WO2022163021A1 - 車体部品の分割位置及び一体化の決定方法及び装置 - Google Patents

車体部品の分割位置及び一体化の決定方法及び装置 Download PDF

Info

Publication number
WO2022163021A1
WO2022163021A1 PCT/JP2021/036447 JP2021036447W WO2022163021A1 WO 2022163021 A1 WO2022163021 A1 WO 2022163021A1 JP 2021036447 W JP2021036447 W JP 2021036447W WO 2022163021 A1 WO2022163021 A1 WO 2022163021A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle body
sensitivity
body parts
parts
model
Prior art date
Application number
PCT/JP2021/036447
Other languages
English (en)
French (fr)
Inventor
孝信 斉藤
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2023008262A priority Critical patent/MX2023008262A/es
Priority to CN202180091833.1A priority patent/CN116802639A/zh
Priority to KR1020237028810A priority patent/KR20230130750A/ko
Publication of WO2022163021A1 publication Critical patent/WO2022163021A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/20Configuration CAD, e.g. designing by assembling or positioning modules selected from libraries of predesigned modules

Definitions

  • the present invention consists of a plurality of vehicle body parts (automotive parts), and for a vehicle body in which joining points for joining the vehicle body parts as a parts assembly are given in advance, the dividing positions of the vehicle body parts are determined.
  • the present invention relates to a method and apparatus for determining the division position and integration of body parts to be reviewed and optimized, and in particular, the division position and integration of body parts that can efficiently improve the performance of a vehicle body such as an automobile. It relates to a method and apparatus for determining
  • CAE computer aided engineering
  • CAE analysis is not just a mere performance evaluation, but various optimization analysis techniques such as mathematical optimization, dimension optimization, shape optimization, and topology optimization are used. It is known that it can improve the vehicle performance and reduce the weight.
  • Patent Document 1 discloses a method for topology optimization of components of a complex structural body.
  • Patent Document 2 sensitivity analysis of vehicle body parts with respect to vehicle body performance is performed using optimization analysis technology, and based on the results of the sensitivity analysis, measures are taken to improve vehicle body performance. Disclosed is a method for clarifying the
  • JP 2010-250818 A Japanese Patent Application Laid-Open No. 2020-60820
  • Patent Document 2 The method disclosed in Patent Document 2 is to model a vehicle body part, calculate the sensitivity of each element used in the model with respect to vehicle body performance by sensitivity analysis, and calculate the sensitivity of each vehicle body part based on the calculated sensitivity of each element. , and clarified the body parts subject to measures such as changes in plate thickness and material properties.
  • the division positions of the body parts are given and fixed in advance, and even if there is a distribution of sensitivity within the same body part, it was determined that measures should be taken to determine the magnitude of sensitivity for each body part. It changed the thickness and material properties of body parts. Therefore, even if it is determined that the thickness of the body part is to be changed, there may be parts where the thickness of the body part should not be changed. In some cases, even if the plate thickness of the steel plate is changed, the performance of the vehicle body cannot be sufficiently improved.
  • a method of determining whether to divide or integrate body parts a method based on the stress and strain generated by the load applied to the body parts can be considered. In this method, it is possible to determine the dividing position as a boundary between a portion having a large stress and a portion having a small stress in the vehicle body part, and to integrate the vehicle body parts having the same degree of stress.
  • the present invention has been made in view of the above problems, and its object is to provide a method and apparatus for determining division positions and integration of vehicle body parts capable of efficiently and sufficiently improving vehicle body performance. That's what it is.
  • a computer performs the following steps for an automotive body model comprising a plurality of vehicle body parts
  • the vehicle body which determines the vehicle body parts to be integrated, comprises the plurality of vehicle body parts modeled by a plurality of elements, and a joint point for joining the plurality of vehicle body parts as a set of parts.
  • an analysis step and a body part split position/integration determination step of determining the position at which the body part is split and/or the body part to be integrated based on the sensitivity of each of the elements in each of the body parts.
  • the element densities of the elements satisfying the target conditions may be calculated, and the calculated material densities may be used as the sensitivities of the elements.
  • the vehicle body model acquisition step it is preferable to set, in addition to the junction points, all additional junction points at which the parts assembly can be joined to the acquired vehicle body model.
  • a vehicle body part division position and integration determination device determines the division position of the vehicle body part and/or the vehicle body part to be integrated for a vehicle body model including a plurality of vehicle body parts, a vehicle body model acquiring unit that acquires the vehicle body model, which includes the plurality of vehicle body parts modeled by a plurality of elements, and a joint point that joins the plurality of vehicle body parts as a set of parts;
  • a target condition and a constraint condition related to the volume of the vehicle body model, and a load/restraint condition or only a load condition to be applied to the vehicle body model are set, and the objective condition is set under only the load/restraint condition or the load condition and the constraint condition.
  • a sensitivity analysis unit for determining the sensitivity of each element in each of the vehicle body parts that satisfies the requirements; and a division position and/or integration of the vehicle body part according to an operator's instruction based on the sensitivity of each of the elements in each of the vehicle body parts. and a vehicle body part division position/integration determination unit that determines the vehicle body part.
  • the sensitivity analysis unit preferably calculates the material density of each of the elements in each of the vehicle body parts that satisfies the target conditions, and uses the calculated material density as the sensitivity of each of the elements.
  • the vehicle body model acquisition unit preferably sets, in addition to the junction points, all additional junction points at which the parts assembly can be joined to the acquired vehicle body model.
  • the sensitivity to the vehicle body performance is determined for each element used for modeling the vehicle body part, and based on the determined sensitivity of each element in the vehicle body part, the division position of the previously given vehicle body part is reviewed. It is possible to determine the optimal division position of body parts and the body parts to be integrated. and can be done satisfactorily.
  • FIG. 1 is a block diagram of a division/integration determining device for determining division positions and integration of vehicle body parts according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a vehicle body model to be analyzed in the embodiment of the present invention.
  • FIG. 3 is a diagram showing joint points in a vehicle body model to be analyzed and all additional joint points that can be joined in the embodiment of the present invention ((a) preset joint points, (b) all additional joint points that can be joined).
  • FIG. 4 is a diagram showing an example of load/restraint conditions applied to the vehicle body model in the embodiment of the present invention.
  • FIG. 5 shows, in the embodiment of the present invention, the results of sensitivity analysis of a body part (A-pillar) on the front side of the body model, and the body part based on the material density obtained as sensitivity by the sensitivity analysis.
  • A-pillar body part
  • FIG. 6 shows the results of sensitivity analysis of the body parts on the rear side of the body model and the division positions and integration of the body parts determined based on the material density obtained as the sensitivity by the sensitivity analysis in the embodiment of the present invention.
  • FIG. 10 is a diagram showing an example ((a) Top view of the rear side of the original body model given in advance, (b) Material density obtained by sensitivity analysis, (c) Rear of the body model after division and integration side top view).
  • FIG. 7 shows the result of sensitivity analysis of the body part (side sill outer) on the left side of the body model in the embodiment of the present invention, and the sensitivity of the body part based on the material density obtained as sensitivity by the sensitivity analysis.
  • FIG. 10 is a diagram showing an example of determining the division position and integration ((a) Left perspective view of the original vehicle body model given in advance, (b) Material density obtained by sensitivity analysis, (c) Division and integration perspective view of the left side of the vehicle body model after being removed).
  • FIG. 10 is a diagram showing an example ((a) Top view of the rear side of the original body model given in advance, (b) Material density obtained by sensitivity analysis, (c) Rear of the body model after division and integration side top view).
  • FIG. 7 shows the
  • FIG. 8 is a diagram showing an example of a divided and integrated vehicle body model in which division positions and integration of vehicle body parts are determined in the embodiment of the present invention ((a) original vehicle body model given in advance, (b ) Split-integrated car body model after splitting and integrating).
  • FIG. 9 is a flow chart showing the flow of processing of a method for determining division positions and integration of vehicle body parts according to the embodiment of the present invention.
  • FIG. 10 shows, in another aspect of the embodiment of the present invention, the result of the sensitivity analysis of the body parts on the front side of the body model, and the division position and integration of the body parts based on the material density obtained as the sensitivity by the sensitivity analysis.
  • FIG. 11 shows, in another aspect of the embodiment of the present invention, the result of the sensitivity analysis of the body parts on the rear side of the body model, and the division position and integration of the body parts based on the material density obtained as the sensitivity by the sensitivity analysis.
  • FIG. 12 shows, in another aspect of the embodiment of the present invention, the result of the sensitivity analysis of the body parts on the left side of the body model, and the division position and integration of the body parts based on the material density obtained as the sensitivity by the sensitivity analysis.
  • 13A and 13B are diagrams showing an example of a divided and integrated vehicle body model in which division positions and integration of vehicle body parts are determined in another aspect of the embodiment of the present invention ((a) A previously given original vehicle body model model, (b) divided and integrated vehicle body model after division and integration);
  • a vehicle body model 100 targeted by the present invention includes a plurality of vehicle body parts, as shown in FIG. 2 as an example.
  • Body parts include A-pillar lower 101, A-pillar upper 103, rear roof rail center 105, rear roof rail side 107, compartment center A 109, compartment side A 111, compartment center B 113, compartment side B 115, side sill outer 117, foil body frame parts such as house reinforcement 119, suspension parts such as suspension parts (not shown), and the like. These body parts are then modeled with a plurality of shell elements and/or solid elements.
  • joint points 121 for joining a plurality of vehicle body parts as a part assembly are set at predetermined intervals.
  • the joint points 121 are set at intervals of 25 to 60 mm.
  • each vehicle body part that constitutes the vehicle body model 100 As well as the information on the junction points 121 (FIG. 2(a)) in each assembly of parts, etc., are stored in the vehicle body model file 21 (see FIG. 1), which will be described later. ).
  • ⁇ Division/unification determination device> A configuration of a division/integration determination device for determining division positions and integration of vehicle body parts according to the embodiment of the present invention will be described below.
  • the division/integration determination device 1 determines division positions of the vehicle body parts and/or vehicle body parts to be integrated for a vehicle body model having a plurality of vehicle body parts.
  • the division/integration determination device 1 according to the present embodiment is configured by a PC (personal computer) or the like, and includes a display device 3, an input device 5, and a storage device. (memory storage) 7, working data memory (working data memory) 9, and arithmetic processing unit (arithmetic processing unit) 11.
  • the display device 3, the input device 5, the storage device 7, and the working data memory 9 are connected to the arithmetic processing section 11, and their respective functions are executed by commands from the arithmetic processing section 11.
  • the display device 3 is used for displaying analysis results, etc., and is composed of a liquid crystal monitor (LCD monitor) or the like.
  • the input device 5 is used for instructing display of the vehicle body model file 21, for inputting conditions by the operator, and the like, and is composed of a keyboard, a mouse, and the like.
  • the storage device 7 is used for storing various files such as a vehicle body model file 21 recording various information about the vehicle body model, and is composed of a hard disk or the like.
  • the working data memory 9 is used for temporary storage of data used by the arithmetic processing unit 11 and for arithmetic operations, and is composed of a RAM (Random Access Memory) or the like.
  • the arithmetic processing unit 11 has a vehicle body model acquisition unit 13, a sensitivity analysis unit 15, and a vehicle body parts division position/integration determination unit 17. device (central processing unit). Each of these units functions when the CPU executes a predetermined program. Functions of the above-described units in the arithmetic processing unit 11 will be described below.
  • the vehicle body model acquisition unit 13 obtains a vehicle body part (A pillar lower 101, etc.) modeled with a plurality of elements, and a junction point 121 that joins the plurality of vehicle body parts as a part assembly. and the vehicle body model 100 is acquired.
  • each vehicle body part constituting the vehicle body model 100 is assumed to be modeled by a shell element as an example, and the shell element constituting each vehicle body part and the material properties (Young's modulus ( (Young's modulus), specific gravity, Poisson's ratio, etc.) are recorded in the vehicle body model file 21 (see FIG. 1) stored in the storage device 7 . Therefore, the vehicle body model acquisition unit 13 can acquire the vehicle body model 100 by reading the vehicle body model file 21 .
  • the sensitivity analysis unit 15 sets only the target condition regarding the vehicle body performance of the vehicle body model 100, the constraint condition regarding the volume of the vehicle body model 100, and the load/restraint condition or the load condition applied to the vehicle body model 100, and analyzes the set load/restraint condition.
  • the sensitivity of each element in each body part that satisfies the objective conditions is obtained under only the constraint condition or the load condition and under the constraint condition.
  • the target conditions for the vehicle body performance set by the sensitivity analysis unit 15 are minimization of the total strain energy (strain energy) in the vehicle body model 100, minimization of displacement, minimization of stress, and stiffness and the like, and these objective conditions may be appropriately selected according to the target vehicle body performance.
  • the load/restraint conditions set for the vehicle body model 100 by the sensitivity analysis unit 15 for example, the load/restraint conditions illustrated in FIG. 4 are set.
  • the load/restraint conditions shown in FIG. 4 are based on the mounting positions (P in the drawing) of the left and right front suspensions of the vehicle body model 100 as load points, with a vertically upward load on one side and a vertically downward load on the other side. , and further, the mounting positions (Q in the drawing) of the left and right rear subframes of the vehicle body model 100 are constrained.
  • the sensitivity analysis unit 15 preferably calculates the material density of each element as the sensitivity of each element in each vehicle body part using topology optimization to which the density method (densimetry) is applied.
  • the material density of each element calculated at this time corresponds to the density ⁇ shown in Equation (1).
  • the normalized density ⁇ in formula (1) is a virtual density representing the filling state of the material in each element, and takes values from 0 to 1. In other words, if the material density ⁇ of an element is 1, the element is completely filled with material, and if the material density ⁇ is 0, the element is not filled with material and is completely hollow. , if the material density of an element is an intermediate value between 0 and 1, the element represents an intermediate state that is neither material nor void.
  • the material density calculated by topology optimization has a value close to 1 for elements that make a large contribution to body performance, indicating high sensitivity to body performance.
  • the material densities of the elements that contribute less to the vehicle body performance are close to 0, indicating low sensitivity to the vehicle body performance.
  • the material density of each element calculated by topology optimization serves as an index representing the sensitivity of each element to vehicle body performance.
  • FIGS. 5(b), 6(b), and 7(b) show an example of the sensitivity of the elements calculated by the sensitivity analysis unit 15.
  • the target condition is the maximization of the stiffness
  • the constraint condition is the volume constraint rate of 25%.
  • FIG. 5(b), 6(b), and 7(b) shows an example of the sensitivity of the elements calculated by the sensitivity analysis unit 15.
  • the target condition is the maximization of the stiffness
  • the constraint condition is the volume constraint rate of 25%.
  • FIG. 5B is a side view of the A-pillar lower 101 and A-pillar upper 103 on the front side of the vehicle body model 100 (FIG. 5A), and FIG. 6(a)), and FIG. 7(b) is a perspective view of the left side sill outer 117 and wheel house reinforcement 119 (FIG. 7(a)) of the vehicle body model 100.
  • FIG. 7(a) is a perspective view of the left side sill outer 117 and wheel house reinforcement 119 of the vehicle body model 100.
  • FIGS. 5(b), 6(b), and 7(b) even in the same vehicle body part, there are areas with high sensitivity and areas with low sensitivity to static torsion (for example, , side sill outer 117 shown in FIG. 7(b)), and it can be seen that there are some parts with similar sensitivity as a whole even if they are different body parts (for example, A pillar lower 101 and A pillar upper 103 shown in FIG. 5(b)). ).
  • the sensitivity analysis unit 15 may set only a load condition that considers the inertia force when a dynamic load is applied to the vehicle body model 100 by the inertia relief method.
  • the inertia relief method is a state in which the object is supported at the support point that is the reference of the inertial force coordinates (free support), and the force acting on the object during constant acceleration motion is removed from the stress It is an analysis method that obtains and strain, and is used for static analysis of airplanes and ships in motion.
  • each vehicle body part constituting the vehicle body model 100 is defined as a design space, and the elements constituting the vehicle body part set as the design space are given material densities as design variables.
  • the material density is calculated as the sensitivity of the element.
  • the vehicle body part division position/integration determining unit 17 determines the position at which the vehicle body part is divided and/or the vehicle body part to be integrated according to the operator's instruction. is determined.
  • the difference in sensitivity is used as an index, and the position where the sensitivity difference is large in the same body part is determined as the division position by the operator's instruction.
  • a position where the sensitivity difference is 0.7 or more in the body part is determined as a split position, and if the sensitivity difference between adjacent body parts is 0.3 or less, integration is determined.
  • the vehicle body part division position/integration determining unit 17 divides the vehicle body part for which the division position has been newly determined to create a new vehicle body part at the division position, and determines to integrate the vehicle body part. A plurality of body parts are integrated into one body part.
  • FIG. 5A On the front side of the vehicle body model 100 (FIG. 5A), as shown in FIG. dashed ellipse).
  • the difference in sensitivity was as small as 0.3 or less.
  • the difference in sensitivity between the front side and the rear side of the substantial center of the side sill outer 117 is 0.7 or more.
  • the difference in sensitivity between the rear part of the side sill outer 117 and the wheel house reinforcement 119 was as small as 0.3 or less.
  • the substantially central portion of the side sill outer 117 where the difference in sensitivity is large is determined as the dividing position, and the front side is divided into the side sill outer front 209.
  • FIG. 7(c) it is determined that the side sill outer 117 is integrated with the wheel house reinforcement 119 on the rear side of the dividing position of the side sill outer 117 , and is defined as the side sill outer 211 .
  • FIG. 8(b) shows a divided and integrated vehicle body model 200 after determining division positions and integration of vehicle body parts based on the sensitivities shown in FIGS. 5(b), 6(b) and 7(b). shows an overview of
  • the position where the sensitivity difference is 0.7 or more in the vehicle body part is determined as the division position, and it is determined that the adjacent vehicle body parts where the sensitivity difference is 0.3 or less are integrated.
  • the difference in sensitivities that determine the conversion may be selected as appropriate.
  • a computer performs the following steps for a vehicle body model having a plurality of vehicle body parts. It determines the body parts to be integrated. As shown in FIG. 9, this method includes a vehicle body model acquisition step S1, a sensitivity analysis step S3, and a vehicle body part division position/integration determination step S5. In this embodiment, each of the above steps is executed by the division/unification determination device 1 (see FIG. 1) configured by a computer. Each of the above steps will be described below.
  • the vehicle body model acquisition step S1 is a step of acquiring a vehicle body model including a plurality of vehicle body parts modeled with a plurality of elements and junction points where the plurality of vehicle body parts are joined as a part assembly.
  • the vehicle body model acquisition unit 13 of the division/integration determination device 1 reads the vehicle body model file 21 (see FIG. 1), thereby obtaining A vehicle body model 100 is obtained that includes a plurality of vehicle body parts (A pillar lower 101, etc.) modeled with a plurality of shell elements and joint points 121 that join the vehicle body parts as an assembly.
  • ⁇ Sensitivity analysis step>> In the sensitivity analysis step S3, only the objective condition regarding the vehicle body performance of the vehicle body model 100, the constraint condition regarding the volume of the vehicle body model 100, and the load/restraint condition or load condition applied to the vehicle body model 100 are set, and the set load/restraint condition or Determining the sensitivity of each element in each body part that satisfies the objective conditions under load conditions only and constraints.
  • the sensitivity analysis unit 15 of the division/integration determination device 1 sets the objective condition, the constraint condition, and the load/constraint condition, and calculates the material density of each element as the sensitivity of each element.
  • the body parts constituting the vehicle body model 100 are set as a design space, and the material density is given as a design variable to the elements constituting the body parts set as the design space, and the optimization analysis process is executed. ⁇ The material density that satisfies the target conditions under the constraint conditions can be calculated for each element in the body part.
  • Steps for determining the division position and integration of body parts In the vehicle body part division position/integration determination step S5, the computer determines the division position and/or integration of the vehicle body part according to the operator's instruction based on the sensitivity of each element in the vehicle body part obtained in the sensitivity analysis step S3. This is the step of determining the body parts. In the present embodiment, the division/integration determination unit 17 of the division/integration determination device 1 performs this determination.
  • the sensitivity to vehicle body performance is determined for each element used in modeling the vehicle body part, and each element in the determined vehicle body part Based on the sensitivities of the elements, it is possible to determine where to split the body parts and which body parts to integrate.
  • the improvement of the body performance can be efficiently and sufficiently performed. can be done.
  • the greater sensitivity of the divided body parts contributes more to the body performance, so the plate thickness should be increased.
  • those with low sensitivity contribute little to the performance of the vehicle body, so the plate thickness may be reduced.
  • the method and apparatus for determining the division position and integration of vehicle body parts obtains the sensitivity of the elements in the vehicle body parts that affect the vehicle body performance by changing the plate thickness and material properties. For this reason, areas with high sensitivity contribute greatly to vehicle performance, so increasing the plate thickness will improve vehicle performance such as rigidity. However, the car body performance such as rigidity does not deteriorate.
  • the sensitivity analysis is performed using the vehicle body model 100 in which the joint points 121 are set as they are. Differences may occur.
  • All the additional joint points 151 that can join the assembly of parts are set to make the joint points dense, and sensitivity analysis is performed using a car body model 150 that simulates continuous joining of a plurality of car body parts.
  • 10932 additional joint points 151 are set at intervals of 10 mm.
  • FIG. 10(b), 11(b) and 12(b) a sensitivity analysis is performed using a vehicle body model 150 in which 10932 additional joint points 151 are set in the vehicle body model 100, and the division position and integration of the vehicle body parts are determined. The result of determining the body parts to be converted is shown.
  • FIG. 10(b) is a side view of the front side A-pillar lower 101 and A-pillar upper 103 (FIG. 10(a)) in the vehicle body model 150
  • FIG. 11(a)) and FIG. 12(b) are perspective views of the left side sill outer 117 and the wheel house reinforcement 119 (FIG. 12(a)) in the vehicle body model 150.
  • Each vehicle body part in the vehicle body model 150 is given the same reference numeral as each vehicle body part in the vehicle body model 100 shown in FIG.
  • the difference in sensitivity was as large as 0.7 or more at positions different from the boundary between the A-pillar lower 101 and the A-pillar upper 103. .
  • the position where the difference in sensitivity is large is determined as the division position, and as shown in FIG.
  • compartment side B115 On the rear side of the vehicle body model 150 (FIG. 11A), as shown in FIG. The difference in the sensitivity of compartment side B115 was small at 0.3 or less.
  • the rear roof rail center 105 and the rear roof rail side 107 are integrated to form the rear roof rail 305, and the compartment center A109 and the compartment side A111 are integrated to form the compartment A307, the compartment center B113 and the compartment.
  • a compartment B309 is formed by integrating the side B115.
  • the difference in sensitivity of the side sill outer 117 is as small as 0.3 or less.
  • the difference in sensitivity was as large as 0.7 or more.
  • the difference in sensitivity between the A pillar lower 101 and the front part of the side sill outer 117 was as small as 0.3 or less.
  • the side sill outer 117 is not divided, and the side sill outer 117 and the wheel house reinforcement 119 are not integrated with each other, but remain divided, and the side sill outer 117 is integrated with the A pillar lower 101.
  • the wheel house reinforcement 119 is not integrated with the side sill outer 117 to be the wheel house reinforcement 311 .
  • FIG. 13(b) shows a divided and integrated vehicle body model 300 after determining division positions and integration of vehicle body parts based on the sensitivities shown in FIGS. 10(b), 11(b) and 12(b). shows an overview of
  • the object is to improve the rigidity of the car body as the car body performance, but if the car body performance is to improve the crash worthiness and fatigue properties, the sensitivity analysis part Alternatively, in the sensitivity analysis step, target conditions regarding crash characteristics and fatigue characteristics may be set. For example, when setting a target condition related to collision characteristics, the target condition may be minimization of displacement.
  • the sensitivity analysis unit 15 and the sensitivity analysis step S3 in the present embodiment were to calculate the material density for each element as the sensitivity of each element.
  • the plate thickness of each shell element that satisfies predetermined objective conditions, constraint conditions, and load/restraint conditions is calculated, and the calculated shell element may be used as the sensitivity of each element.
  • the plate thickness of each shell element obtained in the sensitivity analysis when used as a sensitivity, the element with a large plate thickness shows a high sensitivity to the body performance, and the shell element with a small plate thickness has a low sensitivity to the body performance. indicates As a result, the plate thickness of the element calculated in the sensitivity analysis can serve as an index representing the sensitivity of each element to the vehicle body performance.
  • the sensitivity analysis unit 15 and the sensitivity analysis step S3 perform sensitivity analysis by setting load/restraint conditions that give a static load.
  • a load/restraint condition corresponding to a dynamic load that vibrates the vehicle body may be set.
  • the vehicle body model is subjected to frequency response analysis, etc., and the deformation state in the vibration mode of the vehicle body model obtained by the frequency response analysis, etc. Determine the position, direction and magnitude of the load applied to the corresponding vehicle body model. Then, the position, direction, and magnitude of the determined load are set as load/restraint conditions, and sensitivity analysis is performed.
  • the divided and integrated vehicle body model 200 and the divided and integrated vehicle body model 300 described in the above embodiment were verified for improvement in vehicle body performance relative to the vehicle body model 100 before being divided and integrated.
  • the vehicle body parts after division have the plate thickness of the vehicle body parts before division
  • the integrated vehicle body parts have the surface area of the vehicle body parts before integration. is the plate thickness of the larger body part.
  • the static torsional load and constraint conditions shown in FIG. 4 were applied to the divided integrated vehicle body model 200 and the divided integrated vehicle body model 300, and the torsional stiffness was calculated.
  • the load applied to the load point was set to 1000N.
  • the torsional rigidity was calculated as follows. First, the straight line that connects the left and right rear subframe mounting positions (corresponding to Q in Fig. 4) of the divided integrated body model is used as a reference (0 degree angle), and the left and right front suspension mounting positions on the front side of the car body (Fig. 4) (equivalent to P in )), and a vertically upward load (1000N) is applied to one load point, and a vertically downward load (1000N) is applied to the other load point, viewed from the front of the vehicle body. An average inclination angle is obtained by averaging the inclination angles of the vehicle body in the longitudinal direction of the vehicle body. Then, the torsional rigidity is obtained by dividing the product of the load applied to the load point and the displacement by the average tilt angle.
  • Table 1 shows the results of mass change and torsional rigidity in the divided integrated vehicle body model 200 and the divided integrated vehicle body model 300. Note that the intervals between joint points in each assembly of the vehicle body parts that respectively constitute the divided integrated vehicle body model 200 and the divided integrated vehicle body model 300 are the same as the previously given intervals between the joint points 121 of the original vehicle body model 100.
  • the reference example is the case of using a previously given original car body model 100 before being divided and integrated
  • the invention example 1 is the case of using the divided and integrated car body model 200
  • the invention example 2 is the case of using the divided and integrated car body. This is the result when the model 300 is used.
  • the mass changes shown in Table 1 are relative changes in the mass of the divided integrated vehicle body model 200 or the divided integrated vehicle body model 300 with respect to the mass of the vehicle body model 100 used as a reference example.
  • the integrated vehicle body model 300 was calculated from the plate thickness of the vehicle body parts.
  • the improvement rate of stiffness shown in Table 1 is the relative change in torsional stiffness obtained based on the torsional stiffness of the original car body model 100 (reference example) before dividing or integrating the car body parts. Yes, it was obtained from the following formula.
  • Rigidity improvement rate (%) (torsional rigidity of invention example - torsional rigidity of reference example) / torsional rigidity of reference example x 100
  • the rigidity improvement rate per mass change in Invention Examples 1 and 2 is obtained by dividing the rigidity improvement rate in each of Invention Examples 1 and 2 by the mass change.
  • the mass change in Invention Example 1 was 2.3 kg, and the mass change in Invention Example 2 was 1.6 kg.
  • the rigidity improvement rate in Example 2 was all about 13%. As a result, the torsional rigidity is greatly improved by dividing and integrating the vehicle body parts according to the present invention.
  • the rigidity improvement rate per mass change obtained by dividing the rigidity improvement rate by the mass change was 5.66%/kg in Invention Example 1, while it was 8.21%/kg in Invention Example 2. From this result, it is better to perform sensitivity analysis using the vehicle body model 150 in which all the additional joint points 151 that can be joined to the vehicle body model 100 are set, and determine the division positions of the vehicle body parts and the body parts to be integrated. It is possible to more accurately calculate the sensitivity of each element of the body parts by eliminating the influence of the arrangement of the parts on the body performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Body Structure For Vehicles (AREA)
  • Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)

Abstract

本発明に係る車体部品の分割位置及び一体化の決定方法は、複数の要素でモデル化した複数の車体部品と、複数の車体部品を部品組みとして接合する接合点121と、を備える車体モデル100を取得する車体モデル取得ステップS1と、車体モデル100の車体性能に関する目的条件及び車体モデル100の体積に関する制約条件と、車体モデル100に与える荷重・拘束条件とを設定し、設定した荷重・拘束条件及び制約条件の下で目的条件を満たす各要素の感度を求める感度解析ステップS3と、各要素の感度に基づいて、車体モデル100における車体部品を分割する位置及び/又は一体化する車体部品を決定する車体部品分割位置・一体化決定ステップS5と、を含む。

Description

車体部品の分割位置及び一体化の決定方法及び装置
 本発明は、複数の車体部品(automotive part)からなり、予め車体部品を部品組み(parts assembly)として接合(joining)する接合点(joining point)が与えられた車体について、車体部品の分割位置を見直し最適化(optimization)する車体部品の分割位置及び一体化の決定方法及び装置に関するものであり、特に、自動車等の車体性能の向上を効率的に行うことができる車体部品の分割位置及び一体化の決定方法及び装置に関する。
 近年、特に自動車産業においては環境問題に起因した車体の軽量化(weight reduction)が進められており、車体の設計にCAE(computer aided engineering)解析は欠かせない技術となっている。このCAE解析では剛性解析(stiffness analysis)、衝突解析(crashworthiness analysis)及び振動解析(vibration analysis)等が実施され、車体性能の向上に大きく寄与している。
 また、CAE解析では単なる性能評価だけでなく、数理最適化(mathematical optimization)、寸法最適化、形状最適化(shape optimization)及びトポロジー最適化(topology optimization)等の最適化解析技術を用いることによって各種車体性能の向上や軽量化を図れることが知られている。このような最適化解析技術として、例えば、特許文献1には、複雑な構造体(structural body)のコンポーネントのトポロジー最適化のための方法が開示されている。
 さらに、特許文献2には、最適化解析技術を用いて車体性能に対する車体部品の感度解析(sensitivity analysis)を行い、感度解析の結果に基づいて車体性能の向上のために対策を施すべき車体部品を明確にする方法が開示されている。
特開2010-250818号公報 特開2020-60820号公報
 特許文献2に開示されている方法は、車体部品をモデル化し、該モデルに用いた各要素の車体性能に対する感度を感度解析により算出し、算出した各要素の感度に基づいて車体部品ごとに感度を求め、板厚や材料特性(material property)の変更といった対策を施す対象となる車体部品を明確にするものであった。
 当該方法は、車体部品の分割位置は予め与えられ固定されており、同一車体部品内に感度の分布があっても、車体部品ごとに感度の大小を判断するため、対策を施すと判断された車体部品の板厚や材料特性を変更するものであった。そのため、板厚等を変更すると判断された車体部品だとしても、当該車体部品内においては板厚等を変更するべきではない部位が存在することもあり、分割位置が固定されるため、車体部品の板厚等を変更しても車体性能を十分に向上することができない場合があった。
 そこで、車体を複数の車体部品に分割する位置を変更し、当該変更により新たに分割又は一体化した車体部品ごとに板厚や材料特性を適切に設定すれば、車体性能の効率的な向上を図ることができると考えられる。
 車体部品の分割又は一体化を決定する方法として、車体部品に加わる荷重(load)により発生している応力(stress)やひずみ(strain)に基づいて行う方法が考えられる。当該方法においては、車体部品における応力等の大きい部位と小さい部位との境界を分割位置と決定し、応力等が同程度の車体部品は一体化することが可能となる。
 しかしながら、当該方法により分割する位置や一体化する車体部品の板厚等を変更しても、当該車体部品の性能は向上しても、隣接する車体部品の性能が低下する場合があって、車体全体の性能が向上することは保証されていないため、車体性能の向上を効率的かつ十分に図ることはできなかった。
 本発明は、上記課題に鑑みてなされたものであって、その目的は、車体性能の向上を効率的かつ十分に図ることができる車体部品の分割位置及び一体化の決定方法及び装置を提供することにある。
 本発明に係る車体部品の分割位置及び一体化の決定方法は、複数の車体部品を備える車体モデル(automotive body model)について、コンピュータが以下の各ステップを行い、前記車体部品の分割位置及び/又は一体化する前記車体部品を決定するものであって、複数の要素(element)でモデル化した前記複数の車体部品と、該複数の車体部品を部品組みとして接合する接合点と、を備える前記車体モデルを取得する車体モデル取得ステップと、前記車体モデルの車体性能に関する目的条件(objectives)及び前記車体モデルの体積(volume)に関する制約条件(constraints)と、前記車体モデルに与える荷重・拘束条件(loading and constraint condition)もしくは荷重条件(loading condition)のみを設定し、該荷重・拘束条件もしくは荷重条件のみ及び前記制約条件の下で前記目的条件を満たす前記各車体部品における前記各要素の感度を求める感度解析ステップと、前記各車体部品における前記各要素の感度に基づいて、前記車体部品を分割する位置及び/又は一体化する前記車体部品を決定する車体部品分割位置・一体化決定ステップと、を含む。
 前記感度解析ステップは、前記目的条件を満たす前記各要素の材料密度(element densities)を算出し、該算出した材料密度を前記各要素の感度とするとよい。
 前記車体モデル取得ステップは、取得した前記車体モデルに対して、前記接合点に加えて前記部品組みを接合可能な全ての追加接合点を設定するとよい。
 本発明に係る車体部品の分割位置及び一体化の決定装置は、複数の車体部品を備える車体モデルについて、前記車体部品の分割位置及び/又は一体化する前記車体部品を決定するものであって、複数の要素でモデル化した前記複数の車体部品と、該複数の車体部品を部品組みとして接合する接合点と、を備える前記車体モデルを取得する車体モデル取得部と、前記車体モデルの車体性能に関する目的条件及び前記車体モデルの体積に関する制約条件と、前記車体モデルに与える荷重・拘束条件もしくは荷重条件のみを設定し、該荷重・拘束条件もしくは荷重条件のみ及び前記制約条件の下で前記目的条件を満たす前記各車体部品における前記各要素の感度を求める感度解析部と、前記各車体部品における前記各要素の感度に基づいて、操作者の指示により前記車体部品を分割する位置及び/又は一体化する前記車体部品を決定する車体部品分割位置・一体化決定部と、を備える。
 前記感度解析部は、前記目的条件を満たす前記各車体部品における前記各要素の材料密度を算出し、該算出した材料密度を前記各要素の感度とするとよい。
 前記車体モデル取得部は、取得した前記車体モデルに対して、前記接合点に加えて前記部品組みを接合可能な全ての追加接合点を設定するとよい。
 本発明によれば、車体性能に対する感度を車体部品のモデル化に用いた要素ごとに求め、該求めた車体部品における各要素の感度に基づいて、予め与えられた車体部品の分割位置を見直して最適な車体部品の分割位置及び一体化する車体部品を決定することができ、分割又は一体化による新たな車体部品ごとに板厚や材料特性を適宜変更することで、車体性能の向上を効率的かつ十分に行うことができる。
図1は、本発明の実施の形態に係る車体部品の分割位置及び一体化を決定する分割・一体化決定装置のブロック図(block diagram)である。 図2は、本発明の実施の形態において、解析対象とする車体モデルを示す図である。 図3は、本発明の実施の形態において、解析対象とする車体モデルにおける接合点と、接合可能な全ての追加接合点を示す図である((a)予め設定された接合点、(b)接合可能な全ての追加接合点)。 図4は、本発明の実施の形態において、車体モデルに与える荷重・拘束条件の一例を示す図である。 図5は、本発明の実施の形態において、車体モデルのフロント側における車体部品(Aピラー(A-pillar))の感度解析の結果と、感度解析により感度として求めた材料密度に基づいて車体部品の分割位置及び一体化を決定した例を示す図である((a)予め与えられた元の車体モデルのフロント側の側面図、(b)感度解析により求めた材料密度、(c)分割及び一体化した後の車体モデルのフロント側の側面図)。 図6は、本発明の実施の形態において、車体モデルのリア側における車体部品の感度解析の結果と、感度解析により感度として求めた材料密度に基づいて車体部品の分割位置及び一体化を決定した例を示す図である((a)予め与えられた元の車体モデルのリア側の上面図、(b)感度解析により求めた材料密度、(c)分割及び一体化した後の車体モデルのリア側の上面図)。 図7は、本発明の実施の形態において、車体モデルの左側における車体部品(サイドシルアウタ(side sill outer))の感度解析の結果と、感度解析により感度として求めた材料密度に基づいて車体部品の分割位置及び一体化を決定した例を示す図である((a)予め与えられた元の車体モデルの左側の斜視図、(b)感度解析により求めた材料密度、(c)分割及び一体化した後の車体モデルの左側の斜視図)。 図8は、本発明の実施の形態において、車体部品の分割位置及び一体化を決定した分割一体化車体モデルの一例を示す図である((a)予め与えられた元の車体モデル、(b)分割及び一体化した後の分割一体化車体モデル)。 図9は、本発明の実施の形態に係る車体部品の分割位置及び一体化の決定方法の処理の流れを示すフロー図である。 図10は、本発明の実施の形態の他の態様において、車体モデルのフロント側における車体部品の感度解析の結果と、感度解析により感度として求めた材料密度に基づいて車体部品の分割位置及び一体化を決定した例を示す図である((a)予め与えられた元の車体モデルのフロント側の側面図、(b)感度解析により求めた材料密度、(c)分割及び一体化した後の車体モデルのフロント側の側面図)。 図11は、本発明の実施の形態の他の態様において、車体モデルのリア側における車体部品の感度解析の結果と、感度解析により感度として求めた材料密度に基づいて車体部品の分割位置及び一体化を決定した例を示す図である((a)予め与えられた元の車体モデルのリア側の上面図、(b)感度解析により求めた材料密度、(c)分割及び一体化した後の車体モデルのリア側の上面図)。 図12は、本発明の実施の形態の他の態様において、車体モデルの左側における車体部品の感度解析の結果と、感度解析により感度として求めた材料密度に基づいて車体部品の分割位置及び一体化を決定した例を示す図である((a)予め与えられた元の車体モデルの左側の斜視図、(b)感度解析により求めた材料密度、(c)分割及び一体化した後の車体モデルの左側の斜視図)。 図13は、本発明の実施の形態の他の態様において、車体部品の分割位置及び一体化を決定した分割一体化車体モデルの一例を示す図である((a)予め与えられた元の車体モデル、(b)分割及び一体化した後の分割一体化車体モデル)。
 本発明の実施の形態について説明するに先立ち、本発明で対象とする車体モデルについて説明する。
<車体モデル>
 本発明で対象とする車体モデル100は、図2に一例として示すように、複数の車体部品を備えるものである。車体部品としては、Aピラーロア(A-pillar lower)101、Aピラーアッパ103、リアルーフレールセンタ105、リアルーフレールサイド107、コンパートメントセンタA109、コンパートメントサイドA111、コンパートメントセンタB113、コンパートメントサイドB115、サイドシルアウタ117、ホイルハウスリンフォース119、等の車体骨格部品(body frame parts)や、サスペンション部品等の足回り部品(suspension part)(図示なし)、等が挙げられる。そして、これらの車体部品は、複数のシェル要素(shell element)及び/又はソリッド要素(solid element)でモデル化されている。
 さらに、車体モデル100においては、図3(a)に一例として示すように、複数の車体部品を部品組みとして接合する接合点121が所定の間隔で設定されている。なお、車体モデル100は、接合点121を25~60mm間隔で設定したものである。
 なお、車体モデル100を構成する各車体部品の材料特性や要素情報、さらには、各部品組みにおける接合点121(図2(a))等に関する情報は、後述する車体モデルファイル21(図1参照)に格納されている。
<分割・一体化決定装置>
 本発明の実施の形態に係る車体部品の分割位置及び一体化を決定する分割・一体化決定装置の構成について、以下に説明する。
 本実施の形態に係る分割・一体化決定装置1は、複数の車体部品を備える車体モデルについて、前記車体部品の分割位置及び/又は一体化する車体部品を決定するものである。図1に示すように、本実施の形態に係る分割・一体化決定装置1は、PC(パーソナルコンピュータ)等によって構成され、表示装置(display device)3、入力装置(input device)5、記憶装置(memory storage)7、作業用データメモリ(working data memory)9及び演算処理部(arithmetic processing unit)11を有している。そして、表示装置3、入力装置5、記憶装置7及び作業用データメモリ9は、演算処理部11に接続され、演算処理部11からの指令によってそれぞれの機能が実行される。
 以下、図2及び図3に示す車体モデル100を解析対象とし、車体モデル100を構成する車体部品の分割位置及び一体化する車体部品を決定する場合について、本実施の形態に係る分割・一体化決定装置1の各構成を説明する。
≪表示装置≫
 表示装置3は、解析結果の表示等に用いられ、液晶モニター(LCD monitor)等で構成される。
≪入力装置≫
 入力装置5は、車体モデルファイル21の表示指示や操作者の条件入力等に用いられ、キーボードやマウス等で構成される。
≪記憶装置≫
 記憶装置7は、後述するような、車体モデルに関する各種情報を記録した車体モデルファイル21といった各種ファイルの格納等に用いられ、ハードディスク等で構成される。
≪作業用データメモリ≫
 作業用データメモリ9は、演算処理部11で使用するデータの一時保存や演算に用いられ、RAM(Random Access Memory)等で構成される。
≪演算処理部≫
 演算処理部11は、図1に示すように、車体モデル取得部13と、感度解析部15と、車体部品分割位置・一体化決定部17と、を有し、PC等のCPU(中央演算処理装置(central processing unit))によって構成される。これらの各部は、CPUが所定のプログラムを実行することによって機能する。演算処理部11における上記の各部の機能を以下に説明する。
(車体モデル取得部)
 車体モデル取得部13は、図2及び図3(a)に示すような、複数の要素でモデル化した車体部品(Aピラーロア101等)と、複数の車体部品を部品組みとして接合する接合点121と、を備える車体モデル100を取得するものである。
 本実施の形態において、車体モデル100を構成する各車体部品は、一例として、シェル要素によりモデル化されているものとし、各車体部品を構成するシェル要素や各車体部品の材料特性(ヤング率(Young’s modulus)、比重(specific gravity)、ポアソン比(Poisson’s ratio)等)に関する情報は、記憶装置7に格納されている車体モデルファイル21(図1参照)に記録されている。そのため、車体モデル取得部13は、車体モデルファイル21を読み込むことにより、車体モデル100を取得することができる。
(感度解析部)
 感度解析部15は、車体モデル100の車体性能に関する目的条件及び車体モデル100の体積(volume)に関する制約条件と、車体モデル100に与える荷重・拘束条件もしくは荷重条件のみを設定し、設定した荷重・拘束条件もしくは荷重条件のみ及び制約条件の下で目的条件を満たす各車体部品における各要素の感度を求めるものである。
 本実施の形態において、感度解析部15により設定する車体性能に関する目的条件としては、車体モデル100におけるひずみエネルギー(strain energy)総和の最小化、変位(displacement)の最小化、応力の最小化、剛性の最大化等があり、対象とする車体性能に応じてこれらの目的条件を適宜選択すればよい。
 また、感度解析部15により設定する車体モデル100の体積に関する制約条件としては、車体部品の体積を規定する体積制約率(volume fraction ratio)等がある。
 感度解析部15により車体モデル100に設定する荷重・拘束条件として、例えば、図4に例示する荷重・拘束条件を設定する。図4に示す荷重・拘束条件は、車体モデル100の左右のフロントサスペンション(front suspension)取付位置(図中P)を荷重点とし、一方に鉛直方向上向きの荷重を、他方に鉛直方向下向きの荷重を与え、さらに、車体モデル100の左右のリアサブフレーム(rear subframe)取付位置(図中Q)を拘束したものである。
 さらに、本実施の形態において、感度解析部15は、密度法(densimetry)を適用したトポロジー最適化を用い、各車体部品における各要素の感度として各要素の材料密度を算出するとよい。このとき算出される各要素の材料密度とは、式(1)に示す密度ρに相当するものである。
Figure JPOXMLDOC01-appb-M000001
 式(1)中の規格化された密度ρは、各要素における材料の充填状態を表す仮想的な密度であり、0から1までの値をとる。すなわち、要素の材料密度ρが1であれば、要素には材料が完全に充填されている状態、材料密度ρが0であれば要素に材料が充填されておらず完全に空洞の状態を表し、要素の材料密度が0から1の中間値であれば、その要素は材料とも空洞ともつかない中間的な状態を表す。
 そして、トポロジー最適化により算出される材料密度は、車体性能に対する寄与が大きい要素では材料密度は1に近い値となり、車体性能に対する感度が高いことを示す。これに対し、車体性能に対する寄与が小さい要素の材料密度は0に近い値となり、車体性能に対する感度が低いことを示す。このように、トポロジー最適化により算出した各要素の材料密度は、車体性能に対する各要素の感度を表す指標となる。
 図5(b)、図6(b)及び図7(b)に、感度解析部15により算出される要素の感度の一例として、目的条件を剛性の最大化、制約条件を体積制約率25%とし、図4に示す荷重・拘束条件(各荷重点に与える荷重の絶対値1000N)により車体モデル100に静ねじりを負荷したときの各車体部品の要素について算出した材料密度の結果の一例を示す。
 ここで、図5(b)は、車体モデル100のフロント側のAピラーロア101及びAピラーアッパ103(図5(a))の側面図、図6(b)は、車体モデル100のリア側(図6(a))の上面図、図7(b)は、車体モデル100の左側のサイドシルアウタ117及びホイルハウスリンフォース119(図7(a))の斜視図である。
 図5(b)、図6(b)及び図7(b)に示すように、同一の車体部品においても静ねじりに対しての感度が高い領域と感度の低い領域が存在するものや(例えば、図7(b)に示すサイドシルアウタ117)、異なる車体部品であっても全体として感度が同程度のものがあることが分かる(例えば、図5(b)に示すAピラーロア101とAピラーアッパ103)。
 なお、感度解析部15は、慣性リリーフ法(inertia relief method)により、車体モデル100に動的な荷重を負荷したときの慣性力(inertia force)を考慮する荷重条件のみを設定してもよい。慣性リリーフ法とは、慣性力の座標の基準となる支持点において物体が支持された状態(自由支持状態(free support))で等加速度運動(constant acceleration motion)中の物体に作用する力から応力やひずみを求める解析手法であり、運動中の飛行機や船の静解析(static analysis)に使用されている。
 また、感度解析部15により要素の材料密度を算出するにあたっては、トポロジー最適化等の最適化解析を行う解析ソフトを使用することができる。この場合、車体モデル100を構成する各車体部品を設計空間(design space)とし、該設計空間として設定された車体部品を構成する要素に設計変数(design variable)として材料密度を与え、所定の目的条件及び制約条件と荷重・拘束条件とを設定することで、要素の感度として材料密度が算出される。
 もっとも、感度解析部15において最適化解析を行う場合にあっては、トポロジー最適化以外の他の最適化解析手法を適用するものであってもよい。
(車体部品分割位置・一体化決定部)
 車体部品分割位置・一体化決定部17は、感度解析部15により求めた車体部品における各要素の感度に基づいて、操作者の指示により、車体部品を分割する位置及び/又は一体化する車体部品を決定するものである。
 感度に基づいて車体部品の分割位置及び一体化する車体部品を決定するにあたっては、感度の差を指標とし、操作者の指示により、同一の車体部品において感度の差の大きい位置を分割位置と決定し、感度の差が小さい隣接する車体部品は一体化すると決定すればよい。
 本実施の形態では、車体部品において感度の差が0.7以上である位置を分割位置と決定し、隣接する車体部品の感度の差が0.3以下であれば一体化と決定する。
 そして、車体部品分割位置・一体化決定部17は、分割位置が新たに決定された車体部品については当該分割位置で車体部品を分割して新たな車体部品を作成し、一体化すると決定された複数の車体部品については一体化して一つの車体部品とする。
 図5(b)、図6(b)及び図7(b)に示す各車体部品の要素の感度に基づいて車体部品の分割位置及び一体化する車体部品を決定し、車体部品を分割及び一体化した結果を図5(c)、図6(c)及び図7(c)にそれぞれ示す。
 車体モデル100のフロント側(図5(a))においては、図5(b)に示すように、Aピラーロア101とAピラーアッパ103の感度(材料密度)の差が0.3以下と小さかった(図中の破線楕円)。
 そのため、Aピラーロア101とAピラーアッパ103とを一体化すると決定し、図5(c)に示すように、Aピラー201とする。
 車体モデル100のリア側(図6(a))においては、図6(b)中の破線楕円で示すように、リアルーフレールセンタ105とリアルーフレールサイド107、コンパートメントセンタA109とコンパートメントサイドA111、及び、コンパートメントセンタB113とコンパートメントサイドB115については、いずれも、感度の差が0.3以下と小さかった。
 そのため、リアルーフレールセンタ105とリアルーフレールサイド107、コンパートメントセンタA109とコンパートメントサイドA111、及び、コンパートメントセンタB113とコンパートメントサイドB115とをそれぞれ一体化すると決定し、図6(c)に示すように、リアルーフレール203、コンパートメントA205、及び、コンパートメントB207とする。
 車体モデル100の左側(図7(a))においては、図7(b)中の破線楕円で示すように、サイドシルアウタ117の略中央よりも前方側と後方側とで感度の差が0.7以上と大きく、サイドシルアウタ117の後部とホイルハウスリンフォース119との感度の差が0.3以下と小さかった。
 そのため、図7(c)に示すように、サイドシルアウタ117において感度の差が大きい略中央を分割位置と決定し、前方側をサイドシルアウタフロント209に分割する。さらに、サイドシルアウタ117における分割位置よりも後方側についてはホイルハウスリンフォース119と一体化すると決定し、サイドシルアウタリア211とする。
 図8(b)に、図5(b)、図6(b)及び図7(b)に示す感度に基づいて、車体部品の分割位置及び一体化を決定した後の分割一体化車体モデル200の全体図を示す。
 なお、本実施の形態では、車体部品において感度の差が0.7以上の位置を分割位置と決定し、感度の差が0.3以下である隣接する車体部品を一体化すると決定したが、分割位置又は一体化を決定する感度の差は適宜選択してもよい。
<車体部品の分割位置及び一体化の決定方法>
 次に、本実施の形態に係る車体部品の分割位置及び一体化の決定方法について、以下に説明する。
 本実施の形態に係る車体部品の分割位置及び一体化する分割・一体化決定方法は、複数の車体部品を備える車体モデルについて、コンピュータが以下の各ステップを行い、車体部品の分割位置及び/又は一体化する車体部品を決定するものである。図9に示すように、この方法は、車体モデル取得ステップS1と、感度解析ステップS3と、車体部品分割位置・一体化決定ステップS5と、を含む。本実施の形態において、上記の各ステップはコンピュータによって構成された分割・一体化決定装置1(図1参照)が実行するものである。以下、上記の各ステップについて説明する。
≪車体モデル取得ステップ≫
 車体モデル取得ステップS1は、複数の要素でモデル化した複数の車体部品と、複数の車体部品を部品組みとして接合する接合点と、を備える車体モデルを取得するステップである。本実施の形態では、分割・一体化決定装置1の車体モデル取得部13が、車体モデルファイル21(図1参照)を読み込むことにより、図2及び図3(a)に一例として示すような、複数のシェル要素でモデル化した複数の車体部品(Aピラーロア101等)と、車体部品を部品組みとして接合する接合点121と、を備える車体モデル100を取得する。
≪感度解析ステップ≫
 感度解析ステップS3は、車体モデル100の車体性能に関する目的条件及び車体モデル100の体積に関する制約条件と、車体モデル100に与える荷重・拘束条件もしくは荷重条件のみを設定し、設定した荷重・拘束条件もしくは荷重条件のみ及び制約条件の下で目的条件を満たす各車体部品における各要素の感度を求めるステップである。本実施の形態においては、分割・一体化決定装置1の感度解析部15が、目的条件及び制約条件と荷重・拘束条件を設定し、各要素の感度として各要素の材料密度を算出する。
 感度解析ステップS3においては、トポロジー最適化等の最適化解析を行ってもよい。この場合、車体モデル100を構成する車体部品を設計空間とし、設計空間とした車体部品を構成する要素に設計変数として材料密度を与えて最適化の解析処理を実行し、設定した制約条件及び荷重・拘束条件の下で目的条件を満たす材料密度を車体部品における要素ごとに算出すればよい。
≪車体部品分割位置・一体化決定ステップ≫
 車体部品分割位置・一体化決定ステップS5は、感度解析ステップS3において求めた車体部品における各要素の感度に基づいて、操作者の指示によりコンピュータが、車体部品を分割する位置及び/又は一体化する車体部品を決定するステップである。本実施の形態においては、分割・一体化決定装置1の車体部品分割位置・一体化決定部17が行う。
 以上、本実施の形態に係る車体部品の分割位置及び一体化の決定方法及び装置によれば、車体性能に対する感度を車体部品のモデル化に用いた要素ごとに求め、該求めた車体部品における各要素の感度に基づいて、車体部品の分割位置及び一体化する車体部品を決定することができる。
 そして、車体部品の分割位置及び一体化する車体部品の決定に従って分割した車体部品や一体化した車体部品に対して板厚や材料特性を適宜設定することで、車体性能の向上を効率的かつ十分に行うことができる。
 例えば、分割した車体部品や一体化した車体部品の板厚を変更した場合、分割した車体部品のうち感度の大きい方は車体性能への寄与が大きいので板厚を厚くし、分割した車体部品や一体化した車体部品のうち感度の低いものは車体性能への寄与が小さいので板厚を薄くしてもよい。
 なお、本実施の形態に係る車体部品の分割位置及び一体化の決定方法及び装置は、板厚や材料特性の変更により車体性能に及ぼす車体部品における要素の感度を求めるものである。そのため、感度が高い部位は車体性能への寄与が大きいので板厚を厚くすることで剛性等の車体性能が向上することと、感度の低い部位は車体性能への寄与が小さいので板厚を薄くしても剛性等の車体性能が低下しない。
 また、一般に、車体部品の分割を細かし、当該分割した車体部品の板厚を厚くすることによる質量(mass)増加に対する車体性能の向上(重量効率)は高くなる。しかしながら、車体部品の分割を小さくすることで、車体部品をプレス成形(press forming)する金型(die)の個数が増加したり、車体部品を部品組みとして接合するスポット溶接点(spot welding point)が増加したりして、トータルでの製造コストが高くなるといった問題がある。これに対し、本発明によれば、必要以上に車体部品の分割を小さくする必要がなく、車体性能に関する重量効率を高くするとともに、製造コストの増加を抑えることができる。
 なお、上記の説明では、接合点121が設定された車体モデル100をそのまま用いて感度解析を行っているが、車体モデルに設定されている接合点121の点数の違いにより、車体性能に対する感度に違いが生じる場合がある。
 そこで、本実施の形態の他の態様として、図3(b)に一例として示すように、取得した車体モデル100に対して、接合点同士の間隔が25~60mmである接合点121に加えて部品組みを接合可能な全ての追加接合点151を設定して接合点を密にし、複数の車体部品を連続接合(continuous joining)するものと模擬した車体モデル150を用いて感度解析を行うようにしてもよい。なお、車体モデル150は、追加接合点151を10mm間隔で10932点設定したものである。
 図10(b)、図11(b)及び図12(b)に、車体モデル100に追加接合点151を10932点設定した車体モデル150を用いて感度解析を行い、車体部品の分割位置及び一体化する車体部品を決定した場合の結果を示す。ここで、図10(b)は、車体モデル150におけるフロント側のAピラーロア101及びAピラーアッパ103(図10(a))の側面図、図11(b)は、車体モデル150におけるリア側(図11(a))の上面図、図12(b)は、車体モデル150における左側のサイドシルアウタ117及びホイルハウスリンフォース119(図12(a))の斜視図である。また、図10(b)、図11(b)及び図12(b)に示す感度は、前述した本実施の形態と同一の目的条件、制約条件及び荷重・拘束条件(図4参照)を設定したものである。なお、車体モデル150における各車体部品については、図2に示す車体モデル100における各車体部品と同一の符号を付した。
 車体モデル150のフロント側(図10(a))においては、図10(b)に示すように、Aピラーロア101とAピラーアッパ103との境界とは異なる位置において感度の差が0.7以上と大きかった。
 そのため、感度の差が大きい位置を分割位置と決定し、図10(c)に示すように、Aピラーロア301とAピラーアッパ303とする。
 車体モデル150のリア側(図11(a))においては、図11(b)に示すように、リアルーフレールセンタ105とリアルーフレールサイド107、コンパートメントセンタA109とコンパートメントサイドA111、及び、コンパートメントセンタB113とコンパートメントサイドB115の感度の差が0.3以下と小さかった。
 そのため、図11(c)に示すように、リアルーフレールセンタ105とリアルーフレールサイド107とを一体化してリアルーフレール305、コンパートメントセンタA109とコンパートメントサイドA111とを一体化してコンパートメントA307、コンパートメントセンタB113とコンパートメントサイドB115とを一体化してコンパートメントB309とする。
 車体モデル150の左側(図12(a))においては、図12(b)に示すように、サイドシルアウタ117の感度の差は0.3以下と小さく、サイドシルアウタ117の後部とホイルハウスリンフォース119との感度に差が0.7以上と大きかった。さらに、Aピラーロア101とサイドシルアウタ117の前部との感度の差は0.3以下と小さかった。
 そのため、図12(c)に示すように、サイドシルアウタ117を分割せず、さらに、サイドシルアウタ117とホイルハウスリンフォース119と一体化しないで分割したままとし、サイドシルアウタ117はAピラーロア101と一体化してAピラーロア301とし、ホイルハウスリンフォース119はサイドシルアウタ117と一体化せずにホイルハウスリンフォース311とする。
 図13(b)に、図10(b)、図11(b)及び図12(b)に示す感度に基づいて、車体部品の分割位置及び一体化を決定した後の分割一体化車体モデル300の全体図を示す。
 なお、本実施の形態として述べた接合点121が設定された車体モデル100をそのまま用いた場合と、本実施の形態の他の態様として述べた接合可能な全ての追加接合点151が設定された車体モデル150を用いた場合と、の作用効果の相違については、後述する実施例において説明する。
 上記の説明では、車体性能として車体の剛性向上を対象としたものであるが、車体性能として衝突特性(crash worthiness)や疲労特性(fatigue properties)の向上を対象とする場合においては、感度解析部又は感度解析ステップにおいて、衝突特性や疲労特性に関する目的条件を設定すればよい。例えば、衝突特性に関する目的条件を設定する場合においては、変位の最小化を目的条件としてもよい。
 また、本実施の形態における感度解析部15及び感度解析ステップS3は、各要素の感度として要素ごとの材料密度を算出するものであった。もっとも、本発明は、車体部品を複数のシェル要素でモデル化した場合においては、所定の目的条件及び制約条件と荷重・拘束条件を満たす各シェル要素の板厚を算出し、該算出したシェル要素の板厚を各要素の感度としてもよい。
 このように、感度解析において求めた各シェル要素の板厚を感度した場合、板厚が大きい要素は車体性能に対する感度が高いことを示し、板厚が小さいシェル要素は車体性能に対する感度が小さいことを示す。これにより、感度解析において算出した要素の板厚は、車体性能に対する各要素の感度を表す指標となり得る。
 さらに、本実施の形態において、感度解析部15及び感度解析ステップS3は、静的荷重(static load)を与える荷重・拘束条件を設定して感度解析を行うものであったが、本発明は、車体を振動させる動的荷重(dynamic load)に相当する荷重・拘束条件を設定してもよい。
 具体的には、感度解析に先立って車体モデルについて周波数応答解析等を行い、該周波数応答解析(frequency response analysis)等により求めた車体モデルの振動モード(vibration mode)における変形形態(deformation state)に対応した車体モデルに与える荷重を負荷する位置、方向及び大きさを決定する。そして、決定した荷重を負荷する位置、方向及び大きさを荷重・拘束条件として設定し、感度解析を行えばよい。
 本発明に係る車体部品の分割位置及び一体化の決定方法及び装置の効果を検証する実験を行ったので、以下、これについて説明する。
 本実施例では、前述の実施の形態において説明した分割一体化車体モデル200及び分割一体化車体モデル300について、分割及び一体化する前の車体モデル100に対する車体性能の向上を検証した。
 分割一体化車体モデル200及び分割一体化車体モデル300において、分割した後の車体部品は分割前の車体部品の板厚のままとし、一体化した車体部品は一体化する前の車体部品のうち表面積の大きい方の車体部品の板厚とした。
 そして、分割一体化車体モデル200及び分割一体化車体モデル300に対し、図4に示す静ねじりの荷重・拘束条件を与え、ねじり剛性(torsional stiffness)を算出した。ここで、荷重点に与える荷重は1000Nとした。
 また、本実施例において、ねじり剛性は、以下のように算出した。まず、分割一体化車体モデルの左右のリアサブフレーム取付位置(図4中のQに相当)を結ぶ直線を基準とし(角度0度)、車体フロント側の左右のフロントサスペンション取付位置(図4中のPに相当)を荷重点とし、一方の荷重点に鉛直方向上向きの荷重(1000N)を与え、他方の荷重点に鉛直方向下向きの荷重(1000N)を与えた時の車体前方側から見た車体の傾斜角度を車体前後方向にわたって平均することにより平均傾斜角度を求める。そして、荷重点に与えた荷重と変位の積を平均傾斜角度により除してねじり剛性を求める。
 表1に、分割一体化車体モデル200及び分割一体化車体モデル300における質量変化とねじり剛性の結果を示す。なお、分割一体化車体モデル200及び分割一体化車体モデル300をそれぞれ構成する各車体部品の各部品組みにおける接合点の間隔は、予め与えられた元の車体モデル100の接合点121の間隔と同様とした。
Figure JPOXMLDOC01-appb-T000002
 表1において、基準例は分割一体化する前の予め与えられた元の車体モデル100を用いた場合、発明例1は分割一体化車体モデル200を用いた場合、発明例2は分割一体化車体モデル300を用いた場合の結果である。
 表1に示す質量変化は、基準例とした車体モデル100の質量を基準とした分割一体化車体モデル200又は分割一体化車体モデル300の質量の相対変化であり、分割一体化車体モデル200及び分割一体化車体モデル300は、車体部品の板厚から算出した。
 さらに、表1に示す剛性向上率(improvement rate of stiffness)は、車体部品を分割又は一体化する前の元の車体モデル100(基準例)のねじり剛性を基準として求めたねじり剛性の相対変化であり、下式より求めた。
 剛性向上率(%)=(発明例のねじり剛性-基準例のねじり剛性)/基準例のねじり剛性×100
 また、発明例1及び発明例2における質量変化当たりの剛性向上率は、発明例1及び発明例2のそれぞれにおける剛性向上率を質量変化で除したものである。
 発明例1における質量変化は2.3kg、発明例2における質量変化は1.6kgであり、車体部品を分割及び/又は一体化することにより基準例に比べて質量は増加したものの、発明例1及び発明例2における剛性向上率はいずれも約13%であった。これより、本発明により車体部品を分割及び一体化することでねじり剛性が大きく向上する結果となった。
 また、剛性向上率を質量変化で除した質量変化当たりの剛性向上率については、発明例1では5.66%/kgであるのに対し、発明例2では8.21%/kgであった。この結果から、車体モデル100に接合可能な全ての追加接合点151を設定した車体モデル150を用いて感度解析を行い、車体部品の分割位置及び一体化する車体部品を決定する方が、接合点の配置の車体性能に与える影響を排除して、車体部品の各要素の感度をより正確に算出できるので、分割及び一体化による質量変化に対する車体性能をより効率的に向上できることが分かった。
 本発明によれば、車体性能の向上を効率的かつ十分に図ることができる車体部品の分割位置及び一体化の決定方法及び装置を提供することができる。
 1 分割・一体化決定装置
 3 表示装置
 5 入力装置
 7 記憶装置
 9 作業用データメモリ
 11 演算処理部
 13 車体モデル取得部
 15 感度解析部
 17 車体部品分割位置・一体化決定部
 21 車体モデルファイル
 100 車体モデル
 101 Aピラーロア
 103 Aピラーアッパ
 105 リアルーフレールセンタ
 107 リアルーフレールサイド
 109 コンパートメントセンタA
 111 コンパートメントサイドA
 113 コンパートメントセンタB
 115 コンパートメントサイドB
 117 サイドシルアウタ
 119 ホイルハウスリンフォース
 121 接合点
 150 車体モデル
 151 追加接合点
 200 分割一体化車体モデル
 201 Aピラー
 203 リアルーフレール
 205 コンパートメントA
 207 コンパートメントB
 209 サイドシルアウタフロント
 211 サイドシルアウタリア
 300 分割一体化車体モデル
 301 Aピラーロア
 303 Aピラーアッパ
 305 リアルーフレール
 307 コンパートメントA
 309 コンパートメントB
 311 ホイルハウスリンフォース

Claims (6)

  1.  複数の車体部品を備える車体モデルについて、コンピュータが以下の各ステップを行い、前記車体部品の分割位置及び/又は一体化する前記車体部品を決定する車体部品の分割位置及び一体化の決定方法であって、
     複数の要素でモデル化した前記複数の車体部品と、該複数の車体部品を部品組みとして接合する接合点と、を備える前記車体モデルを取得する車体モデル取得ステップと、
     前記車体モデルの車体性能に関する目的条件及び前記車体モデルの体積に関する制約条件と、前記車体モデルに与える荷重・拘束条件もしくは荷重条件のみを設定し、該荷重・拘束条件もしくは荷重条件のみ及び前記制約条件の下で前記目的条件を満たす前記各車体部品における前記各要素の感度を求める感度解析ステップと、
     前記各車体部品における前記各要素の感度に基づいて、前記車体部品を分割する位置及び/又は一体化する前記車体部品を決定する車体部品分割位置・一体化決定ステップと、
     を含む、車体部品の分割位置及び一体化の決定方法。
  2.  前記感度解析ステップは、前記目的条件を満たす前記各要素の材料密度を算出し、該算出した材料密度を前記各要素の感度とする、請求項1に記載の車体部品の分割位置及び一体化の決定方法。
  3.  前記車体モデル取得ステップは、取得した前記車体モデルに対して、前記接合点に加えて前記部品組みを接合可能な全ての追加接合点を設定する、請求項1又は2に記載の車体部品の分割位置及び一体化の決定方法。
  4.  複数の車体部品を備える車体モデルについて、前記車体部品の分割位置及び/又は一体化する前記車体部品を決定する車体部品の分割位置及び一体化の決定装置であって、
     複数の要素でモデル化した前記複数の車体部品と、該複数の車体部品を部品組みとして接合する接合点と、を備える前記車体モデルを取得する車体モデル取得部と、
     前記車体モデルの車体性能に関する目的条件及び前記車体モデルの体積に関する制約条件と、前記車体モデルに与える荷重・拘束条件もしくは荷重条件のみを設定し、該荷重・拘束条件もしくは荷重条件のみ及び前記制約条件の下で前記目的条件を満たす前記各車体部品における前記各要素の感度を求める感度解析部と、
     前記各車体部品における前記各要素の感度に基づいて、操作者の指示により前記車体部品を分割する位置及び/又は一体化する前記車体部品を決定する車体部品分割位置・一体化決定部と、
     を備える、車体部品の分割位置及び一体化の決定装置。
  5.  前記感度解析部は、前記目的条件を満たす前記各車体部品における前記各要素の材料密度を算出し、該算出した材料密度を前記各要素の感度とする、請求項4に記載の車体部品の分割位置及び一体化の決定装置。
  6.  前記車体モデル取得部は、取得した前記車体モデルに対して、前記接合点に加えて前記部品組みを接合可能な全ての追加接合点を設定する、請求項4又は5に記載の車体部品の分割位置及び一体化の決定装置。
PCT/JP2021/036447 2021-01-27 2021-10-01 車体部品の分割位置及び一体化の決定方法及び装置 WO2022163021A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MX2023008262A MX2023008262A (es) 2021-01-27 2021-10-01 Metodo y dispositivo para determinar la posicion de division e integracion de piezas de automovil.
CN202180091833.1A CN116802639A (zh) 2021-01-27 2021-10-01 车身零件的分割位置及一体化的确定方法及装置
KR1020237028810A KR20230130750A (ko) 2021-01-27 2021-10-01 차체 부품의 분할 위치 및 일체화의 결정 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021010843A JP7099561B1 (ja) 2021-01-27 2021-01-27 車体部品の分割位置及び一体化の決定方法及び装置
JP2021-010843 2021-01-27

Publications (1)

Publication Number Publication Date
WO2022163021A1 true WO2022163021A1 (ja) 2022-08-04

Family

ID=82384812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036447 WO2022163021A1 (ja) 2021-01-27 2021-10-01 車体部品の分割位置及び一体化の決定方法及び装置

Country Status (5)

Country Link
JP (1) JP7099561B1 (ja)
KR (1) KR20230130750A (ja)
CN (1) CN116802639A (ja)
MX (1) MX2023008262A (ja)
WO (1) WO2022163021A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000276514A (ja) * 1999-03-26 2000-10-06 Mazda Motor Corp 部材厚選定支援装置及び部材厚選定支援方法及びコンピュータ読み取り可能な記憶媒体
JP2014149734A (ja) * 2013-02-01 2014-08-21 Jfe Steel Corp 構造体の接合位置の最適化解析方法及び装置
WO2020070922A1 (ja) * 2018-10-05 2020-04-09 Jfeスチール株式会社 車体部品の感度解析方法及び装置、車体部品の材料特性決定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002183220A (ja) * 2000-12-13 2002-06-28 Toyota Central Res & Dev Lab Inc 性能解析支援方法、記録媒体、性能解析支援システムおよび性能解析支援用サーバ・コンピュータ
US8126684B2 (en) 2009-04-10 2012-02-28 Livermore Software Technology Corporation Topology optimization for designing engineering product
JP5440415B2 (ja) * 2010-06-24 2014-03-12 新日鐵住金株式会社 構造体設計支援装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000276514A (ja) * 1999-03-26 2000-10-06 Mazda Motor Corp 部材厚選定支援装置及び部材厚選定支援方法及びコンピュータ読み取り可能な記憶媒体
JP2014149734A (ja) * 2013-02-01 2014-08-21 Jfe Steel Corp 構造体の接合位置の最適化解析方法及び装置
WO2020070922A1 (ja) * 2018-10-05 2020-04-09 Jfeスチール株式会社 車体部品の感度解析方法及び装置、車体部品の材料特性決定方法

Also Published As

Publication number Publication date
KR20230130750A (ko) 2023-09-12
JP2022114543A (ja) 2022-08-08
CN116802639A (zh) 2023-09-22
MX2023008262A (es) 2023-07-19
JP7099561B1 (ja) 2022-07-12

Similar Documents

Publication Publication Date Title
KR102473091B1 (ko) 차체 부품의 감도 해석 방법 및 장치, 차체 부품의 재료 특성 결정 방법
KR101612690B1 (ko) 형상 최적화 해석(analysis of shape optimization) 방법 및 장치
JP6614301B1 (ja) 車体の振動特性の適正化解析方法及び装置
CN111684451B (zh) 车身的粘接位置的优化解析方法及优化解析装置
JP6222302B1 (ja) 車体の接合位置の最適化解析方法及び装置
JP6090400B1 (ja) 車体の剛性解析方法
WO2014034953A1 (ja) スプリングバック抑制対策部品及びその製造方法
JP5440773B2 (ja) 車両の企画支援システム
US20230161930A1 (en) Optimization analysis method and apparatus of adhesive position in automotive body
JP6958675B1 (ja) 車体の接合位置の最適化解析方法及び装置
WO2022163021A1 (ja) 車体部品の分割位置及び一体化の決定方法及び装置
WO2022163022A1 (ja) 車体の軽量化方法及び装置
JP2019128868A (ja) 車体部品の補剛部材の形状最適化解析方法及び装置
WO2021220543A1 (ja) 車体の接合位置の最適化解析方法及び装置
Saito et al. A study of topology optimization for spot-welding locations in automotive body by using driving simulation
Osborne Finite element concept modeling methodologies supporting the design of a pickup box

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923028

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/008262

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 202180091833.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237028810

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237028810

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923028

Country of ref document: EP

Kind code of ref document: A1