KR20210000631A - 음원 위치 탐지기 - Google Patents

음원 위치 탐지기 Download PDF

Info

Publication number
KR20210000631A
KR20210000631A KR1020190118651A KR20190118651A KR20210000631A KR 20210000631 A KR20210000631 A KR 20210000631A KR 1020190118651 A KR1020190118651 A KR 1020190118651A KR 20190118651 A KR20190118651 A KR 20190118651A KR 20210000631 A KR20210000631 A KR 20210000631A
Authority
KR
South Korea
Prior art keywords
sound source
sound
microphone array
distance
microphones
Prior art date
Application number
KR1020190118651A
Other languages
English (en)
Inventor
박강호
박형민
김이경
이성규
김보현
김정민
염우섭
Original Assignee
한국전자통신연구원
서강대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원, 서강대학교산학협력단 filed Critical 한국전자통신연구원
Publication of KR20210000631A publication Critical patent/KR20210000631A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/22Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/20Position of source determined by a plurality of spaced direction-finders
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

본 발명은 음원 위치 탐지기에 대한 것이고, 더욱 상세하게는 복수의 마이크들을 포함하는 마이크 어레이, 상기 복수의 마이크들에서 수신한 음파 정보를 분석하는 중앙처리장치 및 상기 마이크 어레이의 수평면에 대한 기울기를 감지하는 중력센서를 포함한다. 본 발명의 상기 중앙처리장치는 상기 중력센서에서 감지된 상기 기울기를 기반으로 상기 복수의 마이크들 간의 간격을 보정하여 상기 음파가 발생한 음원의 방향 또는 거리를 탐지한다.

Description

음원 위치 탐지기{LOCATION DETECTOR OF SOUND SOURCE}
본 발명은 음원 위치 탐지기에 관한 것으로, 좀 더 상세하게는 다채널 마이크 어레이 모듈 및 중력센서를 이용한 고정밀 음원 위치 탐지기에 관한 것이다.
최근 노령 사회의 가속화에 의하여 노인들의 인지 능력 저하는 사회적 문제점으로 대두되고 있다. 예로서, 노인들의 청각 기능의 저하에 의하여 위험 상황에 적절하게 대처하지 못한다는 점을 들 수 있다. 이러한 청력 저하에 따른 문제점은 노령 인구에게만 국한된 문제가 아니다. 장애인의 경우 위험 음향에 대한 인지가 어려워 위험 상황에 대비하기 어렵다. 또한, 일반인의 경우에도 이어폰의 사용으로 인하여 위험 상황에 대한 음향 인지가 적절히 이루어지지 않을 수 있다. 이와 같은 문제점을 해결하기 위하여 음원의 위치 탐지 기술이 이용될 수 있다.
인간의 신체적 능력을 향상 시킬 수 있는 휴먼증강 기술에 대한 연구는 최근 활발하게 이루어지고 있다. 그 중 인간의 청각 기능을 보완하기 위하여 음원의 위치 탐지 기술이 이용되고 있다. 음원의 위치 탐지 기술은 고정된 마이크 어레이를 기반으로 발전하였다. 기존의 음원 위치 탐지에는 마이크 상호간의 도달 지연 시간(Time Difference of Arrival, TDOA)을 이용한 방법, 대상 플랫폼의 머리전달함수(Head-Related Transfer Function, HRTF) 데이터베이스를 이용한 방법, 다채널 마이크 어레이를 이용한 방법(Beam-forming 방법, Eigenvalue problem 해석법)이 이용되었다.
도달 지연 시간을 이용하는 방법(TDOA)은 계산 시간이 빨라서 실시간성이 가장 높다는 장점이 있다. 그러나 TDOA는 3차원에 존재하는 음원의 수평각과 고도각을 동시에 추정하기 위하여 4개 이상의 마이크를 사용하여야 한다는 단점이 있다.
머리전달함수의 데이터베이스를 이용하는 방법(HRTF)은 마이크 어레이가 자유 음장 내에 존재하지 않을 때에도 적용이 가능하다는 장점이 있다. 그러나 HRTF는 시스템에 할당되는 메모리 사이즈가 크고, 신호 처리 장치가 필요하기 때문에 실시간 음향 위치 추적에 적용하는데 한계가 있다.
다채널로 이루어진 마이크 어레이를 사용하는 방법은 음원의 소리 인식, 소음 저감, 장애 검출 등 다양한 목적으로 이용 가능하다는 장점이 있다. 그러나 다채널로 이루어진 마이크 어레이를 사용하는 방법은 특정한 플랫폼에 부착을 해야하는 경우 적용이 불가능 하다는 한계가 있다. 또한 다채널로 이루어진 마이크 어레이를 사용하는 방법은 다채널 음향신호를 동시에 분석해야 하므로 계산 시간이 오래 걸린다는 단점이 있다.
본 발명의 목적은 마이크 어레이 모듈에 중력센서를 내장하여 음원의 위치를 보다 정밀하게 탐지할 수 있는 장치를 제공하는 것이다.
본 발명의 실시 예에 따른 음원 위치 탐지기는 복수의 마이크들을 포함하는 마이크 어레이, 상기 복수의 마이크들에서 수신한 음파 정보를 분석하는 중앙처리장치 및 상기 마이크 어레이의 수평면에 대한 기울기를 감지하는 중력센서를 포함한다.
본 발명에 따른 음원 위치 탐지기는 마이크 어레이 모듈에 내장된 중력센서를 이용하여 모듈이 기울어진 정도를 실시간으로 측정할 수 있다. 본 발명에 따른 음원 위치 탐지기는 음향 신호의 도달 시간차(Interaural Time Difference, ITD)와 직진 음향 대비 반향되는 음향 신호 성분의 비율(Direct to Reverberant Ratio, DRR)을 나타내는 지표를 기반으로 음원의 위치를 더욱 정밀하게 탐지할 수 있다.
도 1은 본 발명의 실시 예에 따른 음원 위치 탐지기의 신호 처리를 설명하는 도면이다.
도 2는 본 발명의 실시 예에 따른 넥밴드 및 안경을 보여주는 도면이다.
도 3은 본 발명의 실시 예에 따른 넥밴드의 시제품을 보여주는 도면이다.
도 4는 본 발명의 실시 예에 따른 넥밴드가 기울어진 방향 및 각도를 나타내는 개념도이다.
도 5는 마이크 어레이의 경사각을 이용하여 마이크 상호간의 거리 보정 원리를 설명하는 도면이다.
도 6은 본 발명의 실시 예에 따른 넥밴드에 적용된 탐지 기술을 설명하는 개념도이다.
도 7은 본 발명의 실시 예에 따른 마이크 간의 음향 신호의 도달 시간차(ITD) 및 직진 음향 대비 반향되는 음향 신호 성분의 비율(DRR)로 음원의 위치를 탐지하는 방법을 설명하는 개념도이다.
도 8은 음원의 방향 및 각도를 구하고 최종적으로 음원의 위치를 구하는 과정을 나타낸 도면이다.
도 9는 본 발명의 실시 예에 따른 넥밴드로 음원을 탐지하는 실험 세트를 예시적으로 나타낸 도면이다.
도 10은 각도 변화에 따른 예상 지연이 적용된 상호상관도의 분포를 예시적으로 나타내는 도면이다.
도 11은 넥밴드 마이크와 음원의 거리에 따른 상호상관도를 나타내는 그래프이다.
도 12는 음원과의 거리에 따른 CCR(Cross Correlation Ratio)값의 분포를 예시적으로 나타내는 그래프이다.
도 13은 음원과의 거리에 따른 분산도(Diffuseness) 값의 분포를 예시적으로 나타내는 그래프이다.
도 14는 음향 신호의 도달 시간차(ITD) 및 분산도(Diffuseness)를 이용하여 GMM(Gaussian Mixture Model) 양상을 예시적으로 나타내는 그래프이다.
도 15는 본 발명의 실시 예에 따라 탐지된 음향의 거리 및 방향의 정확도를 예시적으로 보여주는 그래프이다.
이하에서, 본 발명의 기술 분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있을 정도로, 본 발명의 실시 예들이 명확하고 상세하게 기재될 것이다.
도 1은 본 발명의 실시 예에 따른 음원 위치 탐지기의 신호 처리를 설명하는 도면이다.
도 1을 참조하면, 본 발명에 따른 음원 위치 탐지기(100)는 마이크 어레이(110), 중앙처리장치(CPU, 120) 및 중력센서(130)를 포함할 수 있다. 마이크 어레이(110)는 두 개 이상의 마이크로 구성될 수 있다. 중앙처리장치(120)는 DSP(Digital Signal Processor), ARM(Advanced RISC Machine) 프로세서, MCU(Micro Controller Unit) 등 다양한 신호 처리 프로세서가 사용될 수 있다. 음원(200)에서 발생한 음파는 마이크 어레이(110)를 구성하는 각각의 마이크에서 수신된다. 수신된 신호의 정보는 중앙처리장치(120)로 전송된다.
본 발명의 실시 예에 따르면, 마이크 어레이(110)는 6개의 마이크로 구성될 수 있다. 마이크 어레이(110)를 구성하는 마이크에는 MEMS(Micro-Electro Mechanical Systems) 마이크가 사용될 수 있다. 음원(200)에서 발생한 음파의 정보는 마이크 어레이(110)를 구성하는 마이크를 통하여 중앙처리장치(120)로 전송된다. 중앙처리장치(120)는 중력센서(130)를 이용하여 마이크 어레이(110)의 경사각을 측정할 수 있다. 중앙처리장치(120)는 측정된 경사각을 이용하여 마이크 어레이(110) 간의 수평면 상에서의 거리를 보정하고, 이에 기반하여 음원의 정확한 위치를 탐지할 수 있다. 중앙처리장치(120)에 의해 처리된 정보는 블루투스(140)와 같은 근거리 무선 통신을 통해서 스마트폰(150)으로 전송될 수 있다.
도 2는 본 발명의 실시 예에 따른 넥밴드(300) 및 안경(400)을 보여주는 도면이다.
좀 더 상세하게는, 도 2의 넥밴드(300) 및 안경(400)은 본 발명에 따른 음원 위치 탐지기가 내장되어 있다. 본 발명에 따른 음원 위치 탐지기는 넥밴드(300) 및 안경(400) 외에도 다양한 웨어러블 기기에 장착될 수 있다. 또한, 웨어러블 기기 뿐 아니라 AI 스피커, 원격회의용 마이크, CCTV 등 집이나 사무실에서 이용되는 다양한 기기에도 장착될 수 있다.
도 2는 본 발명의 실시 예로서, 넥밴드(300) 또는 안경(400)은 마이크 어레이(110)와 중력센서(130)를 포함한다. 두 개 이상의 마이크로 구성되는 마이크 어레이(110)는 넥밴드(300) 및 안경(400)의 프레임 안에서 자유롭게 배치될 수 있다. 마이크 어레이(110)를 구성하는 마이크 개수의 제한은 없다. 다만, 넥밴드(300) 또는 안경(400)의 프레임에 장착 가능한 정도의 개수와 간격이 고려되어야 한다.
도 3은 본 발명의 실시 예에 따른 넥밴드(300)의 시제품을 보여주는 도면이다.
도 3의 시제품에는 3개의 MEMS 마이크가 장착된 PCB(Printed Circuit Board)가 마이크 어레이(110)를 구성하여 넥밴드(300)의 프레임 좌우에 각각 삽입된다. 또한, 넥밴드(300)의 프레임 중앙부에 중력센서(130)가 장착된다.
도 4는 본 발명의 실시 예에 따른 넥밴드(300)가 기울어진 방향 및 각도를 나타내는 개념도이다.
도 4에서 경사각 α는 넥밴드(300)의 전후 방향 경사각을 나타낸다. 넥밴드(300)를 착용한 사람이 앞쪽으로 몸을 굽히거나 뒤쪽으로 몸을 젖히게 될 때 넥밴드(300)는 전후 방향으로 경사각 α만큼 기울어진다. 도 3에서 경사각 β는 넥밴드(300)의 좌우 방향 경사각을 나타낸다. 넥밴드(300)를 착용한 사람이 좌우로 몸을 기울이게 될 때 넥밴드(300)는 좌우 방향으로 경사각 β만큼 기울어진다. 경사각 α와 경사각 β는 넥밴드(300)를 착용하는 각도에 따라 달라지고, 착용한 사람의 움직임에 따라 시시각각 달라질 수 있다. 따라서 정확한 위치 정보 탐지를 위하여 경사각에 따른 수평면 상에서의 마이크 어레이(110) 상호간의 거리 보정이 요구된다.
도 5는 마이크 어레이(110)의 경사각을 이용하여 마이크 상호간의 거리 보정 원리를 설명하는 도면이다.
도 5는 본 발명의 실시 예로서, 마이크 어레이(110)와 중력센서(130)를 내장한 넥밴드(300)를 사람이 목에 착용한 형태를 나타낸다. 넥밴드(300)의 프레임 가운데에 마이크 어레이(110)의 경사각을 측정하는 중력센서(130)가 부착될 수 있다. 마이크 어레이(110)의 경사각을 이용하여 수평면 상에서의 마이크 상호간 간격을 도출할 수 있다. 이러한 보정을 통하여 음원의 위치는 더욱 정밀하게 탐지될 수 있다.
도 5의 실시 예에 따르면, 넥밴드(300)의 프레임 좌우에 각각 3개의 마이크(111a, 112a, 113a, 111b, 112b, 113b)로 구성된 마이크 어레이(110)가 내장된다. 위에서 내려다 본 마이크 간의 간격은 중력센서(130)에서 측정된 경사각에 따라 달리 측정될 수 있다.
도 5의 실시 예는 마이크 어레이(110)를 구성하는 마이크들을 30mm 간격으로 일렬 배치한 것이다. 넥밴드(300)의 프레임 좌측에 부착되어 있는 마이크 어레이(110)를 구성하는 마이크(111a, 112a, 113a) 간의 간격은 30mm로 측정된다. 넥밴드(300)의 프레임 우측에 부착되어 있는 마이크 어레이(110)를 구성하는 마이크(111b, 112b, 113b) 간의 간격은 29mm로 측정된다. 따라서 수평면 상에서의 전후 마이크 간 거리를 구하기 위하여 경사각 α를 이용하여 거리를 보정한다.
도 5의 실시 예에서 측정되는 좌우 마이크 사이의 거리 또한 경사각에 따라 상이할 수 있다. 마이크 어레이(110)의 맨 앞쪽에 배치된 좌우 마이크(111a, 111b) 사이의 거리는 121mm로 측정된다. 마이크 어레이(110)의 가운데에 배치된 좌우 마이크(112a, 112b) 사이의 거리는 131mm로 측정된다. 마이크 어레이(110)의 맨 뒤에 배치된 좌우 마이크(113a, 113b) 사이의 거리는 141mm로 측정된다. 따라서 수평면 상에서의 좌우 마이크 간 거리를 구하기 위하여 경사각 β를 이용하여 거리를 보정한다.
도 6은 본 발명의 실시 예에 따른 넥밴드(300)에 적용된 탐지 기술을 설명하는 개념도이다.
도 6에는 음원(200)의 위치를 거리(R)와 각도(θ)로 추정하는 음원 위치 탐지 원리가 도시된다. 음원(200)으로부터 마이크 어레이(110)를 구성하는 각각의 마이크까지의 거리가 다르기 때문에 음원(200)에서 발생한 음향 신호의 도달 시간차(ITD)가 발생할 수 있다. 본 발명은 이러한 차이를 기반으로 음원(200)의 위치를 탐지할 수 있다.
다만, 넥밴드(300)와 같은 웨어러블 기기는 크기가 작기 때문에 음향 신호의 도달 시간차(ITD) 또는 거리에 따른 시간 차이가 경미할 수 있다. 따라서 음원(200)의 위치를 더욱 정확하게 탐지하기 위하여 직진 음향 대비 반향되는 음향 신호 성분의 비율(DRR) 또는 이러한 비율을 나타내는 지표를 사용할 수 있다.
도 7은 본 발명의 실시 예에 따른 마이크 간의 음향 신호의 도달 시간차(ITD) 및 직진 음향 대비 반향되는 음향 신호 성분의 비율(DRR)로 음원의 위치를 탐지하는 방법을 설명하는 개념도이다.
도 7에 있어서, 직진 음향 대비 반향되는 음향 신호 성분의 비율(DRR)을 나타내는 지표는 다양한 방법을 사용하여 구할 수 있으며, 마이크 어레이(110)를 구성하는 마이크 전체 또는 그 중 일부를 사용하여 구할 수 있다.
도 8은 음원의 방향 및 각도를 구하고 최종적으로 음원의 위치를 구하는 과정을 나타낸 도면이다.
도 8을 참조하면, 음원(200)에서 발생한 음파(s)는 음원 위치 탐지기(100)의 마이크 어레이(110)를 구성하는 각각의 마이크에서 수신된다. 각각의 마이크에서 수신된 음파(s)는 개별적 신호(s1, s2, …, s6)로 변환되어 중앙처리장치(120)로 송신된다. 중앙처리장치(120)는 수신된 신호(s1, s2, …, s6)의 정보를 분석하고, 이를 기초로 음원 위치 탐지기(100)는 음원(200)의 위치를 탐지할 수 있다.
S110 단계에서, 음향 신호가 일정한 크기 이상일 때만 시스템이 활성화되는 VAD(Voice Activity Detection)가 적용될 수 있다. 중앙처리장치(120)에서 수신된 신호(s1, s2, …, s6)의 크기가 일정한 크기 이상인 경우, 음원 위치 탐지기(100)가 활성화 될 수 있다.
S120 단계에서, 음원(200)의 위치 파악의 기반이 되는 음향 신호의 시간차(ITD) 및 직진 음향 대비 반향되는 음향 신호 성분의 비율(DRR)의 특징값(feature)를 도출한다.
마이크 어레이(110)를 구성하는 마이크 상호 간의 음향 신호의 시간차(ITD)의 특징값은 GCC-PHAT(Generalized Cross Correlation with Phase Transform) 방식으로 구할 수 있다. 또한, 직진 음향 대비 반향되는 음향 성분의 비율(DRR)의 특징값으로 CCR(Cross Correlation Ratio)을 이용하거나 CDR(Coherent Diffuse Ratio)을 도출할 수 있다. CCR은 상호상관도의 최댓값과 최솟값의 비율을 나타낸다. CDR은 결맞음성이 있는(coherent) 평면파와 결맞음성이 없는(diffuse) 분산된 신호의 파워 비율을 나타낸다. 그 밖에 직진 음향 대비 반향되는 음향 성분의 비율(DRR)의 특징값으로 분산도(diffuseness)도 이용할 수 있다. 본 발명에서 이용되는 음향 신호의 시간차(ITD)의 특징값(feature)과 직진 음향 대비 반향되는 음향 성분의 비율(DRR)의 특징값은 상술한 실시 예에 한정되지 않는다.
S130 단계에서, 상술한 특징값으로부터 음원의 방향과 각도와의 상관관계를 나타내는 확률 밀도를 구할 수 있다. 이를 기반으로 GMM(Gaussian Mixture Model) 등의 학습 방법을 적용하여 음원의 방향과 거리를 탐지할 수 있다.
본 발명의 실시 예로서 음향 신호를 이용하여 마이크 상호간에 도달하는 음향 신호의 시간 차이(ITD, τ)를 도출하는 과정은 아래와 같다. 음향 신호의 시간 차(ITD, τ)는 아래의 수학식 1 및 수학식 2에 따라 GCC-PHAT 방식으로 구할 수 있다. 마이크 어레이(110)를 구성하는 마이크는 N개로 이루어져 있다. i번째 음향 신호는 Xi(m, l)로 표시된다.
Figure pat00001
Figure pat00002
마이크 어레이(110)를 구성하는 모든 마이크 상호 간의 GCC-PHAT 값의 합을 이용하여 특정 음원의 위치(d)에 따른 예상 지연이 반영된 상호상관도의 합인 SRP-PHAT를 구할 수 있다. SRP-PHAT 알고리즘으로 공간상의 음원이 발생할 수 있는 각 위치(d)를 가정하고, 지연 정도를 적용하여 상호상관값 P(d)를 구할 수 있다. 그리고 이 중 최대값을 찾아서 실제 지연 정도를 추정하고, 해당 지연 정도가 어떤 위치를 가정하였을 때의 값인지 역으로 환산하여 음원 위치를 탐지할 수 있다. 상술한 과정은 아래의 수학식 3 내지 수학식 6을 통하여 설명될 수 있다.
Figure pat00003
Figure pat00004
Figure pat00005
Figure pat00006
본 발명의 다른 실시 예로서 CDR을 이용할 수 있다. CDR은 아래의 수학식 7로 정의되며, 이는 아래의 수학식 8 내지 수학식 10에 의하여 도출될 수 있다. CDR은 음원(200)의 위치에서 마이크 어레이(110)를 구성하는 마이크로 곧장 수신되는 결맞음성을 갖는 평면파와 주변 지형지물에 의한 반향을 통해 마이크로 수신되는 결맞음성이 없는 분산된 음파의 파워 비율을 이용하는 방법이다. 아래의 수학식에서 l은 이산 시간 프레임 인덱스(discrete time frame index)이며, f는 연속적인 주파수를 의미한다.
Figure pat00007
Figure pat00008
Figure pat00009
Figure pat00010
또한, 본 발명의 다른 실시 예로서 반향에 의하여 분산되는 분산도를 이용하여 음원의 위치를 탐지할 수 있다. 분산도는 아래의 수학식 11으로 구할 수 있다.
Figure pat00011
또한, 본 발명의 다른 실시 예로서 마이크 어레이(110)를 구성하는 각각의 마이크에서 수신되는 음향 신호 간의 시간차(ITD)와 직진 음향 대비 반향되는 음향 신호 성분의 비율(DRR)을 이용할 수도 있다. 이러한 기술을 사용할 경우, 사용하고자 하는 공간과 유사한 음향 반향 특징을 가지는 공간에서 소리를 발생시켜 상관관계를 나타내는 확률 밀도를 구하는 학습 과정을 거친 후, 실제 상황에서 발생하는 소리의 위치를 탐지하여 정밀도를 향상시킬 수 있다.
도 9는 본 발명의 실시 예에 따른 넥밴드(300)로 음원(200)을 탐지하는 실험 세트를 예시적으로 나타낸 도면이다.
좀 더 상세하게는 도 9는 본 발명의 실시 예에 따른 넥밴드(300)를 착용한 마네킹을 움직여서 음원(200)까지의 각도와 거리를 탐지하는 실험 세트를 나타낸 도면이다. 마네킹과 음원(200)의 거리는 1m에서 5m까지 1m 단위로 변경하고, 마네킹의 각도는 -60°에서 60°까지 5° 간격으로 회전한다.
도 9의 실시 예에서, 음원(200)은 4초 정도의 시간 동안 위험 음향을 발생시킨다. 음원(200)에서 발생하는 위험 음향으로는 차량 충돌음, 모터사이클 소리, 경적 소리, 비명 소리 및 싸이렌 소리 등이 이용될 수 있다. 넥밴드(300)의 마이크 어레이(110)는 위험 음향의 음파를 수신하고, 중앙처리장치(120, 도 1참조)는 수신된 음파 정보를 분석하여 마네킹과 음원(200)까지의 각도와 거리를 측정할 수 있다. 음파 정보를 분석할 때, 음파의 시간 프레임은 40ms 단위일 수 있다. 또한 음파를 수집하는 샘플 주파수는 48kHz일 수 있다.
도 10은 각도 변화에 따른 예상 지연이 적용된 상호상관도의 분포를 예시적으로 나타내는 도면이다.
좀 더 상세하게는, 도 10은 넥밴드(300, 도 9참조)를 착용한 마네킹과 음원(200, 도 9참조)을 1m 거리에 놓고, 각도를 -90°에서 90°로 변화시키면서 각도에 따른 예상 지연이 적용된 상호상관도의 분포를 나타낸 그림이다. 상호상관도는 SRP-PHAT 방법으로 도출할 수 있다. 도 10의 x축은 방위각(°), y축은 지향 음향 파워(Steering Power)를 표시한다.
도 11은 넥밴드 마이크와 음원의 거리에 따른 상호상관도를 나타내는 그래프이다.
좀 더 상세하게는, 도 11은 넥밴드(300, 도 9참조)를 착용한 마네킹과 음원(200, 도 9참조)의 거리(D)를 1, 3, 5m로 변화시키면서 각도에 따른 예상 지연이 적용된 상호상관도를 얻은 결과를 나타낸 그래프이다. 상호상관도는 SRP-PHAT 방법으로 도출할 수 있다. 도 11을 통하여 전면 0° 방향의 지향 음향 파워가 가장 크므로 위험 음향은 전면 0° 방향에서 발생하였음을 알 수 있다. 또한, 넥밴드(300)와 음원(200)의 거리가 멀어질수록 CCR이 줄어듦을 알 수 있다. CCR 값은 위험 음원 방향에서의 최대 상호상관도(Pmax)를 최소 상호상관도(Pmin)으로 나눈 값으로 정의된다.
도 12는 음원(200, 도 9참조)과의 거리에 따른 CCR(Cross Correlation Ratio)값의 분포를 예시적으로 나타내는 그래프이다.
좀 더 상세하게는, 도 12 의 (a)와 (b)는 방위각이 0°일 때, 넥밴드(300, 도 9참조)를 착용한 마네킹과 음원(200)의 거리를 1m에서 5m까지 1m 단위로 변화시켜 얻어진 CCR 값의 분포를 각각 분포도와 막대 그래프로 표현한 것이다. 도 12를 통하여 음원(200)의 거리가 가까울수록 CCR 값의 분포가 크고, 음원(200)의 거리가 멀수록 CCR 값의 분포가 작아짐을 알 수 있다. 이러한 CCR 분포의 정보를 통하여 음원(200)의 거리를 탐지할 수 있다.
도 13은 음원(200, 도 9참조)과의 거리에 따른 분산도(diffuseness) 값의 분포를 예시적으로 나타내는 그래프이다.
좀 더 상세하게는, 도 13의 (a)와 (b)는 방위각이 0°일 때, 넥밴드(300, 도 9참조)를 착용한 마네킹과 음원(200)의 거리를 1m에서 5m까지 1m 단위로 변화시켜 얻어진 분산도 값의 분포를 각각 분포도와 막대 그래프로 표현한 것이다. 도 13을 통하여 음원(200)의 거리가 가까울수록 분산도 값의 분포가 작고, 음원(200)의 거리가 멀수록 분산도 값의 분포가 커지는 것을 알 수 있다.
도 14는 음향 신호의 도달 시간차(ITD) 및 분산도(diffuseness)를 이용하여 GMM(Gaussian Mixture Model) 양상을 예시적으로 나타내는 그래프이다.
도 14는 본 발명의 실시 예로서, 넥밴드(300, 도 9참조)를 장착한 마네킹과 음원(200, 도 9참조)간 거리가 1, 3, 5m일 때의 GMM 양상의 분포를 구한 결과를 나타낸 그래프이다. GMM 양상의 분포는 마이크 어레이(110, 도 7참조)를 구성하는 마이크 간의 음향 신호의 도달 시간차(ITD)와 분산도를 이용하여 도출할 수 있다. 도 14의 실시 예에 있어서, 주파수는 125Hz에서 3.5kHz까지 31.25Hz 간격으로 샘플링(sampling)하여 사용한다. 도 14에서 도출되는 y축의 값은 55번째 주파수인 1812.5Hz~1843.75Hz의 결과이다. 도 14에서는 음원(200)의 거리가 달라짐에 따라 분산도가 달라지는 것을 알 수 있다.
도 15는 본 발명의 실시 예에 따라 탐지된 음향의 거리 및 방향의 정확도를 예시적으로 보여주는 그래프이다.
좀 더 상세하게는 도 15는 SRP-PHAT와 GMM 방식을 적용할 때, 각도 및 거리의 일치 정도를 정확도로 나타낸 결과이다. 도 15에서 적용된 해상도는 ±10° 및 ±1m이다. 도 15의 GMM 방식을 적용함에 있어서 음향 신호의 도달 시간차(ITD), ITD와 CCR, ITD와 분산도(diffuseness)를 기반으로 할 수 있다.
도 15를 참조하면, SRP-PHAT 방식의 경우 반향이 있는 강당에서 보다 무반향실에서 각도 측정의 정확도가 더 높고, 반대로 거리 측정은 더 낮은 것을 볼 수 있다. 또한, 거리 측정의 정확도가 낮기 때문에 SRP-PHAT 방식으로 정밀한 위치 측정을 하는 것은 용이하지 않음을 알 수 있다. GMM 방식으로 위치를 탐지하는 경우, 음향 신호의 도달 시간차(ITD)만을 사용한 경우보다 CCR을 병행하여 사용하였을 때 거리 탐지의 정확도가 향상되는 것을 알 수 있다. 분산도를 사용하는 경우, 거리 측정의 정확도는 더욱 향상되어 각도 측정의 정확도와 유사한 수치에 도달함을 알 수 있다.
본 발명에서는 마이크 어레이(110, 도 1참조)와 중력센서(130, 도 1참조)가 내장되어 주변에서 발생하는 음원(200, 도 1참조)의 위치를 탐지하는 기술을 개시한다. 본 발명은 내장된 중력센서(130)를 통하여 마이크 어레이(110)의 경사각을 측정하고 수평면을 기준으로 한 보정 값을 도출함으로써, 음원(200)의 위치를 더 정밀하게 탐지하는 방법을 제시한다.
음원의 위치 탐지에 있어서, 수평면 상에서의 마이크 상호 간 간격이 변하지 않는 조건에서 테스트한 결과를 저장하고, 해당 결과에 기초하여 학습한 후 실제 상황에 적용하는 것이 이상적이다. 다만, 학습 과정과 실제 상황에서 넥밴드(300, 도 9 참조)의 기울어짐 때문에 수평면 상에서의 마이크 상호 간 간격을 달리하여 음원의 위치를 탐지하여야 하는 경우가 발생할 수 있다. 이러한 경우에도, 본 발명은 중력센서를 통하여 기울기 정보를 수집하여 보정된 음향 신호의 도달 시간차(ITD) 정보 또는 직진 음향 대비 반향 비율(DRR)을 이용함으로써, 정확한 음원의 위치를 탐지할 수 있다. 본 발명에서는 이러한 방법에 있어서는 구체적인 내용을 개시하지 않는다.
상술된 내용은 본 발명을 실시하기 위한 구체적인 실시 예들이다. 본 발명은 상술된 실시 예들 뿐만 아니라, 단순하게 설계 변경되거나 용이하게 변경할 수 있는 실시 예들 또한 포함될 것이다. 또한, 본 발명은 실시 예들을 이용하여 용이하게 변형하여 실시할 수 있는 기술들도 포함될 것이다. 따라서, 본 발명의 범위는 상술된 실시 예들에 국한되어 정해져서는 안되며 후술하는 특허청구범위뿐만 아니라 이 발명의 특허청구범위와 균등한 것들에 의해 정해져야 할 것이다.
100: 음원 위치 탐지기
110 : 마이크 어레이
120 : 중앙처리장치(CPU)
130 : 중력센서

Claims (1)

  1. 복수의 마이크들을 포함하는 마이크 어레이;
    상기 복수의 마이크들에서 수신한 음파 정보를 분석하는 중앙처리장치; 및
    상기 마이크 어레이의 수평면에 대한 기울기를 감지하는 중력센서를 포함하되,
    상기 중앙처리장치는 상기 중력센서에서 감지된 상기 기울기를 기반으로 상기 복수의 마이크들 간의 간격을 보정하여 상기 음파가 발생한 음원의 방향 또는 거리를 탐지하는 음원 위치 탐지기.
KR1020190118651A 2019-06-24 2019-09-26 음원 위치 탐지기 KR20210000631A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190074855 2019-06-24
KR20190074855 2019-06-24

Publications (1)

Publication Number Publication Date
KR20210000631A true KR20210000631A (ko) 2021-01-05

Family

ID=74140896

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190118651A KR20210000631A (ko) 2019-06-24 2019-09-26 음원 위치 탐지기

Country Status (1)

Country Link
KR (1) KR20210000631A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113589229A (zh) * 2021-09-29 2021-11-02 山东世纪矿山机电有限公司 一种多阵列噪声定位的目标定位装置及使用方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113589229A (zh) * 2021-09-29 2021-11-02 山东世纪矿山机电有限公司 一种多阵列噪声定位的目标定位装置及使用方法
CN113589229B (zh) * 2021-09-29 2022-01-21 山东世纪矿山机电有限公司 一种多阵列噪声定位的目标定位装置及使用方法

Similar Documents

Publication Publication Date Title
Evers et al. The LOCATA challenge: Acoustic source localization and tracking
Argentieri et al. A survey on sound source localization in robotics: From binaural to array processing methods
US10362432B2 (en) Spatially ambient aware personal audio delivery device
CN104412616A (zh) 基于麦克风阵列中的声音的相关性的噪声抑制
JP2006194700A (ja) 音源方向推定システム、音源方向推定方法及び音源方向推定プログラム
JP2015076797A (ja) 空間情報提示装置、空間情報提示方法及び空間情報提示用コンピュータプログラム
US8369550B2 (en) Artificial ear and method for detecting the direction of a sound source using the same
KR101086304B1 (ko) 로봇 플랫폼에 의해 발생한 반사파 제거 신호처리 장치 및 방법
Liu et al. Azimuthal source localization using interaural coherence in a robotic dog: modeling and application
KR20210000631A (ko) 음원 위치 탐지기
US20210274292A1 (en) Hearing device including image sensor
Calmes et al. Azimuthal sound localization using coincidence of timing across frequency on a robotic platform
CA2759084C (en) Apparatus and method for the binaural reproduction of audio sonar signals
Zhao et al. Design and evaluation of a prototype system for real-time monitoring of vehicle honking
KR20200066891A (ko) 2차원 마이크 어레이를 이용한 3차원 음원 위치 검출 장치 및 방법
JP2018034221A (ja) ロボットシステム
KR101082685B1 (ko) 레이저를 이용하여 거리 측정이 가능한 시각장애인 안경용 거리측정장치
KR101217254B1 (ko) 위치 변경된 음원 방향 검지 센서의 채널간 시간지연지도 생성 시스템 및 방법
Park et al. Design of a helmet-mounted microphone array for sound localization
US20240122781A1 (en) Information processing device, information processing method, and program
El-Mohandes et al. DeepBSL: 3-D Personalized Deep Binaural Sound Localization on Earable Devices
WO2022163307A1 (ja) 情報処理システム、情報処理方法、および情報処理装置
WO2024132099A1 (en) Distance determination to physical object
Zohourian et al. Speaker distance estimation using binaural hearing aids and deep neural networks
KR101244617B1 (ko) 음원 방향 검지 센서의 채널간 시간지연지도 보정 시스템 및 방법