WO2022163307A1 - 情報処理システム、情報処理方法、および情報処理装置 - Google Patents

情報処理システム、情報処理方法、および情報処理装置 Download PDF

Info

Publication number
WO2022163307A1
WO2022163307A1 PCT/JP2022/000010 JP2022000010W WO2022163307A1 WO 2022163307 A1 WO2022163307 A1 WO 2022163307A1 JP 2022000010 W JP2022000010 W JP 2022000010W WO 2022163307 A1 WO2022163307 A1 WO 2022163307A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
information processing
angle
transmitter
processing system
Prior art date
Application number
PCT/JP2022/000010
Other languages
English (en)
French (fr)
Inventor
道人 石井
椋太郎 大貫
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US18/262,282 priority Critical patent/US20240094327A1/en
Publication of WO2022163307A1 publication Critical patent/WO2022163307A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/04Position of source determined by a plurality of spaced direction-finders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/165Management of the audio stream, e.g. setting of volume, audio stream path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1041Mechanical or electronic switches, or control elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the present disclosure relates to an information processing system, an information processing method, and an information processing device, and more particularly to an information processing system, an information processing method, and an information processing device for obtaining a more accurate distance.
  • Positioning technologies are known that use various positioning methods to identify the location of people and objects.
  • the estimated position of the transmitter is calculated using a positioning method corresponding to measurement information such as the received signal strength and the arrival angle of the radio signal from the transmitter, and the area to which the positioning method and the estimated position belong
  • a locating device is disclosed that locates a transmitter based on the corresponding priority.
  • RSSI received signal strength indicator
  • the present disclosure has been made in view of such circumstances, and is intended to obtain a more accurate distance.
  • An information processing system of the present disclosure includes a first angle detection unit that detects a first angle of reception of a signal from a transmitter by a first device, and a second angle of reception of the signal by a second device. distance to the transmitter based on the second angle detection unit, the first reception angle, the second reception angle, and the inter-device distance between the first device and the second device.
  • An information processing system including a distance calculation unit that calculates information.
  • the information processing system detects a first angle of reception of a signal from a transmitter at a first device, detects a second angle of reception of the signal at a second device, An information processing method for calculating distance information to the transmitter based on the first reception angle, the second reception angle, and the inter-device distance between the first device and the second device. .
  • An information processing device includes an angle detection unit that detects a first reception angle of a signal from a transmitter in its own device, an acquisition unit that acquires a second reception angle of the signal in another device, and an information processing apparatus comprising: a distance calculation unit that calculates distance information to the transmitter based on the first reception angle, the second reception angle, and the inter-device distance between the own device and the other device. is.
  • a first angle of reception of a signal from a transmitter is detected by a first device or the own device, a second angle of reception of the signal by a second device or another device is detected, and the Distance information to the transmitter based on the first reception angle, the second reception angle, and the inter-device distance between the first device and the second device or between the self device and the other device is calculated.
  • FIG. 1 is a diagram illustrating a configuration example of an information processing system to which technology according to the present disclosure is applied;
  • FIG. 1 is a block diagram showing a functional configuration example of an information processing system;
  • FIG. 1 is a diagram illustrating a configuration example of a communication system according to an embodiment of the present disclosure;
  • FIG. It is a figure explaining the flow of distance calculation. It is a figure explaining a reception angle. It is a figure explaining a reception angle.
  • 4 is a flowchart for explaining the flow of volume adjustment; 4 is a flowchart for explaining the flow of sound source selection; 4 is a flowchart for explaining the flow of sound source selection;
  • FIG. 1 is a diagram illustrating a configuration example of an information processing system to which technology according to the present disclosure is applied.
  • the information processing system 1 in FIG. 1 is composed of a transmitter 10 and output devices 20L and 20R.
  • the transmitter 10 and the output devices 20L and 20R each perform short-range wireless communication. Specifically, the transmitter 10 and the output device 20L, and the transmitter 10 and the output device 20R each perform short-range wireless communication using Bluetooth (registered trademark).
  • the output devices 20L and 20R Based on the signal from the transmitter 10, the output devices 20L and 20R detect the reception angles ⁇ 1 and ⁇ 2 of the signal from the transmitter 10 in the output devices 20L and 20R, respectively. Specifically, the output devices 20L and 20R detect the reception angles ⁇ 1 and ⁇ 2 using AoA (Angle of Arrival), which is one of the direction detection functions announced in the Bluetooth Core Specification 5.1. Detect direction.
  • AoA Angle of Arrival
  • the transmitter 10 on the side whose direction is detected transmits a signal from a single antenna.
  • Each of the output devices 20L and 20R has a plurality of antennas, receives signals with different phases for each antenna, and calculates reception angles ⁇ 1 and ⁇ 2 from the phase difference.
  • the output device 20L and the output device 20R also perform wireless communication with each other using Bluetooth.
  • the output device 20L and the output device 20R calculate the distance z to the transmitter 10 based on the respective detected reception angles ⁇ 1 and ⁇ 2 and the inter-device distance w between the output device 20L and the output device 20R.
  • the distance z is the distance from the midpoint of the inter-device distance w to the transmitter 10 .
  • the inter-device distance w is known, the inter-device distance w may be derived by measuring the distance from one of the output device 20L and the output device 20R to the other.
  • the output device 20L and the output device 20R can be arranged with a predetermined object in between. Therefore, at least one of the output devices 20L and 20R can calculate the distance from the object sandwiched between the output devices 20L and 20R to the transmitter 10 as the distance z.
  • At least one of the output device 20L and the output device 20R outputs a predetermined physical quantity for the object sandwiched between the output device 20L and the output device 20R according to the distance z.
  • Physical quantities include sound, vibration, light, heat, pressure, and the like. Data corresponding to these physical quantities may be sent from the transmitter 10 to the output device 20L and the output device 20R, or may be sent from another device to the output device 20L and the output device 20R. Also, the data corresponding to these physical quantities may be held in at least one of the output device 20L and the output device 20R.
  • the movement of the human body will change the volume of the sound depending on the distance from the human body to the transmitter 10, and the strength of the sound depending on the distance. Vibration etc. will be output to the human body.
  • FIG. 2 is a block diagram showing a functional configuration example of the information processing system 1 of FIG.
  • the information processing system 1 in FIG. 1 is the information processing system 1 in FIG.
  • the two sets of information processing device 50 and output unit 60 are provided corresponding to the output device 20L and the output device 20R, respectively.
  • the output device 20L and the output device 20R are simply referred to as the output device 20 when not distinguished from each other.
  • the transmitter 10 includes a data transmitter 31 and an antenna 32 .
  • the data transmission unit 31 transmits data corresponding to physical quantities output by the output unit 60 included in the output device 20 to the output device 20 via the antenna 32 .
  • the antenna 32 transmits a signal to the output device 20 or sends out data corresponding to a physical quantity.
  • the information processing device 50 is configured as a communication module built into the output device 20, and by detecting the reception angle of the signal from the transmitter 10, calculates the distance to the transmitter 10, and calculates the calculated distance. Accordingly, the output of the physical quantity by the output unit 60 is controlled.
  • the information processing device 50 includes an antenna 51 , an angle detection section 52 , a transmission control section 53 , a reception control section 54 , a distance calculation section 55 and an output control section 56 .
  • the configuration other than the antenna 51 is implemented by executing a program in the communication module.
  • the antenna 51 receives a signal from the transmitter 10 and transmits/receives data to/from the information processing device 50 included in another output device 20 .
  • the angle detection unit 52 Based on the signal from the transmitter 10 , the angle detection unit 52 detects the reception angle of the signal in the information processing device 50 and supplies it to the transmission control unit 53 or the distance calculation unit 55 .
  • the transmission control unit 53 controls data transmission by the antenna 51 .
  • the transmission control unit 53 transmits the reception angle detected by the angle detection unit 52 and the distance information calculated by the distance calculation unit 55 to be described later via the antenna 51 to an information processing device provided in the other output device 20 . Send to 50.
  • the reception control unit 54 controls data reception by the antenna 51 .
  • the reception control unit 54 receives the reception angle detected by the information processing device 50 provided in the other output device 20 and the calculated distance information via the antenna 51 .
  • the distance calculation unit 55 Distance information including the distance to the transmitter 10 is calculated.
  • the calculated distance information is supplied to the transmission control section 53 or the output control section 56 .
  • the output control unit 56 controls the output of the physical quantity by the output unit 60 according to the distance information calculated by the distance calculation unit 55 or the distance information calculated by the information processing device 50 included in the other output device 20. .
  • FIG. 3 is a diagram illustrating a configuration example of a communication system according to an embodiment of the present disclosure.
  • the communication system 100 of FIG. 3 is composed of a voice guidance device 110 and earphones 120L and 120R worn on the left and right ears of a human body (user).
  • Voice guidance device 110 corresponds to transmitter 10 in information processing system 1 of FIG. 1
  • earphones 120L and 120R correspond to output devices 20L and 20R, respectively.
  • the audio guidance device 110 is fixedly installed in the space where the user exists, and transmits audio data to the earphones 120L and 120R worn by the user.
  • the earphones 120L and 120R are configured as TWS (True Wireless Stereo), and output audio by performing wireless communication with the audio guidance device 110 using BLE (Bluetooth Low Energy) while being paired with each other.
  • TWS Truste Wireless Stereo
  • BLE Bluetooth Low Energy
  • the earphone 120R receives audio data from the audio guidance device 110 and separates it into left and right audio. Of the separated sounds, the right sound is output from the earphone 120R, and the left sound is output from the earphone 120L in synchronism. Note that the earphone 120L may receive the audio data from the audio guidance device 110.
  • FIG. 1 For example, the earphone 120R receives audio data from the audio guidance device 110 and separates it into left and right audio. Of the separated sounds, the right sound is output from the earphone 120R, and the left sound is output from the earphone 120L in synchronism. Note that the earphone 120L may receive the audio data from the audio guidance device 110.
  • earphones 120L and 120R detect the reception angles ⁇ 1 and ⁇ 2 of the signal from voice guidance device 110 in earphones 120L and 120R, respectively, by AoA. to detect the direction of
  • the earphones 120L and 120R calculate the distance z from the user to the voice guidance device 110 based on the reception angles ⁇ 1 and ⁇ 2 detected respectively and the inter-device distance w between the earphones 120L and 120R.
  • the inter-apparatus distance w is a fixed value such as the average width of an adult's head.
  • the earphones 120L and 120R output sound according to the distance z. For example, when the user approaches the voice guidance device 110 and the distance z from the user to the voice guidance device 110 becomes smaller than a predetermined threshold, the voice sent from the voice guidance device 110 is output to the user. Become so.
  • step S11 communication is established by pairing the earphones 120L and 120R according to the user's operation on either one of the earphones 120L and 120R.
  • the role of which one of the earphones 120L and 120R calculates the distance z is determined. Therefore, the distance calculation unit 55 may be provided in the information processing device 50 of at least one of the earphone 120L and the earphone 120R. In this example, the earphone 120R shall calculate the distance z.
  • step S12 when the user wearing the earphones 120L and 120R approaches the audio guidance device 110, in step S12, the audio guidance device 110 and the earphone 120L are paired to establish communication. Similarly, in step S13, communication is established by pairing the audio guidance device 110 and the earphone 120R.
  • the voice guidance device 110 does not necessarily need to be paired with both the earphones 120L and 120R, and may be paired with at least one of the earphones 120L and 120R.
  • step S14 based on the signal from the voice guidance device 110, the angle detection unit 52 of the earphone 120L detects the reception angle ⁇ 1 of the signal at the earphone 120L.
  • step S15 based on the signal from the voice guidance device 110, the angle detection unit 52 of the earphone 120R detects the reception angle ⁇ 2 of the signal at the earphone 120R.
  • step S16 the transmission control unit 53 of the earphone 120L transmits the reception angle ⁇ 1 detected by the angle detection unit 52 to the earphone 120R via the antenna 51.
  • step S17 the reception control unit 54 of the earphone 120R acquires (receives) the reception angle ⁇ 1 detected in the earphone 120L via the antenna 51.
  • step S18 the distance calculation unit 55 of the earphone 120R provides voice guidance based on the reception angle ⁇ 2 detected by the angle detection unit 52, the reception angle ⁇ 1 from the earphone 120L, and the inter-device distance w between the earphones 120L and 120R. A distance z to the device 110 is calculated.
  • the lengths of sides x and y can be expressed using known ⁇ 1, ⁇ 2, and w.
  • the distance z can be calculated using ⁇ 1, ⁇ 2, and w.
  • the transmission control unit 53 of the earphone 120R transmits distance information including the distance z calculated by the distance calculation unit 55 as described above to the earphone 120L via the antenna 51.
  • the distance information includes the distance z to the voice guidance device 110 and the angle ⁇ z representing the direction of the voice guidance device 110 with respect to the user.
  • step S20 the reception control unit 54 of the earphone 120L acquires (receives) distance information including the distance z calculated by the earphone 120R via the antenna 51.
  • step S21 the output control unit 56 of the earphone 120L controls audio output by the output unit 60 according to the distance z included in the distance information from the earphone 120R.
  • step S22 the output control unit 56 of the earphone 120R controls the output of sound by the output unit 60 according to the distance z included in the distance information calculated by the distance calculation unit 55.
  • the sound may be output from the output units 60 of both the earphones 120L and 120R, or may be output from only one of the output units 60 of the earphones 120L and 120R.
  • the distance z to the voice guidance device 110 is calculated based on the reception angles ⁇ 1 and ⁇ 2 of the signal from the voice guidance device 110 in the earphones 120L and 120R, respectively, and the inter-device distance w detected by AoA. is calculated.
  • the distance calculation based on the direction detection by AoA it is possible to calculate the absolute distance with an error of centimeter unit without being affected by the noise of the radio wave environment, so the distance is more accurate. can be obtained.
  • reception angles ⁇ 1 and ⁇ 2 detected by earphones 120L and 120R will be described.
  • the position of earphone 120L is indicated by point Pd1
  • the position of earphone 120R is indicated by point Pd2
  • the position of voice guidance device 110 is indicated by point Pt.
  • the points Pd1 and Pd2 are on the same xy plane, while the point Pt is at a position shifted from the xy plane in the z-axis direction. That is, in this example, voice guidance device 110 is arranged obliquely upward as viewed from the user wearing earphones 120L and 120R.
  • the reception angles ⁇ 1 and ⁇ 2 are obtained with respect to a point Pt' obtained by projecting the point Pt onto the xy plane. That is, the reception angle ⁇ 1 is obtained as an angle formed by a straight line passing through the points Pd1 and Pd2 and a line segment connecting the points Pd1 and Pt′ on the xy plane. Similarly, the reception angle ⁇ 2 is obtained as an angle formed by a straight line passing through the points Pd1 and Pd2 and a line segment connecting the points Pd2 and Pt′ on the xy plane.
  • the distance z to the voice guide device 110 is obtained as the distance from the middle point m between the points Pd1 and Pd2 to the point Pt'.
  • the reception angles ⁇ 1 and ⁇ 2 may be obtained with respect to the point Pt.
  • the reception angle ⁇ 1 is obtained as an angle between a straight line passing through the points Pd1 and Pd2 and a line segment connecting the points Pd1 and Pt on a plane passing through the points Pd1, Pd2, and Pt.
  • the reception angle ⁇ 2 is obtained as an angle between a straight line passing through points Pd1 and Pd2 and a line segment connecting points Pd2 and Pt on a plane passing through points Pd1, Pd2, and Pt.
  • the distance z to the voice guidance device 110 is obtained as the distance from the midpoint m between the points Pd1 and Pd2 to the point Pt.
  • steps S21 and S22 in FIG. 4 it is assumed that the output of sound by the output unit 60 is controlled according to the distance z included in the distance information.
  • voice output control executed by the output control section 56 of each of the earphones 120L and 120R will be described.
  • FIG. 7 is a flowchart explaining the flow of volume adjustment according to distance.
  • step S31 the output control unit 56 determines whether or not the distance z included in the distance information has changed. If the distance z does not change, step S31 is repeated.
  • step S32 the output control unit 56 adjusts the volume of the sound output from the output unit 60 according to the changed distance z, and returns to step S31.
  • the volume of the voice output from the output unit 60 increases, and as the user moves away from the voice guidance device 110, the volume of the voice output from the output unit 60 increases. The volume of the sound that is played is reduced.
  • the volume of the voice output from the output unit 60 is adjusted according to the distance calculated with an error in centimeters, so that the user can hear the voice more clearly according to the distance from the voice guidance device 110. It is possible to listen to the sound dynamically added with delicate sound intensity.
  • FIG. 8 is a flowchart explaining the flow of sound source selection according to distance.
  • step S41 the output control unit 56 determines whether or not there are a plurality of transmitters (voice guidance devices 110) that serve as sound sources. If a plurality of transmitters do not exist, step S41 is repeated.
  • step S42 the output control unit 56 selects the voice output from the nearest transmitter based on the distances calculated for the plurality of transmitters, and returns to step S41. .
  • the volume of the sound from the selected sound source may be adjusted according to the processing in FIG. 7 based on the distance to the sound source.
  • FIG. 9 is a flowchart explaining the flow of sound source selection according to the direction.
  • step S51 the output control unit 56 determines whether or not there are a plurality of transmitters having the same distance calculated for each transmitter when there are a plurality of transmitters (voice guidance devices 110) serving as sound sources. do. If there are not a plurality of transmitters with the same distance, step S51 is repeated.
  • step S52 the output control unit 56 selects the transmitter closest to the front of the user based on the angle ⁇ z included in the distance information calculated for the plurality of transmitters. is selected, and the process returns to step S51.
  • the volume of the sound from the selected sound source may be adjusted according to the process of FIG. 7 based on the distance to the sound source.
  • a voice output from a transmitter located in a predetermined direction with respect to the user is selected. You may do so.
  • the communication system 100 according to the embodiment of the present disclosure can be applied to an information providing system that transmits information by push type.
  • voice guidance device 110 For example, by applying the voice guidance device 110 to street posters and bulletin boards, users can listen to advertisements and messages according to their current location while moving around town.
  • the voice guide device 110 by applying the voice guide device 110 to voice guide equipment for each exhibit in a museum or art gallery, the user can listen to voice guidance corresponding to the exhibit being viewed.
  • the voice guidance device 110 to a voice guidance system in facilities such as train station premises, visually impaired people can use these facilities with peace of mind.
  • the transmitter 10 and the output devices 20L and 20R mutually perform short-range wireless communication using Bluetooth, thereby calculating the distance to the transmitter 10. I assumed.
  • the transmitter 10 and the output devices 20L and 20R may perform short-range wireless communication with each other using WiFi (registered trademark).
  • the transmitter 10 transmits radio waves to the output devices 20L and 20R by beamforming.
  • the distance to the transmitter 10 can be calculated by the output devices 20L and 20R detecting the reception angle of the radio wave from the transmitter 10.
  • the communication system 100 including TWS using BLE was illustrated, but the technology according to the present disclosure is such that a set of devices arranged at regular intervals is a predetermined transmitter. It can be applied to any system that calculates the distance to
  • the technology according to the present disclosure can be configured as follows. (1) a first angle detection unit that detects a first reception angle in the first device of the signal from the transmitter; a second angle detector for detecting a second angle of reception of the signal at the second device; a distance calculation unit that calculates distance information to the transmitter based on the first reception angle, the second reception angle, and the inter-device distance between the first device and the second device; information processing system. (2) The distance calculation unit calculates the distance information from the midpoint of the inter-device distance to the transmitter based on the first reception angle, the second reception angle, and the inter-device distance (1 ).
  • the first device and the second device are arranged with a predetermined object interposed therebetween, The information processing system according to (2), wherein the distance calculation unit calculates the distance information from the object to the transmitter.
  • the information processing system according to (3) further comprising an output control unit that controls output of a predetermined physical quantity to the object according to the distance information.
  • the information processing system according to (4) wherein the object is a human body.
  • the first device and the second device are incorporated in earphones worn on the left and right ears of the human body, respectively;
  • the output control unit selects the output of the voice from the transmitter closest to the human body from among the plurality of transmitters.
  • the distance information includes the direction of the transmitter with respect to the human body;
  • the output control unit selects the output of the voice from the transmitter located in a predetermined direction with respect to the human body from among the plurality of transmitters.
  • an angle detection unit that detects a first reception angle of the signal from the transmitter in the own device; an acquisition unit for acquiring a second angle of reception of the signal at another device; a distance calculation unit that calculates distance information to the transmitter based on the first reception angle, the second reception angle, and the inter-device distance between the own device and the other device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示は、より正確な距離を求めることができるようにする情報処理システム、情報処理方法、および情報処理装置に関する。 第1の角度検出部は、発信機からの信号の第1の装置における第1の受信角度を検出し、第2の角度検出部は、信号の第2の装置における第2の受信角度を検出し、距離算出部は、第1の受信角度、第2の受信角度、および、第1の装置と第2の装置の装置間距離に基づいて、発信機までの距離情報を算出する。本開示に係る技術は、例えば、BLEを用いたTWSに適用することができる。

Description

情報処理システム、情報処理方法、および情報処理装置
 本開示は、情報処理システム、情報処理方法、および情報処理装置に関し、特に、より正確な距離を求めるようにする情報処理システム、情報処理方法、および情報処理装置に関する。
 人や物の所在位置を、各種の測位方式を用いて特定する位置特定技術が知られている。
 特許文献1には、発信機からの無線信号の受信信号強度や到来角度などの計測情報に対応する測位方式を用いて発信機の推定位置を算出し、その測位方式と推定位置が属するエリアに応じた優先度に基づいて発信機の位置を特定する位置特定装置が開示されている。
特開2020-153786号公報
 受信信号強度(RSSI:Received Signal Strength Indicator)に基づいた位置推定によれば、相対的な距離は求められるものの、電波環境のノイズなどの影響を受ける上、距離解像度がメートル単位であり、正確な距離を求めることはできなかった。
 本開示は、このような状況に鑑みてなされたものであり、より正確な距離を求めるようにするものである。
 本開示の情報処理システムは、発信機からの信号の第1の装置における第1の受信角度を検出する第1の角度検出部と、前記信号の第2の装置における第2の受信角度を検出する第2の角度検出部と、前記第1の受信角度、前記第2の受信角度、および、前記第1の装置と前記第2の装置の装置間距離に基づいて、前記発信機までの距離情報を算出する距離算出部とを備える情報処理システムである。
 本開示の情報処理方法は、情報処理システムが、発信機からの信号の第1の装置における第1の受信角度を検出し、前記信号の第2の装置における第2の受信角度を検出し、前記第1の受信角度、前記第2の受信角度、および、前記第1の装置と前記第2の装置の装置間距離に基づいて、前記発信機までの距離情報を算出する情報処理方法である。
 本開示の情報処理装置は、発信機からの信号の自装置における第1の受信角度を検出する角度検出部と、前記信号の他の装置における第2の受信角度を取得する取得部と、前記第1の受信角度、前記第2の受信角度、および、前記自装置と前記他の装置の装置間距離に基づいて、前記発信機までの距離情報を算出する距離算出部とを備える情報処理装置である。
 本開示においては、発信機からの信号の第1の装置または自装置における第1の受信角度が検出され、前記信号の第2の装置または他の装置における第2の受信角度が検出され、前記第1の受信角度、前記第2の受信角度、および、前記第1の装置と前記第2の装置または前記自装置と前記他の装置の装置間距離に基づいて、前記発信機までの距離情報が算出される。
本開示に係る技術を適用した情報処理システムの構成例を示す図である。 情報処理システムの機能構成例を示すブロック図である。 本開示の実施の形態に係る通信システムの構成例を示す図である。 距離算出の流れについて説明する図である。 受信角度について説明する図である。 受信角度について説明する図である。 音量調整の流れについて説明するフローチャートである。 音源選択の流れについて説明するフローチャートである。 音源選択の流れについて説明するフローチャートである。
 以下、本開示を実施するための形態(以下、実施の形態とする)について説明する。なお、説明は以下の順序で行う。
 1.本開示に係る技術を適用した情報処理システム
 2.BLEを用いたTWSへの適用
  2-1.システム構成
  2-2.距離算出の流れ
  2-3.受信角度について
  2-4.音声出力制御の例
  2-5.ユースケース
 3.変形例
<1.本開示に係る技術を適用した情報処理システム>
 図1は、本開示に係る技術を適用した情報処理システムの構成例を示す図である。
 図1の情報処理システム1は、発信機10と出力デバイス20L,20Rから構成される。
 発信機10と出力デバイス20L,20Rそれぞれは、近距離無線通信を行う。具体的には、発信機10と出力デバイス20L、発信機10と出力デバイス20Rは、それぞれBluetooth(登録商標)を用いた近距離無線通信を行う。
 出力デバイス20L,20Rは、発信機10からの信号に基づいて、出力デバイス20L,20Rそれぞれにおける発信機10からの信号の受信角度θ1,θ2を検出する。具体的には、出力デバイス20L,20Rは、Bluetooth Core Specification 5.1において発表されている方向検知機能のうちのAoA(Angle of Arrival)により、受信角度θ1,θ2を検出することで、発信機10の方向を検知する。
 AoAによる方向検知においては、方向を検知される側の発信機10が、単一のアンテナから信号を発信する。出力デバイス20L,20Rそれぞれは、複数のアンテナを有し、アンテナ毎に位相の異なる信号を受信することで、その位相差より受信角度θ1,θ2を算出する。
 出力デバイス20Lと出力デバイス20Rもまた、互いにBluetoothを用いた無線通信を行う。出力デバイス20Lと出力デバイス20Rは、それぞれにおいて検出された受信角度θ1,θ2と、出力デバイス20Lと出力デバイス20Rの装置間距離wに基づいて、発信機10までの距離zを算出する。例えば、距離zは、装置間距離wの中点から発信機10までの距離とされる。装置間距離wは、既知とされるが、出力デバイス20Lと出力デバイス20Rのいずれか一方が、他方までの距離を計測することで、装置間距離wが導出されてもよい。
 出力デバイス20Lと出力デバイス20Rは、所定の物体を挟んで配置され得る。したがって、出力デバイス20Lと出力デバイス20Rの少なくともいずれか一方は、距離zとして、出力デバイス20Lと出力デバイス20Rに挟まれた物体から発信機10までの距離を算出することができる。
 また、出力デバイス20Lと出力デバイス20Rの少なくともいずれか一方は、距離zに応じて、出力デバイス20Lと出力デバイス20Rに挟まれた物体に対する所定の物理量を出力する。物理量は、音声、振動、光、熱、圧力などを含む。これら物理量に対応するデータは、例えば、発信機10から出力デバイス20Lや出力デバイス20Rに送出されてもよいし、他の機器から出力デバイス20Lや出力デバイス20Rに送出されてもよい。また、これら物理量に対応するデータは、出力デバイス20Lと出力デバイス20Rの少なくともいずれか一方に保持されていてもよい。
 例えば、出力デバイス20Lと出力デバイス20Rに挟まれる物体が人体である場合、その人体が移動することにより、人体から発信機10までの距離に応じた音量の音声や、その距離に応じた強さの振動などが、人体に対して出力されるようになる。
 図2は、図1の情報処理システム1の機能構成例を示すブロック図である。
 図2の情報処理システム1は、発信機10と、二組の情報処理装置50および出力部60から構成される。
 二組の情報処理装置50と出力部60は、それぞれ出力デバイス20Lと出力デバイス20Rに対応して設けられる。以下、出力デバイス20Lと出力デバイス20Rを区別しない場合、単に、出力デバイス20ともいう。
 発信機10は、データ送出部31とアンテナ32を備える。
 データ送出部31は、出力デバイス20が備える出力部60により出力される物理量に対応するデータを、アンテナ32を介して、出力デバイス20に送出する。アンテナ32は、出力デバイス20に対して信号を発信したり、物理量に対応するデータを送出したりする。
 情報処理装置50は、出力デバイス20に内蔵される通信モジュールとして構成され、発信機10からの信号の受信角度を検出することで、発信機10までの距離を算出したり、算出された距離に応じて、出力部60による物理量の出力を制御したりする。
 情報処理装置50は、アンテナ51、角度検出部52、送信制御部53、受信制御部54、距離算出部55、および出力制御部56を備える。情報処理装置50において、アンテナ51以外の構成は、通信モジュールにおけるプログラムが実行されることで実現される。
 アンテナ51は、発信機10からの信号を受信したり、他の出力デバイス20が備える情報処理装置50との間でデータを送受信したりする。
 角度検出部52は、発信機10からの信号に基づいて、その信号の情報処理装置50における受信角度を検出し、送信制御部53または距離算出部55に供給する。
 送信制御部53は、アンテナ51によるデータの送信を制御する。例えば、送信制御部53は、角度検出部52により検出された受信角度や、後述する距離算出部55により算出された距離情報を、アンテナ51を介して、他の出力デバイス20が備える情報処理装置50に送信する。
 受信制御部54は、アンテナ51によるデータの受信を制御する。例えば、受信制御部54は、他の出力デバイス20が備える情報処理装置50において検出された受信角度や、算出された距離情報を、アンテナ51を介して受信する。
 距離算出部55は、角度検出部52により検出された受信角度、他の出力デバイス20が備える情報処理装置50において検出された受信角度、および、2つの出力デバイス20の装置間距離に基づいて、発信機10までの距離を含む距離情報を算出する。算出された距離情報は、送信制御部53または出力制御部56に供給される。
 出力制御部56は、距離算出部55により算出された距離情報、または、他の出力デバイス20が備える情報処理装置50において算出された距離情報に応じて、出力部60による物理量の出力を制御する。
<2.BLEを用いたTWSへの適用>
(2-1.システム構成)
 図3は、本開示の実施の形態に係る通信システムの構成例を示す図である。
 図3の通信システム100は、音声案内装置110と、人体(ユーザ)の左右両耳に装着されるイヤホン120L,120Rから構成される。音声案内装置110は、図1の情報処理システム1における発信機10に対応し、イヤホン120L,120Rは、出力デバイス20L,20Rそれぞれに対応する。
 音声案内装置110は、ユーザが存在する空間において固定して設置され、ユーザが装着するイヤホン120L,120Rに対して音声データを送出する。
 イヤホン120L,120Rは、TWS(True Wireless Stereo)として構成され、互いにペアリングした状態で、音声案内装置110と、BLE(Bluetooth Low Energy)を用いた無線通信を行うことで音声を出力する。
 具体的には、例えば、イヤホン120Rが、音声案内装置110からの音声データを受信し、左右の音声に分離する。分離された音声のうちの右の音声はイヤホン120Rにより、左の音声はイヤホン120Lにより、同期しながら出力される。なお、イヤホン120Lが、音声案内装置110からの音声データを受信してもよい。
 また、イヤホン120L,120Rは、音声案内装置110からの信号に基づいて、イヤホン120L,120Rそれぞれにおける音声案内装置110からの信号の受信角度θ1,θ2をAoAにより検出することで、音声案内装置110の方向を検知する。
 イヤホン120L,120Rは、それぞれにおいて検出された受信角度θ1,θ2と、イヤホン120L,120Rの装置間距離wに基づいて、ユーザから音声案内装置110までの距離zを算出する。装置間距離wは、例えば、成人の頭部の幅の平均値などの固定値とされる。
 そして、イヤホン120L,120Rは、距離zに応じて音声を出力する。例えば、ユーザが音声案内装置110に近づくことにより、ユーザから音声案内装置110までの距離zが所定の閾値より小さくなった場合に、音声案内装置110から送出された音声がユーザに対して出力されるようになる。
(2-2.距離算出の流れ)
 次に、図4を参照して、図3の通信システム100における距離算出の流れについて説明する。
 まず、ステップS11において、イヤホン120Lとイヤホン120Rのいずれか一方に対するユーザの操作に応じて、イヤホン120Lとイヤホン120Rがペアリングすることで通信を確立する。このとき、イヤホン120Lとイヤホン120Rのどちらが距離zを算出するかなどの役割が決定される。したがって、距離算出部55は、イヤホン120Lとイヤホン120Rの少なくともいずれか一方の情報処理装置50に設けられればよい。この例では、イヤホン120Rが距離zを算出するものとする。
 次いで、イヤホン120L,120Rを装着するユーザが音声案内装置110に近づくなどすることで、ステップS12において、音声案内装置110とイヤホン120Lがペアリングすることで通信を確立する。同様に、ステップS13において、音声案内装置110とイヤホン120Rがペアリングすることで通信を確立する。
 なお、音声案内装置110は、必ずしもイヤホン120Lとイヤホン120Rの両方とペアリングする必要はなく、イヤホン120Lとイヤホン120Rの少なくともいずれか一方とペアリングできればよい。
 ステップS14において、イヤホン120Lの角度検出部52は、音声案内装置110からの信号に基づいて、その信号のイヤホン120Lにおける受信角度θ1を検出する。
 同様に、ステップS15において、イヤホン120Rの角度検出部52は、音声案内装置110からの信号に基づいて、その信号のイヤホン120Rにおける受信角度θ2を検出する。
 このようなAoAによる受信角度θ1,θ2の検出は、どのタイミングでも可能とされる。
 ステップS16において、イヤホン120Lの送信制御部53は、角度検出部52により検出された受信角度θ1を、アンテナ51を介して、イヤホン120Rに送信する。
 ステップS17において、イヤホン120Rの受信制御部54は、イヤホン120Lにおいて検出された受信角度θ1を、アンテナ51を介して取得する(受信する)。
 ステップS18において、イヤホン120Rの距離算出部55は、角度検出部52により検出された受信角度θ2、イヤホン120Lからの受信角度θ1、および、イヤホン120L,120Rの装置間距離wに基づいて、音声案内装置110までの距離zを算出する。
 ここで、図3に示されるように、受信角度θ2を鋭角の1つとし、直角を挟む2辺x,yを有する直角三角形を考えた場合、xtanθ2=y,(w+x)tanθ1=yが成立することから、辺x,yの長さは、それぞれ以下の2式で示される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 このように、辺x,yの長さは、既知であるθ1,θ2,wを用いて表すことができる。
 また、距離zを斜辺とする直角三角形において、その斜辺のなす角度をθzとすると、(w/2+x)tanθz=yが成立することから、角度θzは、以下の式で示される。
Figure JPOXMLDOC01-appb-M000003
 さらに、zcosθz=w/2+xが成立することから、距離zは、以下の式で示される。
Figure JPOXMLDOC01-appb-M000004
 上述したように、辺x,yの長さは、既知であるθ1,θ2,wを用いて表されることから、距離zは、θ1,θ2,wを用いて算出することができる。
 さて、ステップS19において、イヤホン120Rの送信制御部53は、上述のようにして距離算出部55により算出された距離zを含む距離情報を、アンテナ51を介して、イヤホン120Lに送信する。距離情報には、音声案内装置110までの距離zのほか、ユーザに対する音声案内装置110の方向を表す角度θzが含まれる。
 ステップS20において、イヤホン120Lの受信制御部54は、イヤホン120Rにより算出された距離zを含む距離情報を、アンテナ51を介して取得する(受信する)。
 ステップS21において、イヤホン120Lの出力制御部56は、イヤホン120Rからの距離情報に含まれる距離zに応じて、出力部60による音声の出力を制御する。
 ステップS21と同期して、ステップS22において、イヤホン120Rの出力制御部56は、距離算出部55により算出された距離情報に含まれる距離zに応じて、出力部60による音声の出力を制御する。なお、音声は、イヤホン120Lとイヤホン120Rの両方の出力部60により出力されてもよいし、イヤホン120Lとイヤホン120Rのいずれか一方の出力部60のみにより出力されてもよい。
 以上の処理によれば、AoAにより検出された、イヤホン120L,120Rそれぞれにおける音声案内装置110からの信号の受信角度θ1,θ2と、装置間距離wに基づいて、音声案内装置110までの距離zが算出される。
 RSSIに基づいた位置推定では、相対的な距離は求められるものの、電波環境のノイズなどの影響を受ける上、距離解像度がメートル単位であり、正確な距離を求めることはできなかった。
 一方、AoAによる方向検知に基づいた距離算出によれば、電波環境のノイズなどの影響を受けることもなく、センチメートル単位の誤差で絶対的な距離を算出することができるので、より正確な距離を求めることが可能となる。
(2-3.受信角度について)
 ここで、図5を参照して、イヤホン120L,120Rそれぞれにおいて検出される受信角度θ1,θ2について説明する。
 図5においては、イヤホン120Lの位置が点Pd1、イヤホン120Rの位置が点Pd2、音声案内装置110の位置が点Ptで表されるものとする。点Pd1と点Pd2は、同一のxy平面上にある一方、点Ptは、xy平面からz軸方向にずれた位置にある。すなわち、この例では、音声案内装置110は、イヤホン120L,120Rを装着するユーザからみて斜め上方向に配置されている。
 このような場合、受信角度θ1,θ2は、点Ptをxy平面に投影した点Pt´に対して求められるようにする。すなわち、受信角度θ1は、xy平面上で、点Pd1と点Pd2を通る直線と、点Pd1と点Pt´を結ぶ線分のなす角度として求められる。同様に、受信角度θ2は、xy平面上で、点Pd1と点Pd2を通る直線と、点Pd2と点Pt´を結ぶ線分のなす角度として求められる。
 また、音声案内装置110までの距離zは、点Pd1と点Pd2の中点mから点Pt´までの距離として求められる。
 なお、図6に示されるように、受信角度θ1,θ2が、点Ptに対して求められるようにしてもよい。この場合、受信角度θ1は、点Pd1,Pd2,Ptを通る平面上で、点Pd1と点Pd2を通る直線と、点Pd1と点Ptを結ぶ線分のなす角度として求められる。同様に、受信角度θ2は、点Pd1,Pd2,Ptを通る平面上で、点Pd1と点Pd2を通る直線と、点Pd2と点Ptを結ぶ線分のなす角度として求められる。
 この場合、音声案内装置110までの距離zは、点Pd1と点Pd2の中点mから点Ptまでの距離として求められる。
(2-4.音声出力制御の例)
 図4のステップS21,S22においては、距離情報に含まれる距離zに応じて、出力部60による音声の出力が制御されるものとした。ここでは、イヤホン120L,120Rそれぞれの出力制御部56により実行される音声出力制御の具体例について説明する。
 図7は、距離に応じた音量調整の流れについて説明するフローチャートである。
 ステップS31において、出力制御部56は、距離情報に含まれる距離zが変化したか否かを判定する。距離zが変化しない場合、ステップS31が繰り返される。
 一方、距離zが変化した場合、ステップS32において、出力制御部56は、変化した距離zに応じて、出力部60から出力される音声の音量を調整し、ステップS31に戻る。
 具体的には、ユーザ(イヤホン120L,120R)が音声案内装置110に近づくにつれ、出力部60から出力される音声の音量は大きくなり、ユーザが音声案内装置110から遠ざかるにつれ、出力部60から出力される音声の音量は小さくなる。
 このように、センチメートル単位の誤差で算出された距離に対応して、出力部60から出力される音声の音量が調整されるので、ユーザは、音声案内装置110との距離に応じて、より細やかな音の強弱が動的につけられた音声を聴取することが可能となる。
 図8は、距離に応じた音源選択の流れについて説明するフローチャートである。
 ステップS41において、出力制御部56は、音源となる発信機(音声案内装置110)が複数存在するか否かを判定する。発信機が複数存在しない場合、ステップS41が繰り返される。
 一方、発信機が複数存在する場合、ステップS42において、出力制御部56は、複数の発信機について算出された距離に基づいて、最も近い発信機からの音声の出力を選択し、ステップS41に戻る。
 これにより、音声案内装置110が複数存在する場合、ユーザは、常に最も近い音声案内装置110からの音声だけを聴取することが可能となる。なお、選択された音源からの音声の音量は、その音源までの距離に基づいて、図7の処理に従って調整されてもよい。
 図9は、方向に応じた音源選択の流れについて説明するフローチャートである。
 ステップS51において、出力制御部56は、音源となる発信機(音声案内装置110)が複数存在する場合において、それぞれの発信機について算出された距離が同じ発信機が複数存在するか否かを判定する。距離が同じ発信機が複数存在しない場合、ステップS51が繰り返される。
 一方、距離が同じ発信機が複数存在する場合、ステップS52において、出力制御部56は、複数の発信機について算出された距離情報に含まれる角度θzに基づいて、ユーザの正面に最も近い発信機からの音声の出力を選択し、ステップS51に戻る。
 これにより、距離が同じ音声案内装置110が複数存在する場合、ユーザは、常に自身が向いている方向にある音声案内装置110からの音声だけを聴取することが可能となる。なお、選択された音源からの音声の音量は、その音源までの距離に基づいて、図7の処理に従って調整されてもよい。
 なお、距離が同じ音声案内装置110が複数存在する場合に限らず、複数の発信機(音声案内装置110)のうち、ユーザに対して所定の方向にある発信機からの音声の出力が選択されるようにしてもよい。
(2-5.ユースケース)
 本開示の実施の形態に係る通信システム100は、プッシュ型で情報を発信する情報提供システムに適用することができる。
 例えば、音声案内装置110を、街頭のポスターや掲示板に適用することで、ユーザは、街中を移動しながら、そのときの位置に応じた宣伝やメッセージを聞くことができる。
 また、音声案内装置110を、博物館や美術館などの展示物毎の音声ガイド機器に適用することで、ユーザは、観覧している展示物に対応した音声ガイダンスを聞くことができる。
 さらには、音声案内装置110を、例えば鉄道駅構内などの施設における音声案内システムに適用することで、視覚障碍者が安心してこれらの施設を利用することが可能となる。
<3.変形例>
 本開示に係る技術を適用した情報処理システム1においては、発信機10と出力デバイス20L,20Rが、互いにBluetoothを用いた近距離無線通信を行うことで、発信機10までの距離が算出されるものとした。
 これに限らず、発信機10と出力デバイス20L,20Rが、互いにWiFi(登録商標)を用いた近距離無線通信を行うようにしてもよい。この場合、発信機10は、ビームフォーミングにより、出力デバイス20L,20Rに対して電波を送出する。
 このような構成においても、出力デバイス20L,20Rが、発信機10からの電波の受信角度を検出することで、発信機10までの距離を算出することができる。
 以上においては、本開示の実施の形態として、BLEを用いたTWSを含む通信システム100を例示したが、本開示に係る技術は、一定間隔で配置される1組のデバイスが、所定の発信機までの距離を算出する任意のシステムに適用することができる。
 すなわち、本開示に係る技術の実施の形態は、上述した実施の形態に限定されるものではなく、本開示に係る技術の要旨を逸脱しない範囲において種々の変更が可能である。
 また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
 さらに、本開示に係る技術は以下のような構成をとることができる。
(1)
 発信機からの信号の第1の装置における第1の受信角度を検出する第1の角度検出部と、
 前記信号の第2の装置における第2の受信角度を検出する第2の角度検出部と、
 前記第1の受信角度、前記第2の受信角度、および、前記第1の装置と前記第2の装置の装置間距離に基づいて、前記発信機までの距離情報を算出する距離算出部と
 を備える情報処理システム。
(2)
 前記距離算出部は、前記第1の受信角度、前記第2の受信角度、および前記装置間距離に基づいて、前記装置間距離の中点から前記発信機までの前記距離情報を算出する
 (1)に記載の情報処理システム。
(3)
 前記第1の装置と前記第2の装置は、所定の物体を挟んで配置され、
 前記距離算出部は、前記物体から前記発信機までの前記距離情報を算出する
 (2)に記載の情報処理システム。
(4)
 前記距離情報に応じて、前記物体に対する所定の物理量の出力を制御する出力制御部をさらに備える
 (3)に記載の情報処理システム。
(5)
 前記物体は、人体である
 (4)に記載の情報処理システム。
(6)
 前記第1の装置と前記第2の装置は、前記人体の左右両耳に装着されるイヤホンそれぞれに内蔵され、
 前記出力制御部は、前記人体の左右両耳の少なくともいずれか一方への音声の出力を制御する
 (5)に記載の情報処理システム。
(7)
 前記出力制御部は、前記距離情報に応じて、前記音声の音量を調整する
 (6)に記載の情報処理システム。
(8)
 前記出力制御部は、前記発信機から送出された前記音声の出力を制御する
 (6)または(7)に記載の情報処理システム。
(9)
 前記出力制御部は、複数の前記発信機のうち、前記人体との距離が最も近い前記発信機からの前記音声の出力を選択する
 (8)に記載の情報処理システム。
(10)
 前記距離情報は、前記人体に対する前記発信機の方向を含み、
 前記出力制御部は、複数の前記発信機のうち、前記人体に対して所定の方向にある前記発信機からの前記音声の出力を選択する
 (9)に記載の情報処理システム。
(11)
 前記出力制御部は、前記人体からの距離が同じ複数の前記発信機のうち、前記人体の正面に最も近い前記発信機からの前記音声の出力を選択する
 (10)に記載の情報処理システム。
(12)
 前記距離算出部は、前記第1の装置と前記第2の装置の少なくともいずれか一方に設けられる
 (1)乃至(11)のいずれかに記載の情報処理システム。
(13)
 前記第1の装置、前記第2の装置、および前記発信機は、互いにBluetooth(登録商標)を用いた近距離無線通信を行う
 (1)乃至(12)のいずれかに記載の情報処理システム。
(14)
 前記第1の角度検出部と前記第2の角度検出部は、それぞれBluetooth Core Specification 5.1の方向検知機能により、前記第1の受信角度と前記第2の受信角度を検出する
 (13)に記載の情報処理システム。
(15)
 前記第1の装置、前記第2の装置、および前記発信機は、互いにWiFi(登録商標)を用いた近距離無線通信を行う
 (1)乃至(12)のいずれかに記載の情報処理システム。
(16)
 情報処理システムが、
 発信機からの信号の第1の装置における第1の受信角度を検出し、
 前記信号の第2の装置における第2の受信角度を検出し、
 前記第1の受信角度、前記第2の受信角度、および、前記第1の装置と前記第2の装置の装置間距離に基づいて、前記発信機までの距離情報を算出する
 情報処理方法。
(17)
 発信機からの信号の自装置における第1の受信角度を検出する角度検出部と、
 前記信号の他の装置における第2の受信角度を取得する取得部と、
 前記第1の受信角度、前記第2の受信角度、および、前記自装置と前記他の装置の装置間距離に基づいて、前記発信機までの距離情報を算出する距離算出部と
 を備える情報処理装置。
 10 発信機, 20L,20R 出力デバイス, 31 データ送出部, 32 アンテナ, 50 情報処理装置, 51 アンテナ, 52 角度検出部, 53 送信制御部, 54 受信制御部, 55 距離算出部, 56 出力制御部, 60 出力制御部, 110 音声案内装置, 120L,120R イヤホン

Claims (17)

  1.  発信機からの信号の第1の装置における第1の受信角度を検出する第1の角度検出部と、
     前記信号の第2の装置における第2の受信角度を検出する第2の角度検出部と、
     前記第1の受信角度、前記第2の受信角度、および、前記第1の装置と前記第2の装置の装置間距離に基づいて、前記発信機までの距離情報を算出する距離算出部と
     を備える情報処理システム。
  2.  前記距離算出部は、前記第1の受信角度、前記第2の受信角度、および前記装置間距離に基づいて、前記装置間距離の中点から前記発信機までの前記距離情報を算出する
     請求項1に記載の情報処理システム。
  3.  前記第1の装置と前記第2の装置は、所定の物体を挟んで配置され、
     前記距離算出部は、前記物体から前記発信機までの前記距離情報を算出する
     請求項2に記載の情報処理システム。
  4.  前記距離情報に応じて、前記物体に対する所定の物理量の出力を制御する出力制御部をさらに備える
     請求項3に記載の情報処理システム。
  5.  前記物体は、人体である
     請求項4に記載の情報処理システム。
  6.  前記第1の装置と前記第2の装置は、前記人体の左右両耳に装着されるイヤホンそれぞれに内蔵され、
     前記出力制御部は、前記人体の左右両耳の少なくともいずれか一方への音声の出力を制御する
     請求項5に記載の情報処理システム。
  7.  前記出力制御部は、前記距離情報に応じて、前記音声の音量を調整する
     請求項6に記載の情報処理システム。
  8.  前記出力制御部は、前記発信機から送出された前記音声の出力を制御する
     請求項6に記載の情報処理システム。
  9.  前記出力制御部は、複数の前記発信機のうち、前記人体との距離が最も近い前記発信機からの前記音声の出力を選択する
     請求項8に記載の情報処理システム。
  10.  前記距離情報は、前記人体に対する前記発信機の方向を含み、
     前記出力制御部は、複数の前記発信機のうち、前記人体に対して所定の方向にある前記発信機からの前記音声の出力を選択する
     請求項9に記載の情報処理システム。
  11.  前記出力制御部は、前記人体からの距離が同じ複数の前記発信機のうち、前記人体の正面に最も近い前記発信機からの前記音声の出力を選択する
     請求項10に記載の情報処理システム。
  12.  前記距離算出部は、前記第1の装置と前記第2の装置の少なくともいずれか一方に設けられる
     請求項1に記載の情報処理システム。
  13.  前記第1の装置、前記第2の装置、および前記発信機は、互いにBluetooth(登録商標)を用いた近距離無線通信を行う
     請求項1に記載の情報処理システム。
  14.  前記第1の角度検出部と前記第2の角度検出部は、それぞれBluetooth Core Specification 5.1の方向検知機能により、前記第1の受信角度と前記第2の受信角度を検出する
     請求項13に記載の情報処理システム。
  15.  前記第1の装置、前記第2の装置、および前記発信機は、互いにWiFi(登録商標)を用いた近距離無線通信を行う
     請求項1に記載の情報処理システム。
  16.  情報処理システムが、
     発信機からの信号の第1の装置における第1の受信角度を検出し、
     前記信号の第2の装置における第2の受信角度を検出し、
     前記第1の受信角度、前記第2の受信角度、および、前記第1の装置と前記第2の装置の装置間距離に基づいて、前記発信機までの距離情報を算出する
     情報処理方法。
  17.  発信機からの信号の自装置における第1の受信角度を検出する角度検出部と、
     前記信号の他の装置における第2の受信角度を取得する取得部と、
     前記第1の受信角度、前記第2の受信角度、および、前記自装置と前記他の装置の装置間距離に基づいて、前記発信機までの距離情報を算出する距離算出部と
     を備える情報処理装置。
PCT/JP2022/000010 2021-01-29 2022-01-04 情報処理システム、情報処理方法、および情報処理装置 WO2022163307A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/262,282 US20240094327A1 (en) 2021-01-29 2022-01-04 Nformation processing system, information processing method, and information processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021012996A JP2022116691A (ja) 2021-01-29 2021-01-29 情報処理システム、情報処理方法、および情報処理装置
JP2021-012996 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022163307A1 true WO2022163307A1 (ja) 2022-08-04

Family

ID=82654603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000010 WO2022163307A1 (ja) 2021-01-29 2022-01-04 情報処理システム、情報処理方法、および情報処理装置

Country Status (3)

Country Link
US (1) US20240094327A1 (ja)
JP (1) JP2022116691A (ja)
WO (1) WO2022163307A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128088A (ja) * 2009-12-18 2011-06-30 Keio Gijuku 位置推定システム及びプログラム
WO2018180579A1 (ja) * 2017-03-31 2018-10-04 ソニーセミコンダクタソリューションズ株式会社 撮像制御装置、および撮像制御装置の制御方法、並びに移動体
CN110602632A (zh) * 2019-07-31 2019-12-20 安克创新科技股份有限公司 扬声设备以及设备定位系统
US20200103486A1 (en) * 2018-09-28 2020-04-02 Silicon Laboratories Inc. Systems And Methods For Modifying Information Of Audio Data Based On One Or More Radio Frequency (RF) Signal Reception And/Or Transmission Characteristics
JP2020056681A (ja) * 2018-10-02 2020-04-09 東芝テック株式会社 無線タグ読取装置
CN111405508A (zh) * 2020-02-19 2020-07-10 华为技术有限公司 可穿戴设备的定位方法及可穿戴设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128088A (ja) * 2009-12-18 2011-06-30 Keio Gijuku 位置推定システム及びプログラム
WO2018180579A1 (ja) * 2017-03-31 2018-10-04 ソニーセミコンダクタソリューションズ株式会社 撮像制御装置、および撮像制御装置の制御方法、並びに移動体
US20200103486A1 (en) * 2018-09-28 2020-04-02 Silicon Laboratories Inc. Systems And Methods For Modifying Information Of Audio Data Based On One Or More Radio Frequency (RF) Signal Reception And/Or Transmission Characteristics
JP2020056681A (ja) * 2018-10-02 2020-04-09 東芝テック株式会社 無線タグ読取装置
CN110602632A (zh) * 2019-07-31 2019-12-20 安克创新科技股份有限公司 扬声设备以及设备定位系统
CN111405508A (zh) * 2020-02-19 2020-07-10 华为技术有限公司 可穿戴设备的定位方法及可穿戴设备

Also Published As

Publication number Publication date
US20240094327A1 (en) 2024-03-21
JP2022116691A (ja) 2022-08-10

Similar Documents

Publication Publication Date Title
CN106375902B (zh) 通过麦克风的机会性使用的音频增强
Höflinger et al. Acoustic self-calibrating system for indoor smartphone tracking (assist)
US8577046B2 (en) Apparatus for estimating sound source direction from correlation between spatial transfer functions of sound signals on separate channels
US9712940B2 (en) Automatic audio adjustment balance
CN102428717A (zh) 估计声音波达方向的系统和方法
EP3066490A1 (en) Directional proximity detection
US11644317B2 (en) Radio enhanced augmented reality and virtual reality with truly wireless earbuds
WO2013132393A1 (en) System and method for indoor positioning using sound masking signals
KR20140126788A (ko) 은닉된 시간 동기화 신호를 이용한 위치 측정 시스템 및 이를 이용한 위치 측정 방법
CN103414992A (zh) 一种音讯调整系统
WO2022163307A1 (ja) 情報処理システム、情報処理方法、および情報処理装置
KR101021266B1 (ko) 지형물의 위치정보 변동을 반영하는 공간이미지의 도화처리시스템
US10225638B2 (en) Ear piece with pseudolite connectivity
US20160373889A1 (en) Location accuracy improvement method and system using network elements relations and scaling methods
US10917736B2 (en) System and method for spatially projected audio communication
Archer-Boyd et al. Biomimetic direction of arrival estimation for resolving front-back confusions in hearing aids
TW200838217A (en) Wireless communication system for automatically generating received signal strength distribution map
EP4013074A1 (en) Wearable apparatus and method for orientation detection
KR101165001B1 (ko) 고정형 노드 및 이동형 노드를 이용한 실내 측위 시스템
Feferman et al. Indoor positioning with unsynchronized sound sources
JP2011188444A (ja) ヘッドトラッキング装置および制御プログラム
JP2001275148A (ja) 移動通信システムにおける距離測定方法及びシステム及び移動機の位置測定方法及びシステム
KR20210000631A (ko) 음원 위치 탐지기
CN109959921A (zh) 一种基于北斗授时的声信号距离估计方法
KR102265743B1 (ko) 위치 측정 시스템, 음향신호 발생장치 및 위치측정 단말장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745535

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18262282

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745535

Country of ref document: EP

Kind code of ref document: A1