TW202018963A - 受光元件及測距模組 - Google Patents

受光元件及測距模組 Download PDF

Info

Publication number
TW202018963A
TW202018963A TW108121888A TW108121888A TW202018963A TW 202018963 A TW202018963 A TW 202018963A TW 108121888 A TW108121888 A TW 108121888A TW 108121888 A TW108121888 A TW 108121888A TW 202018963 A TW202018963 A TW 202018963A
Authority
TW
Taiwan
Prior art keywords
pixel
light
voltage
semiconductor region
substrate
Prior art date
Application number
TW108121888A
Other languages
English (en)
Inventor
荻田知治
Original Assignee
日商索尼半導體解決方案公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商索尼半導體解決方案公司 filed Critical 日商索尼半導體解決方案公司
Publication of TW202018963A publication Critical patent/TW202018963A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out
    • G01S7/4914Circuits for detection, sampling, integration or read-out of detector arrays, e.g. charge-transfer gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/165Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the semiconductor sensitive to radiation being characterised by at least one potential-jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本技術係關於一種能夠使特性提高之受光元件及測距模組。 受光元件具備晶載透鏡、配線層及配置於晶載透鏡與配線層之間之半導體層,半導體層具備:第1電壓施加部,其被施加第1電壓;第2電壓施加部,其被施加與第1電壓不同之第2電壓;第1電荷檢測部,其配置於第1電壓施加部之周圍;第2電荷檢測部,其配置於第2電壓施加部之周圍;及像素分離部,其於鄰接之像素之交界部分,至少將半導體層分離至特定深度為止;且構成為對像素分離部施加第3電壓。本技術例如可應用於藉由ToF方式產生距離資訊之受光元件等。

Description

受光元件及測距模組
本技術係關於一種受光元件及測距模組,尤其是關於一種能夠使特性提高之受光元件及測距模組。
先前,已知有利用間接ToF(Time of Flight,飛行時間)方式之測距系統。於此種測距系統中,需要能夠將如下信號電荷高速地分配至不同之區域之感測器且該感測器不可或缺,上述信號電荷係藉由接收當以某一相位使用LED(Light Emitting Diode,發光二極體)或雷射所照射之主動光到達對象物時經反射之光而獲得。
因此,例如提出有藉由對感測器之基板直接施加電壓而於基板內產生電流,從而能夠高速地調變基板內之廣範圍之區域的技術(例如,參照專利文獻1)。此種感測器亦被稱為CAPD(Current Assisted Photonic Demodulator,電流輔助光子解調)感測器。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開2011-86904號公報
[發明所欲解決之問題]
然而,藉由上述技術難以獲得充分之特性之CAPD感測器。
例如,上述CAPD感測器係於基板中之接收來自外部之光之側之面配置有配線等之正面照射型感測器。
為了確保光電轉換區域,理想為於PD(Photodiode,光電二極體)、即光電轉換部之受光面側無配線等遮擋入射而來之光之光路者。但是,於正面照射型CAPD感測器中,根據構造,存在不得不於PD之受光面側配置電荷擷取用配線或各種控制線、信號線者,而光電轉換區域受到限制。亦即,存在無法確保充分之光電轉換區域,而像素感度等特性下降之情況。
又,於考慮在有外界光之場所使用CAPD感測器之情形時,由於外界光分量對於使用主動光進行測距之間接ToF方式而言會成為雜訊分量,故而為了確保充分之SN比(Signal to Noise ratio,信號雜訊比)來獲得距離資訊,必須確保充分之飽和信號量(Qs)。但是,於正面照射型CAPD感測器中,配線佈局存在限制,因此為了確保電容,必須進行利用設置追加之電晶體等除配線電容以外之方法的努力。
進而,於正面照射型CAPD感測器中,於基板內之供光入射之側配置有被稱為抽頭(Tap)之信號擷取部。另一方面,於考慮Si基板內之光電轉換之情形時,雖然根據光之波長而衰減率存在差量,但光入射面側發生光電轉換之比率較高。因此,正面型CAPD感測器中存在如下可能性:於設置有信號擷取部之抽頭區域中之作為不分配信號電荷之抽頭區域之無效抽頭(Inactive Tap)區域中進行光電轉換之機率變高。於間接ToF感測器中,由於使用根據主動光之相位而分配至各電荷儲存區域之信號獲得測距資訊,故而存在於無效抽頭區域中直接進行光電轉換之分量成為雜訊,其結果,測距精度變差之可能性。即,存在CAPD感測器之特性下降之可能性。
本技術係鑒於此種狀況而完成者,能夠使特性提高。 [解決問題之技術手段]
本技術之第1態樣之受光元件具備: 晶載透鏡; 配線層;及 半導體層,其配置於上述晶載透鏡與上述配線層之間; 上述半導體層具備: 第1像素; 第2像素,其與上述第1像素鄰接;及 第1像素分離部,其於上述第1像素與上述第2像素之間至少將上述半導體層分離至特定深度為止; 上述第1像素具備: 第1電壓施加部,其與第1控制配線連接; 第2電壓施加部,其與第2控制配線連接; 第1電荷檢測部,其配置於上述第1電壓施加部之周圍;及 第2電荷檢測部,其配置於上述第2電壓施加部之周圍; 上述第2像素具備: 第3電壓施加部,其與第3控制配線連接; 第4電壓施加部,其與第4控制配線連接; 第3電荷檢測部,其配置於上述第3電壓施加部之周圍;及 第4電荷檢測部,其配置於上述第4電壓施加部之周圍; 上述第1像素分離部具有第5電壓施加部,該第5電壓施加部與第5控制配線連接。
於本技術之第1態樣中,設置有晶載透鏡、配線層及配置於上述晶載透鏡與上述配線層之間之半導體層,上述半導體層中設置有:第1像素;第2像素,其與上述第1像素鄰接;及第1像素分離部,其於上述第1像素與上述第2像素之間,至少將上述半導體層分離至特定深度為止;上述第1像素中設置有:第1電壓施加部,其與第1控制配線連接;第2電壓施加部,其與第2控制配線連接;第1電荷檢測部,其配置於上述第1電壓施加部之周圍;及第2電荷檢測部,其配置於上述第2電壓施加部之周圍;上述第2像素中設置有:第3電壓施加部,其與第3控制配線連接;第4電壓施加部,其與第4控制配線連接;第3電荷檢測部,其配置於上述第3電壓施加部之周圍;及第4電荷檢測部,其配置於上述第4電壓施加部之周圍;上述第1像素分離部中設置有與第5控制配線連接之第5電壓施加部。
本技術之第2態樣之受光元件具備: 晶載透鏡; 配線層;及 半導體層,其配置於上述晶載透鏡與上述配線層之間; 上述半導體層具備: 第1像素; 第2像素,其與上述第1像素鄰接; 第1像素分離部,其於上述第1像素與上述第2像素之間至少將上述半導體層分離至特定深度為止; 像素間遮光膜,其形成於上述半導體層之上述晶載透鏡側表面中之上述第1像素與上述第2像素之間;及 貫通電極,其與上述像素間遮光膜連接; 上述第1像素具備: 第1電壓施加部,其與第1控制配線連接; 第2電壓施加部,其與第2控制配線連接; 第1電荷檢測部,其配置於上述第1電壓施加部之周圍;及 第2電荷檢測部,其配置於上述第2電壓施加部之周圍; 上述第2像素具備: 第3電壓施加部,其與第3控制配線連接; 第4電壓施加部,其與第4控制配線連接; 第3電荷檢測部,其配置於上述第3電壓施加部之周圍;及 第4電荷檢測部,其配置於上述第4電壓施加部之周圍; 上述第1像素分離部具備第5電壓施加部,該第5電壓施加部之至少一部分與上述像素間遮光膜連接。
於本技術之第2態樣中,設置有晶載透鏡、配線層及配置於上述晶載透鏡與上述配線層之間之半導體層,上述半導體層中設置有:第1像素;第2像素,其與上述第1像素鄰接;第1像素分離部,其於上述第1像素與上述第2像素之間,至少將上述半導體層分離至特定深度為止;像素間遮光膜,其形成於上述半導體層之上述晶載透鏡側表面中之上述第1像素與上述第2像素之間;及貫通電極,其與上述像素間遮光膜連接;上述第1像素中設置有:第1電壓施加部,其與第1控制配線連接;第2電壓施加部,其與第2控制配線連接;第1電荷檢測部,其配置於上述第1電壓施加部之周圍;及第2電荷檢測部,其配置於上述第2電壓施加部之周圍;上述第2像素中設置有:第3電壓施加部,其與第3控制配線連接;第4電壓施加部,其與第4控制配線連接;第3電荷檢測部,其配置於上述第3電壓施加部之周圍;及第4電荷檢測部,其配置於上述第4電壓施加部之周圍;上述第1像素分離部中設置有第5電壓施加部,該第5電壓施加部之至少一部分與上述像素間遮光膜連接。
本技術之第3態樣之測距模組具備: 上述第1態樣或第2態樣之受光元件; 光源,其照射亮度週期性地變動之照射光;及 發光控制部,其控制上述照射光之照射時序。
於本技術之第3態樣中,設置有:上述第1態樣或第2態樣之受光元件;光源,其照射亮度週期性地變動之照射光;及發光控制部,其控制上述照射光之照射時序。 [發明之效果]
根據本技術之第1至第3態樣,能夠使特性提高。
再者,此處所記載之效果未必為限定者,亦可為本發明中所記載之任一效果。
以下,參照圖式對應用本技術之實施形態進行說明。
<第1實施形態> <受光元件之構成例> 本技術係能夠藉由將CAPD感測器設為背面照射型構成而使像素感度等特性提高。
本技術可應用於例如構成藉由間接ToF方式進行測距之測距系統之受光元件、或具有此種受光元件之攝像裝置等。
例如,測距系統可應用於搭載於車輛且對距處於車外之對象物之距離進行測定之車載用系統、或測定距使用者之手等對象物之距離並基於該測定結果識別使用者之示意動作(gesture)之示意動作識別用系統等。於該情形時,示意動作識別之結果可用於例如汽車導航系統之操作等。
圖1係表示應用本技術所得之受光元件之一實施形態之構成例的方塊圖。
圖1所示之受光元件1係背面照射型CAPD感測器,例如設置於具有測距功能之攝像裝置。
受光元件1為如下構成,即具有:像素陣列部20,其形成於未圖示之半導體基板上;及周邊電路部,其與像素陣列部20集成於同一半導體基板上。周邊電路部例如包含抽頭驅動部21、垂直驅動部22、行處理部23、水平驅動部24及系統控制部25。
受光元件1中進而亦設置有信號處理部31及資料儲存部32。再者,信號處理部31及資料儲存部32既可與受光元件1搭載於同一基板上,亦可配置於攝像裝置中之與受光元件1不同之另一基板上。
像素陣列部20成為將像素51呈列方向及行方向之矩陣狀二維配置所得之構成,該像素51產生與所接收到之光量對應之電荷,並輸出與該電荷對應之信號。即,像素陣列部20具有複數個將入射之光進行光電轉換並輸出與其結果所獲得之電荷對應之信號的像素51。此處,所謂列方向係指水平方向之像素51之排列方向,所謂行方向係指垂直方向之像素51之排列方向。列方向於圖中為橫向,行方向於圖中為縱向。
像素51接收自外部入射之光、尤其是紅外光且進行光電轉換,並輸出與其結果所獲得之電荷對應之像素信號。像素51具有:第1抽頭TA,其施加特定之電壓MIX0(第1電壓),並檢測光電轉換所得之電荷;及第2抽頭TB,其施加特定之電壓MIX1(第2電壓),並檢測光電轉換所得之電荷。
抽頭驅動部21係對像素陣列部20之各像素51之第1抽頭TA經由特定之電壓供給線30供給特定之電壓MIX0,對第2抽頭TB經由特定之電壓供給線30供給特定之電壓MIX1。因此,於像素陣列部20之1個像素行中,佈線有輸送電壓MIX0之電壓供給線30、及輸送電壓MIX1之電壓供給線30之2條電壓供給線30。
於像素陣列部20中,針對矩陣狀之像素排列,於每個像素列沿著列方向佈線有像素驅動線28,於各像素行沿著行方向佈線有2條垂直信號線29。例如,像素驅動線28輸送用以進行自像素讀出信號時之驅動之驅動信號。再者,於圖1中,將像素驅動線28表示為1條配線,但並非限定於1條。像素驅動線28之一端連接於與垂直驅動部22之各列對應之輸出端。
垂直驅動部22包含移位暫存器或位址解碼器等,對像素陣列部20之各像素全部像素同時地或以列單位等進行驅動。即,垂直驅動部22與控制垂直驅動部22之系統控制部25一併,構成控制像素陣列部20之各像素之動作的驅動部。
根據利用垂直驅動部22所進行之驅動控制而自像素列之各像素51輸出之信號係通過垂直信號線29輸入至行處理部23。行處理部23對自各像素51通過垂直信號線29輸出之像素信號進行特定之信號處理,並且暫時性地保持信號處理後之像素信號。
具體而言,行處理部23進行雜訊去除處理或AD(Analog to Digital,類比-數位)轉換處理等作為信號處理。
水平驅動部24包含移位暫存器或位址解碼器等,依序選擇行處理部23之與像素行對應之單位電路。藉由利用該水平驅動部24所進行之選擇掃描,而依序輸出行處理部23中針對每個單位電路進行信號處理所得之像素信號。
系統控制部25包含產生各種時序信號之時序發生器等,基於藉由該時序發生器所產生之各種時序信號,進行抽頭驅動部21、垂直驅動部22、行處理部23及水平驅動部24等之驅動控制。
信號處理部31至少具有運算處理功能,基於自行處理部23輸出之像素信號,進行運算處理等各種信號處理。資料儲存部32於信號處理部31中之信號處理時,暫時性地儲存該處理所需之資料。
<像素之構成例> 其次,對設置於像素陣列部20之像素之構成例進行說明。設置於像素陣列部20之像素例如如圖2所示般構成。
圖2表示設置於像素陣列部20之1個像素51之剖面,該像素51接收自外部入射之光、尤其是紅外光,進行光電轉換,並輸出與其結果所獲得之電荷對應之信號。
像素51例如具有矽基板等包含P型半導體層之基板61、及形成於該基板61上之晶載透鏡62。
例如,基板61係以圖中縱向之厚度、亦即與基板61之面垂直之方向之厚度成為20 μm以下之方式形成。再者,基板61之厚度當然亦可為20 μm以上,其厚度只要根據受光元件1之目標特性等而決定即可。
又,基板61被製成為例如基板密度設為1E+13級以下之高電阻之P-Epi(P-Epitaxial,P型磊晶)基板等,且以基板61之電阻(電阻率)成為例如500[Ωcm]以上之方式形成。
此處,關於基板61之基板密度與電阻之關係,例如設為如下等,即:於基板密度6.48E+12[cm3 ]時設為電阻2000[Ωcm],於基板密度1.30E+13[cm3 ]時設為電阻1000[Ωcm],於基板密度2.59E+13[cm3 ]時設為電阻500[Ωcm],及於基板密度1.30E+14[cm3 ]時設為電阻100[Ωcm]。
於圖2中,基板61之上側之面為基板61之背面,且為供來自外部之光入射至基板61之光入射面。另一方面,基板61之下側之面為基板61之正面,且形成有未圖示之多層配線層。於基板61之光入射面上,形成有具有正之固定電荷且包含單層膜或積層膜之固定電荷膜66,於固定電荷膜66之上表面形成有將自外部入射之光聚光並使其入射至基板61內之晶載透鏡62。固定電荷膜66將基板61之光入射面側設為電洞累積(Hole-Accumulation)狀態,抑制暗電流之產生。
進而,於像素51中,於固定電荷膜66上之像素51之端部分形成有用以防止鄰接之像素間之串音的像素間遮光膜63-1及像素間遮光膜63-2。以下,於無需特別地區分像素間遮光膜63-1及像素間遮光膜63-2之情形時,亦簡稱為像素間遮光膜63。
於該例中,來自外部之光經由晶載透鏡62而入射至基板61內,但像素間遮光膜63係為了使自外部入射之光不入射至基板61中之與像素51鄰接地設置之其他像素之區域而形成。即,自外部入射至晶載透鏡62且前往與像素51鄰接之其他像素內之光被像素間遮光膜63-1或像素間遮光膜63-2遮擋,而被防止向鄰接之其他像素內入射。
由於受光元件1為背面照射型CAPD感測器,故而基板61之光入射面成為所謂之背面,於該背面上未形成包含配線等之配線層。又,於基板61中之與光入射面為相反側之面之部分,藉由積層而形成有配線層,該配線層形成有用以驅動形成於像素51內之電晶體等之配線、或用以自像素51讀出信號之配線等。
於基板61內之與光入射面相反之面側、即圖中之下側之面之內側的部分,形成有氧化膜64以及信號擷取部65-1及信號擷取部65-2。信號擷取部65-1相當於圖1中所說明之第1抽頭TA,信號擷取部65-2相當於圖1中所說明之第2抽頭TB。
於該例中,於基板61之與光入射面為相反側之面附近之像素51之中心部分形成有氧化膜64,於該氧化膜64之兩端分別形成有信號擷取部65-1及信號擷取部65-2。
此處,信號擷取部65-1具有作為N型半導體區域之N+半導體區域71-1及供體雜質之濃度較N+半導體區域71-1低之N-半導體區域72-1、以及作為P型半導體區域之P+半導體區域73-1及受體雜質濃度較P+半導體區域73-1低之P-半導體區域74-1。此處,所謂供體雜質,例如可列舉磷(P)或砷(As)等相對於Si於元素週期表中屬於5族之元素,所謂受體雜質,例如可列舉硼(B)等相對於Si於元素週期表中屬於3族之元素。將成為供體雜質之元素稱為供體元素,將成為受體雜質之元素稱為受體元素。
於圖2中,於基板61之與光入射面為相反側之面之表面內側部分中之鄰接於氧化膜64之右側之位置形成有N+半導體區域71-1。又,於N+半導體區域71-1之圖中之上側以覆蓋(包圍)該N+半導體區域71-1之方式形成有N-半導體區域72-1。
進而,於N+半導體區域71-1之右側形成有P+半導體區域73-1。又,於P+半導體區域73-1之圖中之上側以覆蓋(包圍)該P+半導體區域73-1之方式形成有P-半導體區域74-1。
進而,於P+半導體區域73-1之右側形成有N+半導體區域71-1。又,於N+半導體區域71-1之圖中之上側以覆蓋(包圍)該N+半導體區域71-1之方式形成有N-半導體區域72-1。
同樣地,信號擷取部65-2具有作為N型半導體區域之N+半導體區域71-2及供體雜質之濃度較N+半導體區域71-2低之N-半導體區域72-2、以及作為P型半導體區域之P+半導體區域73-2及受體雜質濃度較P+半導體區域73-2低之P-半導體區域74-2。
於圖2中,於基板61之與光入射面為相反側之面之表面內側部分中之鄰接於氧化膜64之左側之位置形成有N+半導體區域71-2。又,於N+半導體區域71-2之圖中之上側以覆蓋(包圍)該N+半導體區域71-2之方式形成有N-半導體區域72-2。
進而,於N+半導體區域71-2之左側形成有P+半導體區域73-2。又,於P+半導體區域73-2之圖中之上側以覆蓋(包圍)該P+半導體區域73-2之方式形成有P-半導體區域74-2。
進而,於P+半導體區域73-2之左側形成有N+半導體區域71-2。又,於N+半導體區域71-2之圖中之上側以覆蓋(包圍)該N+半導體區域71-2之方式形成有N-半導體區域72-2。
於基板61之與光入射面為相反側之面之表面內側部分中之像素51之端部分形成有與像素51之中心部分相同之氧化膜64。
以下,於無需特別地區分信號擷取部65-1及信號擷取部65-2之情形時,亦簡稱為信號擷取部65。
又,以下,於無需特別地區分N+半導體區域71-1及N+半導體區域71-2之情形時,亦簡稱為N+半導體區域71,於無需特別地區分N-半導體區域72-1及N-半導體區域72-2之情形時,亦簡稱為N-半導體區域72。
進而,以下,於無需特別地區分P+半導體區域73-1及P+半導體區域73-2之情形時,亦簡稱為P+半導體區域73,於無需特別地區分P-半導體區域74-1及P-半導體區域74-2之情形時,亦簡稱為P-半導體區域74。
又,於基板61中,於N+半導體區域71-1與P+半導體區域73-1之間,藉由氧化膜等形成用以將該等區域分離之分離部75-1。同樣地,於N+半導體區域71-2與P+半導體區域73-2之間亦藉由氧化膜等形成用以將該等區域分離之分離部75-2。以下,於無需特別地區分分離部75-1及分離部75-2之情形時,亦簡稱為分離部75。
設置於基板61之N+半導體區域71作為用以檢測自外部入射至像素51之光之光量、即藉由利用基板61進行之光電轉換所產生之信號載子之量的電荷檢測部發揮功能。再者,亦可除了N+半導體區域71以外,亦包含供體雜質濃度較低之N-半導體區域72在內視為電荷檢測部。又,P+半導體區域73係作為用以將大量載子電流注入至基板61、即用以對基板61直接施加電壓而於基板61內產生電場之電壓施加部發揮功能。再者,亦可除了P+半導體區域73以外,亦包含受體雜質濃度較低之P-半導體區域74在內視為電壓施加部。
於像素51中,於N+半導體區域71-1直接連接有未圖示之作為浮動擴散區域之FD(Floating Diffusion,浮動擴散)部(以下,尤其是亦稱為FD部A),進而,該FD部A經由未圖示之放大電晶體等而連接於垂直信號線29。
同樣地,於N+半導體區域71-2直接連接有與FD部A不同之其他FD部(以下,尤其是亦稱為FD部B),進而,該FD部B經由未圖示之放大電晶體等而連接於垂直信號線29。此處,FD部A與FD部B連接於互不相同之垂直信號線29。
例如,於欲藉由間接ToF方式測定距對象物之距離之情形時,自設置有受光元件1之攝像裝置朝向對象物射出紅外光。然後,當該紅外光於對象物被反射而作為反射光返回至攝像裝置時,受光元件1之基板61接收入射而來之反射光(紅外光)並進行光電轉換。抽頭驅動部21驅動像素51之第1抽頭TA及第2抽頭TB,並將與藉由光電轉換所獲得之電荷DET對應之信號分配至FD部A及FD部B。
例如,於某一時序,抽頭驅動部21經由接點等對2個P+半導體區域73施加電壓。具體而言,例如,抽頭驅動部21對作為第1抽頭TA之P+半導體區域73-1施加MIX0=1.5 V之電壓,對作為第2抽頭TB之P+半導體區域73-2施加MIX1=0 V之電壓。
如此一來,於基板61中之2個P+半導體區域73之間產生電場,而電流自P+半導體區域73-1向P+半導體區域73-2流動。於該情形時,基板61內之電洞(hole)朝P+半導體區域73-2之方向移動,電子朝P+半導體區域73-1之方向移動。
因此,當於此種狀態下來自外部之紅外光(反射光)經由晶載透鏡62而入射至基板61內,且該紅外光於基板61內被進行光電轉換而轉換為電子與電洞之對時,所獲得之電子藉由P+半導體區域73間之電場而朝P+半導體區域73-1之方向被引導,並移動至N+半導體區域71-1內。
於該情形時,藉由光電轉換所產生之電子被用作用以檢測入射至像素51之紅外光之量、即與紅外光之受光量對應之信號的信號載子。
藉此,於N+半導體區域71-1中儲存與移動至N+半導體區域71-1內之電子對應之電荷,該電荷經由FD部A或放大電晶體、垂直信號線29等被行處理部23檢測。
即,N+半導體區域71-1之儲存電荷DET0被傳輸至直接連接於該N+半導體區域71-1之FD部A,且與傳輸至FD部A之電荷DET0對應之信號經由放大電晶體或垂直信號線29而藉由行處理部23讀出。然後,對於所讀出之信號,於行處理部23中實施AD轉換處理等處理,其結果所獲得之像素信號被供給至信號處理部31。
該像素信號成為表示與自N+半導體區域71-1檢測出之電子對應之電荷量、即儲存於FD部A之電荷DET0之量的信號。換言之,像素信號亦可謂為表示由像素51接收到之紅外光之光量之信號。
再者,此時,亦可設為與N+半導體區域71-1之情形同樣地,亦將與N+半導體區域71-2中所檢測出之電子對應之像素信號適當用於測距。
又,於下一時序,以產生與迄今為止於基板61內所產生之電場相反方向之電場之方式,藉由抽頭驅動部21經由接點等對2個P+半導體區域73施加電壓。具體而言,例如,對作為第1抽頭TA之P+半導體區域73-1施加MIX0=0 V之電壓,對作為第2抽頭TB之P+半導體區域73-2施加MIX1=1.5 V之電壓。
藉此,於基板61中之2個P+半導體區域73之間產生電場,電流自P+半導體區域73-2朝P+半導體區域73-1流動。
當於此種狀態下來自外部之紅外光(反射光)經由晶載透鏡62而入射至基板61內,且該紅外光於基板61內被進行光電轉換而被轉換為電子與電洞之對時,所獲得之電子藉由P+半導體區域73間之電場而朝P+半導體區域73-2之方向被引導,並移動至N+半導體區域71-2內。
藉此,於N+半導體區域71-2中儲存與移動至N+半導體區域71-2內之電子對應之電荷,且該電荷經由FD部B或放大電晶體、垂直信號線29等而被行處理部23檢測。
即,N+半導體區域71-2之儲存電荷DET1被傳輸至直接連接於該N+半導體區域71-2之FD部B,且與被傳輸至FD部B之電荷DET1對應之信號經由放大電晶體或垂直信號線29而藉由行處理部23讀出。然後,對於所讀出之信號,於行處理部23中實施AD轉換處理等處理,並將其結果所獲得之像素信號供給至信號處理部31。
再者,此時,亦可設為與N+半導體區域71-2之情形同樣地,亦將與於N+半導體區域71-1中檢測出之電子對應之像素信號適當用於測距。
以此方式,若於同一像素51中獲得藉由互不相同之期間之光電轉換所獲得之像素信號,則信號處理部31基於該等像素信號,算出表示距對象物之距離之距離資訊,並輸出至後段。
如此,將信號載子分配至互不相同之N+半導體區域71並基於與該等信號載子對應之信號算出距離資訊之方法被稱為間接ToF方式。
當沿圖2中自上而下之方向、亦即與基板61之面垂直之方向觀察像素51中之信號擷取部65之部分時,例如如圖3所示般為如P+半導體區域73之周圍由N+半導體區域71包圍般之構造。再者,於圖3中對與圖2之情形對應之部分標註相同之符號,並適當省略其說明。
於圖3所示之例中,於像素51之中央部分形成有未圖示之氧化膜64,於自像素51之中央稍微靠端側之部分形成有信號擷取部65。尤其是,此處,於像素51內形成有2個信號擷取部65。
而且,於各信號擷取部65中,於其中心位置呈矩形形狀地形成有P+半導體區域73,以該P+半導體區域73為中心,P+半導體區域73之周圍由矩形形狀、更詳細而言矩形框形狀之N+半導體區域71包圍。即,N+半導體區域71係以包圍P+半導體區域73之周圍之方式形成。
又,於像素51中,於像素51之中心部分、即箭頭A11所示之部分,為了將自外部入射而來之紅外光聚光而形成有晶載透鏡62。換言之,自外部入射至晶載透鏡62之紅外光藉由晶載透鏡62而被聚光於箭頭A11所示之位置、亦即圖2中之氧化膜64之圖2中上側之位置。
因此,紅外光聚光於信號擷取部65-1與信號擷取部65-2之間之位置。藉此,能夠抑制紅外光入射至鄰接於像素51之像素而產生串音,並且亦抑制紅外光直接入射至信號擷取部65。
例如,若紅外光直接入射至信號擷取部65,則電荷分離效率、即Cmod(Contrast between active and inactive tap,有效抽頭與無效抽頭之間之對比度)或調變對比度(Modulation contrast)下降。
此處,將進行與藉由光電轉換所獲得之電荷DET對應之信號之讀出的信號擷取部65、亦即應被檢測藉由光電轉換所獲得之電荷DET的信號擷取部65亦稱為有效抽頭(active tap)。
相反,基本上將不進行與藉由光電轉換所獲得之電荷DET對應之信號之讀出的信號擷取部65、亦即並非有效抽頭之信號擷取部65亦稱為無效抽頭(inactive tap)。
於上述例中,對P+半導體區域73施加1.5 V之電壓之信號擷取部65為有效抽頭,對P+半導體區域73施加0 V之電壓之信號擷取部65為無效抽頭。
Cmod係利用以下之式(1)來計算,且為表示能夠於作為有效抽頭之信號擷取部65之N+半導體區域71中檢測出藉由入射之紅外光之光電轉換所產生之電荷中之百分之幾之電荷、亦即能否擷取與電荷對應之信號的指標,表示電荷分離效率。於式(1)中,I0為藉由2個電荷檢測部(P+半導體區域73)中之一者所檢測出之信號,I1為藉由另一者所檢測出之信號。 Cmod={|I0-I1|/(I0+I1)}×100             (1)
因此,例如,若自外部入射之紅外光入射至無效抽頭之區域,並於該無效抽頭內進行光電轉換,則作為藉由光電轉換所產生之信號載子之電子移動至無效抽頭內之N+半導體區域71之可能性較高。如此一來,藉由光電轉換所獲得之一部分電子之電荷不會於有效抽頭內之N+半導體區域71中被檢測出,而Cmod、亦即電荷分離效率下降。
因此,於像素51中,藉由將紅外光聚光於處於距2個信號擷取部65大致等距離之位置之像素51之中心部分附近,能夠降低自外部入射之紅外光於無效抽頭之區域中被進行光電轉換之機率,而提高電荷分離效率。又,於像素51中,亦能夠使調變對比提高。換言之,能夠將藉由光電轉換所獲得之電子容易地誘導至有效抽頭內之N+半導體區域71。
根據如以上般之受光元件1,能夠發揮如以下般之效果。
即,首先,由於受光元件1為背面照射型,故而能夠將量子效率(QE)×開口率(FF(Fill Factor,填充因數))最大化,能夠使利用受光元件1之測距特性提高。
例如,如圖4之箭頭W11所示,通常之正面照射型影像感測器為於作為光電轉換部之PD101中之供來自外部之光入射之光入射面側形成有配線102或配線103之構造。
因此,產生如下般之情況:例如自外部如箭頭A21或箭頭A22所示般,具有某種程度之角度而相對於PD101斜向地入射而來之光之一部分被配線102或配線103遮擋而不入射至PD101。
相對於此,背面照射型影像感測器例如如箭頭W12所示般為於作為光電轉換部之PD104中之與供來自外部之光入射之光入射面為相反側之面上形成有配線105或配線106之構造。
因此,與正面照射型之情形相比能夠確保充分之開口率。即,例如自外部如箭頭A23或箭頭A24所示般,具有某種程度之角度而相對於PD104斜向地入射而來之光不會被配線遮擋而是入射至PD104。藉此,能夠接收更多之光,而使像素之感度提高。
此種藉由設為背面照射型所獲得之像素感度之提高效果係於作為背面照射型CAPD感測器之受光元件1中亦能獲得。
又,於例如正面照射型CAPD感測器中,如箭頭W13所示般,於作為光電轉換部之PD111之內部中之供來自外部之光入射之光入射面側形成有被稱為抽頭之信號擷取部112、更詳細而言抽頭之P+半導體區域或N+半導體區域。 又,正面照射型CAPD感測器為於光入射面側形成有配線113、或連接於信號擷取部112之接點或金屬等之配線114之構造。
因此,產生如下般之情況:不僅例如自外部如箭頭A25或箭頭A26所示般,具有某種程度之角度而相對於PD111斜向地入射而來之光之一部分被配線113等遮擋而不入射至PD111,而且如箭頭A27所示般,相對於PD111垂直地入射而來之光亦被配線114遮擋而不入射至PD111。
相對於此,背面照射型CAPD感測器例如如箭頭W14所示般為於作為光電轉換部之PD115中之與供來自外部之光入射之光入射面為相反側之面之部分形成有信號擷取部116之構造。又,於PD115中之與光入射面為相反側之面上形成有配線117、或連接於信號擷取部116之接點或金屬等之配線118。
此處,PD115對應於圖2所示之基板61,信號擷取部116對應於圖2所示之信號擷取部65。
於此種構造之背面照射型CAPD感測器中,與正面照射型之情形相比能夠確保充分之開口率。因此,能夠將量子效率(QE)×開口率(FF)最大化,而能夠使測距特性提高。
即,例如自外部如箭頭A28或箭頭A29所示般,具有某種程度之角度而相對於PD115斜向地入射而來之光不會被配線遮擋而入射至PD115。同樣地,如箭頭A30所示般,相對於PD115垂直地入射而來之光亦不會被配線等遮擋而入射至PD115。
如此,於背面照射型CAPD感測器中,可不僅接收具有某種程度之角度而入射而來之光,亦接收相對於PD115垂直地入射而來且若為正面照射型則被連接於信號擷取部(抽頭)之配線等反射之光。藉此,能夠接收更多之光而使像素之感度提高。換言之,能夠將量子效率(QE)×開口率(FF)最大化,其結果,能夠使測距特性提高。
尤其是,於不僅於像素外緣,而且於像素之中央附近配置有抽頭之情形時,若為正面照射型CAPD感測器,則無法確保充分之開口率,而像素之感度下降,但於作為背面照射型CAPD感測器之受光元件1中,能夠無關於抽頭之配置位置地確保充分之開口率,而能夠使像素之感度提高。
又,於背面照射型受光元件1中,由於在基板61中之與供來自外部之紅外光入射之光入射面為相反側之面附近形成有信號擷取部65,故而能夠減少無效抽頭之區域中之紅外光之光電轉換之發生。藉此,能夠使Cmod、亦即電荷分離效率提高。
圖5表示正面照射型及背面照射型CAPD感測器之像素剖視圖。
於圖5左側之正面照射型CAPD感測器中,圖中基板141之上側為光入射面,於基板141之光入射面側積層有包含複數層配線之配線層152、像素間遮光部153及晶載透鏡154。
於圖5右側之背面照射型CAPD感測器中,於圖中與光入射面為相反側之基板142之下側形成有包含複數層配線之配線層152,於作為光入射面側之基板142之上側積層有像素間遮光部153及晶載透鏡154。
再者,圖5中灰色之梯形形狀表示藉由利用晶載透鏡154將紅外光聚光而光強度較強之區域。
例如,於正面照射型CAPD感測器中,於基板141之光入射面側有存在無效抽頭及有效抽頭之區域R11。因此,若直接入射至無效抽頭之分量較多,且於無效抽頭之區域中進行光電轉換,則藉由該光電轉換所獲得之信號載子將不會於有效抽頭之N+半導體區域中被檢測出。
於正面照射型CAPD感測器中,由於在基板141之光入射面附近之區域R11中紅外光之強度較強,故而於區域R11內進行紅外光之光電轉換之機率變高。亦即,由於入射至無效抽頭附近之紅外光之光量較多,故而於有效抽頭中無法檢測出之信號載子變多,而導致電荷分離效率下降。
相對於此,於背面照射型CAPD感測器中,於基板142之遠離光入射面之位置、亦即與光入射面側為相反側之面附近之位置有存在無效抽頭及有效抽頭之區域R12。此處,基板142對應於圖2所示之基板61。
於該例中,於基板142之與光入射面側為相反側之面之部分存在區域R12,由於區域R12處於遠離光入射面之位置,故而於該區域R12附近,入射之紅外光之強度相對較弱。
於基板142之中心附近或光入射面附近等紅外光之強度較強之區域中藉由光電轉換所獲得之信號載子係藉由基板142內所產生之電場引導至有效抽頭,且於有效抽頭之N+半導體區域中被檢測出。
另一方面,由於在包含無效抽頭之區域R12附近,入射之紅外光之強度相對較弱,故而於區域R12內進行紅外光之光電轉換之機率變低。亦即,由於入射至無效抽頭附近之紅外光之光量較少,故而藉由無效抽頭附近處之光電轉換所產生且移動至無效抽頭之N+半導體區域之信號載子(電子)之數量變少,能夠使電荷分離效率提高。其結果,能夠改善測距特性。
進而,於背面照射型受光元件1中,由於可實現基板61之薄層化,故而能夠使作為信號載子之電子(電荷)之擷取效率提高。
例如,由於若為正面照射型CAPD感測器則無法充分地確保開口率,故而必須如圖6之箭頭W31所示般,為了確保更高之量子效率,並抑制量子效率×開口率之下降,而使基板171厚至某種程度。
如此一來,於基板171內之與光入射面為相反側之面附近之區域、例如區域R21之部分中電位之梯度變得緩和,實質上與基板171垂直之方向之電場變弱。於該情形時,由於信號載子之移動速度變慢,故而自進行光電轉換起至在有效抽頭之N+半導體區域中檢測出信號載子為止所需之時間變長。再者,於圖6中,基板171內之箭頭表示基板171中之與基板171垂直之方向之電場。
又,若基板171較厚,則信號載子自基板171內之遠離有效抽頭之位置至有效抽頭內之N+半導體區域為止之移動距離變長。因此,於遠離有效抽頭之位置,自進行光電轉換起至在有效抽頭之N+半導體區域中檢測出信號載子為止所需之時間進一步變長。
圖7表示基板171之厚度方向之位置與信號載子之移動速度之關係。區域R21對應於擴散電流區域。
如此,若基板171變厚,則於例如驅動頻率較高時、亦即高速地進行抽頭(信號擷取部)之有效與無效之切換時,變得無法將於區域R21等遠離有效抽頭之位置所產生之電子完全地引入至有效抽頭之N+半導體區域。即,若抽頭為有效之時間較短,則會產生變得無法於有效抽頭之N+半導體區域中檢測出區域R21內等所產生之電子(電荷),而電子之擷取效率下降。
相對於此,若為背面照射型CAPD感測器,則能夠確保充分之開口率,因此例如即便如圖6之箭頭W32所示般使基板172變薄亦能夠確保充分之量子效率×開口率。此處,基板172對應於圖2之基板61,基板172內之箭頭表示與基板172垂直之方向之電場。
圖8示出了基板172之厚度方向之位置與信號載子之移動速度之關係。
若如此使基板172之與基板172垂直之方向之厚度變薄,則實質上與基板172垂直之方向之電場變強,僅使用僅於信號載子之移動速度較快之漂移電流區域中之電子(電荷),而不使用信號載子之移動速度較慢之擴散電流區域之電子。藉由僅使用僅於漂移電流區域中之電子(電荷),而自進行光電轉換起至在有效抽頭之N+半導體區域中檢測出信號載子為止所需之時間變短。又,若基板172之厚度變薄,則信號載子之至有效抽頭內之N+半導體區域為止之移動距離亦變短。
根據該等情況,若為背面照射型CAPD感測器,則即便於驅動頻率較高時,亦能夠將基板172內之各區域中所產生之信號載子(電子)充分地引入至有效抽頭之N+半導體區域,能夠使電子之擷取效率提高。
又,藉由基板172之薄層化,即便為較高之驅動頻率,亦能夠確保充分之電子之擷取效率,能夠使耐高速驅動性提高。
尤其是,於背面照射型CAPD感測器中,由於可直接對基板172、即基板61施加電壓,故而抽頭之有效及無效之切換之回應速度較快,能夠以較高之驅動頻率進行驅動。又,由於可直接對基板61施加電壓,故而基板61內之能夠調變之區域變寬。
進而,於背面照射型受光元件1(CAPD感測器)中,由於能夠獲得充分之開口率,故而可相應地將像素微細化,能夠使像素之耐微細化性提高。
此外,於受光元件1中,藉由設為背面照射型能夠實現BEOL(Back End Of Line,後段製程)電容設計之自由化,藉此能夠使飽和信號量(Qs)之設計自由度提高。
<第1實施形態之變化例1> <像素之構成例> 再者,以上針對基板61內之信號擷取部65之部分以如圖3所示般將N+半導體區域71及P+半導體區域73設為矩形形狀之區域之情形為例進行了說明。但是,自與基板61垂直之方向觀察時之N+半導體區域71及P+半導體區域73之形狀可設為任意形狀。
具體而言,亦可如例如圖9所示般,將N+半導體區域71及P+半導體區域73設為圓形形狀。再者,於圖9中對與圖3之情形對應之部分標註相同之符號,並適當省略其說明。
圖9表示自與基板61垂直之方向觀察像素51中之信號擷取部65之部分時之N+半導體區域71及P+半導體區域73。
於該例中,於像素51之中央部分形成有未圖示之氧化膜64,於較像素51之中央稍微靠端側之部分形成有信號擷取部65。尤其是,此處,於像素51內形成有2個信號擷取部65。
而且,於各信號擷取部65中,於其中心位置形成有圓形形狀之P+半導體區域73,以該P+半導體區域73為中心,P+半導體區域73之周圍由圓形形狀、更詳細而言圓環狀之N+半導體區域71包圍。
圖10係於呈矩陣狀地二維配置有具有圖9所示之信號擷取部65之像素51的像素陣列部20之一部分重疊有晶載透鏡62之俯視圖。
如圖10所示,晶載透鏡62形成於像素單位。換言之,形成有1個晶載透鏡62之單位區域對應於1像素。
再者,於圖2中,於N+半導體區域71與P+半導體區域73之間配置有由氧化膜等形成之分離部75,但分離部75既可有,亦可無。
<第1實施形態之變化例2> <像素之構成例> 圖11係表示像素51中之信號擷取部65之平面形狀之變化例的俯視圖。
信號擷取部65除了將平面形狀形成為圖3所示之矩形形狀、圖9所示之圓形形狀以外,亦可如例如圖11所示般形成為八邊形形狀。
又,圖11表示於N+半導體區域71與P+半導體區域73之間形成有由氧化膜等形成之分離部75之情形之俯視圖。
圖11所示之A-A'線表示下述之圖37之剖面線,B-B'線表示下述之圖36之剖面線。
<第2實施形態> <像素之構成例> 進而,以上以於信號擷取部65內,P+半導體區域73之周圍由N+半導體區域71包圍之構成為例進行了說明,但亦可設為N+半導體區域之周圍由P+半導體區域包圍。
於此種情形時,像素51係如例如圖12所示般構成。再者,於圖12中對與圖3之情形對應之部分標註相同之符號,並適當省略其說明。
圖12表示自與基板61垂直之方向觀察像素51中之信號擷取部65之部分時之N+半導體區域及P+半導體區域之配置。
於該例中,於像素51之中央部分形成有未圖示之氧化膜64,於自像素51之中央稍微靠圖中之上側之部分形成有信號擷取部65-1,於自像素51之中央稍微靠圖中之下側之部分形成有信號擷取部65-2。尤其是,於該例中,像素51內之信號擷取部65之形成位置係與圖3之情形相同之位置。
於信號擷取部65-1內,與圖3所示之N+半導體區域71-1對應之矩形形狀之N+半導體區域201-1形成於信號擷取部65-1之中心。而且,該N+半導體區域201-1之周圍由與圖3所示之P+半導體區域73-1對應之矩形形狀、更詳細而言矩形框形狀之P+半導體區域202-1包圍。即,P+半導體區域202-1係以包圍N+半導體區域201-1之周圍之方式形成。
同樣地,於信號擷取部65-2內,與圖3所示之N+半導體區域71-2對應之矩形形狀之N+半導體區域201-2形成於信號擷取部65-2之中心。而且,該N+半導體區域201-2之周圍由與圖3所示之P+半導體區域73-2對應之矩形形狀、更詳細而言矩形框形狀之P+半導體區域202-2包圍。
再者,以下,於無需特別地區分N+半導體區域201-1及N+半導體區域201-2之情形時,亦簡稱為N+半導體區域201。又,以下,於無需特別地區分P+半導體區域202-1及P+半導體區域202-2之情形時,亦簡稱為P+半導體區域202。
於將信號擷取部65設為圖12所示之構成之情形時,亦與設為圖3所示之構成之情形同樣,N+半導體區域201作為用以檢測信號載子之量之電荷檢測部發揮功能,P+半導體區域202作為用以直接對基板61施加電壓而產生電場之電壓施加部發揮功能。
<第2實施形態之變化例1> <像素之構成例> 又,於與圖9所示之例同樣地,設為如N+半導體區域201之周圍被P+半導體區域202包圍般之配置之情形時,該等N+半導體區域201及P+半導體區域202之形狀亦可設為任意形狀。
即,亦可如例如圖13所示般,將N+半導體區域201及P+半導體區域202設為圓形形狀。再者,於圖13中對與圖12之情形對應之部分標註相同之符號,並適當省略其說明。
圖13表示自與基板61垂直之方向觀察像素51中之信號擷取部65之部分時之N+半導體區域201及P+半導體區域202。
於該例中,於像素51之中央部分形成有未圖示之氧化膜64,於自像素51之中央稍微靠端側之部分形成有信號擷取部65。尤其是,此處,於像素51內形成有2個信號擷取部65。
而且,於各信號擷取部65中,於其中心位置形成有圓形形狀之N+半導體區域201,以該N+半導體區域201為中心,N+半導體區域201之周圍由圓形形狀、更詳細而言圓環狀之P+半導體區域202包圍。
<第3實施形態> <像素之構成例> 進而,亦可將形成於信號擷取部65內之N+半導體區域及P+半導體區域設為線形狀(長方形形狀)。
於此種情形時,例如,像素51係如圖14所示般構成。再者,於圖14中對與圖3之情形對應之部分標註相同之符號,並適當省略其說明。
圖14表示自與基板61垂直之方向觀察像素51中之信號擷取部65之部分時之N+半導體區域及P+半導體區域之配置。
於該例中,於像素51之中央部分形成有未圖示之氧化膜64,於自像素51之中央稍微靠圖中之上側之部分形成有信號擷取部65-1,於自像素51之中央稍微靠圖中之下側之部分形成有信號擷取部65-2。尤其是,於該例中,像素51內之信號擷取部65之形成位置係與圖3之情形相同之位置。
於信號擷取部65-1內,與圖3所示之P+半導體區域73-1對應之線形狀之P+半導體區域231形成於信號擷取部65-1之中心。而且,於該P+半導體區域231之周圍,以夾著P+半導體區域231之方式形成有與圖3所示之N+半導體區域71-1對應之線形狀之N+半導體區域232-1及N+半導體區域232-2。即,P+半導體區域231形成於夾在N+半導體區域232-1與N+半導體區域232-2之間之位置。
再者,以下,於無需特別地區分N+半導體區域232-1及N+半導體區域232-2之情形時,亦簡稱為N+半導體區域232。
於圖3所示之例中,設為如P+半導體區域73由N+半導體區域71包圍般之構造,但圖14所示之例中為P+半導體區域231由與其鄰接地設置之2個N+半導體區域232所夾著之構造。
同樣地,於信號擷取部65-2內,與圖3所示之P+半導體區域73-2對應之線形狀之P+半導體區域233形成於信號擷取部65-2之中心。而且,於該P+半導體區域233之周圍,以夾著P+半導體區域233之方式形成有與圖3所示之N+半導體區域71-2對應之線形狀之N+半導體區域234-1及N+半導體區域234-2。
再者,以下,於無需特別地區分N+半導體區域234-1及N+半導體區域234-2之情形時,亦簡稱為N+半導體區域234。
於圖14之信號擷取部65中,P+半導體區域231及P+半導體區域233作為與圖3所示之P+半導體區域73對應之電壓施加部發揮功能,N+半導體區域232及N+半導體區域234作為與圖3所示之N+半導體區域71對應之電荷檢測部發揮功能。於該情形時,例如N+半導體區域232-1及N+半導體區域232-2之兩個區域連接於FD部A。
又,被設為線形狀之P+半導體區域231、N+半導體區域232、P+半導體區域233、及N+半導體區域234之各區域之圖中橫向之長度可為任意長度,該等各區域亦可不設為相同之長度。
<第4實施形態> <像素之構成例> 進而,於圖14所示之例中,以P+半導體區域231或P+半導體區域233由N+半導體區域232或N+半導體區域234夾著之構造為例進行說明,但亦可相反地設為N+半導體區域由P+半導體區域夾著之形狀。
於此種情形時,例如像素51係如圖15所示般構成。再者,於圖15中對與圖3之情形對應之部分標註相同之符號,並適當省略其說明。
圖15表示自與基板61垂直之方向觀察像素51中之信號擷取部65之部分時之N+半導體區域及P+半導體區域之配置。
於該例中,於像素51之中央部分形成有未圖示之氧化膜64,於較像素51之中央稍微靠端側之部分形成有信號擷取部65。尤其是,於該例中,像素51內之2個各信號擷取部65之形成位置係與圖3之情形相同之位置。
於信號擷取部65-1內,與圖3所示之N+半導體區域71-1對應之線形狀之N+半導體區域261形成於信號擷取部65-1之中心。而且,於該N+半導體區域261之周圍,以夾著N+半導體區域261之方式形成有與圖3所示之P+半導體區域73-1對應之線形狀之P+半導體區域262-1及P+半導體區域262-2。即,N+半導體區域261形成於夾在P+半導體區域262-1與P+半導體區域262-2之間之位置。
再者,以下,於無需特別地區分P+半導體區域262-1及P+半導體區域262-2之情形時,亦簡稱為P+半導體區域262。
同樣地,於信號擷取部65-2內,與圖3所示之N+半導體區域71-2對應之線形狀之N+半導體區域263形成於信號擷取部65-2之中心。而且,於該N+半導體區域263之周圍,以夾著N+半導體區域263之方式形成有與圖3所示之P+半導體區域73-2對應之線形狀之P+半導體區域264-1及P+半導體區域264-2。
再者,以下,於無需特別地區分P+半導體區域264-1及P+半導體區域264-2之情形時,亦簡稱為P+半導體區域264。
於圖15之信號擷取部65中,P+半導體區域262及P+半導體區域264作為與圖3所示之P+半導體區域73對應之電壓施加部發揮功能,N+半導體區域261及N+半導體區域263作為與圖3所示之N+半導體區域71對應之電荷檢測部發揮功能。再者,被設為線形狀之N+半導體區域261、P+半導體區域262、N+半導體區域263、及P+半導體區域264之各區域之圖中橫向之長度可為任意長度,該等各區域亦可不設為相同之長度。
<第5實施形態> <像素之構成例> 進而,以上對在構成像素陣列部20之各像素內分別設置有2個信號擷取部65之例進行了說明,但設置於像素內之信號擷取部之個數可為1個,亦可為3個以上。
於例如像素51內形成有1個信號擷取部之情形時,像素之構成係如例如圖16所示般構成。再者,於圖16中對與圖3之情形對應之部分標註相同之符號,並適當省略其說明。
圖16表示自與基板垂直之方向觀察設置於像素陣列部20之一部分像素中之信號擷取部之部分時之N+半導體區域及P+半導體區域之配置。
於該例中,示出了設置於像素陣列部20之像素51、及作為鄰接於該像素51之像素51且區分地表示符號之像素291-1至像素291-3,於該等各像素中形成有1個信號擷取部。
即,於像素51中,於像素51之中央部分形成有1個信號擷取部65。而且,於信號擷取部65中,於其中心位置形成有圓形形狀之P+半導體區域301,以該P+半導體區域301為中心,P+半導體區域301之周圍由圓形形狀、更詳細而言圓環狀之N+半導體區域302包圍。
此處,P+半導體區域301對應於圖3所示之P+半導體區域73,作為電壓施加部發揮功能。又,N+半導體區域302對應於圖3所示之N+半導體區域71,作為電荷檢測部發揮功能。再者,P+半導體區域301或N+半導體區域302可設為任意形狀。
又,處於像素51之周圍之像素291-1至像素291-3亦為與像素51相同之構造。
即,例如於像素291-1之中央部分形成有1個信號擷取部303。而且,於信號擷取部303中,於其中心位置形成有圓形形狀之P+半導體區域304,以該P+半導體區域304為中心,P+半導體區域304之周圍由圓形形狀、更詳細而言圓環狀之N+半導體區域305包圍。
該等P+半導體區域304及N+半導體區域305分別對應於P+半導體區域301及N+半導體區域302。
再者,以下,於無需特別地區分像素291-1至像素291-3之情形時,亦簡稱為像素291。
於如此在各像素形成有1個信號擷取部(抽頭)之情形時,當欲藉由間接ToF方式測定距對象物之距離時,使用相互鄰接之若干個像素,基於針對該等像素所獲得之像素信號,而算出距離資訊。
若著眼於例如像素51,則於像素51之信號擷取部65被設為有效抽頭之狀態下,以例如包含像素291-1在內之鄰接於像素51之若干個像素291之信號擷取部303成為無效抽頭之方式驅動各像素。
作為一例,以例如像素291-1或像素291-3等相對於像素51於圖中之上下左右鄰接之像素之信號擷取部成為無效抽頭之方式進行驅動。
其後,若以像素51之信號擷取部65成為無效抽頭之方式切換施加之電壓,則此次使包含像素291-1在內之鄰接於像素51之若干個像素291之信號擷取部303成為有效抽頭。
而且,基於在信號擷取部65被設為有效抽頭之狀態下自信號擷取部65讀出之像素信號、及於信號擷取部303被設為有效抽頭之狀態下自信號擷取部303讀出之像素信號,而算出距離資訊。
於如此將設置於像素內之信號擷取部(抽頭)之個數設為1個之情形時,亦能夠使用相互鄰接之像素藉由間接ToF方式進行測距。
<第6實施形態> <像素之構成例> 又,亦可如上所述般設為於各像素內設置有3個以上之信號擷取部(抽頭)。
於例如在像素內設置有4個信號擷取部(抽頭)之情形時,像素陣列部20之各像素係如圖17所示般構成。再者,於圖17中對與圖16之情形對應之部分標註相同之符號,並適當省略其說明。
圖17表示自與基板垂直之方向觀察設置於像素陣列部20之一部分像素中之信號擷取部之部分時之N+半導體區域及P+半導體區域之配置。
圖17所示之C-C'線之剖視圖變為如下述之圖36般。
於該例中,示出了設置於像素陣列部20之像素51及像素291,於該等各像素中形成有4個信號擷取部。
即,於像素51中,於像素51之中央與像素51之端部分之間之位置、即像素51中央之圖中之左下側之位置、左上側之位置、右上側之位置、及右下側之位置形成有信號擷取部331-1、信號擷取部331-2、信號擷取部331-3、及信號擷取部331-4。
該等信號擷取部331-1至信號擷取部331-4對應於圖16所示之信號擷取部65。
於例如信號擷取部331-1中,於其中心位置形成有圓形形狀之P+半導體區域341,以該P+半導體區域341為中心,P+半導體區域341之周圍由圓形形狀、更詳細而言圓環狀之N+半導體區域342包圍。
此處,P+半導體區域341對應於圖16所示之P+半導體區域301,作為電壓施加部發揮功能。又,N+半導體區域342對應於圖16所示之N+半導體區域302,作為電荷檢測部發揮功能。再者,P+半導體區域341或N+半導體區域342可設為任意形狀。
又,信號擷取部331-2至信號擷取部331-4亦被設為與信號擷取部331-1相同之構成,分別具有作為電壓施加部發揮功能之P+半導體區域、及作為電荷檢測部發揮功能之N+半導體區域。進而,形成於像素51之周圍之像素291為與像素51相同之構造。
再者,以下,於無需特別地區分信號擷取部331-1至信號擷取部331-4之情形時,亦簡稱為信號擷取部331。
於如此在各像素設置有4個信號擷取部之情形時,當例如利用間接ToF方式所進行之測距時,使用像素內之4個信號擷取部算出距離資訊。
作為一例,若著眼於像素51,則於例如信號擷取部331-1及信號擷取部331-3被設為有效抽頭之狀態下,以信號擷取部331-2及信號擷取部331-4成為無效抽頭之方式驅動像素51。
其後,切換施加於各信號擷取部331之電壓。即,以信號擷取部331-1及信號擷取部331-3成為無效抽頭且信號擷取部331-2及信號擷取部331-4成為有效抽頭之方式驅動像素51。
然後,基於在信號擷取部331-1及信號擷取部331-3被設為有效抽頭之狀態下自該等信號擷取部331-1及信號擷取部331-3讀出之像素信號、及在信號擷取部331-2及信號擷取部331-4被設為有效抽頭之狀態下自該等信號擷取部331-2及信號擷取部331-4讀出之像素信號,算出距離資訊。
<第7實施形態> <像素之構成例> 進而,亦可設為於像素陣列部20之相互鄰接之像素間共用信號擷取部(抽頭)。
於此種情形時,像素陣列部20之各像素係如例如圖18所示般構成。再者,於圖18中對與圖16之情形對應之部分標註相同之符號,並適當省略其說明。
圖18表示自與基板垂直之方向觀察設置於像素陣列部20之一部分像素中之信號擷取部之部分時之N+半導體區域及P+半導體區域之配置。
於該例中,示出了設置於像素陣列部20之像素51及像素291,於該等各像素中形成有2個信號擷取部。
於例如像素51中,於像素51之圖中之上側之端部分形成有信號擷取部371,於像素51之圖中之下側之端部分形成有信號擷取部372。
信號擷取部371係於像素51及像素291-1中被共用。亦即,信號擷取部371既被用作像素51之抽頭,亦被用作像素291-1之抽頭。又,信號擷取部372係於像素51及鄰接於該像素51之圖中之下側之未圖示之像素中被共用。
於信號擷取部371內,於其中心位置形成有與圖14所示之P+半導體區域231對應之線形狀之P+半導體區域381。而且,於該P+半導體區域381之圖中之上下之位置以夾著P+半導體區域381之方式形成有與圖14所示之N+半導體區域232對應之線形狀之N+半導體區域382-1及N+半導體區域382-2。
尤其是,於該例中,P+半導體區域381形成於像素51與像素291-1之交界部分。又,N+半導體區域382-1形成於像素51內之區域,N+半導體區域382-2形成於像素291-1內之區域。
此處,P+半導體區域381作為電壓施加部發揮功能,N+半導體區域382-1及N+半導體區域382-2作為電荷檢測部發揮功能。再者,以下,於無需特別地區分N+半導體區域382-1及N+半導體區域382-2之情形時,亦簡稱為N+半導體區域382。
又,P+半導體區域381或N+半導體區域382可設為任意形狀。進而,N+半導體區域382-1及N+半導體區域382-2既可設為連接於同一FD部,亦可設為連接於互不相同之FD部。
於信號擷取部372內形成有線形狀之P+半導體區域383、N+半導體區域384-1及N+半導體區域384-2。
該等P+半導體區域383、N+半導體區域384-1、及N+半導體區域384-2分別對應於P+半導體區域381、N+半導體區域382-1、及N+半導體區域382-2,且被設為相同之配置及形狀、功能。再者,以下,於無需特別地區分N+半導體區域384-1及N+半導體區域384-2之情形時,亦簡稱為N+半導體區域384。
於如以上般於鄰接像素間共用信號擷取部(抽頭)之情形時,亦可藉由與圖3所示之例相同之動作進行利用間接ToF方式所進行之測距。
於如圖18所示般在像素間共用信號擷取部之情形時,例如P+半導體區域381與P+半導體區域383之間之距離等用以產生電場、亦即電流之成對之P+半導體區域間之距離變長。換言之,藉由在像素間共用信號擷取部,能夠使P+半導體區域間之距離最大限度地變長。
藉此,於P+半導體區域間電流變得不易流動,因此能夠使像素之消耗電力降低,且亦有利於像素之微細化。
再者,此處針對在相互鄰接之2個像素中共用1個信號擷取部之例進行了說明,但亦可設為於相互鄰接之3個以上之像素中共用1個信號擷取部。又,於在相互鄰接之2個以上之像素中共用信號擷取部之情形時,既可設為僅共用信號擷取部中之用以檢測信號載子之電荷檢測部,亦可設為僅共用用以產生電場之電壓施加部。
<第8實施形態> <像素之構成例> 進而,亦可設為不特別地設置像素陣列部20之像素51等各像素中所設置之晶載透鏡或像素間遮光部。
具體而言,例如可將像素51設為圖19所示之構成。再者,於圖19中對與圖2之情形對應之部分標註相同之符號,並適當省略其說明。
圖19所示之像素51之構成係於未設置晶載透鏡62之方面與圖2所示之像素51不同,於其他方面為與圖2之像素51相同之構成。
由於在圖19所示之像素51中,於基板61之光入射面側未設置晶載透鏡62,故而能夠進一步減少自外部朝基板61入射而來之紅外光之衰減。藉此,基板61中能夠接收之紅外光之光量增加,能夠使像素51之感度提高。
<第8實施形態之變化例1> <像素之構成例> 又,亦可將像素51之構成設為例如圖20所示之構成。再者,於圖20中對與圖2之情形對應之部分標註相同之符號,並適當省略其說明。
圖20所示之像素51之構成係於未設置像素間遮光膜63-1及像素間遮光膜63-2之方面與圖2所示之像素51不同,於其他方面為與圖2之像素51相同之構成。
於圖20所示之例中,由於在基板61之光入射面側未設置像素間遮光膜63,故而串音之抑制效果下降,但由於前文中被像素間遮光膜63遮擋之紅外光亦入射至基板61內,故而能夠使像素51之感度提高。
再者,當然亦可設為於像素51既不設置晶載透鏡62,亦不設置像素間遮光膜63。
<第8實施形態之變化例2> <像素之構成例> 此外,如例如圖21所示,亦可設為亦將晶載透鏡之光軸方向之厚度最佳化。再者,於圖21中對與圖2之情形對應之部分標註相同之符號,並適當省略其說明。
圖21所示之像素51之構成係於設置有晶載透鏡411代替晶載透鏡62之方面與圖2所示之像素51不同,於其他方面為與圖2之像素51相同之構成。
於圖21所示之像素51中,於基板61之光入射面側、亦即圖中之上側形成有晶載透鏡411。該晶載透鏡411係與圖2所示之晶載透鏡62相比,光軸方向之厚度、亦即圖中縱向之厚度變薄。
一般而言,設置於基板61之表面之晶載透鏡較厚會對入射至晶載透鏡之光之聚光有利。但是,藉由使晶載透鏡411變薄,而透過率相應地變高,從而能夠使像素51之感度提高,因此只要根據基板61之厚度或欲將紅外光聚光之位置等而恰當地決定晶載透鏡411之厚度即可。
<第9實施形態> <像素之構成例> 進而,亦可設為於形成於像素陣列部20之像素與像素之間,設置用以使鄰接像素間之分離特性提高而抑制串音之分離區域。
於此種情形時,像素51係如例如圖22所示般構成。再者,於圖22中對與圖2之情形對應之部分標註相同之符號,並適當省略其說明。
圖22所示之像素51之構成係於在基板61內設置有分離區域441-1及分離區域441-2之方面與圖2所示之像素51不同,於其他方面為與圖2之像素51相同之構成。
於圖22所示之像素51中,於基板61內之像素51與鄰接於該像素51之其他像素之交界部分、亦即像素51之圖中之左右端部分,由遮光膜等形成將鄰接像素分離之分離區域441-1及分離區域441-2。再者,以下,於無需特別地區分分離區域441-1及分離區域441-2之情形時,亦簡稱為分離區域441。
例如,於形成分離區域441時,自基板61之光入射面側、亦即圖中之上側之面起朝圖中之下方向(與基板61之面垂直之方向)以特定深度於基板61形成較長之槽(溝槽),並於該槽部分藉由嵌埋而形成遮光膜從而製成分離區域441。該分離區域441係作為遮擋自光入射面入射至基板61內且前往鄰接於像素51之其他像素之紅外光之像素分離區域發揮功能。
藉由如此形成嵌入型分離區域441,能夠使像素間之紅外光之分離特性提高,而能夠抑制串音之產生。
<第9實施形態之變化例1> <像素之構成例> 進而,於在像素51形成嵌入型分離區域之情形時,亦可如例如圖23所示般設為設置貫通基板61整體之分離區域471-1及分離區域471-2。再者,於圖23中對與圖2之情形對應之部分標註相同之符號,並適當省略其說明。
圖23所示之像素51之構成係於在基板61內設置有分離區域471-1及分離區域471-2之方面與圖2所示之像素51不同,於其他方面為與圖2之像素51相同之構成。即,圖23所示之像素51為設置有分離區域471-1及分離區域471-2以代替圖22所示之像素51之分離區域441之構成。
於圖23所示之像素51中,於基板61內之像素51與鄰接於該像素51之其他像素之交界部分、亦即像素51之圖中之左右端部分,由遮光膜等形成貫通基板61整體之分離區域471-1及分離區域471-2。再者,以下,於無需特別地區分分離區域471-1及分離區域471-2之情形時,亦簡稱為分離區域471。
例如,於形成分離區域471時,自基板61之與光入射面側為相反側之面、亦即圖中之下側之面起朝圖中之上方向形成較長之槽(溝槽)。此時,該等槽係以貫通基板61之方式形成至到達基板61之光入射面為止。然後,於以此方式形成之槽部分藉由嵌埋而形成遮光膜,從而製成分離區域471。
藉由此種嵌入型分離區域471,亦能夠使像素間之紅外光之分離特性提高,而能夠抑制串音之產生。
<第10實施形態> <像素之構成例> 進而,形成信號擷取部65之基板之厚度可設為根據像素之各種特性等而決定。
因此,可如例如圖24所示般,將構成像素51之基板501設為較圖2所示之基板61厚者。再者,於圖24中對與圖2之情形對應之部分標註相同之符號,並適當省略其說明。
圖24所示之像素51之構成係於設置有基板501以代替基板61之方面與圖2所示之像素51不同,於其他方面為與圖2之像素51相同之構成。
即,於圖24所示之像素51中,於基板501中之光入射面側形成有晶載透鏡62、固定電荷膜66及像素間遮光膜63。又,於基板501之與光入射面側為相反側之面之表面附近,形成有氧化膜64、信號擷取部65、及分離部75。
基板501例如包含厚度為20 μm以上之P型半導體基板,且基板501與基板61僅基板之厚度不同,形成氧化膜64、信號擷取部65及分離部75之位置係於基板501及基板61中為相同之位置。
再者,適當形成於基板501或基板61之光入射面側等之各種層(膜)之膜厚等亦宜根據像素51之特性等而最佳化。
<第11實施形態> <像素之構成例> 進而,以上對構成像素51之基板包含P型半導體基板之例進行了說明,但亦可如例如圖25所示般設為包含N型半導體基板。再者,於圖25中對與圖2之情形對應之部分標註相同之符號,並適當省略其說明。
圖25所示之像素51之構成係於設置有基板531以代替基板61之方面與圖2所示之像素51不同,於其他方面為與圖2之像素51相同之構成。
於圖25所示之像素51中,於例如矽基板等包含N型半導體層之基板531中之光入射面側形成有晶載透鏡62、固定電荷膜66及像素間遮光膜63。
又,於基板531之與光入射面側為相反側之面之表面附近形成有氧化膜64、信號擷取部65及分離部75。形成該等氧化膜64、信號擷取部65、及分離部75之位置係於基板531及基板61中為相同之位置,信號擷取部65之構成亦於基板531及基板61中相同。
基板531係以例如圖中縱向之厚度、亦即與基板531之面垂直之方向之厚度成為20 μm以下之方式形成。
又,基板531被製成例如基板密度設為1E+13級以下之高電阻之N-Epi(N-Epitaxial,N型磊晶)基板等,且以基板531之電阻(電阻率)成為例如500[Ωcm]以上之方式形成。藉此,能夠使像素51中之消耗電力降低。
此處,關於基板531之基板密度與電阻之關係,例如設為如下等,即:於基板密度2.15E+12[cm3 ]時設為電阻2000[Ωcm],於基板密度4.30E+12[cm3 ]時設為電阻1000[Ωcm],於基板密度8.61E+12[cm3 ]時設為電阻500[Ωcm],及於基板密度4.32E+13[cm3 ]時設為電阻100[Ωcm]。
即便如此將像素51之基板531設為N型半導體基板,亦可藉由與圖2所示之例相同之動作獲得相同之效果。
<第12實施形態> <像素之構成例> 進而,與參照圖24所說明之例同樣地,可設為N型半導體基板之厚度亦根據像素之各種特性等而決定。
因此,可如例如圖26所示般將構成像素51之基板561設為較圖25所示之基板531厚者。再者,於圖26中對與圖25之情形對應之部分標註相同之符號,並適當省略其說明。
圖26所示之像素51之構成係於設置有基板561以代替基板531之方面與圖25所示之像素51不同,於其他方面為與圖25之像素51相同之構成。
即,於圖26所示之像素51中,於基板561中之光入射面側形成有晶載透鏡62、固定電荷膜66及像素間遮光膜63。又,於基板561之與光入射面側為相反側之面之表面附近形成有氧化膜64、信號擷取部65及分離部75。
基板561包含例如厚度為20 μm以上之N型半導體基板,基板561與基板531係僅基板之厚度不同,形成氧化膜64、信號擷取部65及分離部75之位置係於基板561及基板531中為相同之位置。
<第13實施形態> <像素之構成例> 又,亦可設為藉由例如對基板61之光入射面側施加偏壓,而強化基板61內之與基板61之面垂直之方向(以下,亦稱為Z方向)之電場。
於此種情形時,像素51係設為如例如圖27所示之構成。再者,於圖27中對與圖2之情形對應之部分標註相同之符號,並適當省略其說明。
圖27之A表示圖2所示之像素51,該像素51之基板61內之箭頭表示基板61內之Z方向之電場之強度。
相對於此,圖27之B表示對基板61之光入射面施加偏壓(電壓)之情形時之像素51之構成。圖27之B之像素51之構成被設為基本上與圖2所示之像素51之構成相同,但於基板61之光入射面側界面新追加形成有P+半導體區域601。
藉由對形成於基板61之光入射面側界面之P+半導體區域601,自像素陣列部20之內部或外部施加0 V以下之電壓(負偏壓),而強化Z方向之電場。圖27之B之像素51之基板61內之箭頭表示基板61內之Z方向之電場之強度。圖27之B之基板61內所描繪之箭頭之粗細係較圖27之A之像素51之箭頭粗,Z方向之電場更強。藉由如此對形成於基板61之光入射面側之P+半導體區域601施加負偏壓,能夠強化Z方向之電場,而使信號擷取部65中之電子之擷取效率提高。
再者,用以對基板61之光入射面側施加電壓之構成並不限於設置P+半導體區域601之構成,可設為其他任意構成。亦可設為藉由如下方法施加負偏壓,即,例如於基板61之光入射面與晶載透鏡62之間藉由積層而形成透明電極膜,並對該透明電極膜施加電壓。
<第14實施形態> <像素之構成例> 進而,為了使像素51對於紅外線之感度提高,亦可於基板61之與光入射面為相反側之面上設置大面積之反射構件。
於此種情形時,像素51係如例如圖28所示般構成。再者,於圖28中對與圖2之情形對應之部分標註相同之符號,並適當省略其說明。
圖28所示之像素51之構成係於在基板61之與光入射面為相反側之面上設置有反射構件631之方面與圖2之像素51不同,於其他方面為與圖2之像素51相同之構成。
於圖28所示之例中,以覆蓋基板61之與光入射面為相反側之整個面之方式設置有反射紅外光之反射構件631。
該反射構件631只要為紅外光之反射率較高者則可為任意反射構件。例如,可將設置於積層在基板61之與光入射面為相反側之面上之多層配線層內的銅或鋁等金屬(metal)用作反射構件631,亦可於基板61之與光入射面為相反側之面上形成多晶矽或氧化膜等反射構造以作為反射構件631。
藉由如此於像素51中設置反射構件631,能夠使經由晶載透鏡62自光入射面入射至基板61內且於基板61內未進行光電轉換地透過基板61之紅外光於反射構件631反射並再次入射至基板61內。藉此,能夠使於基板61內進行光電轉換之紅外光之量進一步增多,而使量子效率(QE)、亦即像素51對於紅外光之感度提高。
<第15實施形態> <像素之構成例> 進而,為了抑制附近像素中之光之錯誤偵測,亦可於基板61之與光入射面為相反側之面上設置大面積之遮光構件。
於此種情形時,像素51可設為例如將圖28所示之反射構件631替換為遮光構件之構成。即,於圖28所示之像素51中,覆蓋基板61之與光入射面為相反側之面整體之反射構件631被設為遮擋紅外光之遮光構件631'。遮光構件631'係由圖28之像素51之反射構件631代替。
該遮光構件631'只要為紅外光之遮光率較高者則可為任意遮光構件。例如,可將設置於積層在基板61之與光入射面為相反側之面上之多層配線層內的銅或鋁等金屬(metal)用作遮光構件631',亦可於基板61之與光入射面為相反側之面上形成多晶矽或氧化膜等遮光構造以作為遮光構件631'。
藉由如此於像素51中設置遮光構件631',能抑制經由晶載透鏡62自光入射面入射至基板61內且於基板61內未進行光電轉換地透過基板61之紅外光於配線層散射並入射至附近像素。藉此,能夠防止於附近像素中錯誤地偵測光。
再者,遮光構件631'亦可藉由以例如包含金屬之材料形成,而兼作反射構件631。
<第16實施形態> <像素之構成例> 進而,亦可設置包含P型半導體區域之P井區域以代替像素51之基板61中之氧化膜64。
於此種情形時,像素51係如例如圖29所示般構成。再者,於圖29中對與圖2之情形對應之部分標註相同之符號,並適當省略其說明。
圖29所示之像素51之構成係於設置有P井區域671、分離部672-1及分離部672-2以代替氧化膜64之方面與圖2所示之像素51不同,於其他方面為與圖2之像素51相同之構成。
於圖29所示之例中,於基板61內之與光入射面相反之面側、即圖中之下側之面之內側之中央部分形成有包含P型半導體區域之P井區域671。又,於P井區域671與N+半導體區域71-1之間,藉由氧化膜等形成有用以將該等區域分離之分離部672-1。同樣地,於P井區域671與N+半導體區域71-2之間,亦藉由氧化膜等形成有用以將該等區域分離之分離部672-2。於圖29所示之像素51中,與N-半導體區域72相比,P-半導體區域74為朝圖中之上方向更廣之區域。
<第17實施形態> <像素之構成例> 又,亦可設為除了像素51之基板61中之氧化膜64以外,進而設置有包含P型半導體區域之P井區域。
於此種情形時,像素51係如例如圖30所示般構成。再者,於圖30中對與圖2之情形對應之部分標註相同之符號,並適當省略其說明。
圖30所示之像素51之構成係於新設置有P井區域701之方面與圖2所示之像素51不同,於其他方面為與圖2之像素51相同之構成。即,於圖30所示之例中,於基板61內之氧化膜64之上側形成有包含P型半導體區域之P井區域701。
如上所述,根據本技術,藉由將CAPD感測器設為背面照射型之構成,能使像素感度等特性提高。
<像素之等效電路構成例> 圖31表示像素51之等效電路。
像素51係相對於包含N+半導體區域71-1及P+半導體區域73-1等之信號擷取部65-1,具有傳輸電晶體721A、FD722A、重置電晶體723A、放大電晶體724A及選擇電晶體725A。
又,像素51係相對於包含N+半導體區域71-2及P+半導體區域73-2等之信號擷取部65-2,具有傳輸電晶體721B、FD722B、重置電晶體723B、放大電晶體724B及選擇電晶體725B。
抽頭驅動部21對P+半導體區域73-1施加特定之電壓MIX0(第1電壓),對P+半導體區域73-2施加特定之電壓MIX1(第2電壓)。於上述例中,電壓MIX0及MIX1之一者為1.5 V,另一者為0 V。P+半導體區域73-1及73-2係被施加第1電壓或第2電壓之電壓施加部。
N+半導體區域71-1及71-2係檢測入射至基板61之光經光電轉換而產生之電荷並進行儲存之電荷檢測部。
傳輸電晶體721A係藉由當供給至閘極電極之驅動信號TRG變為有效狀態時對其進行回應而變為導通狀態,從而將儲存於N+半導體區域71-1之電荷傳輸至FD722A。傳輸電晶體721B係藉由當供給至閘極電極之驅動信號TRG變為有效狀態時對其進行回應而變為導通狀態,從而將儲存於N+半導體區域71-2之電荷傳輸至FD722B。
FD722A暫時保持自N+半導體區域71-1供給之電荷DET0。FD722B暫時保持自N+半導體區域71-2供給之電荷DET1。FD722A對應於參照圖2所說明之FD部A,FD722B對應於FD部B。
重置電晶體723A係藉由當供給至閘極電極之驅動信號RST變為有效狀態時對其進行回應而變為導通狀態,從而將FD722A之電位重置為特定之位準(電源電壓VDD)。重置電晶體723B係藉由當供給至閘極電極之驅動信號RST變為有效狀態時對其進行回應而變為導通狀態,從而將FD722B之電位重置為特定之位準(電源電壓VDD)。再者,當重置電晶體723A及723B被設為有效狀態時,傳輸電晶體721A及721B亦同時被設為有效狀態。
放大電晶體724A係藉由源極電極經由選擇電晶體725A而連接於垂直信號線29A,從而與連接於垂直信號線29A之一端之定電流源電路部726A之負載MOS構成源極隨耦器電路。放大電晶體724B係藉由源極電極經由選擇電晶體725B而連接於垂直信號線29B,從而與連接於垂直信號線29B之一端之定電流源電路部726B之負載MOS構成源極隨耦器電路。
選擇電晶體725A連接於放大電晶體724A之源極電極與垂直信號線29A之間。選擇電晶體725A係當供給至閘極電極之選擇信號SEL變為有效狀態時對其進行回應而變為導通狀態,從而將自放大電晶體724A輸出之像素信號輸出至垂直信號線29A。
選擇電晶體725B連接於放大電晶體724B之源極電極與垂直信號線29B之間。選擇電晶體725B係當供給至閘極電極之選擇信號SEL變為有效狀態時對其進行回應而變為導通狀態,從而將自放大電晶體724B輸出之像素信號輸出至垂直信號線29B。
像素51之傳輸電晶體721A及721B、重置電晶體723A及723B、放大電晶體724A及724B、以及選擇電晶體725A及725B例如由垂直驅動部22控制。
<像素之其他等效電路構成例> 圖32表示像素51之其他等效電路。
於圖32中對與圖31對應之部分標註相同之符號,並適當省略其說明。
圖32之等效電路係相對於圖31之等效電路,對信號擷取部65-1及65-2之兩者追加有附加電容727及控制其連接之切換電晶體728。
具體而言,於傳輸電晶體721A與FD722A之間經由切換電晶體728A而連接有附加電容727A,於傳輸電晶體721B與FD722B之間經由切換電晶體728B而連接有附加電容727B。
切換電晶體728A係藉由當供給至閘極電極之驅動信號FDG變為有效狀態時對其進行回應而變為導通狀態,從而使附加電容727A連接於FD722A。切換電晶體728B係藉由當供給至閘極電極之驅動信號FDG變為有效狀態時對其進行回應而變為導通狀態,從而使附加電容727B連接於FD722B。
垂直驅動部22例如於入射光之光量較多之高照度時,將切換電晶體728A及728B設為有效狀態,連接FD722A與附加電容727A,並且連接FD722B與附加電容727B。藉此,於高照度時,能夠儲存更多之電荷。
另一方面,於入射光之光量較少之低照度時,垂直驅動部22將切換電晶體728A及728B設為無效狀態,將附加電容727A及727B分別與FD722A及722B斷開。
亦可如圖31之等效電路般省略附加電容727,但藉由設置附加電容727並根據入射光量而適當使用,能夠確保高動態範圍。
<電壓供給線之配置例> 其次,參照圖33至圖35,針對用以對各像素51之信號擷取部65之作為電壓施加部之P+半導體區域73-1及73-2施加特定之電壓MIX0或MIX1的電壓供給線之配置進行說明。圖33及圖34所示之電壓供給線741對應於圖1所示之電壓供給線30。
再者,於圖33及圖34中,採用圖9所示之圓形形狀之構成作為各像素51之信號擷取部65之構成而進行說明,但當然亦可為其他構成。
圖33之A係表示電壓供給線之第1配置例之俯視圖。
於第1配置例中,相對於呈矩陣狀地二維配置之複數個像素51,於在水平方向上鄰接之2個像素之間(交界),沿著垂直方向佈線有電壓供給線741-1或741-2。
電壓供給線741-1連接於作為在像素51內存在2個之信號擷取部65中之一者之信號擷取部65-1之P+半導體區域73-1。電壓供給線741-2連接於作為在像素51內存在2個之信號擷取部65中之另一者之信號擷取部65-2之P+半導體區域73-2。
於該第1配置例中,由於相對於像素2行,配置有2條電壓供給線741-1及741-2,故而於像素陣列部20中,排列之電壓供給線741之條數與像素51之行數大致相等。
圖33之B係表示電壓供給線之第2配置例之俯視圖。
於第2配置例中,相對於呈矩陣狀地二維配置之複數個像素51之1個像素行,沿著垂直方向佈線有2條電壓供給線741-1及741-2。
電壓供給線741-1連接於作為在像素51內存在2個之信號擷取部65中之一者之信號擷取部65-1之P+半導體區域73-1。電壓供給線741-2連接於作為在像素51內存在2個之信號擷取部65中之另一者之信號擷取部65-2之P+半導體區域73-2。
於該第2配置例中,由於相對於1個像素行,佈線有2條電壓供給線741-1及741-2,故而相對於像素2行,配置有4條電壓供給線741。於像素陣列部20中,排列之電壓供給線741之條數為像素51之行數之約2倍。
圖33之A及B之配置例均為電壓供給線741-1連接於信號擷取部65-1之P+半導體區域73-1,電壓供給線741-2連接於信號擷取部65-2之P+半導體區域73-2之構成,但為相對於在垂直方向上排列之像素週期性地重複之Periodic配置(週期性配置)。
圖33之A之第1配置例能夠減少相對於像素陣列部20佈線之電壓供給線741-1及741-2之條數。
圖33之B之第2配置例若與第1配置例進行比較,則配線之條數變多,但由於連接於1條電壓供給線741之信號擷取部65之數量變為1/2,故而能夠降低配線之負載,於高速驅動或像素陣列部20之總像素數較多時有效。
圖34之A係表示電壓供給線之第3配置例之俯視圖。
第3配置例係與圖33之A之第1配置例同樣地,相對於像素2行配置有2條電壓供給線741-1及741-2之例。
第3配置例與圖33之A之第1配置例不同之方面係於在垂直方向上排列之2個像素中,信號擷取部65-1及65-2之連接目標不同之方面。
具體而言,例如,於某一像素51中,電壓供給線741-1連接於信號擷取部65-1之P+半導體區域73-1,電壓供給線741-2連接於信號擷取部65-2之P+半導體區域73-2,但於其下或其上之像素51中,電壓供給線741-1連接於信號擷取部65-2之P+半導體區域73-2,電壓供給線741-2連接於信號擷取部65-1之P+半導體區域73-1。
圖34之B係表示電壓供給線之第4配置例之俯視圖。
第4配置例係與圖33之B之第2配置例同樣地,相對於像素2行,配置有2條電壓供給線741-1及741-2之例。
第4配置例與33之B之第2配置例不同之方面係於在垂直方向上排列之2個像素中,信號擷取部65-1及65-2之連接目標不同之方面。
具體而言,例如,於某一像素51中,電壓供給線741-1連接於信號擷取部65-1之P+半導體區域73-1,電壓供給線741-2連接於信號擷取部65-2之P+半導體區域73-2,但於其下或其上之像素51中,電壓供給線741-1連接於信號擷取部65-2之P+半導體區域73-2,電壓供給線741-2連接於信號擷取部65-1之P+半導體區域73-1。
圖34之A之第3配置例能夠減少相對於像素陣列部20佈線之電壓供給線741-1及741-2之條數。
圖34之B之第4配置例若與第3配置例進行比較,則佈線之條數變多,但由於連接於1條電壓供給線741之信號擷取部65之數量變為1/2,故而能夠降低配線之負載,於高速驅動或像素陣列部20之總像素數較多時有效。
圖34之A及B之配置例均為相對於上下(垂直方向上)鄰接之2個像素之連接目標被鏡像反轉之鏡像配置(Mirror配置)。
如圖35之A所示,週期性配置係由於施加於隔著像素交界而鄰接之2個信號擷取部65之電壓變為不同之電壓,故而產生鄰接像素間之電荷之授受。因此,電荷之傳輸效率較鏡像配置良好,但鄰接像素之串音特性較鏡像配置差。
另一方面,如圖35之B所示,鏡像配置係由於施加於隔著像素交界而鄰接之2個信號擷取部65之電壓變為相同之電壓,故而鄰接像素間之電荷之授受被抑制。因此,電荷之傳輸效率較週期性配置差,但鄰接像素之串音特性較週期性配置良好。
<第14實施形態之複數個像素之剖面構成> 於圖2等所示之像素之剖面構成中,省略了形成於基板61之與光入射面相反之表面側之多層配線層之圖示。
因此,以下,針對上述實施形態中之若干個,以不省略多層配線層之形式示出鄰接之複數個像素之剖視圖。
首先,於圖36及圖37中,表示圖28所示之第14實施形態之複數個像素之剖視圖。
圖28所示之第14實施形態係於基板61之與光入射面相反之側具備大面積之反射構件631之像素之構成。
圖36相當於圖11之B-B'線處之剖視圖,圖37相當於圖11之A-A'線處之剖視圖。又,圖17之C-C'線處之剖視圖亦可如圖36般表示。
如圖36所示,於各像素51中,於中心部分形成有氧化膜64,於該氧化膜64之兩側分別形成有信號擷取部65-1及信號擷取部65-2。
於信號擷取部65-1中,以P+半導體區域73-1及P-半導體區域74-1為中心,以包圍該等P+半導體區域73-1及P-半導體區域74-1之周圍之方式形成有N+半導體區域71-1及N-半導體區域72-1。P+半導體區域73-1及N+半導體區域71-1係與多層配線層811接觸。P-半導體區域74-1以覆蓋P+半導體區域73-1之方式配置於P+半導體區域73-1之上方(晶載透鏡62側),N-半導體區域72-1以覆蓋N+半導體區域71-1之方式配置於N+半導體區域71-1之上方(晶載透鏡62側)。換言之,P+半導體區域73-1及N+半導體區域71-1配置於基板61內之多層配線層811側,N-半導體區域72-1及P-半導體區域74-1配置於基板61內之晶載透鏡62側。又,於N+半導體區域71-1與P+半導體區域73-1之間,藉由氧化膜等形成有用以將該等區域分離之分離部75-1。
於信號擷取部65-2中,以P+半導體區域73-2及P-半導體區域74-2為中心,以包圍該等P+半導體區域73-2及P-半導體區域74-2之周圍之方式形成有N+半導體區域71-2及N-半導體區域72-2。P+半導體區域73-2及N+半導體區域71-2係與多層配線層811接觸。P-半導體區域74-2係以覆蓋P+半導體區域73-2之方式配置於P+半導體區域73-2之上方(晶載透鏡62側),N-半導體區域72-2係以覆蓋N+半導體區域71-2之方式配置於N+半導體區域71-2之上方(晶載透鏡62側)。換言之,P+半導體區域73-2及N+半導體區域71-2配置於基板61內之多層配線層811側,N-半導體區域72-2及P-半導體區域74-2配置於基板61內之晶載透鏡62側。又,於N+半導體區域71-2與P+半導體區域73-2之間亦藉由氧化膜等形成有用以將該等區域分離之分離部75-2。
於作為相鄰之像素51彼此之交界區域之特定像素51之信號擷取部65-1之N+半導體區域71-1與其旁邊之像素51之信號擷取部65-2之N+半導體區域71-2之間亦形成有氧化膜64。
於基板61之光入射面側(圖36及圖37中之上表面)之界面形成有固定電荷膜66。
如圖36所示,當將針對每個像素形成於基板61之光入射面側之晶載透鏡62於高度方向上分為於像素內之區域整個面厚度均勻地加高而成之加高部821、與根據像素內之位置而厚度不同之曲面部822時,加高部821之厚度形成為較曲面部822之厚度薄。由於加高部821之厚度越厚則斜向之入射光越容易於像素間遮光膜63反射,故而可藉由將加高部821之厚度形成得較薄,而亦將斜向之入射光擷取至基板61內。又,曲面部822之厚度越厚,則越能將入射光聚光於像素中心。
針對每個像素形成有晶載透鏡62之基板61之與光入射面側相反之側形成有多層配線層811。換言之,於晶載透鏡62與多層配線層811之間配置有作為半導體層之基板61。多層配線層811包含5層金屬膜M1至M5及其間之層間絕緣膜812。再者,於圖36中,由於多層配線層811之5層金屬膜M1至M5中之最外側之金屬膜M5處於看不見之部位,故而未圖示,但於作為自與圖36之剖視圖不同之方向觀察時之剖視圖之圖37中予以圖示。
如圖37所示,於多層配線層811之與基板61之界面部分之像素交界區域形成有像素電晶體Tr。像素電晶體Tr係圖31及圖32中所示之傳輸電晶體721、重置電晶體723、放大電晶體724及選擇電晶體725中之任一者。
於多層配線層811之5層金屬膜M1至M5中之最接近基板61之金屬膜M1中包含用以供給電源電壓之電源線813、用以對P+半導體區域73-1或73-2施加特定之電壓之電壓施加配線814及作為反射入射光之構件之反射構件815。於圖36之金屬膜M1中,除了電源線813及電壓施加配線814以外之配線成為反射構件815,但為了防止圖變得繁雜,而省略了一部分符號。反射構件815係出於反射入射光之目的而設置之虛設配線,相當於圖28所示之反射構件631。反射構件815係以於俯視時與作為電荷檢測部之N+半導體區域71-1及71-2重疊之方式,配置於N+半導體區域71-1及71-2之下方。再者,於設置第15實施形態之遮光構件631'以代替圖28所示之第14實施形態之反射構件631之情形時,圖36之反射構件815之部分成為遮光構件631'。
又,於金屬膜M1中,為了將儲存於N+半導體區域71之電荷傳輸至FD722,亦形成有連接N+半導體區域71與傳輸電晶體721之電荷擷取配線(圖36中未圖示)。
再者,於該例中,將反射構件815(反射構件631)及電荷擷取配線配置於金屬膜M1之同一層,但未必限定於配置於同一層者。
於自基板61側起第2層金屬膜M2中,例如形成有連接於金屬膜M1之電壓施加配線814之電壓施加配線816、傳輸驅動信號TRG、驅動信號RST、選擇信號SEL及驅動信號FDG等之控制線817、以及接地線等。又,於金屬膜M2中,形成有FD722B或附加電容727A。
於自基板61側起第3層金屬膜M3中,例如形成有垂直信號線29或屏蔽用之VSS(Voltage Source Source,電壓源)配線等。
於自基板61側起第4層及第5層金屬膜M4及M5中,例如形成有用以對信號擷取部65之作為電壓施加部之P+半導體區域73-1及73-2施加特定之電壓MIX0或MIX1之電壓供給線741-1及741-2(圖33、圖34)。
再者,關於多層配線層811之5層金屬膜M1至M5之平面配置,參照圖42及圖43於下文敍述。
<第9實施形態之複數個像素之剖面構成> 圖38係針對圖22所示之第9實施形態之像素構造,以不省略多層配線層之形式示出複數個像素之剖視圖。
圖22所示之第9實施形態係具備分離區域441之像素之構成,該分離區域441係於基板61內之像素交界部分自基板61之背面(光入射面)側起形成較長之槽(溝槽)至特定深度為止,並嵌埋遮光膜而成。
關於包含信號擷取部65-1及65-2、以及多層配線層811之5層金屬膜M1至M5等之其他構成,與圖36所示之構成相同。
<第9實施形態之變化例1之複數個像素之剖面構成> 圖39係針對圖23所示之第9實施形態之變化例1之像素構造,以不省略多層配線層之形式示出複數個像素之剖視圖。
圖23所示之第9實施形態之變化例1係於基板61內之像素交界部分具備貫通基板61整體之分離區域471之像素之構成。
關於包含信號擷取部65-1及65-2、以及多層配線層811之5層金屬膜M1至M5等之其他構成,與圖36所示之構成相同。
<第16實施形態之複數個像素之剖面構成> 圖40係針對圖29所示之第16實施形態之像素構造,以不省略多層配線層之形式示出複數個像素之剖視圖。
圖29所示之第16實施形態係於基板61內之與光入射面相反之面側、即圖中之下側之面之內側之中央部分具備P井區域671之構成。又,於P井區域671與N+半導體區域71-1之間藉由氧化膜等形成有分離部672-1。同樣地,於P井區域671與N+半導體區域71-2之間亦藉由氧化膜等形成有分離部672-2。於基板61之下側之面之像素交界部分亦形成有P井區域671。
關於包含信號擷取部65-1及65-2、以及多層配線層811之5層金屬膜M1至M5等之其他構成,與圖36所示之構成相同。
<第10實施形態之複數個像素之剖面構成> 圖41係針對圖24所示之第10實施形態之像素構造,以不省略多層配線層之形式示出複數個像素之剖視圖。
圖24所示之第10實施形態係設置有基板厚度較厚之基板501以代替基板61之像素之構成。
關於包含信號擷取部65-1及65-2、以及多層配線層811之5層金屬膜M1至M5等之其他構成,與圖36所示之構成相同。
<5層金屬膜M1至M5之平面配置例> 其次,參照圖42及圖43,對圖36至圖41中所示之多層配線層811之5層金屬膜M1至M5之平面配置例進行說明。
圖42之A表示作為多層配線層811之5層金屬膜M1至M5中之第1層之金屬膜M1的平面配置例。
圖42之B表示作為多層配線層811之5層金屬膜M1至M5中之第2層之金屬膜M2的平面配置例。
圖42之C表示作為多層配線層811之5層金屬膜M1至M5中之第3層之金屬膜M3的平面配置例。
圖43之A表示作為多層配線層811之5層金屬膜M1至M5中之第4層之金屬膜M4的平面配置例。
圖43之B表示作為多層配線層811之5層金屬膜M1至M5中之第5層之金屬膜M5的平面配置例。
再者,於圖42之A至C及圖43之A及B中,以虛線表示像素51之區域及圖11所示之具有八邊形形狀之信號擷取部65-1及65-2之區域。
於圖42之A至C及圖43之A及B中,圖式之縱向為像素陣列部20之垂直方向,圖式之橫向為像素陣列部20之水平方向。
於作為多層配線層811之第1層之金屬膜M1中,如圖42之A所示般形成有反射紅外光之反射構件631。於像素51之區域中,相對於信號擷取部65-1及65-2各者形成有2片反射構件631,信號擷取部65-1之2片反射構件631與信號擷取部65-1之2片反射構件631相對於垂直方向對稱地形成。
又,於水平方向上之相鄰之像素51之反射構件631之間配置有像素電晶體配線區域831。於像素電晶體配線區域831中,形成有連接傳輸電晶體721、重置電晶體723、放大電晶體724或選擇電晶體725之像素電晶體Tr間之配線。該像素電晶體Tr用之配線亦以2個信號擷取部65-1及65-2之中間線(未圖示)為基準於垂直方向上對稱地形成。
又,於垂直方向上之相鄰之像素51之反射構件631之間形成有接地線832、電源線833、接地線834等配線。該等配線亦以2個信號擷取部65-1及65-2之中間線為基準於垂直方向上對稱地形成。
藉由如此使第1層金屬膜M1於像素內之信號擷取部65-1側之區域、與信號擷取部65-2側之區域中對稱地配置,而配線負載於信號擷取部65-1及65-2中被調整為均等。藉此,使信號擷取部65-1及65-2之驅動偏差減小。
於第1層金屬膜M1中,藉由在形成於基板61之信號擷取部65-1及65-2之下側形成大面積之反射構件631,能夠使經由晶載透鏡62入射至基板61內且於基板61內未進行光電轉換地透過基板61之紅外光於反射構件631反射並再次入射至基板61內。藉此,能夠使於基板61內進行光電轉換之紅外光之量進一步增多,而使量子效率(QE)、亦即像素51對於紅外光之感度提高。
另一方面,於在第1層金屬膜M1中,於與反射構件631相同之區域配置遮光構件631'以代替反射構件631之情形時,能夠抑制經由晶載透鏡62自光入射面入射至基板61內且於基板61內未進行光電轉換地透過基板61之紅外光於配線層散射,並入射至附近像素。藉此,能夠防止於附近像素中錯誤地偵測光。
於作為多層配線層811之第2層之金屬膜M2中,如圖42之B所示般,於信號擷取部65-1與65-2之間之位置配置有控制線區域851,該控制線區域851形成有於水平方向上傳輸特定之信號之控制線841至844等。控制線841至844例如為傳輸驅動信號TRG、驅動信號RST、選擇信號SEL或驅動信號FDG之線。
藉由將控制線區域851配置於2個信號擷取部65之間,而對於信號擷取部65-1及65-2之各者之影響變得均等,能夠減小信號擷取部65-1與65-2之驅動偏差。
又,於與作為第2層之金屬膜M2之控制線區域851不同之特定區域中,配置有形成有FD722B或附加電容727A之電容區域852。於電容區域852中,藉由將金屬膜M2圖案形成為梳齒形狀,而構成有FD722B或附加電容727A。
藉由將FD722B或附加電容727A配置於作為第2層之金屬膜M2,能夠根據設計上之所期望之配線電容,自由地配置FD722B或附加電容727A之圖案,能夠使設計自由度提高。
於作為多層配線層811之第3層之金屬膜M3中,如圖42之C所示般,至少形成有將自各像素51輸出之像素信號傳輸至行處理部23之垂直信號線29。垂直信號線29係為了提高像素信號之讀出速度,而可相對於1個像素行配置3條以上。又,除了垂直信號線29以外,亦可配置屏蔽配線,而使耦合電容降低。
於多層配線層811之第4層之金屬膜M4及第5層之金屬膜M5中,形成有用以對各像素51之信號擷取部65之P+半導體區域73-1及73-2施加特定之電壓MIX0或MIX1之電壓供給線741-1及741-2。
圖43之A及B所示之金屬膜M4及金屬膜M5表示採用圖33之A所示之第1配置例之電壓供給線741之情形之例。
金屬膜M4之電壓供給線741-1經由金屬膜M3及M2而連接於金屬膜M1之電壓施加配線814(例如,圖36),電壓施加配線814連接於像素51之信號擷取部65-1之P+半導體區域73-1。同樣地,金屬膜M4之電壓供給線741-2經由金屬膜M3及M2而連接於金屬膜M1之電壓施加配線814(例如,圖36),電壓施加配線814連接於像素51之信號擷取部65-2之P+半導體區域73-2。
金屬膜M5之電壓供給線741-1及741-2連接於像素陣列部20之周邊之抽頭驅動部21。金屬膜M4之電壓供給線741-1與金屬膜M5之電壓供給線741-1係於平面區域中在兩金屬膜存在之特定位置藉由未圖示之通孔等而連接。來自抽頭驅動部21之特定之電壓MIX0或MIX1沿著金屬膜M5之電壓供給線741-1及741-2傳輸,被供給至金屬膜M4之電壓供給線741-1及741-2,且自電壓供給線741-1及741-2經由金屬膜M3及M2而供給至金屬膜M1之電壓施加配線814。
藉由將受光元件1設為背面照射型CAPD感測器,能夠自由地設計驅動配線之配線寬度及佈局,例如,可如圖43之A及B所示般於垂直方向上佈線用以對各像素51之信號擷取部65施加特定之電壓MIX0或MIX1之電壓供給線741-1及741-2等。又,亦可為適合高速驅動之配線、或考慮了負載降低之配線。
<像素電晶體之平面配置例> 圖44係將圖42之A所示之第1層金屬膜M1、與形成於其上之形成像素電晶體Tr之閘極電極等之多晶矽層重合所得之俯視圖。
圖44之A係將圖44之C之金屬膜M1與圖44之B之多晶矽層重合所得之俯視圖,圖44之B係僅多晶矽層之俯視圖,圖44之C係僅金屬膜M1之俯視圖。圖44之C之金屬膜M1之俯視圖係與圖42之A所示之俯視圖相同,但省略了影線。
如參照圖42之A所說明般,於各像素之反射構件631之間形成有像素電晶體配線區域831。
於像素電晶體配線區域831中,如例如圖44之B所示般配置有對應於信號擷取部65-1及65-2各者之像素電晶體Tr。
於圖44之B中,以2個信號擷取部65-1及65-2之中間線(未圖示)為基準,自靠近中間線之側起形成有重置電晶體723A及723B、傳輸電晶體721A及721B、切換電晶體728A及728B、選擇電晶體725A及725B、以及放大電晶體724A及724B之閘極電極。
圖44之C所示之金屬膜M1之連接像素電晶體Tr之配線亦以2個信號擷取部65-1及65-2之中間線(未圖示)為基準於垂直方向上對稱地形成。
如此,藉由在信號擷取部65-1側之區域、及信號擷取部65-2側之區域中對稱地配置像素電晶體配線區域831內之複數個像素電晶體Tr,能夠使信號擷取部65-1與65-2之驅動偏差減小。
<反射構件631之變化例> 其次,參照圖45及圖46,對形成於金屬膜M1之反射構件631之變化例進行說明。
於上述例中,如圖42之A所示般,於像素51內之成為信號擷取部65周邊之區域中配置有大面積之反射構件631。
相對於此,反射構件631亦可如例如圖45之A所示般,以格子形狀之圖案配置。如此,藉由以格子形狀之圖案形成反射構件631,能夠消除圖案各向異性,能夠降低反射能力之XY各向異性。換言之,藉由以格子形狀之圖案形成反射構件631,能夠減少入射光朝偏倚之局部區域之反射,而容易使其各向同性地反射,因此測距精度提高。
抑或者,反射構件631亦可如例如圖45之B所示般以條紋形狀之圖案配置。如此,藉由以條紋形狀之圖案形成反射構件631,可將反射構件631之圖案亦用作配線電容,因此可實現將動態範圍擴大至最大限度之構成。
再者,圖45之B為垂直方向之條紋形狀之例,但亦可設為水平方向之條紋形狀。
抑或者,反射構件631亦可如例如圖45之C所示般僅配置於像素中心區域、更具體而言僅配置於2個信號擷取部65之間。如此,藉由將反射構件631形成於像素中心區域且於像素端不形成,能夠對於像素中心區域在獲得利用反射構件631所產生之感度提高之效果的同時抑制斜向光入射之情形時之向鄰接像素反射之分量,可實現重視串音之抑制之構成。
又,反射構件631亦可藉由如例如圖46之A所示般將一部分圖案配置成梳齒形狀,而將金屬膜M1之一部分分配為FD722或附加電容727之配線電容。於圖46之A中,由實線之圓包圍之區域861至864內之梳齒形狀構成FD722或附加電容727之至少一部分。FD722或附加電容727亦可適當分配於金屬膜M1及金屬膜M2地配置。可將金屬膜M1之圖案平衡良好地配置為反射構件631、及FD722或附加電容727之電容。
圖46之B表示不配置反射構件631之情形時之金屬膜M1之圖案。為了使於基板61內進行光電轉換之紅外光之量進一步增多,而使像素51之感度提高,較佳為配置反射構件631,但亦可採用不配置反射構件631之構成。
圖45及圖46所示之反射構件631之配置例於遮光構件631'中亦可同樣地應用。
<受光元件之基板構成例> 圖1之受光元件1可採用圖47之A至C中之任一者之基板構成。
圖47之A表示以1片半導體基板911及其下之支持基板912構成受光元件1之例。
於該情形時,於上側之半導體基板911形成有對應於上述像素陣列部20之像素陣列區域951、控制像素陣列區域951之各像素之控制電路952、及包含像素信號之信號處理電路之邏輯電路953。
控制電路952中包含上述抽頭驅動部21、垂直驅動部22及水平驅動部24等。邏輯電路953中包含行處理部23或信號處理部31,該行處理部23進行像素信號之AD轉換處理等,該信號處理部31進行根據藉由像素內之2個以上之信號擷取部65各自所獲取之像素信號之比率算出距離之距離算出處理及校準處理等。
抑或者,受光元件1亦可如圖47之B所示般設為積層形成有像素陣列區域951及控制電路952之第1半導體基板921、與形成有邏輯電路953之第2半導體基板922而成之構成。再者,第1半導體基板921與第2半導體基板922例如藉由貫通導通孔或Cu-Cu之金屬鍵而電性連接。
抑或者,受光元件1亦可如圖47之C所示般設為積層第1半導體基板931與第2半導體基板932而成之構成,該第1半導體基板931僅形成有像素陣列區域951,該第2半導體基板932形成有將控制各像素之控制電路及處理像素信號之信號處理電路設置於1像素單位或複數個像素之區域單位之區域控制電路954。第1半導體基板931與第2半導體基板932例如藉由貫通導通孔或Cu-Cu之金屬鍵而電性連接。
根據如圖47之C之受光元件1般於1像素單位或區域單位中設置控制電路及信號處理電路之構成,可針對每個分割控制單位設定最佳之驅動時序或增益,可無關於距離或反射率地獲取最佳化之距離資訊。又,由於亦可僅驅動一部分區域而並非驅動像素陣列區域951之整個面,來算出距離資訊,故而亦可根據動作模式來抑制消耗電力。
<第18實施形態> <像素之構成例> 其次,除了上述第1至第17實施形態以外,進而對其他實施形態進行說明。例如,於使基板61之厚度變厚之情形時等,存在遠離作為電壓施加部之P+半導體區域73或作為電荷檢測部之N+半導體區域71之光電轉換區域之電場變弱之擔憂。因此,於以下之實施形態中,對強化光電轉換區域之電場來實現量子效率(QE)之改善及高速驅動之構成進行說明。
圖48係第18實施形態之像素之剖視圖。
圖48係與上述圖36等同樣地,表示相當於圖11之B-B'線之複數個像素之剖視圖。
於圖48中,對與圖36所示之第14實施形態之複數個像素之剖視圖對應之部分標註相同之符號,並適當省略該部分之說明。
若對圖48之第18實施形態之像素51之構成與圖36所示之第14實施形態之像素51之構成進行比較,則可發現於作為鄰接之像素51之交界部分之像素交界部,新形成有貫通作為P型半導體層之基板61且將鄰接之像素51分離之貫通電極1001、及覆蓋貫通電極1001之外周(側壁)之絕緣膜1002。貫通電極1001例如由鎢(W)、鋁(Al)、銅(Cu)、鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)等金屬材料、或多晶矽等形成。絕緣膜1002例如由氧化矽(SiO2 )或氮氧化矽(SiON)等形成。此外,絕緣膜1002之材料亦可為包含鉿(Hf)、鋁(Al)、鋯(Zr)、鉭(Ta)及鈦(Ti)中之至少1種元素之氧化物或氮化物、包含鑭(La)、鐠(Pr)、鈰(Ce)、釹(Nd)、鉕(Pm)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、銩(Tm)、鐿(Yb)、鎦(Lu)及釔(Y)中之至少1種元素之氧化物或氮化物等。貫通電極1001作為將相鄰之像素51之半導體層(基板61)分離之像素分離部發揮功能。再者,亦可理解為由包含外周部之絕緣膜1002在內之貫通電極1001及絕緣膜1002構成像素分離部。
貫通電極1001係與多層配線層811之最靠近基板61之金屬膜即金屬膜M1之電壓施加配線1011電性連接,且對於貫通電極1001經由電壓施加配線1011而施加特定之偏壓(電壓)。此處,施加於貫通電極1001之偏壓係較施加於被設為無效抽頭之信號擷取部65之P+半導體區域73之電壓低之電壓,於上述例中,由於對被設為無效抽頭之信號擷取部65之P+半導體區域73施加0 V,故而成為低於0 V之電壓、即負偏壓。
貫通電極1001及絕緣膜1002可藉由如下方式形成,即,自基板61之正面側或背面側藉由乾式蝕刻等形成溝槽直至到達相反側基板面為止,並於形成絕緣膜1002之後,嵌埋成為貫通電極1001之多晶矽或金屬材料。
圖49係俯視觀察圖48之複數個像素51所得之俯視圖。
如圖49所示,貫通電極1001係以成為格子狀之方式配置於鄰接之像素51之交界部分,絕緣膜1002係以覆蓋貫通電極1001之側壁之方式形成。
根據第18實施形態之像素51,於像素51之交界部分形成貫通電極1001作為像素分離部,對該貫通電極1001施加負偏壓。藉此,可強化朝向信號擷取部65(抽頭)之平面方向之電場,可實現量子效率(QE)之改善及高速驅動。又,耐高速驅動性提高。
再者,圖49係1個像素51具有2個信號擷取部65之所謂2抽頭像素構造,但像素51具有4個信號擷取部之所謂4抽頭像素構造之情形時之俯視圖係如圖50所示。
圖50係表示圖17中所示之4抽頭像素構造中之貫通電極1001及絕緣膜1002之配置例之俯視圖。
於像素51為4抽頭像素構造之情形時,亦與2抽頭之情形同樣,貫通電極1001以成為格子狀之方式配置於鄰接之像素51之交界部分,絕緣膜1002以覆蓋貫通電極1001之外周(側壁)之方式形成。
<第18實施形態之變化例1> <像素之構成例> 於圖48及圖49所示之第18實施形態之像素51中,於像素51之整周之像素交界部形成有貫通電極1001及絕緣膜1002,但亦可如圖51及圖52所示般以將像素51之外周分成兩部分之方式形成貫通電極1001及絕緣膜1002。
圖51係像素51為2抽頭像素構造之情形時之第18實施形態之變化例之像素之俯視圖。
於像素51為2抽頭像素構造之情形時,藉由在與2個信號擷取部65之中間線(未圖示)交叉之像素交界部設置間隙部1003,而貫通電極1001及絕緣膜1002分離為一信號擷取部65側之貫通電極1001A及絕緣膜1002A、與另一信號擷取部65側之貫通電極1001B及絕緣膜1002B。
就1像素單位而言,像素51之貫通電極1001及絕緣膜1002包含以2個信號擷取部65之中間線為基準,配置於一信號擷取部65側之像素交界部之貫通電極1001A及絕緣膜1002A、與配置於另一信號擷取部65側之像素交界部之貫通電極1001B及絕緣膜1002B。
圖52係像素51為4抽頭像素構造之情形時之第18實施形態之變化例之像素之俯視圖。
於像素51為4抽頭像素構造之情形時,例如,藉由在與將4個信號擷取部65於垂直方向或水平方向上二分為2個單位之中間線(未圖示)交叉之像素交界部設置間隙部1003,而貫通電極1001及絕緣膜1002被分離為特定之2個信號擷取部65側之貫通電極1001A及絕緣膜1002A、與剩餘之2個信號擷取部65側之貫通電極1001B及絕緣膜1002B。圖52表示於與將4個信號擷取部65在垂直方向上二分為2個單位之中間線交叉之像素交界部設置有間隙部1003之構成例。
於如圖51及圖52所示般在鄰接之像素51之交界部分設置有間隙部1003之情形時,亦可藉由對貫通電極1001經由電壓施加配線1011施加負偏壓,而實現量子效率(QE)之改善及高速驅動。又,耐高速驅動性提高。
再者,於在像素分離部之一部分設置有間隙部1003之變化例中,與不設置間隙部1003而是包圍像素整周之像素分離部之構成同樣,既可對貫通電極1001A及1001B之兩者以相同之時序施加負偏壓,亦可以不同之時序施加負偏壓。
圖53係說明於像素51為2抽頭像素構造之情形時,對貫通電極1001A及1001B以不同之時序施加負偏壓之情形時之驅動之圖。
例如,如圖53之A所示,於對信號擷取部65-1之P+半導體區域73-1施加正電壓而將信號擷取部65-1設為有效抽頭之情形時,對作為無效抽頭側之像素分離部之貫通電極1001B施加負偏壓。
另一方面,如圖53之B所示,於對信號擷取部65-2之P+半導體區域73-2施加正電壓而將信號擷取部65-2設為有效抽頭之情形時,對作為無效抽頭側之像素分離部之貫通電極1001A施加負偏壓。負偏壓之施加例如可構成為由抽頭驅動部21進行。
如此,藉由對與被設為有效抽頭之信號擷取部65為相反側之無效抽頭側之像素分離部施加負偏壓,而強化自無效抽頭側向有效抽頭側之平面方向之電場,因此可實現量子效率(QE)之改善及高速驅動。又,耐高速驅動性提高。
圖54及圖55係表示對呈矩陣狀地二維配置之複數個像素51以不同之時序施加負偏壓之驅動之圖。
圖54表示像素51為2抽頭像素構造之情形,圖55表示像素51為4抽頭像素構造之情形。
貫通電極1001A及1001B之各者係於垂直方向上鄰接之2個像素51中被共用,故而若將垂直方向上鄰接之2個像素51設為第1像素51及第2像素51,則第1像素51之下側之信號擷取部65、及第2像素51之上側之信號擷取部65同時被設為有效抽頭,與此對應地,對無效抽頭側之像素分離部(貫通電極1001A或1001B)施加負偏壓。因此,於垂直方向上鄰接之2個像素51中,被設為有效抽頭之信號擷取部65、與被設為無效抽頭之信號擷取部65之位置相反。此種驅動可藉由圖34之A及B所示之電壓供給線之第3及第4配置例來實現。
<第19實施形態> <像素之構成例> 圖56係第19實施形態之像素之剖視圖。
圖56係與上述圖36等同樣,表示相當於圖11之B-B'線之複數個像素之剖視圖。
於圖56中,對與圖36所示之第14實施形態之複數個像素之剖視圖對應之部分標註相同之符號,並適當省略該部分之說明。
若對圖56之第19實施形態之像素51之構成與圖36所示之第14實施形態之像素51之構成進行比較,則於鄰接之像素51之交界部分,自作為P型半導體層之基板61之多層配線層811側之面起至特定深度為止,新形成有將鄰接之像素51分離之DTI(Deep Trench Isolation,深溝槽隔離)1021、及覆蓋DTI1021之外周(側壁)之絕緣膜1022。DTI1021例如由鎢(W)、鋁(Al)、銅(Cu)、鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)等金屬材料、或多晶矽等形成。絕緣膜1022例如由氧化矽(SiO2 )或氮氧化矽(SiON)等形成。此外,絕緣膜1022之材料亦可為包含鉿(Hf)、鋁(Al)、鋯(Zr)、鉭(Ta)及鈦(Ti)中之至少1種元素之氧化物或氮化物、包含鑭(La)、鐠(Pr)、鈰(Ce)、釹(Nd)、鉕(Pm)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、銩(Tm)、鐿(Yb)、鎦(Lu)及釔(Y)中之至少1種元素之氧化物或氮化物等。DTI1021作為將相鄰之像素51之半導體層(基板61)分離之像素分離部發揮功能。再者,亦可理解為由包含外周部之絕緣膜1022在內之DTI1021及絕緣膜1022構成像素分離部。
DTI1021係與多層配線層811之最靠近基板61之金屬膜即金屬膜M1之電壓施加配線1011電性連接,對於DTI1021經由電壓施加配線1011施加負偏壓。此處,施加於DTI1021之負偏壓係較施加於被設為無效抽頭之信號擷取部65之P+半導體區域73之電壓低之電壓。
DTI1021及絕緣膜1022可藉由如下方式形成,即,自基板61之正面側(多層配線層811側)起藉由乾式蝕刻等形成溝槽至特定深度為止,並於形成絕緣膜1022之後嵌埋成為DTI1021之多晶矽或金屬材料。
若對圖56之第19實施形態之像素51之構成與圖48所示之第18實施形態之像素51之構成進行比較,則第19實施形態之像素51於在像素交界部設置將作為P型半導體層之基板61分離之像素分離部,且對像素分離部經由電壓施加配線1011施加負偏壓之方面共通。另一方面,於DTI1021及絕緣膜1022不貫通基板61,而是僅自基板61之背面側起形成至特定深度之位置為止之方面與圖48所示之第18實施形態之像素51不同。
雖省略DTI1021及絕緣膜1022之俯視圖,但DTI1021係與圖49同樣,以成為格子狀之方式配置於二維配置之像素51之交界部分,絕緣膜1022以覆蓋DTI1021之側壁之方式形成。
根據第19實施形態之像素51,於像素51之交界部分形成DTI1021作為像素分離部,並對該DTI1021施加負偏壓。藉此,可強化朝向信號擷取部65(抽頭)之平面方向之電場,而可實現量子效率(QE)之改善及高速驅動。又,耐高速驅動性提高。
<第20實施形態> <像素之構成例> 圖57係第20實施形態之像素之剖視圖。
於圖57中,對與圖36所示之第14實施形態之複數個像素之剖視圖對應之部分標註相同之符號,並適當省略該部分之說明。
圖57表示相當於圖11之B-B'線之複數個像素之剖視圖,且表示呈矩陣狀地二維配置有像素51之像素陣列部20、及其周邊之周邊電路部1041之剖視圖。於周邊電路部1041中,如參照圖1所說明般,例如形成有抽頭驅動部21或垂直驅動部22等。
圖58係表示像素陣列部20與周邊電路部1041之位置關係之俯視圖。
如圖58所示,像素陣列部20包含配置有複數個像素51之有效像素區域1042、及其周圍之OPB(On-Chip Peripheral Bus,晶片內部周邊匯流排)像素區域1043,進而,於像素陣列部20之外周部配置有周邊電路部1041。於周邊電路部1041中,例如形成有作為受光元件1之輸入輸出端子之複數個電極墊1045。
返回至圖57,於像素陣列部20之有效像素區域1042中呈矩陣狀地配置有輸出與入射光之光量對應之信號之像素51。於OPB像素區域1043中配置有遮光像素51X,該遮光像素51X係於像素區域之整個區域中形成有像素間遮光膜63。像素間遮光膜63形成於像素陣列部20及周邊電路部1041之固定電荷膜66上,除了有效像素區域1042之各像素51之開口部以外(除像素交界部以外)。再者,於圖57之例中,遮光像素51X包含2行或2列,但亦可包含1行或1列,還可包含3行以上或3列以上。
若對圖57之第20實施形態之像素51之構成與圖36所示之第14實施形態之像素51之構成進行比較,則於鄰接之像素51之交界部分,自作為P型半導體層之基板61之光入射面至特定深度為止,新形成有將鄰接之像素51分離之DTI(Deep Trench Isolation,深溝槽隔離)1051、及覆蓋DTI1051之外周(側壁)之絕緣膜1052。DTI1051例如由鎢(W)、鋁(Al)、銅(Cu)、鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)等金屬材料、或多晶矽等。絕緣膜1052例如由氧化矽(SiO2 )、或氮氧化矽(SiON)等形成。此外,絕緣膜1052之材料亦可為包含鉿(Hf)、鋁(Al)、鋯(Zr)、鉭(Ta)及鈦(Ti)中之至少1種元素之氧化物或氮化物、包含鑭(La)、鐠(Pr)、鈰(Ce)、釹(Nd)、鉕(Pm)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、銩(Tm)、鐿(Yb)、鎦(Lu)及釔(Y)中之至少1種元素之氧化物或氮化物等。DTI1051作為將相鄰之像素51之半導體層(基板61)分離之像素分離部發揮功能。再者,亦可理解為由包含外周部之絕緣膜1052在內之DTI1051及絕緣膜1052構成像素分離部。DTI1051及絕緣膜1052係於OPB像素區域1043內之鄰接之遮光像素51X之交界部分亦與像素51同樣地形成。
DTI1051及絕緣膜1052可藉由如下方式形成,即,自基板61之光入射面側(晶載透鏡62側)起藉由乾式蝕刻等形成溝槽直至特定深度為止,並於形成絕緣膜1052之後,嵌埋成為DTI1051之多晶矽或金屬材料。
雖省略DTI1051及絕緣膜1052之俯視圖,但DTI1051係與圖49同樣,以成為格子狀之方式配置於二維配置之像素51之交界部分,絕緣膜1052以覆蓋DTI1051之側壁之方式形成。
DTI1051係於基板61之光入射面側與像素間遮光膜63連接。像素間遮光膜63亦與形成於周邊電路部1041之貫通電極1061連接,貫通電極1061與多層配線層811之電壓施加配線1063連接。貫通電極1061之外周(側壁)係由絕緣膜1062覆蓋。
對於形成於周邊電路部1041之多層配線層811之電壓施加配線1063供給負偏壓(負電壓),經由貫通電極1061及像素間遮光膜63對DTI1051形成負偏壓。
若對圖57之第20實施形態之像素51之構成與圖48所示之第18實施形態之像素51之構成進行比較,則第20實施形態之像素51係於在像素51之像素交界部設置將作為P型半導體層之基板61分離之像素分離部,並對像素分離部經由特定之電壓施加配線施加負偏壓之方面共通。
另一方面,於DTI1051及絕緣膜1052不貫通基板61,而是僅自基板61之光入射面側起形成至特定深度之位置為止之方面,與圖48所示之第18實施形態之像素51不同。又,對於作為像素分離部之DTI1051,自形成於較像素陣列部20靠外側之周邊電路部1041之電壓施加配線1063,經由形成於周邊電路部1041之貫通電極1061、及固定電荷膜66上表面之像素間遮光膜63,而對DTI1051施加負偏壓之方面亦不同。再者,除了自周邊電路部1041之電壓施加配線1063經由像素間遮光膜63對DTI1051施加負偏壓之構成以外,亦可設為自受光元件1之外部對固定電荷膜66上表面之像素間遮光膜63供給負偏壓,而施加至DTI1051之構成。
根據第20實施形態之像素51,於像素51之交界部分形成DTI1051作為像素分離部,並對該DTI1051施加負偏壓。藉此,可強化朝向信號擷取部65(抽頭)之平面方向之電場,而可實現量子效率(QE)之改善及高速驅動。又,耐高速驅動性提高。
<第21實施形態> <像素之構成例> 圖59係第21實施形態之像素之剖視圖。
圖59係與上述圖36等同樣,表示相當於圖11之B-B'線之複數個像素之剖視圖。
於圖59中,對與圖36所示之第14實施形態之複數個像素之剖視圖對應之部分標註相同之符號,並適當省略該部分之說明。
若對圖59之第21實施形態之像素51之構成與圖36所示之第14實施形態之像素51之構成進行比較,則於鄰接之像素51之交界部分在基板61之深度方向上之整個區域中,藉由例如離子注入而新形成有作為高濃度之P型半導體區域之P+半導體區域1071。P+半導體區域1071作為將相鄰之像素51之半導體層(基板61)分離之像素分離部發揮功能。
P+半導體區域1071係與多層配線層811之最靠近基板61之金屬膜即金屬膜M1之電壓施加配線1011電性連接,對P+半導體區域1071經由電壓施加配線1011施加負偏壓。
雖省略P+半導體區域1071之俯視圖,但P+半導體區域1071係與圖49同樣,以成為格子狀之方式形成於二維配置之像素51之交界部分。
根據第21實施形態之像素51,於鄰接之像素51之交界部分形成P+半導體區域1071作為像素分離部,且對該P+半導體區域1071施加負偏壓。藉此,可強化朝向信號擷取部65(抽頭)之平面方向之電場,而可實現量子效率(QE)之改善及高速驅動。 又,耐高速驅動性提高。
於上述第18至第21實施形態中,以對形成於像素51之像素交界部之像素分離部施加負偏壓之方式構成。此處,負偏壓係較施加於被設為無效抽頭之信號擷取部65之P+半導體區域73之電壓(0 V)低之電壓。藉此,可強化朝向信號擷取部65(抽頭)之平面方向之電場,而可實現量子效率(QE)之改善及高速驅動。又,耐高速驅動性提高。
<第22實施形態> <像素之構成例> 其次,除了上述第18至第21實施形態以外,進而對其他實施形態進行說明。
於上述第18至第21實施形態中,對使用形成於鄰接之像素51之交界部分之像素分離部施加負偏壓來強化平面方向之電場之構成進行了說明,但於以下之第22至第25實施形態中,對強化與基板61垂直之深度方向之電場之構成進行說明。
圖60係第22實施形態之像素之剖視圖。
圖60係與上述圖36等同樣,表示相當於圖11之B-B'線之複數個像素之剖視圖。
於圖60中,對與圖36所示之第14實施形態之複數個像素之剖視圖對應之部分標註相同之符號,並適當省略該部分之說明。
若對圖60之第22實施形態之像素51之構成與圖36所示之第14實施形態之像素51之構成進行比較,則於作為鄰接之像素51之交界部分之像素交界部新形成有貫通作為P型半導體層之基板61且將鄰接之像素51分離之貫通電極1101、及覆蓋貫通電極1101之外周(側壁)之絕緣膜1102。貫通電極1101例如由鎢(W)、鋁(Al)、銅(Cu)、鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)等金屬材料、或多晶矽等形成。絕緣膜1102例如由氧化矽(SiO2 )或氮氧化矽(SiON)等形成。此外,絕緣膜1102之材料亦可為包含鉿(Hf)、鋁(Al)、鋯(Zr)、鉭(Ta)及鈦(Ti)中之至少1種元素之氧化物或氮化物、包含鑭(La)、鐠(Pr)、鈰(Ce)、釹(Nd)、鉕(Pm)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、銩(Tm)、鐿(Yb)、鎦(Lu)及釔(Y)中之至少1種元素之氧化物或氮化物等。貫通電極1101作為將相鄰之像素51之半導體層(基板61)分離之像素分離部發揮功能。再者,亦可理解為由包含外周部之絕緣膜1102在內之貫通電極1101及絕緣膜1102構成像素分離部。
貫通電極1101及絕緣膜1102可藉由如下方式形成,即,自基板61之正面側或背面側起藉由乾式蝕刻等形成溝槽直至到達相反側基板面為止,並於形成絕緣膜1102之後,嵌埋成為貫通電極1101之多晶矽或金屬材料。
於形成於各像素51之基板61之光入射面之固定電荷膜66的上表面,形成有透明導電膜1103,透明導電膜1103於像素51之交界部分與貫通電極1101連接。作為透明導電膜1103,可採用ITO(Indium-tin-oxide,氧化銦錫)、ZnO、SnO、Cd2 SnO4 或TiO2 :Nb等材料。
貫通電極1101係與多層配線層811之最靠近基板61之金屬膜即金屬膜M1之電壓施加配線1111電性連接,對電壓施加配線1111供給負偏壓。電壓施加配線1111之負偏壓係經由貫通電極1101及透明導電膜1103而施加於固定電荷膜66。
根據第22實施形態之像素51,於像素51之交界部分形成有貫通電極1101作為像素分離部,並且於固定電荷膜66之上表面形成有透明導電膜1103。而且,自多層配線層811之電壓施加配線1111供給之負偏壓經由貫通電極1101及透明導電膜1103而施加至固定電荷膜66。藉此,可強化自基板61之光入射面朝向信號擷取部65(抽頭)之深度方向之電場,而可實現量子效率(QE)之改善及高速驅動。又,耐高速驅動性提高。
再者,於假設像素51中在基板61之光入射面上未形成固定電荷膜66之情形時,可採用於基板61之光入射面上形成包含氧化膜等之絕緣膜,且經由貫通電極1101及透明導電膜1103對絕緣膜施加負偏壓之構成。絕緣膜並不限於單層膜,亦可為積層膜。
<第23實施形態> <像素之構成例> 圖61係第23實施形態之像素之剖視圖。
圖61係與圖60等同樣,表示相當於圖11之B-B'線之複數個像素之剖視圖。
於圖61中,對與圖60所示之第22實施形態之複數個像素之剖視圖對應之部分標註相同之符號,並適當省略該部分之說明。
若對圖61之第23實施形態之像素51之構成與圖60所示之第22實施形態之像素51之構成進行比較,則第23實施形態之像素51於在像素51之交界部分形成有貫通電極1101、及覆蓋貫通電極1101之外周(側壁)之絕緣膜1102之方面共通。又,於貫通電極1101與多層配線層811之最靠近基板61之金屬膜M1之電壓施加配線1111電性連接,且對電壓施加配線1111供給負偏壓之方面亦共通。
另一方面,於圖60所示之第22實施形態之像素51中,於固定電荷膜66之上表面形成有透明導電膜1103,但於圖61之第23實施形態中,未形成透明導電膜1103,而是像素間遮光膜63貫通固定電荷膜66且與貫通電極1101連接之方面不同。像素間遮光膜63例如由鎢(W)、鋁(Al)、銅(Cu)等金屬材料形成,具有遮光性及導電性。
根據此種第23實施形態之像素51,於像素51之交界部分形成貫通電極1101作為像素分離部,並且貫通電極1101與像素間遮光膜63連接。而且,自多層配線層811之電壓施加配線1111供給之負偏壓經由貫通電極1101及像素間遮光膜63而施加於固定電荷膜66。藉此,可強化自基板61之光入射面朝向信號擷取部65(抽頭)之深度方向之電場,而可實現量子效率(QE)之改善及高速驅動。又,耐高速驅動性提高。
再者,於假設像素51中在基板61之光入射面上未形成固定電荷膜66之情形時,可採用於基板61之光入射面上形成包含氧化膜等之絕緣膜,且經由貫通電極1101及像素間遮光膜63對絕緣膜施加負偏壓之構成。絕緣膜並不限於單層膜,亦可為積層膜。
<第24實施形態> <像素之構成例> 圖62係第24實施形態之像素之剖視圖。
圖62係與圖60等同樣,表示相當於圖11之B-B'線之複數個像素之剖視圖。
於圖62中,對與圖60所示之第22實施形態之複數個像素之剖視圖對應之部分標註相同之符號,並適當省略該部分之說明。
若對圖62之第24實施形態之像素51之構成與圖60所示之第22實施形態之像素51之構成進行比較,則第24實施形態之像素51於在固定電荷膜66之上表面形成有透明導電膜1103之方面共通,於在與鄰接之像素51之交界部分未形成貫通電極1101及絕緣膜1102之方面不同。
於圖62之第24實施形態中,由於在像素陣列部20內未形成貫通電極1101,故而無法自貫通電極1101施加負偏壓。因此,於第24實施形態中,自形成於較像素陣列部20靠外側之周邊電路部1041之電壓施加配線1163經由貫通電極1161對透明導電膜1103供給負偏壓,並自透明導電膜1103對固定電荷膜66施加負偏壓。
即,於第24實施形態中,於較像素陣列部20靠外側之周邊電路部1041之多層配線層811形成有電壓施加配線1163,且對電壓施加配線1163供給負偏壓。又,於基板61之周邊電路部1041中形成有外周由絕緣膜1162覆蓋之貫通電極1161,貫通電極1161於基板61之光入射面與透明導電膜1103連接。
根據此種第24實施形態之像素51,自多層配線層811之電壓施加配線1163供給之負偏壓經由貫通電極1161及透明導電膜1103施加至固定電荷膜66。藉此,可強化自基板61之光入射面朝向信號擷取部65(抽頭)之深度方向之電場,而可實現量子效率(QE)之改善及高速驅動。又,耐高速驅動性提高。
再者,於假設像素51中在基板61之光入射面上未形成固定電荷膜66之情形時,可採用於基板61之光入射面上形成包含氧化膜等之絕緣膜,並經由貫通電極1101及透明導電膜1103對絕緣膜施加負偏壓之構成。絕緣膜並不限於單層膜,亦可為積層膜。
<第25實施形態> <像素之構成例> 圖63係第25實施形態之像素之剖視圖。
圖63係與圖60等同樣,表示相當於圖11之B-B'線之複數個像素之剖視圖。
於圖63中,對與圖61及圖62所示之第22及第23實施形態之複數個像素之剖視圖對應之部分標註相同之符號,並適當省略該部分之說明。
若對圖63之第25實施形態之像素51之構成與圖61所示之第23實施形態之像素51之構成進行比較,則第25實施形態之像素51於經由像素間遮光膜63對固定電荷膜66施加負偏壓之方面共通,但於在與鄰接之像素51之交界部分未形成貫通電極1101及絕緣膜1102之方面不同。
於圖63之第25實施形態中,由於在像素陣列部20內未形成貫通電極1101,故而無法自貫通電極1101施加負偏壓。因此,於第25實施形態中,自形成於較像素陣列部20靠外側之周邊電路部1041之電壓施加配線1163經由貫通電極1161對像素間遮光膜63供給負偏壓,且自像素間遮光膜63對固定電荷膜66施加負偏壓。
即,於第25實施形態中,於較像素陣列部20靠外側之周邊電路部1041之多層配線層811形成有電壓施加配線1163,且對電壓施加配線1163供給負偏壓。又,於基板61之周邊電路部1041中形成有外周由絕緣膜1162覆蓋之貫通電極1161,貫通電極1161於基板61之光入射面與像素間遮光膜63連接。
根據此種第25實施形態之像素51,自多層配線層811之電壓施加配線1163供給之負偏壓經由貫通電極1161及像素間遮光膜63施加至固定電荷膜66。藉此,可強化自基板61之光入射面朝向信號擷取部65(抽頭)之深度方向之電場,而可實現量子效率(QE)之改善及高速驅動。又,耐高速驅動性提高。
再者,於假設像素51中在基板61之光入射面上未形成固定電荷膜66之情形時,可採用於基板61之光入射面上形成包含氧化膜等之絕緣膜,且經由貫通電極1101及像素間遮光膜63對絕緣膜施加負偏壓之構成。絕緣膜並不限於單層膜,亦可為積層膜。
於上述第22至第25實施形態中,以對形成於基板61之晶載透鏡62側之光入射面上之固定電荷膜66藉由貫通電極1101或1161施加負偏壓之方式構成。此處,負偏壓係較施加於被設為無效抽頭之信號擷取部65之P+半導體區域73之電壓(0 V)低之電壓。藉此,可強化自基板61之光入射面朝向信號擷取部65(抽頭)之深度方向之電場,而可實現量子效率(QE)之改善及高速驅動。又,耐高速驅動性提高。再者,亦可以具備周邊電路部1041之貫通電極1161及像素交界部之貫通電極1101之兩者,且使用該兩者對固定電荷膜66施加負偏壓之方式構成。
<測距模組之構成例> 圖64係表示使用圖1之受光元件1輸出測距資訊之測距模組之構成例的方塊圖。
測距模組5000具備發光部5011、發光控制部5012及受光部5013。
發光部5011具有發出特定波長之光之光源,發出亮度週期性地變動之照射光並照射至物體。例如,發光部5011具有發出波長為780 nm至1000 nm之範圍之紅外光之發光二極體作為光源,與自發光控制部5012供給之矩形波之發光控制信號CLKp同步地產生照射光。
再者,發光控制信號CLKp只要為週期信號則並不限定於矩形波。例如,發光控制信號CLKp亦可為正弦波。
發光控制部5012將發光控制信號CLKp供給至發光部5011及受光部5013,而控制照射光之照射時序。該發光控制信號CLKp之頻率例如為20百萬赫(MHz)。再者,發光控制信號CLKp之頻率並不限定於20百萬赫(MHz),亦可為5百萬赫(MHz)等。
受光部5013接收自物體反射之反射光,根據受光結果針對每個像素算出距離資訊,生成針對每個像素以灰度值表示距物體之距離所得之深度圖像並輸出。
於受光部5013中使用上述受光元件1,作為受光部5013之受光元件1例如基於發光控制信號CLKp,根據藉由像素陣列部20之各像素51之信號擷取部65-1及65-2各自之電荷檢測部(N+半導體區域71)所檢測出之信號強度針對每個像素算出距離資訊。
如上所述,可組裝圖1之受光元件1作為藉由間接ToF方式求出與被攝體相距之距離資訊並進行輸出之測距模組5000之受光部5013。藉由採用上述各實施形態之受光元件1、具體而言設為背面照射型而提高像素感度之受光元件作為測距模組5000之受光部5013,能夠使作為測距模組5000之測距特性提高。
<於移動體之應用例> 本發明之技術(本技術)可應用於各種製品。例如,本發明之技術亦可以搭載於汽車、電動汽車、油電混合車、機車、自行車、個人行動車(personal mobility)、飛機、無人機(drone)、船舶、機器人等中之任一種移動體之裝置之形式實現。
圖65係表示作為可應用本發明之技術之移動體控制系統之一例之車輛控制系統之概略性構成例的方塊圖。
車輛控制系統12000具備經由通信網路12001而連接之複數個電子控制單元。於圖65所示之例中,車輛控制系統12000具備驅動系統控制單元12010、車體系統控制單元12020、車外資訊檢測單元12030、車內資訊檢測單元12040及綜合控制單元12050。又,作為綜合控制單元12050之功能構成,圖示有微電腦12051、聲音圖像輸出部12052及車載網路I/F(interface,介面)12053。
驅動系統控制單元12010按照各種程式控制與車輛之驅動系統相關聯之裝置之動作。例如,驅動系統控制單元12010作為內燃機或驅動用馬達等用以產生車輛之驅動力之驅動力產生裝置、用以將驅動力傳遞至車輪之驅動力傳遞機構、調節車輛之舵角之轉向機構及產生車輛之制動力之制動裝置等之控制裝置發揮功能。
車體系統控制單元12020按照各種程式控制車體所裝備之各種裝置之動作。例如,車體系統控制單元12020作為無鑰匙進入(keyless entry)系統、智慧型鑰匙(smart key)系統、電動窗(power window)裝置、或者頭燈、倒行燈(back lamp)、刹車燈、轉向燈或霧燈等各種燈之控制裝置發揮功能。於該情形時,可將自代替鑰匙之行動機發送之電波或各種開關之信號輸入至車體系統控制單元12020。車體系統控制單元12020受理該等電波或信號之輸入,而控制車輛之門鎖裝置、電動窗裝置、燈等。
車外資訊檢測單元12030檢測搭載有車輛控制系統12000之車輛之外部之資訊。例如,於車外資訊檢測單元12030連接有攝像部12031。車外資訊檢測單元12030使攝像部12031拍攝車外之圖像,並且接收拍攝到之圖像。車外資訊檢測單元12030亦可基於所接收到之圖像,進行人、車、障礙物、標識或路面上之文字等之物體檢測處理或距離檢測處理。
攝像部12031係接收光,並輸出與該光之受光量對應之電信號的光感測器。攝像部12031既可輸出電信號作為圖像,亦可輸出電信號作為測距之資訊。又,攝像部12031所接收之光既可為可見光,亦可為紅外線等非可見光。
車內資訊檢測單元12040檢測車內之資訊。於車內資訊檢測單元12040連接有例如檢測駕駛者之狀態之駕駛者狀態檢測部12041。駕駛者狀態檢測部12041包含例如拍攝駕駛者之相機,車內資訊檢測單元12040可基於自駕駛者狀態檢測部12041輸入之檢測資訊,算出駕駛者之疲勞程度或專注程度,亦可辨別駕駛者是否在打瞌睡。
微電腦12051可基於藉由車外資訊檢測單元12030或車內資訊檢測單元12040所獲取之車內外之資訊,算出驅動力產生裝置、轉向機構或制動裝置之控制目標值,並將控制指令輸出至驅動系統控制單元12010。例如,微電腦12051可進行以實現包含車輛之碰撞回避或衝擊緩和、基於車間距離之追隨行駛、車速維持行駛、車輛之碰撞警告、或車輛之車道脫離警告等之ADAS(Advanced Driver Assistance System,先進駕駛輔助系統)之功能為目的之協調控制。
又,微電腦12051可藉由基於利用車外資訊檢測單元12030或車內資訊檢測單元12040所獲取之車輛周圍之資訊,控制驅動力產生裝置、轉向機構或制動裝置等,而進行以並非按照駕駛者之操作而是自主地行駛之自動駕駛等為目的之協調控制。
又,微電腦12051可基於藉由車外資訊檢測單元12030所獲取之車外之資訊,將控制指令輸出至車體系統控制單元12020。例如,微電腦12051可進行根據藉由車外資訊檢測單元12030所偵測到之先行車或對向車之位置控制頭燈而將遠光切換為近光等以謀求防眩為目的之協調控制。
聲音圖像輸出部12052將聲音及圖像中之至少一種輸出信號發送至能夠對車輛之搭乘者或車外在視覺上或聽覺上通知資訊之輸出裝置。於圖65之例中,作為輸出裝置,例示有音頻揚聲器(audiospeaker)12061、顯示部12062及儀錶面板12063。顯示部12062例如亦可包含車載顯示器(onboard display)及抬頭顯示器(head-up display)中之至少一者。
圖66係表示攝像部12031之設置位置之例之圖。
於圖66中,車輛12100具有攝像部12101、12102、12103、12104、12105作為攝像部12031。
攝像部12101、12102、12103、12104、12105例如設置於車輛12100之前鼻(front nose)、側鏡、後保險杠(rear bumper)、後門及車廂內之前窗玻璃之上部等位置。前鼻所具備之攝像部12101及車廂內之前窗玻璃之上部所具備之攝像部12105主要獲取車輛12100前方之圖像。側鏡所具備之攝像部12102、12103主要獲取車輛12100側方之圖像。後保險杠或後門所具備之攝像部12104主要獲取車輛12100後方之圖像。藉由攝像部12101及12105所獲取之前方之圖像主要被用於先行車輛、步行者、障礙物、信號器、交通標識或行車線等之檢測。
再者,於圖66中示出了攝像部12101至12104之拍攝範圍之一例。拍攝範圍12111表示設置於前鼻之攝像部12101之拍攝範圍,拍攝範圍12112、12113分別表示設置於側鏡之攝像部12102、12103之拍攝範圍,拍攝範圍12114表示設置於後保險杠或後門之攝像部12104之拍攝範圍。例如,藉由將利用攝像部12101至12104所拍攝到之圖像資料重合,可獲得自上方觀察車輛12100時之俯瞰圖像。
攝像部12101至12104中之至少1者亦可具有獲取距離資訊之功能。例如,攝像部12101至12104中之至少1者亦可為包含複數個攝像元件之立體攝影機(stereo camera),亦可為具有相位差檢測用像素之攝像元件。
例如,微電腦12051可藉由基於自攝像部12101至12104所獲得之距離資訊,求出拍攝範圍12111至12114內之距各立體物之距離、及該距離之時間性變化(相對於車輛12100之相對速度),而提取朝與車輛12100大致相同之方向以特定之速度(例如,0 km/h以上)行駛之立體物、尤其是處於車輛12100之前進路上之最近之立體物作為先行車。進而,微電腦12051可設定於先行車之近前應預先確保之車間距離,並進行自動刹車控制(亦包含追隨停止控制)或自動加速控制(亦包含追隨發動控制)等。如此,可進行以不按照駕駛者之操作而是自主地行駛之自動駕駛等為目的之協調控制。
例如,微電腦12051可基於自攝像部12101至12104所獲得之距離資訊,將關於立體物之立體物資料分類為二輪車、普通車輛、大型車輛、步行者、電線桿等其他立體物來提取,並用於障礙物之自動回避。例如,微電腦12051將車輛12100周邊之障礙物識別為車輛12100之驅動器能夠視認之障礙物及難以視認之障礙物。然後,微電腦12051判斷表示與各障礙物發生碰撞之危險程度之碰撞風險,於碰撞風險為設定值以上而存在碰撞可能性之狀況時,可藉由經由音頻揚聲器12061或顯示部12062將警報輸出至驅動器、或經由驅動系統控制單元12010進行強制減速或回避轉向,而進行用於碰撞回避之駕駛支援。
攝像部12101至12104中之至少1者亦可為檢測紅外線之紅外線相機。例如,微電腦12051可藉由判定攝像部12101至12104之拍攝圖像中是否存在步行者而識別步行者。該步行者之識別係藉由例如提取作為紅外線相機之攝像部12101至12104之拍攝圖像中之特徵點之程序、及對表示物體之輪廓之一連串之特徵點進行圖案匹配處理而辨別是否為步行者之程序來進行。當微電腦12051判定為攝像部12101至12104之拍攝圖像中存在步行者而識別步行者時,聲音圖像輸出部12052以將用以強調之方形輪廓線重疊顯示於該識別出之步行者之方式控制顯示部12062。又,聲音圖像輸出部12052亦可以將表示步行者之圖符等顯示於所期望之位置之方式控制顯示部12062。
以上,對可應用本發明之技術之車輛控制系統之一例進行了說明。本發明之技術可應用於以上所說明之構成中之攝像部12031。具體而言,例如可藉由將圖1所示之受光元件1應用於攝像部12031,而使感度等特性提高。
本技術之實施形態並非限定於上述實施形態,可於不脫離本技術之主旨之範圍內進行各種變更。
例如,當然亦可將以上所說明之2個以上之實施形態適當組合。即,例如可根據是否使像素之感度等哪個特性優先,而適當地選擇設置於像素內之信號擷取部之個數或配置位置、信號擷取部之形狀或是否設為共有構造、晶載透鏡之有無、像素間遮光部之有無、分離區域之有無、晶載透鏡或基板之厚度、基板之種類或膜設計、向光入射面之偏壓之有無、反射構件之有無等。
又,於上述實施形態中,對使用電子作為信號載子之例進行了說明,但亦可設為將藉由光電轉換所產生之電洞用作信號載子。於此種情形時,只要設為用以檢測信號載子之電荷檢測部由P+半導體區域構成,用以於基板內產生電場之電壓施加部由N+半導體區域構成,並且設為於設置於信號擷取部之電荷檢測部中檢測作為信號載子之電洞即可。
根據本技術,可藉由將CAPD感測器設為背面照射型受光元件之構成,而使測距特性提高。
再者,上述實施形態係以對形成於基板61之P+半導體區域73直接施加電壓,並藉由產生之電場使光電轉換所得之電荷移動之驅動方式進行了記載,但本技術並不限定於該驅動方式,亦可應用於其他驅動方式。例如,亦可為如下驅動方式:使用形成於基板61之第1及第2傳輸電晶體以及第1及第2浮動擴散區域,將藉由對第1及第2傳輸電晶體之閘極分別施加特定電壓而進行光電轉換所得之電荷分別經由第1傳輸電晶體分配並儲存至第1浮動擴散區域、或經由第2傳輸電晶體分配並儲存至第2浮動擴散區域。於該情形時,形成於基板61之第1及第2傳輸電晶體分別作為對閘極施加特定之電壓之第1及第2電壓施加部發揮功能,形成於基板61之第1及第2浮動擴散區域分別作為檢測藉由光電轉換所產生之電荷之第1及第2電荷檢測部發揮功能。
又,換言之,於對形成於基板61之P+半導體區域73直接施加電壓,並藉由產生之電場使光電轉換所得之電荷移動之驅動方式中,設為第1及第2電壓施加部之2個P+半導體區域73係被施加特定電壓之控制節點,設為第1及第2電荷檢測部之2個N+半導體區域71係檢測電荷之檢測節點。於對形成於基板61之第1及第2傳輸電晶體之閘極施加特定電壓,並將光電轉換所得之電荷分配地儲存至第1浮動擴散區域或第2浮動擴散區域之驅動方式中,第1及第2傳輸電晶體之閘極係被施加特定電壓之控制節點,形成於基板61之第1及第2浮動擴散區域係檢測電荷之檢測節點。
又,本說明書中所記載之效果僅為例示,而並非限定者,亦可具有其他效果。
再者,本技術亦可取如以下般之構成。 (1) 一種受光元件,其具備: 晶載透鏡; 配線層;及 半導體層,其配置於上述晶載透鏡與上述配線層之間; 上述半導體層具備: 第1像素; 第2像素,其與上述第1像素鄰接;及 第1像素分離部,其於上述第1像素與上述第2像素之間至少將上述半導體層分離至特定深度為止; 上述第1像素具備: 第1電壓施加部,其與第1控制配線連接; 第2電壓施加部,其與第2控制配線連接; 第1電荷檢測部,其配置於上述第1電壓施加部之周圍;及 第2電荷檢測部,其配置於上述第2電壓施加部之周圍; 上述第2像素具備: 第3電壓施加部,其與第3控制配線連接; 第4電壓施加部,其與第4控制配線連接; 第3電荷檢測部,其配置於上述第3電壓施加部之周圍;及 第4電荷檢測部,其配置於上述第4電壓施加部之周圍; 上述第1像素分離部具備第5電壓施加部,該第5電壓施加部與第5控制配線連接。 (2) 如上述(1)所記載之受光元件,其中 上述配線層至少具有具備反射構件之一層, 上述反射構件係以俯視時與上述第1電荷檢測部或上述第2電荷檢測部重疊之方式設置。 (3) 如上述(1)或(2)所記載之受光元件,其中 上述配線層至少具有具備遮光構件之一層, 上述遮光構件係以俯視時與上述第1電荷檢測部或上述第2電荷檢測部重疊之方式設置。 (4) 如上述(1)至(3)中任一項所記載之受光元件,其中 上述第1像素分離部貫通上述半導體層而將上述第1像素與上述第2像素分離。 (5) 如上述(1)至(4)中任一項所記載之受光元件,其中 上述半導體層進而具備: 第3像素,其鄰接於上述第2像素;及 第2像素分離部,其於上述第2像素與上述第3像素之間至少將上述半導體層分離至特定深度為止; 上述第2像素配置於上述第1像素與上述第3像素之間, 上述第3像素具備: 第6電壓施加部,其與第6控制配線連接; 第7電壓施加部,其與第7控制配線連接; 第5電荷檢測部,其配置於上述第6電壓施加部之周圍;及 第6電荷檢測部,其配置於上述第7電壓施加部之周圍; 上述第2像素分離部具備第8電壓施加部,該第8電壓施加部與第8控制配線連接。 (6) 如上述(5)所記載之受光元件,其中 對上述第5電壓施加部之電壓之施加係與對上述第8電壓施加部之電壓之施加同時進行。 (7) 如上述(5)所記載之受光元件,其中 上述第5電壓施加部之電壓之施加係與對上述第8電壓施加部之電壓之施加為不同時序。 (8) 如上述(7)所記載之受光元件,其中 對上述第1電壓施加部之電壓之施加與對上述第8電壓施加部之電壓之施加同步,對上述第2電壓施加部之電壓之施加與對上述第5電壓施加部之電壓之施加同步。 (9) 如上述(8)所記載之受光元件,其中 對上述第5電壓施加部施加之電壓低於對上述第1電壓施加部施加之電壓, 對上述第8電壓施加部施加之電壓係較上述第2電壓低之電壓。 (10) 如上述(1)至(9)中任一項所記載之受光元件,其中 對上述第5電壓施加部施加之電壓為負電壓。 (11) 如上述(5)所記載之受光元件,其中 上述半導體層進而具備: 第4像素,其與上述第1像素鄰接; 第5像素,其與上述第2像素及上述第4像素鄰接;及 第3像素分離部,其於上述第4像素與上述第5像素之間至少將上述半導體層分離至特定深度為止; 上述第4像素具備: 第9電壓施加部,其與第9控制配線連接; 第10電壓施加部,其與第10控制配線連接; 第7電荷檢測部,其配置於上述第9電壓施加部之周圍;及 第8電荷檢測部,其配置於上述第10電壓施加部之周圍; 上述第5像素具備: 第11電壓施加部,其與第11控制配線連接; 第12電壓施加部,其與第12控制配線連接; 第9電荷檢測部,其配置於上述第11電壓施加部之周圍;及 第10電荷檢測部,其配置於上述第12電壓施加部之周圍; 上述第3像素分離部具備第13電壓施加部,該第13電壓施加部與第13控制配線連接, 上述第13控制配線與上述第5控制配線連接。 (12) 如上述(1)至(11)中任一項所記載之受光元件,其中 上述第1像素分離部係自上述半導體層之配線層側之面起將上述半導體層分離至上述特定深度為止。 (13) 如上述(1)至(11)中任一項所記載之受光元件,其中 上述第1像素分離部係自上述半導體層之晶載透鏡側之面起將上述半導體層分離至上述特定深度為止。 (14) 一種受光元件,其具備: 晶載透鏡; 配線層;及 半導體層,其配置於上述晶載透鏡與上述配線層之間; 上述半導體層具備: 第1像素; 第2像素,其與上述第1像素鄰接; 第1像素分離部,其於上述第1像素與上述第2像素之間,至少將上述半導體層分離至特定深度為止; 像素間遮光膜,其形成於上述半導體層之上述晶載透鏡側表面中之上述第1像素與上述第2像素之間;及 貫通電極,其與上述像素間遮光膜連接; 上述第1像素具備: 第1電壓施加部,其與第1控制配線連接; 第2電壓施加部,其與第2控制配線連接; 第1電荷檢測部,其配置於上述第1電壓施加部之周圍;及 第2電荷檢測部,其配置於上述第2電壓施加部之周圍; 上述第2像素具備: 第3電壓施加部,其與第3控制配線連接; 第4電壓施加部,其與第4控制配線連接; 第3電荷檢測部,其配置於上述第3電壓施加部之周圍;及 第4電荷檢測部,其配置於上述第4電壓施加部之周圍; 上述第1像素分離部具備第5電壓施加部,該第5電壓施加部之至少一部分與上述像素間遮光膜連接。 (15) 如上述(1)至(14)中任一項所記載之受光元件,其中 上述第5電壓施加部係由多晶矽或金屬材料形成。 (16) 如上述(1)至(15)中任一項所記載之受光元件,其中 上述第5電壓施加部係由與上述第1電壓施加部及上述第2電壓施加部相同之導電型之高濃度雜質區域形成。 (17) 如上述(1)至(16)中任一項所記載之受光元件,其中 上述第1及第2電壓施加部分別包含形成於上述半導體層之第1及第2 P型半導體區域。 (18) 如上述(1)至(16)中任一項所記載之受光元件,其中 上述第1及第2電壓施加部分別包含形成於上述半導體層之第1及第2傳輸電晶體。 (19) 一種測距模組,其具備: 如上述(1)或(14)所記載之受光元件; 光源,其照射亮度週期性地變動之照射光;及 發光控制部,其控制上述照射光之照射時序。
1:受光元件 20:像素陣列部 21:抽頭驅動部 22:垂直驅動部 23:行處理部 24:水平驅動部 25:系統控制部 28:像素驅動線 29:垂直信號線 29A:垂直信號線 29B:垂直信號線 30:電壓供給線 31:信號處理部 32:資料儲存部 51:像素 51X:遮光像素 61:基板 62:晶載透鏡 63:像素間遮光膜 63-1:像素間遮光膜 63-2:像素間遮光膜 64:氧化膜 65:信號擷取部 65-1:信號擷取部 65-2:信號擷取部 66:固定電荷膜 71:N+半導體區域 71-1:N+半導體區域 71-2:N+半導體區域 72-1:N-半導體區域 72-2:N-半導體區域 73:P+半導體區域 73-1:P+半導體區域 73-2:P+半導體區域 74-1:P-半導體區域 74-2:P-半導體區域 75-1:分離部 75-2:分離部 101:PD 102:配線 103:配線 104:PD 105:配線 106:配線 111:PD 112:信號擷取部 113:配線 114:配線 115:PD 116:信號擷取部 117:配線 118:配線 141:基板 142:基板 152:配線層 153:像素間遮光部 154:晶載透鏡 171:基板 172:基板 201-1:N+半導體區域 201-2:N+半導體區域 202-1:P+半導體區域 202-2:P+半導體區域 231:P+半導體區域 232-1:N+半導體區域 232-2:N+半導體區域 233:P+半導體區域 234-1:N+半導體區域 234-2:N+半導體區域 261:N+半導體區域 262-1:P+半導體區域 262-2:P+半導體區域 263:N+半導體區域 264-1:P+半導體區域 264-2:P+半導體區域 291-1:像素 291-2:像素 291-3:像素 301:P+半導體區域 302:N+半導體區域 303:信號擷取部 304:P+半導體區域 305:N+半導體區域 331-1:信號擷取部 331-2:信號擷取部 331-3:信號擷取部 331-4:信號擷取部 341:P+半導體區域 342:N+半導體區域 371:信號擷取部 372:信號擷取部 381:P+半導體區域 382-1:N+半導體區域 382-2:N+半導體區域 383:P+半導體區域 384-1:N+半導體區域 384-2:N+半導體區域 441:分離區 441-1:分離區域 441-2:分離區域 471:分離區域 471-1:分離區域 471-2:分離區域 501:基板 531:基板 561:基板 601:P+半導體區域 631:反射構件 671:P井區域 672-1:分離部 672-2:分離部 701:P井區域 721:傳輸電晶體 721A:傳輸電晶體 721B:傳輸電晶體 722:FD 722A:FD 722B:FD 723:重置電晶體 723A:重置電晶體 723B:重置電晶體 724:放大電晶體 724A:放大電晶體 724B:放大電晶體 725:選擇電晶體 725A:選擇電晶體 725B:選擇電晶體 726A:定電流源電路部 726B:定電流源電路部 727:附加電容 727A:附加電容 727B:附加電容 728:切換電晶體 728A:切換電晶體 728B:切換電晶體 741:電壓供給線 741-1:電壓供給線 741-2:電壓供給線 811:多層配線層 812:層間絕緣膜 813:電源線 814:電壓施加配線 815:反射構件 816:電壓施加配線 817:控制線 831:像素電晶體配線區域 832:接地線 833:電源線 834:接地線 841~844:控制線 851:控制線區域 852:電容區域 911:半導體基板 912:支持基板 921:第1半導體基板 922:第2半導體基板 931:第1半導體基板 932:第2半導體基板 951:控制像素陣列區域 952:控制電路 953:邏輯電路 954:區域控制電路 1001:貫通電極 1001A:貫通電極 1001B:貫通電極 1002:絕緣膜 1002A:絕緣膜 1002B:絕緣膜 1003:間隙部 1011:電壓施加配線 1021:DTI 1022:絕緣膜 1041:周邊電路部 1042:有效像素區域 1043:OPB像素區域 1045:電極墊 1051:DTI 1052:絕緣膜 1061:貫通電極 1062:絕緣膜 1063:電壓施加配線 1071:P+半導體區域 1101:貫通電極 1102:絕緣膜 1103:透明導電膜 1111:電壓施加配線 1161:貫通電極 1162:絕緣膜 1163:電壓施加配線 5000:測距模組 5011:發光部 5012:發光控制部 5013:受光部 12000:車輛控制系統 12001:通信網路 12010:驅動系統控制單元 12020:車體系統控制單元 12030:車外資訊檢測單元 12031:攝像部 12040:車內資訊檢測單元 12041:駕駛者狀態檢測部 12050:綜合控制單元 12051:微電腦 12052:聲音圖像輸出部 12053:車載網路I/F 12061:音頻揚聲器 12062:顯示部 12063:儀錶面板 12100:車輛 12101:攝像部 12102:攝像部 12103:攝像部 12104:攝像部 12105:攝像部 12111:拍攝範圍 12112、12113:拍攝範圍 12114:拍攝範圍 M1:金屬膜 M2:金屬膜 M3:金屬膜 M4:金屬膜 M5:金屬膜 R11:區域 R12:區域 R21:區域 Tr:像素電晶體 TA:第1抽頭 TB:第2抽頭
圖1係表示受光元件之構成例之方塊圖。 圖2係表示像素之構成例之圖。 圖3係表示像素之信號擷取部之部分之構成例之圖。 圖4係對感度提高進行說明之圖。 圖5係對電荷分離效率之提高進行說明之圖。 圖6係對電子之擷取效率之提高進行說明之圖。 圖7係對正面照射型中之信號載子之移動速度進行說明之圖。 圖8係對背面照射型中之信號載子之移動速度進行說明之圖。 圖9係表示像素之信號擷取部之部分之另一構成例之圖。 圖10係對像素與晶載透鏡之關係進行說明之圖。 圖11係表示像素之信號擷取部之部分之另一構成例的圖。 圖12係表示像素之信號擷取部之部分之另一構成例的圖。 圖13係表示像素之信號擷取部之部分之另一構成例的圖。 圖14係表示像素之信號擷取部之部分之另一構成例的圖。 圖15係表示像素之信號擷取部之部分之另一構成例的圖。 圖16係表示像素之另一構成例之圖。 圖17係表示像素之另一構成例之圖。 圖18係表示像素之另一構成例之圖。 圖19係表示像素之另一構成例之圖。 圖20係表示像素之另一構成例之圖。 圖21係表示像素之另一構成例之圖。 圖22係表示像素之另一構成例之圖。 圖23係表示像素之另一構成例之圖。 圖24係表示像素之另一構成例之圖。 圖25係表示像素之另一構成例之圖。 圖26係表示像素之另一構成例之圖。 圖27A、B係表示像素之另一構成例之圖。 圖28係表示像素之另一構成例之圖。 圖29係表示像素之另一構成例之圖。 圖30係表示像素之另一構成例之圖。 圖31係表示像素之等效電路之圖。 圖32係表示像素之另一等效電路之圖。 圖33A、B係表示採用週期性(Periodic)配置之電壓供給線之配置例之圖。 圖34A、B係表示採用鏡像(Mirror)配置之電壓供給線之配置例之圖。 圖35A、B係對週期性配置及鏡像配置之特性進行說明之圖。 圖36係第14實施形態中之複數個像素之剖視圖。 圖37係第14實施形態中之複數個像素之剖視圖。 圖38係第9實施形態中之複數個像素之剖視圖。 圖39係第9實施形態之變化例1中之複數個像素之剖視圖。 圖40係第15實施形態中之複數個像素之剖視圖。 圖41係第10實施形態中之複數個像素之剖視圖。 圖42A~C係對多層配線層之5層金屬膜進行說明之圖。 圖43A、B係對多層配線層之5層金屬膜進行說明之圖。 圖44A~C係對多晶矽層進行說明之圖。 圖45A~C係表示形成於金屬膜之反射構件之變化例之圖。 圖46A、B係表示形成於金屬膜之反射構件之變化例之圖。 圖47A~C係對受光元件之基板構成進行說明之圖。 圖48係第18實施形態中之複數個像素之剖視圖。 圖49係圖48之複數個像素之俯視圖。 圖50係表示4抽頭(tap)像素構造中之貫通電極及絕緣膜之配置例之俯視圖。 圖51係第18實施形態之變化例之2抽頭像素構造之像素的俯視圖。 圖52係第18實施形態之變化例之4抽頭像素構造之像素的俯視圖。 圖53A、B係對施加負偏壓之驅動進行說明之圖。 圖54係表示以不同之時序施加負偏壓之驅動之圖。 圖55係表示以不同之時序施加負偏壓之驅動之圖。 圖56係第19實施形態中之複數個像素之剖視圖。 圖57係第20實施形態中之複數個像素之剖視圖。 圖58係表示像素陣列部與周邊電路部之位置關係之俯視圖。 圖59係第21實施形態中之複數個像素之剖視圖。 圖60係第22實施形態中之複數個像素之剖視圖。 圖61係第23實施形態中之複數個像素之剖視圖。 圖62係第24實施形態中之複數個像素之剖視圖。 圖63係第25實施形態中之複數個像素之剖視圖。 圖64係表示測距模組之構成例之方塊圖。 圖65係表示車輛控制系統之概略性構成之一例之方塊圖。 圖66係表示車外資訊檢測部及攝像部之設置位置之一例之說明圖。
51:像素
61:基板
62:晶載透鏡
63:像素間遮光膜
64:氧化膜
65-1:信號擷取部
65-2:信號擷取部
66:固定電荷膜
71-1:N+半導體區域
71-2:N+半導體區域
72-1:N-半導體區域
72-2:N-半導體區域
73-1:P+半導體區域
73-2:P+半導體區域
74-1:P-半導體區域
74-2:P-半導體區域
75-1:分離部
75-2:分離部
471:分離區域
811:多層配線層
812:層間絕緣膜
813:電源線
814:電壓施加配線
815:反射構件
816:電壓施加配線
817:控制線
M1:金屬膜
M2:金屬膜
M3:金屬膜
M4:金屬膜

Claims (19)

  1. 一種受光元件,其具備: 晶載透鏡; 配線層;及 半導體層,其配置於上述晶載透鏡與上述配線層之間; 上述半導體層具備: 第1像素; 第2像素,其與上述第1像素鄰接;及 第1像素分離部,其於上述第1像素與上述第2像素之間,至少將上述半導體層分離至特定深度為止; 上述第1像素具備: 第1電壓施加部,其與第1控制配線連接; 第2電壓施加部,其與第2控制配線連接; 第1電荷檢測部,其配置於上述第1電壓施加部之周圍;及 第2電荷檢測部,其配置於上述第2電壓施加部之周圍; 上述第2像素具備: 第3電壓施加部,其與第3控制配線連接; 第4電壓施加部,其與第4控制配線連接; 第3電荷檢測部,其配置於上述第3電壓施加部之周圍;及 第4電荷檢測部,其配置於上述第4電壓施加部之周圍; 上述第1像素分離部具備第5電壓施加部, 該第5電壓施加部與第5控制配線連接。
  2. 如請求項1之受光元件,其中 上述配線層至少具有具備反射構件之一層, 上述反射構件係以俯視時與上述第1電荷檢測部或上述第2電荷檢測部重疊之方式設置。
  3. 如請求項1之受光元件,其中 上述配線層至少具有具備遮光構件之一層, 上述遮光構件係以俯視時與上述第1電荷檢測部或上述第2電荷檢測部重疊之方式設置。
  4. 如請求項1之受光元件,其中 上述第1像素分離部貫通上述半導體層而將上述第1像素與上述第2像素分離。
  5. 如請求項1之受光元件,其中 上述半導體層進而具備: 第3像素,其鄰接於上述第2像素;及 第2像素分離部,其於上述第2像素與上述第3像素之間,至少將上述半導體層分離至特定深度為止; 上述第2像素配置於上述第1像素與上述第3像素之間, 上述第3像素具備: 第6電壓施加部,其與第6控制配線連接; 第7電壓施加部,其與第7控制配線連接; 第5電荷檢測部,其配置於上述第6電壓施加部之周圍;及 第6電荷檢測部,其配置於上述第7電壓施加部之周圍; 上述第2像素分離部具備第8電壓施加部, 該第8電壓施加部與第8控制配線連接。
  6. 如請求項5之受光元件,其中 對上述第5電壓施加部之電壓之施加係與對上述第8電壓施加部之電壓之施加同時進行。
  7. 如請求項5之受光元件,其中 上述第5電壓施加部之電壓之施加係與對上述第8電壓施加部之電壓之施加為不同時序。
  8. 如請求項7之受光元件,其中 對上述第1電壓施加部之電壓之施加與對上述第8電壓施加部之電壓之施加同步,對上述第2電壓施加部之電壓之施加與對上述第5電壓施加部之電壓之施加同步。
  9. 如請求項8之受光元件,其中 對上述第5電壓施加部施加之電壓低於對上述第1電壓施加部施加之電壓, 對上述第8電壓施加部施加之電壓為較上述第2電壓低之電壓。
  10. 如請求項1之受光元件,其中 對上述第5電壓施加部施加之電壓為負電壓。
  11. 如請求項5之受光元件,其中 上述半導體層進而具備: 第4像素,其與上述第1像素鄰接; 第5像素,其與上述第2像素及上述第4像素鄰接;及 第3像素分離部,其於上述第4像素與上述第5像素之間,至少將上述半導體層分離至特定深度為止; 上述第4像素具備: 第9電壓施加部,其與第9控制配線連接; 第10電壓施加部,其與第10控制配線連接; 第7電荷檢測部,其配置於上述第9電壓施加部之周圍;及 第8電荷檢測部,其配置於上述第10電壓施加部之周圍; 上述第5像素具備: 第11電壓施加部,其與第11控制配線連接; 第12電壓施加部,其與第12控制配線連接; 第9電荷檢測部,其配置於上述第11電壓施加部之周圍;及 第10電荷檢測部,其配置於上述第12電壓施加部之周圍; 上述第3像素分離部具備第13電壓施加部, 該第13電壓施加部與第13控制配線連接, 上述第13控制配線與上述第5控制配線連接。
  12. 如請求項1之受光元件,其中 上述第1像素分離部自上述半導體層之配線層側之面起將上述半導體層分離至上述特定深度為止。
  13. 如請求項1之受光元件,其中 上述第1像素分離部自上述半導體層之晶載透鏡側之面起將上述半導體層分離至上述特定深度為止。
  14. 一種受光元件,其具備: 晶載透鏡; 配線層;及 半導體層,其配置於上述晶載透鏡與上述配線層之間; 上述半導體層具備: 第1像素; 第2像素,其與上述第1像素鄰接; 第1像素分離部,其於上述第1像素與上述第2像素之間,至少將上述半導體層分離至特定深度為止; 像素間遮光膜,其形成於上述半導體層之上述晶載透鏡側表面中之上述第1像素與上述第2像素之間;及 貫通電極,其與上述像素間遮光膜連接; 上述第1像素具備: 第1電壓施加部,其與第1控制配線連接; 第2電壓施加部,其與第2控制配線連接; 第1電荷檢測部,其配置於上述第1電壓施加部之周圍;及 第2電荷檢測部,其配置於上述第2電壓施加部之周圍; 上述第2像素具備: 第3電壓施加部,其與第3控制配線連接; 第4電壓施加部,其與第4控制配線連接; 第3電荷檢測部,其配置於上述第3電壓施加部之周圍;及 第4電荷檢測部,其配置於上述第4電壓施加部之周圍; 上述第1像素分離部具備第5電壓施加部, 該第5電壓施加部之至少一部分與上述像素間遮光膜連接。
  15. 如請求項1之受光元件,其中 上述第5電壓施加部係由多晶矽或金屬材料形成。
  16. 如請求項1之受光元件,其中 上述第5電壓施加部係由與上述第1電壓施加部及上述第2電壓施加部相同之導電型之高濃度雜質區域形成。
  17. 如請求項1之受光元件,其中 上述第1及第2電壓施加部分別包含形成於上述半導體層之第1及第2 P型半導體區域。
  18. 如請求項1之受光元件,其中 上述第1及第2電壓施加部分別包含形成於上述半導體層之第1及第2傳輸電晶體。
  19. 一種測距模組,其具備: 如請求項1或14之受光元件; 光源,其照射亮度週期性地變動之照射光;及 發光控制部,其控制上述照射光之照射時序。
TW108121888A 2018-07-18 2019-06-24 受光元件及測距模組 TW202018963A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018135350A JP2020013906A (ja) 2018-07-18 2018-07-18 受光素子および測距モジュール
JP2018-135350 2018-07-18

Publications (1)

Publication Number Publication Date
TW202018963A true TW202018963A (zh) 2020-05-16

Family

ID=69164307

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108121888A TW202018963A (zh) 2018-07-18 2019-06-24 受光元件及測距模組

Country Status (6)

Country Link
US (1) US20210293956A1 (zh)
EP (1) EP3826063A4 (zh)
JP (1) JP2020013906A (zh)
CN (1) CN112424937A (zh)
TW (1) TW202018963A (zh)
WO (1) WO2020017338A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020013907A (ja) * 2018-07-18 2020-01-23 ソニーセミコンダクタソリューションズ株式会社 受光素子および測距モジュール
DE102021107148A1 (de) * 2020-05-22 2021-11-25 Taiwan Semiconductor Manufacturing Co. Ltd. Halbleitervorrichtung und verfahren zu ihrer herstellung
US20230261022A1 (en) * 2020-07-20 2023-08-17 Sony Semiconductor Solutions Corporation Solid-state imaging device
US11450700B2 (en) * 2020-07-29 2022-09-20 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor image sensor pixel isolation structure for reducing crosstalk
KR20220043463A (ko) 2020-09-29 2022-04-05 에스케이하이닉스 주식회사 이미지 센싱 장치
US20240030257A1 (en) * 2020-12-08 2024-01-25 C/O Sony Semiconductor Solutions Corporation Imaging device and ranging device
EP4270932A4 (en) * 2020-12-25 2024-04-17 Sony Semiconductor Solutions Corp IMAGE CAPTURE ELEMENT AND IMAGE CAPTURE DEVICE

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129813B2 (en) * 2003-09-18 2012-03-06 Ic-Haus Gmbh Optoelectronic sensor and device for 3D distance measurement
JP2005150521A (ja) * 2003-11-18 2005-06-09 Canon Inc 撮像装置およびその製造方法
JP4280822B2 (ja) * 2004-02-18 2009-06-17 国立大学法人静岡大学 光飛行時間型距離センサ
GB2474631A (en) 2009-10-14 2011-04-27 Optrima Nv Photonic Mixer
JP2012169530A (ja) * 2011-02-16 2012-09-06 Sony Corp 固体撮像装置、および、その製造方法、電子機器
JP2013070030A (ja) * 2011-09-06 2013-04-18 Sony Corp 撮像素子、電子機器、並びに、情報処理装置
JP2015026708A (ja) * 2013-07-26 2015-02-05 株式会社東芝 固体撮像装置および固体撮像装置の製造方法
EP2960952B1 (en) * 2014-06-27 2019-01-02 Sony Depthsensing Solutions SA/NV Majority carrier current assisted radiation detector device
JP6716902B2 (ja) * 2015-12-11 2020-07-01 株式会社ニコン 電子機器
DE102016223568B3 (de) * 2016-10-14 2018-04-26 Infineon Technologies Ag Optische Sensoreinrichtung mit tiefen und flachen Steuerelektroden
US10672934B2 (en) * 2017-10-31 2020-06-02 Taiwan Semiconductor Manufacturing Company Ltd. SPAD image sensor and associated fabricating method

Also Published As

Publication number Publication date
CN112424937A (zh) 2021-02-26
WO2020017338A1 (ja) 2020-01-23
EP3826063A4 (en) 2022-03-02
EP3826063A1 (en) 2021-05-26
US20210293956A1 (en) 2021-09-23
JP2020013906A (ja) 2020-01-23

Similar Documents

Publication Publication Date Title
JP7404428B2 (ja) 測距素子
KR102531774B1 (ko) 거리측정 소자
JP7175655B2 (ja) 受光素子および測距モジュール
TW202018963A (zh) 受光元件及測距模組
KR102613095B1 (ko) 수광 소자 및 거리 측정 모듈
US11670664B2 (en) Light-receiving element and distance measurement module using indirect time of flight
KR102613094B1 (ko) 수광 소자 및 거리측정 모듈
TWI822807B (zh) 受光元件及測距模組
CN210325803U (zh) 受光元件以及测距模块
TW202020402A (zh) 受光元件及測距模組
TWI834685B (zh) 受光元件及測距模組