と第2の導電型領域とを有し、少なくとも第2の導電型領域が半導体層に設けられると共に、受光部において生成されたキャリアをアバランシェ増倍する増倍部と、第1の面側に設けられ、受光部と電気的に接続された第1の電極と、第1の面側に設けられ、増倍部と電気的に接続された第2の電極とを備えたものである。
 本開示の一実施形態の測距装置は、光学系と、光検出装置と、光検出装置の出力信号から測定対象物までの距離を算出する信号処理回路とを備えたものであり、光検出装置として、上記本開示の一実施形態の光検出装置を有する。
 本開示の一実施形態の光検出装置および一実施形態の測距装置では、対向する第1の面および第2の面を有する半導体基板の第1の面側に半導体層を設け、増倍部を構成する第1の導電型領域および第2の導電型領域のうち、少なくとも第2の導電型領域を半導体層内に設けるようにした。これにより、受光部と電気的に接続される第1の電極と、増倍部を構成する第2の導電型領域との間隔を確保する。
本開示の実施の形態に係る光検出装置の構成例を表す断面模式図である。 図1に示した光検出装置の概略構成の一例を表すブロック図である。 図1に示した光検出装置の単位画素の等価回路図の一例である。 本開示の変形例1に係る光検出装置の構成例を表す断面模式図である。 本開示の変形例2に係る光検出装置の構成例を表す断面模式図である。 図5に示した光検出装置の単位画素における半導体層の平面形状の一例を表す模式図である。 図5に示した光検出装置の単位画素における半導体層の平面形状の他の例を表す模式図である。 図5に示した光検出装置の単位画素における半導体層の平面形状の他の例を表す模式図である。 本開示の変形例3に係る光検出装置の構成例を表す断面模式図である。 本開示の変形例4に係る光検出装置の構成例を表す断面模式図である。 本開示の変形例5に係る光検出装置の構成例を表す断面模式図である。 本開示の変形例6に係る光検出装置の構成例を表す断面模式図である。 本開示の変形例7に係る光検出装置の構成例を表す断面模式図である。 本開示の変形例8に係る光検出装置の構成例を表す断面模式図である。 図12に示した光検出装置の単位画素におけるp型半導体領域およびn型半導体領域の平面レイアウト例を表す平面模式図である。 本開示の変形例9に係る光検出装置の構成例を表す断面模式図である。 図14に示した光検出装置の単位画素における反射層のレイアウトの一例を表す平面模式図である。 本開示の変形例10に係る光検出装置の構成例を表す断面模式図である。 図16に示した光検出装置の単位画素における反射層に対する配線レイアウトの一例を表す平面模式図である。 本開示の変形例11に係る光検出装置の構成例を表す断面模式図である。 図1等に示した光検出装置を用いた電子機器の一例を表す機能ブロック図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
 以下、本開示における実施の形態について、図面を参照して詳細に説明する。以下の説明は本開示の一具体例であって、本開示は以下の態様に限定されるものではない。また、本開示は、各図に示す各構成要素の配置や寸法、寸法比等についても、それらに限定されるものではない。なお、説明する順序は、下記の通りである。
 1.実施の形態
(増倍部を構成するn型半導体領域が半導体基板上に設けられた半導体層内に設けられた光検出装置)
   1-1.光検出装置の構成
   1-2.光検出装置の製造方法
   1-3.作用・効果
 2.変形例
   2-1.変形例1
(増倍部を構成するn型半導体領域およびp型半導体領域を半導体層に設けた例)
   2-2.変形例2
(画素毎に半導体層を設け、その周囲に絶縁層を設けた例)
   2-3.変形例3
(画素毎に設けられた半導体層内に増倍部を構成するn型半導体領域およびp型半導体領域を半導体層に設けた例)
   2-4.変形例4
(画素分離部を半導体層内まで突出させた例)
   2-5.変形例5
(半導体層の側面を傾斜面とした例)
   2-6.変形例6
(半導体層の側面よりも内側に増倍部を構成するn型半導体領域を設けた例)
   2-7.変形例7
(半導体層の側面よりも内側に増倍部を構成するn型半導体領域およびp型半導体領域を設けた例)
   2-8.変形例8
(半導体層内に増倍部を構成するn型半導体領域を複数設けた例)
   2-9.変形例9
(半導体層の周囲の絶縁層内に反射層を設けた例)
   2-10.変形例10
(反射層を読み出し回路の抵抗素子として用いた例)
   2-11.変形例11
(多層配線層内の配線を反射層とした例)
 3.適用例
 4.応用例
<1.実施の形態>
 図1は、本開示の一実施の形態に係る光検出装置(光検出装置1)の断面構成の一例を模式的に表したものである。図2は、図1に示した光検出装置1の概略構成を表したブロック図であり、図3は、図1に示した光検出装置1の単位画素Pの等価回路の一例を表したものである。光検出装置1は、例えば、ToF(Time-of-Flight)法により距離計測を行う距離画像センサ(後述の距離画像装置1000、図19参照)やイメージセンサ等に適用されるものである。
(1-1.光検出装置の構成)
 光検出装置1は、例えば、複数の単位画素Pが行方向および列方向にアレイ状に配置された画素アレイ部100Aを有している。光検出装置1は、図2に示したように、画素アレイ部100Aと共にバイアス電圧印加部110を有している。バイアス電圧印加部110は、画素アレイ部100Aの単位画素P毎にバイアス電圧を印加するものである。本実施の形態では、電子を信号電荷として読み出す場合について説明する。
 単位画素Pは、図3に示したように、受光素子12と、p型MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)からなるクエンチング抵抗素子120と、例えば相補型のMOSFETからなるインバータ130とを備えている。
 受光素子12は、入射された光を光電変換により電気信号に変換して出力する。付帯的には、受光素子12は、入射された光(フォトン)を光電変換により電気信号に変換し、フォトンの入射に応じたパルスを出力する。受光素子12は、例えばSPAD素子であり、SPAD素子は、例えば、カソードに大きな負電圧が印加されることによってアバランシェ増倍領域(空乏層)12Xを形成し、1フォトンの入射に応じて発生した電子がアバランシェ増倍を生じて大電流が流れる特性を有している。受光素子12は、例えば、アノードがバイアス電圧印加部110と接続され、カソードがクエンチング抵抗素子120のソース端子と接続されている。受光素子12のアノードには、デバイス電圧印加部からデバイス電圧Vが印加される。
 クエンチング抵抗素子120は、受光素子12と直列に接続され、ソース端子が受光素子12のカソードと接続され、ドレイン端子が図示しない電源と接続されている。クエンチング抵抗素子120のドレイン端子には、電源から励起電圧Vが印加される。クエンチング抵抗素子120は、受光素子12でアバランシェ増倍された電子による電圧が負電圧VBDに達すると、受光素子12で増倍された電子を放出して、当該電圧を初期電圧に戻すクエンチングを行う。
 インバータ130は、入力端子が受光素子12のカソードおよびクエンチング抵抗素子120のソース端子と接続され、出力端子が図示しない後段の演算処理部と接続されている。インバータ130は、受光素子12で増倍されたキャリア(信号電荷)に基づいて受光信号を出力する。より具体的には、インバータ130は、受光素子12で増倍された電子により発生する電圧を整形する。そして、インバータ130は、1フォントの到来時刻を始点として、例えば図3に示したパルス波形が発生する受光信号(APD OUT)を演算処理部に出力する。例えば、演算処理部は、それぞれの受光信号において1フォントの到来時刻を示すパルスが発生したタイミングに基づいて、被写体までの距離を求める演算処理を行って、単位画素P毎に距離を求める。そして、それらの距離に基づいて、複数の単位画素Pにより検出された被写体までの距離を平面的に並べた距離画像が生成される。
 光検出装置1は、例えば、センサ基板10の表面側(例えば、センサ基板10を構成する半導体基板11の表面(第1面11S1)側)にロジック基板20が積層され、センサ基板10の裏面側(例えば、センサ基板10を構成する半導体基板11の裏面(第2面11S2))から光を受光する、所謂裏面照射型の光検出装置である。本実施の形態の光検出装置1は、単位画素P毎に受光素子12を有している。受光素子12は、受光部13と増倍部14とを有し、半導体基板11内に受光部13が埋め込み形成されている。半導体基板11にはさらに、第1面11S1に、増倍部14を構成するp型半導体領域(p)14Xとn型半導体領域(n)14Yのうちのp型半導体領域(p)14Xが設けられている。半導体基板11の第1面11S1側には半導体層15が設けられており、この半導体層15に、増倍部14を構成するn型半導体領域(n)14Yが設けられている。
 なお、図中の「p」および「n」の記号は、それぞれp型半導体領域およびn型半導体領域を表している。さらに、「p」の末尾の「+」または「-」は、いずれもp型半導体領域の不純物濃度を表している。同様に、「n」の末尾の「+」または「-」は、いずれもn型半導体領域の不純物濃度を表している。ここで、「+」の数が多いほど不純物濃度が高いことを示し、「-」の数が多いほど不純物濃度が低いことを示す。これは、以降の図面についても同様である。
 センサ基板10は、例えば、シリコン基板で構成された半導体基板11と、半導体層15と、多層配線層18とを有している。半導体基板11は、対向する第1面11S1および第2面11S2を有している。半導体基板11は複数の単位画素Pに対して共通のpウェル(p)111を有している。半導体基板11には、単位画素P毎に、例えばn型に不純物濃度が制御されたn型半導体領域(n)112が設けられおり、これにより、単位画素P毎に受光素子12が形成されている。半導体基板11には、さらに第1面1S1と第2面11S2との間を延伸する画素分離部17が設けられている。
 受光素子12は、高電界領域によりキャリアをアバランシェ増倍させる増倍領域(アバランシェ増倍領域)を有するものであり、上記のように、カソードに大きな正電圧を印加することによってアバランシェ増倍領域(空乏層)を形成し、1フォトンの入射で発生する電子をアバランシェ増倍させることが可能なSPAD素子である。
 受光素子12は、受光部13と、増倍部14とから構成されている。
 受光部13は、本開示の「受光部」の一具体例に相当し、半導体基板11の第2面11S2側から入射した光を吸収し、その受光量に応じたキャリアを生成する光電変換機能を有するものである。受光部13は、上記のように、n型に不純物濃度が制御されたn型半導体領域(n)112を含んで構成されており、受光部13において生成されたキャリア(電子)は、ポテンシャル勾配によって増倍部14へ転送される。
 増倍部14は、本開示の「増倍部」の一具体例に相当し、受光部13において生成されたキャリア(ここでは、電子)をアバランシェ増倍するものである。増倍部14は、例えば、pウェル(p)111よりも不純物濃度の高いp型半導体領域(p)14Xと、n型半導体領域(n)112よりも不純物濃度の高いn型半導体領域(n)14Yとから構成されている。p型半導体領域(p)14Xは、半導体基板11内に、第1面11S1に面して設けられている。n型半導体領域(n)14Yは、半導体基板11の第1面11S1から突出しして設けられている。具体的には、上記のように、半導体基板11の第1面に設けられた半導体層15内に、半導体層15の第2面15S2に面して埋め込み形成されている。
 受光素子12では、半導体基板11の第1面11S1に面して設けられたp型半導体領域(p)14Xと、半導体層15の第2面15S2に面して設けられたn型半導体領域(n)14Yとの接合部にアバランシェ増倍領域12Xが形成される。アバランシェ増倍領域12Xは、カソードに印加される大きな負電圧によってp型半導体領域(p)14Xとn型半導体領域(n)14Yとの境界面に形成される高電界領域(空乏層)である。アバランシェ増倍領域12Xでは、受光素子12に入射する1フォトンで発生する電子(e)が増倍される。
 半導体層15は、半導体基板11の第1面11S1に、例えばエピタキシャル結晶成長法を用いて形成された、例えばシリコンからなる半導体層であり、本開示の「半導体層」の一具体例に相当するものである。半導体層15は、対向する第1面15S1および第2面15S2を有している。第1面15S1は多層配線層18に面し、第2面15S2は半導体基板11に面している。半導体層15には、上記のように、第2面15S2に面してn型半導体領域(n)14Yが埋め込み形成されている。
 半導体層15には、さらに、本開示の「第2の電極」の一具体例に相当するカソードと、増倍部14とを電気的に接続するためのコンタクト電極16が、n型半導体領域(n)14Y上に、第1面15S1に面して設けられている。コンタクト電極16は、例えば、n型半導体領域(n)14Yよりも不純物濃度の高いn型半導体領域(n++)によって構成されている。
 画素分離部17は、隣り合う単位画素Pの間を電気的および/または光学的に分離するものであり、例えば画素アレイ部100Aに格子状に設けられている。画素分離部17は、例えば、半導体基板11の第1面11S1と第2面11S2との間を延伸する遮光膜17Aと、遮光膜17Aと半導体基板11との間に設けられた絶縁膜17B,17Cとから構成されている。遮光膜17Aは、半導体基板11の第2面11S2において拡張形成された遮光部17Xを有している。遮光部17Xは、隣り合う単位画素P間における斜入射光のクロストークを抑えるものである。遮光膜17Aおよび遮光部17Xは、例えば、遮光性を有する導電材料を用いて形成されている。このような材料としては、例えば、タングステン(W)、銀(Ag)、銅(Cu)、アルミニウム(Al)またはAlと銅(Cu)との合金等が挙げられる。絶縁膜17B,17Cは、例えば、シリコン酸化(SiO)膜等を用いて形成されている。
 画素分離部17の周囲には、pウェル111よりも不純物濃度の高いp型半導体領域(p)113が設けられている。p型半導体領域(p)113は、半導体基板11の第1面11S1近傍において単位画素Pの内側に向かって拡張されている(拡張部113X)。この拡張部113Xが、本開示の「第1の電極」の一具体例に相当するアノードと、受光部13とを電気的に接続するコンタクト電極を兼ねている。p型半導体領域(p)113は、さらに、半導体基板11の第2面11S2近傍において、例えば画素アレイ部100Aに亘って延在している。
 半導体基板11の光入射面(第2面11S2)とは反対側の第1面11S1側には、半導体層15を間にして多層配線層18が設けられている。多層配線層18では、1または複数の配線からなる配線層181が層間絶縁層182内に形成されている。配線層181は、例えば、半導体基板11や受光素子12に印加する電圧を供給したり、受光素子12において発生したキャリアを取り出すためのものである。配線層181の一部の配線はビアV1を介してコンタクト電極16や拡張部113Xと電気的に接続されている。層間絶縁層182の、半導体基板11側とは反対側の表面(多層配線層18の表面18S1)には、複数のパッド電極183が埋め込まれている。複数のパッド電極183は、配線層181の一部の配線とビアV2を介して電気的に接続されている。なお、図1では、多層配線層18内に1つの配線層181が形成されている例を示したが、多層配線層18内の配線層の総数は限定されず、2層以上の配線層が形成されていてもよい。
 層間絶縁層182は、例えば、酸化シリコン(SiO)、TEOS、窒化シリコン(SiN)および酸窒化シリコン(SiO)等のうちの1種よりなる単層膜、あるいはこれらのうちの2種以上よりなる積層膜により構成されている。
 配線層181は、例えば、アルミニウム(Al)、銅(Cu)またはタングステン(W)等を用いて形成されている。
 パッド電極183は、ロジック基板20との接合面(多層配線層18の表面18S1)に露出しており、例えば、ロジック基板20との接続に用いられるものである。パッド電極183は、例えば、銅(Cu)を用いて形成されている。
 ロジック基板20は、例えば、シリコン基板で構成された半導体基板21と、多層配線層22とを有している。ロジック基板20には、例えば、上述したバイアス電圧印加部110や、画素アレイ部100Aの単位画素Pから出力された電荷に基づく画素信号を出力する読み出し回路や、垂直駆動回路、カラム信号処理回路、水平駆動回路および出力回路等を含むロジック回路が構成されている。
 多層配線層22は、例えば、読み出し回路を構成するトランジスタのゲート配線221と、1または複数の配線を含む配線層222,223,224,225とが層間絶縁層226を間に、半導体基板21側から順に積層されている。層間絶縁層226の、半導体基板21側とは反対側の表面(多層配線層22の表面22S1)には、複数のパッド電極227が埋め込まれている。複数のパッド電極227は、配線層225の一部の配線とビアV3を介してと電気的に接続されている。
 層間絶縁層117は、層間絶縁層182と同様に、例えば、酸化シリコン(SiO)、TEOS、窒化シリコン(SiN)および酸窒化シリコン(SiO)等のうちの1種よりなる単層膜、あるいはこれらのうちの2種以上よりなる積層膜により構成されている。
 ゲート配線221および配線層222,223,224,225は、配線層181と同様に、例えば、アルミニウム(Al)、銅(Cu)またはタングステン(W)等を用いて形成されている。
 パッド電極227は、センサ基板10との接合面(多層配線層22の表面22S1)に露出しており、例えば、センサ基板10との接続に用いられるものである。パッド電極227は、パッド電極183と同様に、例えば、銅(Cu)を用いて形成されている。
 光検出装置1では、パッド電極183とパッド電極227との間で、例えばCuCu接合がなされている。これにより、受光素子12のカソードは、ロジック基板20側に設けられたクエンチング抵抗素子120と電気的に接続され、受光素子12のアノードは、バイアス電圧印加部110と電気的に接続される。
 半導体基板11の光入射面(第2面11S2)側には、例えば、パッシベーション膜31およびカラーフィルタ32を介してマイクロレンズ33が、例えば単位画素P毎に設けられている。
 マイクロレンズ33は、その上方から入射した光を受光素子12へ集光させるものであり、例えば、酸化シリコン(SiO)等を用いて形成されている。
(1-2.光検出装置の製造方法)
 センサ基板10は、例えば、次のようにして製造することができる。まず、イオン注入により、半導体基板11に、p型またはn型の不純物濃度を制御してpウェル(p)111、n型半導体領域(n)112およびp型半導体領域(p)14Xを形成する。次に、半導体基板11の第1面11S1に、例えば、酸化シリコン(SiO)等の酸化膜または(SiN)等の窒化膜をハードマスクとしてパターニングした後、エッチングにより、例えば半導体基板11を貫通する貫通孔を形成する。続いて、貫通孔内に、例えばCVD(Chemical Vapor Deposition)法、PVD(Physical Vapor Deposition)法、ALD(Atomic Layer Deposition)法または蒸着法等により絶縁膜17B,17Cおよび遮光膜17Aを順に成膜する。
 次に、例えば有機金属気相成長(Metal Organic Chemical Vapor Deposition :MOCVD)法等のエピタキシャル結晶成長法により、半導体基板11の第1面11S1に、例えば、シリコン(Si)からなる半導体層15を形成する。続いて、例えばCMP(Chemical Mechanical Polishing)により、半導体層15の表面を平坦化した後、続いて、イオン注入により、半導体層15にn型半導体領域(n)14Yおよびコンタクト電極16(n型半導体領域(n++))を形成する。これにより、n型半導体領域(n)14Yは、例えば1μm以下の膜厚で形成することができる。
 次に、半導体層15の第1面15S1を、例えばCMPにより研磨した後、半導体層15の第1面15S1上に多層配線層18を形成する。その後、別途作成したロジック基板20を貼り合わせる。このとき、多層配線層18の接合面(表面18S1)に露出した複数のパッド電極183と、ロジック基板20側の多層配線層22の接合面(表面22S)に露出した複数のパッド部217とがCuCu接合される。
 続いて、半導体基板11の第2面11S2を、例えばCMPにより研磨した後、遮光部17X、パッシベーション膜31、カラーフィルタ32およびマイクロレンズ33を順に形成する。これにより、図1に示した光検出装置1が完成する。
(1-3.作用・効果)
 本実施の形態の光検出装置1は、半導体基板11の第1面1S1に半導体層15を設け、この半導体層15内に、増倍部14を構成するn型半導体領域(n)14Yを設けるようにした。これにより、受光部13と電気的に接続されるアノードと、増倍部14を構成するn型半導体領域(n)14Yおよびカソードとの間隔を確保する。以下、これについて説明する。
 前述したような一般的なSPAD構造を有する光検出器では、エッジブレイクダウンを抑制するために、アノードとアバランシェフォトダイオード(APD)のn型半導体領域との横方向の距離を離すことが求められる。このため、微細化には不向きであった。
 この課題を解決する方法として、アノードをシリコン基板の内部に埋め込んだ埋め込み構造が考えられる。しかしながら、この構造では、シリコン基板にアノード用の開口を形成した後にコンタクトイオン注入を行うため、製造プロセスが複雑になる。
 これに対して、本実施の形態では、半導体基板11の第1面1S1に、例えばエピタキシャル結晶成長法を用いて半導体層15を設け、この半導体層15内に、増倍部14を構成するn型半導体領域(n)14Yをイオン注入により設けるようにした。これにより、一般的なSPAD構造を有する光検出器のように、半導体基板11内にn型半導体領域(n)14Yを形成する場合と比較して不純物の拡散が抑えられ、急峻な電荷を形成することが可能となる。
 以上により、本実施の形態の光検出装置1では、上記埋め込み構造と比較して容易に受光部13と電気的に接続されるアノードと、増倍部14を構成するn型半導体領域(n)14Yおよびカソードとの間隔を確保できるようになり、意図しないエッジブレイクダウンを抑制することが可能となる。
 また、本実施の形態の光検出装置1では、増倍部14を構成するn型半導体領域(n)14Yを半導体層15内に設けるようにしたので、n型半導体領域(n)14Y分、受光領域(受光部13)を拡大することができる。よって、感度を向上させることが可能となる。
 次に、本開示の変形例1~11ならびに適用例および応用例について説明する。以下では、上記実施の形態と同様の構成要素については同一の符号を付し、適宜その説明を省略する。
<2.変形例>
(2-1.変形例1)
 図4は、本開示の変形例1に係る光検出装置(光検出装置1A)の断面構成の一例を模式的に表したものである。光検出装置1Aは、例えば上記実施の形態と同様に、ToF法により距離計測を行う距離画像センサ(距離画像装置1000)やイメージセンサ等に適用されるものである。本変形例の光検出装置1Aは、増倍部14を構成するp型半導体領域(p)14Xと、n型半導体領域(n)14Yとの両方を半導体層15内に設けた点が、上記実施の形態とは異なる。
 このように、本変形例の光検出装置1Aでは、増倍部14を構成するp型半導体領域(p)14Xおよびn型半導体領域(n)14Yの両方を、半導体層15内に形成するようにした。これにより、上記実施の形態の効果に加えて、p型半導体領域(p)14Xの分、受光領域(受光部13)をさらに拡大することができる。よって、感度をより向上させることが可能となる。
(2-2.変形例2)
 図5は、本開示の変形例2に係る光検出装置(光検出装置1B)の断面構成の一例を模式的に表したものである。光検出装置1Bは、例えば上記実施の形態と同様に、ToF法により距離計測を行う距離画像センサ(距離画像装置1000)やイメージセンサ等に適用されるものである。本変形例の光検出装置1Bは、半導体基板11の第1面11S1に半導体層15を単位画素P毎に部分的に設けた点が、上記実施の形態とは異なる。
 図6A~図6Cは、半導体層15の平面形状の一例を模式的に表したものである。半導体層15は、例えば、図6Aに示したように、単位画素Pと同様に矩形状としてもよいし、図6Bに示したように、矩形以外の多角形状としてもよい。あるいは、図6Cに示したように、円形状としてもよい。特に画素サイズが小さい場合には、横方向(例えば、XY平面方向)のエッジ電界緩和の観点から、図6Cに示した円形状とすることが好ましい。
 このような半導体層15は、以下のようにして製造することができる。例えば、上記実施の形態と同様にして、半導体基板11にpウェル(p)111、n型半導体領域(n)112およびp型半導体領域(p)14Xを形成する。続いて、半導体基板11の第1面11S1に所定の位置に開口を有する絶縁層19をパターン形成する。絶縁層19は、例えば、酸化シリコン(SiO)や窒化シリコン(SiN)を用いて形成することができる。その後、開口内にエピタキシャル結晶成長法により半導体層15を形成する。
 また、本変形例のように半導体層15を単位画素P毎に部分的に設ける場合には、半導体基板11を加工して凸構造を形成し、この凸構造部分を半導体層15として用いることもできる。
 このように、本変形例の光検出装置1Bでは、半導体層15を単位画素P毎に絶縁層19内に埋め込み形成し、その半導体層15内に、増倍部14を構成するn型半導体領域(n)14Yを設けるようにした。これにより、上記実施の形態と比較して、アノードと、増倍部14を構成するn型半導体領域(n)14Yとの間隔をより確実に確保できるようになる。よって、上記実施の形態の効果に加えて、意図しないエッジブレイクダウンをさらに抑制することが可能となる。
(2-3.変形例3)
 図7は、本開示の変形例3に係る光検出装置(光検出装置1C)の断面構成の一例を模式的に表したものである。光検出装置1Cは、例えば上記実施の形態と同様に、ToF法により距離計測を行う距離画像センサ(距離画像装置1000)やイメージセンサ等に適用されるものである。本変形例の光検出装置1Cは、上記変形例1と変形例2とを組み合わせたものであり、半導体基板11の第1面11S1に半導体層15を単位画素P毎に部分的に設けると共に、増倍部14を構成するp型半導体領域(p)14Xと、n型半導体領域(n)14Yとの両方を半導体層15内に設けたものである。
 このように、半導体層15を単位画素P毎に部分的に設け、その半導体層15内に、増倍部14を構成するp型半導体領域(p)14Xおよびn型半導体領域(n)14Yの両方を設けるようにしてもよい。これにより、アノードと、増倍部14を構成するn型半導体領域(n)14Yとの間隔をより確実に確保できると共に、p型半導体領域(p)14Xの分、受光領域(受光部13)をさらに拡大することができる。よって、意図しないエッジブレイクダウンをさらに抑制できると共に、感度をより向上させることが可能となる。
(2-4.変形例4)
 図8は、本開示の変形例4に係る光検出装置(光検出装置1D)の断面構成の一例を模式的に表したものである。光検出装置1Dは、例えば上記実施の形態と同様に、ToF法により距離計測を行う距離画像センサ(距離画像装置1000)やイメージセンサ等に適用されるものである。本変形例の光検出装置1Dは、画素分離部17をさらに半導体層15内まで延在させ、画素分離部17が半導体層15を貫通している点が、上記実施の形態とは異なる。
 また、本変形例では、p型半導体領域(p)113は、画素分離部17と共に半導体層15内まで延在しており、半導体層15の第1面15S1近傍において単位画素Pの内側に向かって拡張されている(拡張部113X)。
 このように、本変形例の光検出装置1Dでは、画素分離部17を半導体基板11から半導体層15内まで延在させ、半導体層15を画素分離部17によって単位画素P毎に分離するようにした。これにより、増倍部14でのアバランシェ増倍時の発光によるクロストークを抑制することが可能となる。よって、上記実施の形態の効果に加えてデバイス特性を向上させることが可能となる。
(2-5.変形例5)
 図9は、本開示の変形例5に係る光検出装置(光検出装置1E)の断面構成の一例を模式的に表したものである。光検出装置1Eは、例えば上記実施の形態と同様に、ToF法により距離計測を行う距離画像センサ(距離画像装置1000)やイメージセンサ等に適用されるものである。本変形例の光検出装置1Eは、上記変形例1と変形例2とを組み合わせた構成において、単位画素P毎に部分的に設けた半導体層15の側面を傾斜面とした点が、上記実施の形態とは異なる。
 このように、単位画素P毎に部分的に設けられた半導体層15の側面の角度は特に限定されず、半導体基板11の第1面11S1に対して垂直であってもよいし、傾斜していてもよい。
(2-6.変形例6)
 図10は、本開示の変形例6に係る光検出装置(光検出装置1F)の断面構成の一例を模式的に表したものである。光検出装置1Fは、例えば上記実施の形態と同様に、ToF法により距離計測を行う距離画像センサ(距離画像装置1000)やイメージセンサ等に適用されるものである。本変形例の光検出装置1Fは、上記変形例2のさらなる変形例であり、単位画素P毎に部分的に設けられた半導体層15に形成するn型半導体領域(n)14Yの端面が半導体層15の側面よりも内側に形成されるようにした点が、上記実施の形態とは異なる。
 このように、本変形例の光検出装置1Fでは、n型半導体領域(n)14Yの端面を単位画素P毎に設けられた半導体層15の側面よりも内側に形成し、半導体層15の周縁部にn型半導体領域(n)14Yの未形成領域を設けるようにした。これにより、半導体層15の側面の界面において発生する暗電流のアバランシェ増倍を低減することが可能となる。
(2-7.変形例7)
 図11は、本開示の変形例7に係る光検出装置(光検出装置1G)の断面構成の一例を模式的に表したものである。光検出装置1Gは、例えば上記実施の形態と同様に、ToF法により距離計測を行う距離画像センサ(距離画像装置1000)やイメージセンサ等に適用されるものである。本変形例の光検出装置1Gは、上記変形例1と変形例6とを組み合わせたものであり、増倍部14を構成するp型半導体領域(p)14Xおよびn型半導体領域(n)14Yの両方の端面を、単位画素P毎に部分的に設けられた半導体層15の側面よりも内側に形成するようにしたものである。
 これにより、受光領域(受光部13)をさらに拡大しつつ、半導体層15の側面の界面において発生する暗電流のアバランシェ増倍を低減することが可能となる。
(2-8.変形例8)
 図12は、本開示の変形例8に係る光検出装置(光検出装置1H)の断面構成の一例を模式的に表したものである。図13は、図12に示した光検出装置1Hの単位画素Pにおけるp型半導体領域(p)14Xおよびn型半導体領域(n)14Yの平面レイアウトを模式的に表したものである。光検出装置1Hは、例えば上記実施の形態と同様に、ToF法により距離計測を行う距離画像センサ(距離画像装置1000)やイメージセンサ等に適用されるものである。本変形例の光検出装置1Hは、増倍部14を構成するn型半導体領域(n)14Yが形成された半導体層15を、単位画素P毎に複数設けた点が、上記変形例2とは異なる。
 このように、増倍部14を構成するn型半導体領域(n)14Yが形成された半導体層15を単位画素Pに複数設けるようにしてもよい。これにより、上記実施の形態の効果に加えて、光の吸収効率を向上させることが可能となる。
(2-9.変形例9)
 図14は、本開示の変形例9に係る光検出装置(光検出装置1I)の断面構成の一例を模式的に表したものである。図15は、図14に示した光検出装置1Iの単位画素Pにおける反射層41の平面レイアウトの一例を模式的に表したものである。光検出装置1Iは、例えば上記実施の形態と同様に、ToF法により距離計測を行う距離画像センサ(距離画像装置1000)やイメージセンサ等に適用されるものである。本変形例の光検出装置1Iは、上記変形例2の構成に加えて、半導体層15の周囲に設けられた絶縁層19内に、例えば、半導体層15を囲むように反射層41を設けたものである。
 反射層41は、例えば、アルミニウム(Al)等の光反射性を有する配線材料を用いて形成することができる。
 このように、本変形例の光検出装置1Iでは、半導体層15の周囲に設けられた絶縁層19内に、例えば、半導体層15を囲む反射層41を設けるようにした。これにより、受光部13において吸収されずに透過した光が反射層41によって反射されて受光部13に再入射するようになる。よって、上記変形例2の効果に加えて、感度をより向上させることが可能となる。
(2-10.変形例10)
 図16は、本開示の変形例10に係る光検出装置(光検出装置1J)の断面構成の一例を模式的に表したものである。図17は、図16に示した反射層41に対する配線レイアウトの一例を模式的に表したものである。光検出装置1Jは、例えば上記実施の形態と同様に、ToF法により距離計測を行う距離画像センサ(距離画像装置1000)やイメージセンサ等に適用されるものである。上記反射層41は、一部を分断し、その一端とカソード(コンタクト電極16)とを、例えばビアV1を介して電気的に接続し、他端を読み出し回路に電気的に接続するようにしてもよい。これにより、反射層41を、読み出し回路の抵抗素子として用いることができる。よって、読み出し回路の面積効率を向上させることが可能となる。
(2-11.変形例11)
 図18は、本開示の変形例11に係る光検出装置(光検出装置1K)の断面構成の一例を模式的に表したものである。光検出装置1Kは、例えば上記実施の形態と同様に、ToF法により距離計測を行う距離画像センサ(距離画像装置1000)やイメージセンサ等に適用されるものである。上記変形例9では、半導体層15の周囲に設けられた絶縁層19内に反射層41を設け、受光部13において吸収されずに透過した光を受光部13に再入射させるようにした。これに対して、本変形例では、層間絶縁層182内に設けられた、配線層181の一部の配線(例えば、配線181A)をXY平面方向に拡張し、これを反射層として用いるようにした。これにより、上記変形例0と同様に、受光部13において吸収されずに透過した光を受光部13に再入射させることができるようになる。
<3.適用例>
 図19は、上記実施の形態および変形例1~11に係る光検出装置(例えば、光検出装置1)を備えた電子機器としての距離画像装置1000の概略構成の一例を表したものである。この距離画像装置1000が、本開示の「測距装置」の一具体例に相当する。
 距離画像装置1000は、例えば、光源装置1100と、光学系1200と、光検出装置1と、画像処理回路1300と、モニタ1400と、メモリ1500とを有している。
 距離画像装置1000は、光源装置1100から照射対象物2000に向かって投光され、照射対象物2000の表面で反射された光(変調光やパルス光)を受光することにより、照射対象物2000までの距離に応じた距離画像を取得することができる。
 光学系1200は、1枚または複数枚のレンズを有して構成され、照射対象物2000からの像光(入射光)を光検出装置1に導き、光検出装置1の受光面(センサ部)に結像させる。
 画像処理回路1300は、光検出装置1から供給された距離信号に基づいて距離画像を構築する画像処理を行い、その画像処理により得られた距離画像(画像データ)は、モニタ1400に供給されて表示されたり、メモリ1500に供給されて記憶(記録)されたりする。
 このように構成された距離画像装置1000では、上述した光検出装置(例えば、光検出装置1)を適用することで、安定性の高い単位画素Pからの受光信号のみに基づいて照射対象物2000までの距離を演算し、精度の高い距離画像を生成することが可能となる。即ち、距離画像装置1000は、より正確な距離画像を取得することができる。
<4.応用例>
(移動体への応用例)
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)などのいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図20は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図20に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図20の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図21は、撮像部12031の設置位置の例を示す図である。
 図21では、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図21には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、実施の形態および変形例1~11ならびに適用例および応用例を挙げて説明したが、本開示内容は上記実施の形態等に限定されるものではなく、種々変形が可能である。例えば、本開示の光検出装置では、上記実施の形態等で説明した各構成要素の全てを備えている必要はなく、また逆に他の層を備えていてもよい。例えば、光検出装置1が可視光以外の光(例えば、近赤外光(IR))を検出する場合には、カラーフィルタ32は省略しても構わない。
 また、本開示の光検出装置を構成する半導体領域の極性は反転していてもよい。更に、本開示の光検出装置は、正孔を信号電荷としてもよい。
 更にまた、本開示の光検出装置は、アノードとカソードとの間に逆バイアスを印加することでアバランシェ増倍が起きるような状態であれば、それぞれの電位は限定されない。
 また、上記実施の形態等では、半導体基板11および半導体層15としてシリコンを用いた例を示したが、半導体基板11および半導体層15は、例えば、ゲルマニウム(Ge)またはシリコン(Si)とゲルマニウム(Ge)との化合物半導体(例えば、シリコンゲルマニウム(SiGe))も用いることができる。
 なお、上記実施の形態等において説明した効果は一例であり、他の効果であってもよいし、更に他の効果を含んでいてもよい。
 なお、本開示は、以下のような構成であってもよい。以下の構成の本技術によれば、対向する第1の面および第2の面を有する半導体基板の第1の面側に半導体層を設け、増倍部を構成する第1の導電型領域および第2の導電型領域のうち、少なくとも第2の導電型領域を半導体層内に設けるようにした。これにより、受光部と電気的に接続される第1の電極と、増倍部を構成する第2の導電型領域との間隔が確保されるため、意図しないエッジブレイクダウンを抑制することが可能となる。
(1)
 対向する第1の面および第2の面を有すると共に、複数の画素がアレイ状に配置された画素アレイ部を有する半導体基板と、
 前記半導体基板の前記第1の面側に設けられた半導体層と、
 前記画素毎に前記半導体基板の内部に設けられ、受光量に応じたキャリアを光電変換により生成する受光部と、
 前記第1の面側に順に積層された第1の導電型領域と第2の導電型領域とを有し、少なくとも前記第2の導電型領域が前記半導体層に設けられると共に、前記受光部において生成された前記キャリアをアバランシェ増倍する増倍部と、
 前記第1の面側に設けられ、前記受光部と電気的に接続された第1の電極と、
 前記第1の面側に設けられ、前記増倍部と電気的に接続された第2の電極と
 を備えた光検出装置。
(2)
 前記増倍部は、前記第1の導電型領域および前記第2の導電型領域の両方が前記半導体層に設けられている、前記(1)に記載の光検出装置。
(3)
 前記半導体基板の前記第1の面側に絶縁層をさらに有し、
 前記半導体層は、前記画素毎に前記絶縁層に埋め込み形成されている、前記(1)または(2)に記載の光検出装置。
(4)
 前記半導体層内に形成された前記増倍部は、前記半導体層の側面よりも内側に端面を有している、前記(3)に記載の光検出装置。
(5)
 前記半導体層の側面は、前記第1の面に対して傾斜している、前記(1)乃至(4)のうちのいずれか1つに記載の光検出装置。
(6)
 前記半導体基板は、前記複数の画素をそれぞれ区画すると共に、前記第1の面と前記第2の面との間を貫通する画素分離部をさらに有する、前記(1)乃至(5)のうちのいずれか1つに記載の光検出装置。
(7)
 前記画素分離部は、さらに前記半導体層を貫通している、前記(6)に記載の光検出装置。
(8)
 前記画素分離部は遮光性を有する導電膜と、前記導電膜と前記半導体基板との間に設けられた絶縁膜とから構成されている、前記(6)または(7)に記載の光検出装置。
(9)
 前記画素分離部の周囲に第1の導電型の不純物領域をさらに有し、
 前記受光部と前記第1の電極とは、前記第1の導電型の不純物領域を介して電気的に接続されている、前記(6)乃至(8)のうちのいずれか1つに記載の光検出装置。
(10)
 前記半導体層内に第2の導電型の不純物領域をさらに有し、
 前記増倍部と前記第2の電極とは、前記第2の導電型の不純物領域を介して電気的に接続されている、前記(1)乃至(9)のうちのいずれか1つに記載の光検出装置。
(11)
 前記絶縁層内に設けられ、前記半導体層を囲む反射層をさらに有する、前記(3)乃至(10)のうちのいずれか1つに記載の光検出装置。
(12)
 前記反射層は分断されており、一端は前記第2の電極と接続され、他端は前記増倍部において増倍された前記キャリアを読み出す読み出し回路に接続されている、前記(11)に記載の光検出装置。
(13)
 前記半導体基板および前記半導体層はシリコンを含んで形成されている、前記(1)乃至(12)のうちのいずれか1つに記載の光検出装置。
(14)
 光学系と、光検出装置と、前記光検出装置の出力信号から測定対象物までの距離を算出する信号処理回路とを備え、
 前記光検出装置は、
 対向する第1の面および第2の面を有すると共に、複数の画素がアレイ状に配置された画素アレイ部を有する半導体基板と、
 前記半導体基板の前記第1の面側に設けられた半導体層と、
 前記画素毎に前記半導体基板の内部に設けられ、受光量に応じたキャリアを光電変換により生成する受光部と、
 前記第1の面側に順に積層された第1の導電型領域と第2の導電型領域とを有し、少なくとも前記第2の導電型領域が前記半導体層に設けられると共に、前記受光部において生成された前記キャリアをアバランシェ増倍する増倍部と、
 前記第1の面側に設けられ、前記受光部と電気的に接続された第1の電極と、
 前記第1の面側に設けられ、前記増倍部と電気的に接続された第2の電極と
 を有する測距装置。
 本出願は、日本国特許庁において2021年1月27日に出願された日本特許出願番号2021-011535号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (14)

  1.  対向する第1の面および第2の面を有すると共に、複数の画素がアレイ状に配置された画素アレイ部を有する半導体基板と、
     前記半導体基板の前記第1の面側に設けられた半導体層と、
     前記画素毎に前記半導体基板の内部に設けられ、受光量に応じたキャリアを光電変換により生成する受光部と、
     前記第1の面側に順に積層された第1の導電型領域と第2の導電型領域とを有し、少なくとも前記第2の導電型領域が前記半導体層に設けられると共に、前記受光部において生成された前記キャリアをアバランシェ増倍する増倍部と、
     前記第1の面側に設けられ、前記受光部と電気的に接続された第1の電極と、
     前記第1の面側に設けられ、前記増倍部と電気的に接続された第2の電極と
     を備えた光検出装置。
  2.  前記増倍部は、前記第1の導電型領域および前記第2の導電型領域の両方が前記半導体層に設けられている、請求項1に記載の光検出装置。
  3.  前記半導体基板の前記第1の面側に絶縁層をさらに有し、
     前記半導体層は、前記画素毎に前記絶縁層に埋め込み形成されている、請求項1に記載の光検出装置。
  4.  前記半導体層内に形成された前記増倍部は、前記半導体層の側面よりも内側に端面を有している、請求項3に記載の光検出装置。
  5.  前記半導体層の側面は、前記第1の面に対して傾斜している、請求項1に記載の光検出装置。
  6.  前記半導体基板は、前記複数の画素をそれぞれ区画すると共に、前記第1の面と前記第2の面との間を貫通する画素分離部をさらに有する、請求項1に記載の光検出装置。
  7.  前記画素分離部は、さらに前記半導体層を貫通している、請求項6に記載の光検出装置。
  8.  前記画素分離部は遮光性を有する導電膜と、前記導電膜と前記半導体基板との間に設けられた絶縁膜とから構成されている、請求項6に記載の光検出装置。
  9.  前記画素分離部の周囲に第1の導電型の不純物領域をさらに有し、
     前記受光部と前記第1の電極とは、前記第1の導電型の不純物領域を介して電気的に接続されている、請求項6に記載の光検出装置。
  10.  前記半導体層内に第2の導電型の不純物領域をさらに有し、
     前記増倍部と前記第2の電極とは、前記第2の導電型の不純物領域を介して電気的に接続されている、請求項1に記載の光検出装置。
  11.  前記絶縁層内に設けられ、前記半導体層を囲む反射層をさらに有する、請求項3に記載の光検出装置。
  12.  前記反射層は分断されており、一端は前記第2の電極と接続され、他端は前記増倍部において増倍された前記キャリアを読み出す読み出し回路に接続されている、請求項11に記載の光検出装置。
  13.  前記半導体基板および前記半導体層はシリコンを含んで形成されている、請求項1に記載の光検出装置。
  14.  光学系と、光検出装置と、前記光検出装置の出力信号から測定対象物までの距離を算出する信号処理回路とを備え、
     前記光検出装置は、
     対向する第1の面および第2の面を有すると共に、複数の画素がアレイ状に配置された画素アレイ部を有する半導体基板と、
     前記半導体基板の前記第1の面側に設けられた半導体層と、
     前記画素毎に前記半導体基板の内部に設けられ、受光量に応じたキャリアを光電変換により生成する受光部と、
     前記第1の面側に順に積層された第1の導電型領域と第2の導電型領域とを有し、少なくとも前記第2の導電型領域が前記半導体層に設けられると共に、前記受光部において生成された前記キャリアをアバランシェ増倍する増倍部と、
     前記第1の面側に設けられ、前記受光部と電気的に接続された第1の電極と、
     前記第1の面側に設けられ、前記増倍部と電気的に接続された第2の電極と
     を有する測距装置。
PCT/JP2022/000991 2021-01-27 2022-01-13 光検出装置および測距装置 WO2022163373A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022578227A JPWO2022163373A1 (ja) 2021-01-27 2022-01-13
CN202280011062.5A CN116802809A (zh) 2021-01-27 2022-01-13 光检测装置及测距装置
US18/258,063 US20240072080A1 (en) 2021-01-27 2022-01-13 Light detection device and distance measurement apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021011535 2021-01-27
JP2021-011535 2021-01-27

Publications (1)

Publication Number Publication Date
WO2022163373A1 true WO2022163373A1 (ja) 2022-08-04

Family

ID=82653377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000991 WO2022163373A1 (ja) 2021-01-27 2022-01-13 光検出装置および測距装置

Country Status (4)

Country Link
US (1) US20240072080A1 (ja)
JP (1) JPWO2022163373A1 (ja)
CN (1) CN116802809A (ja)
WO (1) WO2022163373A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174090A1 (ja) * 2017-03-22 2018-09-27 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び信号処理装置
JP2019102675A (ja) * 2017-12-05 2019-06-24 ソニーセミコンダクタソリューションズ株式会社 フォトダイオード、画素回路、電子機器、および、フォトダイオードの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174090A1 (ja) * 2017-03-22 2018-09-27 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び信号処理装置
JP2019102675A (ja) * 2017-12-05 2019-06-24 ソニーセミコンダクタソリューションズ株式会社 フォトダイオード、画素回路、電子機器、および、フォトダイオードの製造方法

Also Published As

Publication number Publication date
US20240072080A1 (en) 2024-02-29
JPWO2022163373A1 (ja) 2022-08-04
CN116802809A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
WO2020189082A1 (ja) センサチップ、電子機器、及び測距装置
TW202018963A (zh) 受光元件及測距模組
WO2021020472A1 (en) Light receiving element and electronic device
WO2022158288A1 (ja) 光検出装置
WO2020045142A1 (ja) 撮像装置および電子機器
TW202137523A (zh) 受光元件及測距系統
US20220181363A1 (en) Sensor chip and distance measurement device
WO2022149467A1 (ja) 受光素子および測距システム
US20240038913A1 (en) Light receiving element, distance measuring system, and electronic device
WO2022163373A1 (ja) 光検出装置および測距装置
WO2023132052A1 (ja) 光検出素子
US20210399032A1 (en) Light reception element and electronic apparatus
WO2022244384A1 (ja) 光検出装置および測距装置
WO2022118635A1 (ja) 光検出装置および測距装置
WO2024004222A1 (ja) 光検出装置およびその製造方法
WO2023157497A1 (ja) 光検出装置およびその製造方法
JP2023059071A (ja) 光検出装置および測距装置
WO2023234070A1 (ja) 光検出装置および測距装置
WO2024048267A1 (ja) 光検出装置および測距装置
WO2023195235A1 (en) Photodetector and distance measurement apparatus
WO2022196141A1 (ja) 固体撮像装置および電子機器
WO2023062846A1 (ja) 光電変換素子及び撮像装置
US20230352512A1 (en) Imaging element, imaging device, electronic equipment
WO2023058556A1 (ja) 光検出装置及び電子機器
WO2023090277A1 (ja) 半導体装置及び光検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578227

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18258063

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280011062.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745598

Country of ref document: EP

Kind code of ref document: A1