WO2022162251A1 - Membrana de polipropileno (pp) recubierta con un organometoxisilano, procedimiento para su fabricación y usos - Google Patents

Membrana de polipropileno (pp) recubierta con un organometoxisilano, procedimiento para su fabricación y usos Download PDF

Info

Publication number
WO2022162251A1
WO2022162251A1 PCT/ES2021/070060 ES2021070060W WO2022162251A1 WO 2022162251 A1 WO2022162251 A1 WO 2022162251A1 ES 2021070060 W ES2021070060 W ES 2021070060W WO 2022162251 A1 WO2022162251 A1 WO 2022162251A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
organomethoxysilane
water
filtration
flab
Prior art date
Application number
PCT/ES2021/070060
Other languages
English (en)
French (fr)
Inventor
Valerio Pruneri
Ana Maria PÉREZ CORONADO
Juan ROMBAUT SEGARRA
Beatriz CORZO GARCÍA
Original Assignee
Fundació Institut De Ciències Fotòniques
Institució Catalana De Recerca I Estudis Avançats
Acsa Obras E Infraestructuras S.A.U.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundació Institut De Ciències Fotòniques, Institució Catalana De Recerca I Estudis Avançats, Acsa Obras E Infraestructuras S.A.U. filed Critical Fundació Institut De Ciències Fotòniques
Priority to EP21722271.0A priority Critical patent/EP4286035A1/en
Priority to PCT/ES2021/070060 priority patent/WO2022162251A1/es
Publication of WO2022162251A1 publication Critical patent/WO2022162251A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/009After-treatment of organic or inorganic membranes with wave-energy, particle-radiation or plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0211Graphene or derivates thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/34Use of radiation
    • B01D2323/345UV-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes

Definitions

  • the present invention relates to an improved coated polypropylene membrane with high permeability for liquids, in particular water.
  • the present invention also relates to a process for the manufacture of said membrane and uses thereof.
  • Wastewater from domestic and industrial needs is characterized by relatively high values of chemical oxygen demand (COD), suspended solids, fats, oil and detergents.
  • COD chemical oxygen demand
  • Membrane technology for wastewater has been studied more and more to develop affordable and efficient solutions.
  • polymeric membranes for filtration processes are used to achieve a clear permeate.
  • Membranes made from polymers such as polypropylene (PP), polyvinylidene fluoride (PVDF), polyethersulfone (PES), polyacrylonitrile (PAN), polysulfone (PSf), and chlorinated polyethylene (CPE) have excellent selectivity in water treatment applications.
  • PP polypropylene
  • PVDF polyvinylidene fluoride
  • PES polyethersulfone
  • PAN polyacrylonitrile
  • PSf polysulfone
  • CPE chlorinated polyethylene
  • PP polypropylene
  • PVDF polyvinylidene fluoride
  • PES polyethersulfone
  • PAN polyacrylonitrile
  • PSf polysulfone
  • CPE chlorinated polyethylene
  • Modification of membranes to increase permeability while maintaining filtration efficiency can be carried out by mixing polymers that have suitable properties, for example hydrophilic coating, by combining different organic compounds, such as surfactants or organic solvents, or by adding polymer layers on the active surface of the membrane.
  • suitable properties for example hydrophilic coating
  • organic compounds such as surfactants or organic solvents
  • polymer layers on the active surface of the membrane.
  • different methods are used to modify the surface of the membrane, such as drip coating, dip coating, spray coating, plasma treatment, etc.
  • dip coating is definitely a simple technique to modify the membrane surface.
  • Different inorganic nanomaterials have been studied to improve the performance of membranes, such as zeolites [3], titanium dioxide [3], magnesium and titanium oxide [1], silicon dioxide [8], zirconium oxide [9] and titanate [13].
  • PP membrane modification was achieved by employing nanoparticles and hydrophilic additives [11, 14, 16].
  • ZnO has been used more and more, as it showed good antibacterial and antimicrobial properties.
  • Wenten et al [18] improved water flux and reduced organic fouling when using the PP membrane prepared by PSF/PEG400/ZnO coating by dip coating in peat water treatment.
  • porous substrate materials made of ceramics that have extreme wettability to polar or non-polar fluids, such as water and oil.
  • the porous material has a coated surface comprising a low surface energy fluoroalkyl silane that is treated to exhibit at least one type of extreme wettability, wherein the low surface energy fluoroalkyl silane is selected from the group consisting of: heptadecafluoro- 1,1,2,2 ⁇ tetrahydrodecyl triethoxysilane, heptadecafluoro-1,1,2,2-tetrahydrodecyl trichlorosilane, heptadecafluoro-1,1,2,2-tetrahydrooctyl trichlorosilane, tridecafluoro-1,1,2,2-tetrahydrooctyl triethoxysalilane and nonafluorohexyl triethoxysilane, and combinations thereof.
  • Document CN107519768B [20] describes a membrane composed of ceramics with its surface grafted by a hydrophilic polymer.
  • different binders such as coupling agent of propyl trimethoxy silane, polyvinyl alcohol, polyvinyl butyral, epoxy resin, one or more of acrylic resin and polyurethane are used.
  • Document US9415351 [19] describes a process for manufacturing reverse osmosis membranes that have a high permeation flux.
  • the membrane includes: a porous support and an active polyamide layer formed on the porous support and including zeolite, modified on the surface with a compound having at least one functional group selected from a group consisting of an amino group and an amino group. glycidyl.
  • US7264728B2 [6] describes the use of silane-modified silica filter media, such as rice hull ash, to simultaneously separate proteins and capture particles.
  • the object of this disclosure is to filter a sample through a filter medium whose surface has been modified with one or more silanes. The procedures described allow the particles to be simultaneously captured by filtration and the binding of soluble materials to the silica filtration media.
  • WO1999020378A1 [21] describes a method of manufacturing a composite membrane having a hydrophilic coating layer on a hydrophobic membrane support.
  • the hydrophobic membrane support is immersed in an aqueous solution containing hydrophilic polymer.
  • the membrane support is used to increase the mechanical strength and durability of the filter membrane.
  • Document CN106310958B [2] describes polyvinylidene fluoride (PVDF) and polysulfone (PSf) membranes with pore sizes of 0.2 pm coated with specific amino silanes: 3-aminopropyl triethoxysilane, 3-aminopropyl triethoxysilane, aminoethyl aminopropyl triethoxysilane, aminoethyl aminopropyl trimethoxysilane, and different thiol-silanes, such as 3-mercaptopropyl triethoxysilane, 3-mercaptopropyl triethoxysilane, which change the hydrophobic properties of the composite film.
  • a solution of tannins is used to adjust the pH between 7 and 8.
  • PP is one of the most favorable candidates for membranes thanks to its availability, easy processing, durability and low cost, and has been widely used for ultrafiltration (UF) [17].
  • UF ultrafiltration
  • PP has limitations in water treatment due to its poor hydrophilic property [4, 10].
  • polymerization with hydrophilic monomers can be used to modify supporting PP substrates in thin-film composite membranes [7].
  • chemical affinity between the hydrophilic coating and the substrate is essential membrane or membrane. This is especially applicable in the case that the PP is a membrane material and not only a support material.
  • an organomethoxysilane-coated polypropylene (PP) membrane overcomes the drawbacks described in the state of the art and, in particular, has a high permeability capacity for liquids, in particular water.
  • the present invention relates to a polypropylene (PP) membrane coated with an organomethoxysilane alone or in combination with oxide particles.
  • the present invention relates to a process for manufacturing the polypropylene membrane according to the first aspect of the invention.
  • the present invention relates to a device comprising the polypropylene membrane according to the first aspect of the invention.
  • the present invention refers to different uses of the polypropylene membrane according to the first aspect of the invention or of the device according to the third aspect of the invention
  • Figure 1 Representation of a sliding droplet (side and top views) with all the parameters involved in the Furmidge equation: droplet mass m, acceleration due to gravity g, tilt angle a, drop width w, air surface tension - liquid /LA and dynamic advancing and receding contact angles, 0a and 0r, respectively [12].
  • FIG. 1 Schematic diagram of a water flow system in discontinuous configuration, A, and experiments in continuous configuration, B.
  • FIG. 1 Contact angle (CA) view for commercial supports and when dip coated in solution containing 2% organomethoxysilane (OS).
  • Figure 4. SEM (Scanning Electron Microscopy) of Fluytec®, FLAB® and GVB®; and SEM of Fluytec®-2% OS, FLAB®-2% OS and GVB®.
  • FIG. 5 Variation of water flux and support weight (A- Fluytec® and B - FLAB®) during the permeation study in batch configuration. In each filtration sequence, 100 ml of deionized water were used. In this figure %wt represents % by weight. (In figure 5A, F represents Fluytec®)
  • the present invention relates to a polypropylene (PP) membrane coated with an organomethoxysilane alone or in combination with oxide particles.
  • said oxide particles are selected from microparticles or nanoparticles of graphene oxide and microparticles or nanoparticles of titanium oxide
  • said PP membrane has a pore size that varies from 0.1 to 100 ⁇ m, preferably from 0.1 to 50 ⁇ m.
  • the organomethoxysilane has the formula (I):
  • R1 is methyl
  • R2 independently of R1 and R3, R2 is ethyl.
  • R3 is methyl
  • Alkyl in the context of the present invention means a linear or branched alkyl group, preferably a linear alkyl group, for example a butyl, propyl, ethyl or methyl group.
  • the organomethoxysilane is 2-[methoxy(polyethyleneoxy)21-23propyl]thmethoxysilane.
  • the PP membrane further comprises at least one layer above the organomethoxysilane coating and/or at least one layer below the PP membrane.
  • the present invention relates to a method for manufacturing the polypropylene membrane according to any of the embodiments described according to the first aspect of the invention, comprising the steps of: a) preparing an organomethoxysilane solution, dissolving the organomethoxysilane in a mixture of alcohol and water, and carrying out an acid-catalyzed hydrolysis reaction; b) immersing a PP membrane in the solution obtained in step a). c) fixing and drying the PP membrane obtained in step b).
  • the organomethoxysilane solution in step a) is combined with oxide particles.
  • said oxide particles are selected from graphene oxide microparticles or nanoparticles and titanium oxide microparticles or nanoparticles.
  • said PP membrane has a pore size ranging from 0.1 to 100 ⁇ m, preferably ranging from 0.1 to 50 ⁇ m.
  • the organomethoxysilane has the formula (i):
  • R3 a where, independently, R1 is a C1-C8 alkyl group; R2 is a C1-C8 alkyl group; R3 is a C1-C8 alkyl group; where a is 0, 1 or 2, preferably 0, and. where XY is 6-9, 9-12, 21-24, or 25-30, preferably XY is 21-24.
  • R1 is methyl
  • R2 independently of R1 and R3, R2 is ethyl.
  • the organomethoxysilane is 2-[methoxy(polyethyleneoxy)21-23propyl]trimethoxysilane.
  • the PP membrane further comprises at least one layer above the organomethoxysilane coating and/or at least one layer below the PP membrane.
  • the alcohol in the mixture of alcohol and water in step a, is preferably ethanol or isopropanol, more preferably ethanol.
  • the ratio of alcohol and water is from 95:5 to 5:95 (v/v), where the alcohol is preferably ethanol or isopropanol, more preferably ethanol.
  • the hydrolysis reaction is particularly catalyzed by a Br0nsted acid such as, for example, hydrochloric acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, nitric acid, nitrous acid, perchloric acid, chlorous acid, as well as any organic Bronsted acid, such as formic acid, acetic acid, butyric acid, glutaric acid, as well as mixtures of the aforementioned Bronsted acids.
  • Glacial acetic acid is preferably used.
  • the method further comprises step d) of spray-coating the PP membrane with oxide particles when the organomethoxysilane does not contain oxide particles in the solution of step a).
  • said oxide particles are selected from graphene oxide microparticles or nanoparticles and titanium oxide microparticles or nanoparticles.
  • the fixation procedure in said stage c) is carried out by heating the PP membrane to a temperature between 50 and 70 °C, or applying UV light on the PP membrane, or a combination of the same.
  • said process further comprises a final step of removing the excess of organomethoxysilane.
  • said step of removing excess organomethoxysilane is performed by washing with deionized water, acetone or ethanol or under ultrasound, or a combination thereof.
  • the concentration of organomethoxysilane in the final solution of step a) is from 0.01 to 10% by weight.
  • the ratio of ethanol to water in step a) is 95:5 (v:v).
  • step a) is carried out for 5 to 60 minutes.
  • step b) is carried out for 5 to 120 minutes.
  • step c) is carried out for 30 to 120 minutes.
  • the present invention relates to a device comprising the PP membrane, as defined in any of the embodiments according to the first aspect of the invention.
  • the present invention relates to the use of the device according to the third aspect of the invention for a filtration, osmosis, concentration or dialysis process, or a combination thereof.
  • the filtration process is applied to the filtration of a fluid.
  • said fluid is selected from blood and water.
  • said fluid is water.
  • water means seawater, municipal wastewater, brackish water, and industrial process water, such as cooling, heating, and boiler water treatment.
  • the osmosis process is reverse osmosis.
  • the concentration process is applied to particles or microorganisms.
  • the filtration process is applied to the MBR (membrane bioreactor).
  • a solution containing OS was prepared.
  • the OS was dissolved at 2 wt% in 95:5 ethanol/water with 0.02% glacial acetic acid as catalyst. After 60 minutes of hydrolysis, the solution was ready.
  • Dynamic contact angle measurements on the membrane were evaluated by a DSA100 Drop Shape Analyzer (Krüs GmbH) to measure surface wetting characteristics. The results of these measurements are representative of the hydrophilicity of each membrane.
  • Static and dynamic contact angle (CA) measurements were performed with droplets of 7 pl volume. An image of each drop was taken and the contact angles were subsequently evaluated. ImageJ software was used to calculate the angles. Static CA was measured first, followed by sliding CA. In all experiments, tilting was up to 90° to study forward CA (0a) and backward CA (0r). Furmidge (see Figure 1) assumed that the droplet footprint was rectangular during slip, which may be a source of error, but found the equation to be precise enough to be able to consider slip drops in a flat surface [5], The difference between 0a and 0r is known as hysteresis.
  • Water flux refers to the volume of deionized water passing through a unit membrane area per unit time and is defined as:
  • Flux is the permeate flux (LMH)
  • Vf ⁇ i tr ado is the volume of deionized water used in the experiment
  • Smembrane is the effective membrane area (15.2 cm 2 )
  • Tf ⁇ itration is the time of operation (hrs).
  • the dry commercial membranes and the dry modified membrane were weighed using a five-digit balance.
  • Test 4 X-ray photoelectron spectroscopy.
  • the surface chemical composition of the membranes was analyzed by X-ray photoelectron spectroscopy (XPS, Axis Supra, Kratos) with Al and Ka line as X-ray source.
  • XPS X-ray photoelectron spectroscopy
  • Commercial supports, supports modified with OS, were analyzed before and after the water flow experiments.
  • the surface of the commercial membranes and the modified membranes were analyzed by scanning electron microscopy (FEG-SEM, Inspect F, FEI Systems) to assess the change in the structure of the membranes.
  • the samples were covered with a copper foil for observation with SEM, using the Sputter Coater Orion 8 HV.
  • the pore size of the Fluytec® membrane was studied by filtering a solution containing particles between 70 - 40 pm.
  • the pore size of the OS-modified GVB membrane was evaluated with an Escherichia coli solution.
  • PVDF was found to have less permeability after being coated with organomethoxysilane under the same conditions as in the present invention.
  • PSf, PES and PA are, in fact, very hydrophobic materials and did not show permeability when coated or not with organomethoxysilane.
  • the surface wetting properties of the commercial supports before and after the treatment were studied by measuring the CA of the water.
  • the commercial Fluytec® and FLAB® membranes have a contact angle (CA) of 104° and 130°, respectively.
  • CA contact angle
  • Fluytec® and FLAB® modified with 2% OS have a CA of 100° and 112°, respectively.
  • Table 3 shows the variation of the measurements of the average CA of water for Fluytec® and Fluytec®-2 % OS.
  • the static CA was studied, and then 0a and 0r for the 90° tilt angle were measured. The values correspond to different permeation times: before filtration, after filtration and 48 hours after filtration, when the supports were dry.
  • the increase in CA just after filtration and 48 h later is 24% and 23%, respectively.
  • the most significant result is observed for Fluytec®-2% OS.
  • the modified membrane abruptly increases the flow of water and, according to the permeability study, Fluytec®-2% OS absorbs the drop of water in 40 seconds.
  • FLAB® recovers the initial properties, since the static AC is similar to the values obtained with the commercial filter and the water droplet slides when the inclination reaches 90°.
  • FLAB® - 2% OS is slightly more hydrophilic than FLAB®, since the static AC is lower than that of the commercial FLAB in all experiments (before, after and 48 hours after filtration).
  • the tilt reaches 90° the water droplet remains attached to the surface (does not slide), indicating that the OS changes hydrophilic properties.
  • Table 4 summarizes the water flow for commercial FLAB® and FLAB® - 2% OS.
  • FLAB® - 2% OS shows a 106% increase over the initial commercial untreated filter (not covered with OS).
  • GVB® recovers the initial properties, since the static CA is similar to the values obtained with the commercial filter and the water droplet slides when the inclination reaches 90°.
  • GVB® - 2% OS is initially slightly more hydrophobic than FLAB®, since the static CA is greater than that of FLAB®.
  • the water droplet remains attached to the surface (does not slide), indicating that the OS changes hydrophilic properties.
  • Table 5 summarizes the water flow for commercial GVB® and GVB® - 2% OS.
  • GVB® - 2% OS shows a 64.4% increase over the initial commercial untreated filter (not covered with OS).
  • Figure 5 A shows the flow resulting from the flow of 100 ml of deionized water through the PP Fluytec® membrane modified with OS in different stages until the flow reached a saturation value. The experiment was carried out in four sequences or stages. After each of them, the membrane was dried for 24 hours at room temperature, before proceeding to the next step. In the figure, the commercial Fluytec® water flow is not shown as the value is too low for the y-axis scale ( ⁇ 22 LMH - see Table 6). In addition, Figure 5A shows the weight corresponding to the "dry" state of the membrane after each permeation sequence.
  • FIG. 5B and Table 6 show the results of FilterLAB® modified with 2% OS.
  • FilterLAB-2% OS shows a weight increase of 7.7% compared to commercial FilterLAB®.
  • the first filtration with 100 ml has the highest water flow.
  • the third and fourth series show stable values in terms of water flux and membrane weight. This indicates that all excess OS was probably removed, leaving a self-assembling monolayer of OS on the surface.
  • Table 6 summarizes the initial water flux (measured with the batch configuration) for the initial commercial membranes and the OS-modified membranes.
  • FIG. 5 shows the water flux for the Fluytec® and FLAB® membranes modified with 2% OS when the experiments were performed with continuous configuration.
  • the first sequence consisted of measuring the flow of water for 24 hours. After this, the membranes were soaked in deionized water for 24 hours. Finally, the membranes were measured again for 72 hours of continuous operation. In these experiments, we can consider that the flow of water remains constant.
  • Figure 6A does not show the water flux value for commercial Fluytec®, since, with a continuous configuration, water does not flow through the membrane due to its hydrophobicity.
  • FIG. 5B shows the same experiment for FilterLAB® and FLAB®-2% OS.
  • FilterLAB®- 2% OS showed a much higher permeability (43%) than that of the commercial FilterLAB®.
  • Figure 6 shows the XPS for Fluytec® and FLAB® (A); and, Fluytec®-2% OS and FLAB®-2% OS before (B) and after (C) being used in water flow experiments.
  • the largest binding energy (BE) peak of 281 eV is attributed to the CC bond and the BE peak of 530 eV corresponds to oxygen.
  • the graphs corresponding to Fluytec® show three spectra: at the top, it indicates the first layer; int, indicates the middle layer; and, below, indicates the third sheet, since this membrane has three sheets.
  • the plots show only two spectra: top, indicates top surface; and below, indicates the lower surface, since FLAB® consists of a single sheet.
  • FIG 7A shows the commercial supports do not show the O peak in the XPS. This fact is due to the fact that PP only has C and H in its structure.
  • Figure 7B shows the XPS for the modified support with OS (Fluytec®-2%OS and FLAB®-2%OS). In these experiments, the O peak appears, indicating that OS has been deposited on the surface.
  • Figure 7C shows the XPS for Fuytec®-2% OS and FLAB®-2% OS before being used in water flow experiments. This analysis shows that after water filtration was carried out, SO remained on the membrane surface.
  • a 50 g/L solution of polystyrene particles with a spherical size equal to and greater than 40 pm is prepared.
  • the initial particle solution had a value of 34 ⁇ 2 NTU (Nephelotmethc Turbidity Unit). After filtering this solution using the Fluytec - 2% OS membrane, the NTU reading was zero. In this sense, the modified Fluytec retains particles larger than 40 pm.
  • the GVB-2% OS membrane was evaluated in the removal of E. coli.
  • E. Coli were determined by the Colibert-18 test (ISO 9308-2: 2012). The results are expressed as the most probable number of coliforms (MPN) per 100 ml, with the limit of quantification being 1 MPN / 100 ml. It starts from a solution of 14.6 MPN/100 mL of E. Coli. In the experiment, 1 L is filtered. In the final analysis, 0 MPN/100 mL was obtained. This fact indicates that the membrane retained the E. coli from the medium.
  • Table 8 shows the water permeation capacities measured using other materials: PVDF, PSf, PA and PES.
  • the table summarizes the permeability evaluated in the discontinuous configuration with unmodified support and OS-modified supports. The last column corresponds to the improvement of the water flow with respect to the commercial membrane. In these experiments, permeation capabilities were not improved in any case.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

La presente invención se refiere a una membrana de polipropileno (PP) recubierta con un organometoxisilano solo o combinado con partículas de óxido. La presente invención también se refiere a un procedimiento de fabricación de dicha membrana de polipropileno, un dispositivo que comprende dicha membrana de polipropileno y los usos del mismo.

Description

MEMBRANA DE POLIPROPILENO (PP) RECUBIERTA CON UN ORGANOMETOXISILANO, PROCEDIMIENTO PARA SU FABRICACIÓN Y USOS
CAMPO DE LA INVENCIÓN
La presente invención se refiere a una membrana de polipropileno recubierta mejorada con alta capacidad de permeabilidad para líquidos, en particular agua. La presente invención también se refiere a un procedimiento para la fabricación de dicho membrana y usos de la misma.
ANTECEDENTES DE LA INVENCIÓN
Las aguas residuales de las necesidades domésticas e industriales se caracterizan por valores relativamente altos de demanda química de oxígeno (DQO), sólidos suspendidos, grasas, aceite y detergentes.
La tecnología de membrana para aguas residuales se ha estudiado cada vez más para desarrollar soluciones asequibles y eficientes. Por lo general, las membranas poliméricas para procesos de filtración se utilizan para lograr un permeado claro. Las membranas fabricadas de polímeros como polipropileno (PP), fluoruro de polivinilideno (PVDF), polietersulfona (PES), poliacrilonitrilo (PAN), polisulfona (PSf) y polietileno clorado (CPE) tienen una excelente selectividad en aplicaciones de tratamiento de agua. Además, tienen una buena estabilidad química y mecánica. Sin embargo, suelen mostrar una permeabilidad limitada debido a su naturaleza hidrófoba. Como consecuencia, el coste del flujo de agua y el tratamiento se incrementa debido al hecho de que se necesita más energía para bombear con el fin de lograr la filtración.
La modificación de las membranas para aumentar la permeabilidad y conservar a la vez la eficacia de la filtración puede llevarse a cabo mezclando polímeros que tengan propiedades adecuadas, por ejemplo, recubrimiento hidrófilo, mediante la combinación de diferentes compuestos orgánicos, como surfactantes o disolventes orgánicos, o mediante la adición de capas de polímeros en la superficie activa de la membrana. Desde el punto de vista de la fabricación, se emplean diferentes procedimientos para modificar la superficie de la membrana, como el recubrimiento por goteo, el recubrimiento por inmersión, el recubrimiento por pulverización, el tratamiento por plasma, etc. Entre todos los procedimientos, el recubrimiento por inmersión es sin duda una técnica sencilla para modificar la superficie de la membrana. Se han estudiado diferentes nanomateriales inorgánicos para mejorar el rendimiento de las membranas, tales como zeolitas [3], dióxido de titanio [3], óxido de magnesio y titanio [1], dióxido de silicio [8], óxido de zirconio [9] y titanato [13], Estos materiales modifican las estructuras y la composición química de la membrana, mostrando una mayor hidrofilicidad de la superficie, carga, “antifouling”, rechazo de sal y propiedades antiincrustantes y antibacterianas. Otros autores, por ejemplo, Wang et al [17], encontraron que el maleato de sodio (NaMA) y el aceite de vinil silicona (Vi-PDMS) mejoran el flujo de agua o aceite cuando se injertaron en poros de PP (polipropileno) de membranas UF (ultrafiltración) mediante el uso de calor por microondas, un procedimiento de calentamiento selectivo.
En otras investigaciones, la modificación de la membrana de PP se logró empleando nanopartículas y aditivos hidrófilos [11 , 14, 16], Además, entre los aditivos, el ZnO se ha utilizado cada vez más, ya que mostró buenas propiedades antibacterianas y antimicrobianas. De esta manera, Wenten et al [18] mejoraron el flujo de agua y redujeron la incrustación orgánica cuando se empleó la membrana de PP preparada mediante un recubrimiento de PSF/PEG400/ZnO mediante recubrimiento por inmersión en el tratamiento del agua de turba.
De este modo, es conocido en el estado de la técnica el uso de recubrimiento hidrófilo para aumentar la permeabilidad al agua de las membranas hidrófobas.
El documento US10472769B2 [15] describe materiales de sustrato porosos fabricados de cerámicos que tienen una humectabilidad extrema a fluidos polares o no polares, tales como agua y aceite. El material poroso tiene una superficie recubierta que comprende un flooroalquilo silano de baja energía superficial que se trata para exhibir al menos un tipo de humectabilidad extrema, en el que el fluoroalquilo silano de baja energía superficial se selecciona de un grupo que consiste en: heptadecafluoro-1 ,1 ,2,2~tetrahidrodecil trietoxisilano, heptadecafluoro-1 , 1 ,2,2-tetrahídrodecil triclorosilano, heptadecafluoro- 1 ,1 ,2,2-tetrahídrooctil triclorosilano, tridecafluoro-1 ,1 ,2,2-tetrah¡drooctil trietoxisalílano y nonafluorohexil trietoxisilano, y combinaciones de los mismos.
El documento CN107519768B [20] describe una membrana compuesta de cerámicos con su superficie injertada por un polímero hidrófilo. Además, durante la fabricación de la membrana, se utilizan diferentes aglutinantes como el agente de acoplamiento de propil trimetoxi silano, alcohol polivinílico, butiral polivinílico, resina epoxi, uno o más de resina acrílica y poliuretano. El documento US9415351 [19] describe un procedimiento de fabricación de membranas de osmosis inversa que tienen un flujo de permeación elevado. La membrana incluye: un soporte poroso y una capa activa de poliamida formada sobre el soporte poroso y que incluye zeolita, modificada en la superficie con un compuesto que tiene al menos un grupo funcional seleccionado de un grupo que consiste en un grupo amino y un grupo glicidilo.
El documento US7264728B2 [6] describe el uso de medios filtrantes de sílice modificados con silano, tales como la ceniza de cascarilla de arroz para separar proteínas y capturar partículas, simultáneamente. El objeto de esta divulgación es filtrar una muestra a través de un medio filtrante cuya superficie haya sido modificada con uno o más silanos. Los procedimientos descritos permiten capturar simultáneamente las partículas mediante filtración y la unión de materiales solubles en los medios de filtración de sílice.
El documento WO1999020378A1 [21] describe un procedimiento de fabricación de una membrana compuesta que tiene una capa de recubrimiento hidrófila sobre un soporte de membrana hidrófobo. En particular, el soporte de membrana hidrófobo se sumerge en una solución acuosa que contiene polímero hidrófilo. El soporte de membrana se utiliza para aumentar la resistencia mecánica y la durabilidad de la membrana filtrante.
El documento CN106310958B [2] describe membranas de fluoruro de polivililideno (PVDF) y polisulfona (PSf) con tamaños de poro de 0,2 pm recubiertas de amino silanos específicos: 3-aminopropil trietoxisilano, 3-aminopropil trietoxisilano, aminoetil aminopropil trietoxisilano, aminoetil aminopropil trimetoxisilano, y diferentes tiol-silanos, tales como 3- mercaptopropilo trietoxisilano, 3-mercapto propil trietoxisilano, que cambian las propiedades hidrofóbicas de la película compuesta. Además, se emplea una solución de taninos para ajustar el pH entre 7 y 8.
Entre los materiales de sustrato, el PP es uno de los candidatos más favorables para las membranas gracias a su disponibilidad, fácil procesamiento, durabilidad y bajo coste, y ha sido ampliamente utilizado para ultrafiltración (UF) [17], Sin embargo, el PP, como se ha mencionado anteriormente, tiene limitaciones en el tratamiento del agua debido a su mala propiedad hidrofílica [4, 10], Para superar este problema, se ha descrito que la polimerización con monómeros hidrófilos puede utilizarse para modificar sustratos de PP de soporte en membranas compuestas de película fina [7], Para lograr una permeabilidad duradera y alta, es esencial la afinidad química entre el recubrimiento hidrófilo y el sustrato de membrana o membrana. Esto es especialmente aplicable en el caso de que el PP sea material de membrana y no solo material de soporte.
En consecuencia, los presentes inventores han encontrado que una membrana de polipropileno (PP) recubierta de organometoxisilano supera los inconvenientes descritos en el estado de la técnica y, en particular, tiene una alta capacidad de permeabilidad para líquidos, en particular, agua.
DESCRIPCIÓN RESUMIDA DE LA INVENCIÓN
En un primer aspecto, la presente invención se refiere a una membrana de polipropileno (PP) recubierta con un organometoxisilano solo o combinado con partículas de óxido.
En un segundo aspecto, la presente invención se refiere a un procedimiento para fabricar la membrana de polipropileno según el primer aspecto de la invención.
En un tercer aspecto, la presente invención se refiere a un dispositivo que comprende la membrana de polipropileno según el primer aspecto de la invención.
En un cuarto aspecto, la presente invención se refiere a diferentes usos de la membrana de polipropileno según el primer aspecto de la invención o del dispositivo según el tercer aspecto de la invención
BREVE DESCRIPCIÓN DE LOS DIBUJOS
Figura 1. Representación de una gota deslizante (vistas laterales y superiores) con todos los parámetros implicados en la ecuación de Furmidge: Masa de gota m, aceleración por gravedad g, ángulo de inclinación a, anchura de caída w, tensión de superficie de aire- líquido /LA y ángulos de contacto de avance y retroceso dinámicos, 0a y 0r, respectivamente [12].
Figura 2. Diagrama esquemático de un sistema de flujo de agua en configuración discontinua, A y experimentos en configuración continua, B.
Figura 3. Vista del ángulo de contacto (CA) para soportes comerciales y cuando se recubre por inmersión en solución que contiene organometoxisilano (OS) al 2 %. Figura 4. SEM (Microscopía Electrónica de rastreo) de Fluytec®, FLAB® y GVB®; y SEM de Fluytec®-2% OS, FLAB®- 2% OS y GVB®.
Figura 5. Variación del flujo de agua y peso de soporte (A- Fluytec® y B - FLAB®) durante el estudio de permeación en la configuración de lotes. En cada secuencia de filtración se emplearon 100 mi de agua desionizada. En esta figura % wt representa el % en peso. (En la figura 5A, F representa Fluytec®)
Figura 6. Estudio de flujo de agua y peso en configuración continua relativos a la figura 2B.
Figura 7. XPS (espectroscopia fotoelectrónica de rayos X) de Fluytec® y FLAB®; y XPS de Fluytec®-2% OS y FLAB®- 2% OS antes y después de experimentos de flujo de agua. (CPS = cuentas por segundo)
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
En un primer aspecto, la presente invención se refiere a una membrana de polipropileno (PP) recubierta con un organometoxisilano solo o combinado con partículas de óxido.
En esta descripción y en las reivindicaciones, términos tales como "comprende", "que comprende", "que contiene" y "que tiene" son términos abiertos y pueden significar "incluye", "que incluye", y similares; mientras que términos como "que consiste en" o "consiste en" se refieren a los elementos mencionados después de estos términos y otros que no se mencionan se excluyen.
A menos que se explique lo contrario, todos los términos técnicos y científicos utilizados en el presente documento tienen el mismo significado que comúnmente se entiende por un experto en la técnica a la que pertenece esta descripción. Los términos singulares "un", "una", y "el/la" incluyen referencias plurales, a menos que el contexto indique claramente lo contrario. Asimismo, la palabra "o" tiene por objeto incluir "y" a menos que el contexto indique claramente lo contrario.
En una realización preferida, dichas partículas de óxido se seleccionan entre mi ero partículas o nanopartículas de óxido de grafeno y micropartículas o nanopartículas de óxido de titanio En otra realización preferida, dicha membrana de PP tiene un tamaño de poro que varía de 0,1 a 100 .m, preferiblemente de 0,1 a 50 .m.
En otra realización preferida, el organometoxisilano tiene la fórmula (I):
R1-O-(R2O)x.y-(CH2)3-Si-(OCH3)3.a R3a en la que, independientemente, R1 es un grupo alquilo C1-C8; R2 es un grupo alquilo C1- C8; R3 es un grupo alquilo C1-C8; en la que a es 0, 1 o 2, preferiblemente 0, y. en la que X-Y es 6-9, 9-12, 21-24, o 25-30, preferiblemente X-Y es 21-24.
En una realización particular preferida, independientemente de R2 y R3, R1 es metilo.
En una realización particular preferida, independientemente de R1 y R3, R2 es etilo.
En una realización particular preferida, independientemente de R1 y R2, R3 es metilo.
En una realización particular preferida, independientemente de R1 = R3 =metilo y R2 = etilo.
“Alquilo” en el contexto de la invención presente significa un grupo alquilo ramificado o lineal, preferiblemente un grupo alquilo lineal, por ejemplo, un grupo butilo, propilo, etilo o metilo.
En una realización más preferida, el organometoxisilano es 2-[metoxi(poliet¡lenox¡)21- 23propil]thmetox¡s¡lano.
En otra realización preferida, la membrana de PP comprende además al menos una capa sobre el recubrimiento de organometoxisilano y/o al menos una capa debajo de la membrana de PP.
Cabe indicar que cualquiera de las realizaciones descritas en el presente documento para la membrana de PP según el primer aspecto de la invención puede tomarse sola o combinada con cualquier otra realización descrita en el presente documento, a menos que el contexto especifique lo contrario.
En un segundo aspecto, la presente invención se refiere a un procedimiento para fabricar la membrana de polipropileno según cualquiera de las realizaciones descritas según el primer aspecto de la invención, que comprende las etapas de: a) preparar una solución de organometoxisilano, disolviendo el organometoxisilano en una mezcla de alcohol y agua, y llevando a cabo una reacción de hidrólisis catalizada por ácido; b) sumergir una membrana de PP en la solución obtenida en la etapa a). c) fijar y secar la membrana de PP obtenida en la etapa b).
En una realización preferida del segundo aspecto, la solución de organometoxisilano en la etapa a) se combina con partículas de óxido. Preferiblemente, dichas partículas de óxido se seleccionan entre micropartículas o nanopartículas de óxido de grafeno y micropartículas o nanopartículas óxido de titanio.
En otra realización preferida del segundo aspecto, dicha membrana de PP tiene un tamaño de poro que varía de 0,1 a 100 .m, preferiblemente que varía de 0,1 a 50 .m.
En aún otra realización preferida del segundo aspecto, el organometoxisilano tiene la fórmula (i):
R1-O-(R2O)x.y-(CH2)3-Si-(OCH3)3.a
R3a en la que, independientemente, R1 es un grupo alquilo C1-C8; R2 es un grupo alquilo C1- C8; R3 es un grupo alquilo C1-C8; en la que a es 0, 1 o 2, preferiblemente 0, y. en la que X-Y es 6-9, 9-12, 21-24, o 25-30, preferiblemente X-Y es 21-24.
En una realización particular preferida, independientemente de R2 y R3, R1 es metilo.
En una realización particular preferida, independientemente de R1 y R3, R2 es etilo.
En una realización particular preferida, independientemente de R1 y R2, R3 es metilo. En una realización particular preferida, independientemente de R1 = R3 =metilo y R2 = etilo.
En una realización más preferida del segundo aspecto, el organometoxisilano es 2- [metoxi(polietilenoxi)21-23propil]trimetoxisilano.
En otra realización preferida del segundo aspecto, la membrana de PP comprende además al menos una capa sobre el recubrimiento de organometoxisilano y/o al menos una capa debajo de la membrana de PP.
En otra realización preferida del segundo aspecto, en la mezcla de alcohol y agua de la etapa a, el alcohol es preferiblemente etanol o isopropanol, más preferiblemente etanol. Preferiblemente la proporción de alcohol y agua es de 95:5 a 5:95 (v/v), donde el alcohol es preferiblemente etanol o isopropanol, más preferiblemente etanol.
En otra realización preferida del segundo aspecto, la reacción de hidrólisis es catalizada particularmente por un ácido de Br0nsted como, por ejemplo, ácido clorhídrico, ácido sulfúrico, ácido sulfuroso, ácido fosfórico, ácido fosforoso, ácido nítrico, ácido nitroso, ácido, perclórico, ácido cloroso, así como cualquier ácido de Bronsted orgánico, como por ejemplo ácido fórmico, ácido acético, ácido butírico, ácido glutárico, así como mezclas de los ácidos de Bronsted anteriormente citados. Preferiblemente se utiliza ácido acético glacial.
En otra realización del procedimiento según el segundo aspecto, el procedimiento comprende además la etapa d) de recubrir por pulverización la membrana de PP con partículas de óxido cuando el organometoxisilano no contiene partículas de óxido en la solución de la etapa a). Preferiblemente, dichas partículas de óxido son seleccionadas entre micropartículas o nanopartículas de óxido de grafeno y micropartículas o nanopartículas de óxido de titanio.
En otra realización preferida del procedimiento según el segundo aspecto, el procedimiento de fijación en dicha etapa c) se realiza calentando la membrana PP a una temperatura entre 50 y 70 °C, o aplicando luz UV sobre la membrana de PP, o una combinación de los mismos. En otra realización preferida del procedimiento según el segundo aspecto, dicho procedimiento comprende además una etapa final de eliminar el exceso de organometoxisilano. Preferiblemente, dicha etapa de eliminar el exceso de organometoxisilano se realiza mediante lavado con agua desionizada, acetona o etanol o bajo ultrasonidos, o una combinación de los mismos.
En otra realización preferida del procedimiento según el segundo aspecto, la concentración de organometoxisilano en la solución final de la etapa a) es del 0.01 al 10 % en peso.
En otra realización preferida del procedimiento según el segundo aspecto, la proporción de etanokagua en la etapa a) es 95:5 (v:v).
En otra realización preferida del procedimiento según el segundo aspecto, la etapa a) se lleva a cabo durante 5 a 60 minutos.
En otra realización preferida del procedimiento según el segundo aspecto, la etapa b) se lleva a cabo durante 5 a 120 minutos.
En otra realización preferida del procedimiento según el segundo aspecto, la etapa c) se lleva a cabo durante 30 a 120 minutos.
Cabe indicar que cualquiera de las realizaciones descritas en el presente documento para la fabricación de la membrana de PP según el segundo aspecto de la invención puede tomarse sola o combinada con cualquier otra realización descrita en el presente documento, a menos que el contexto especifique lo contrario.
En un tercer aspecto, la presente invención se refiere a un dispositivo que comprende la membrana de PP, tal como se define en cualquiera de las realizaciones según el primer aspecto de la invención.
En un cuarto aspecto, la presente invención se refiere al uso del dispositivo según el tercer aspecto de la invención para un proceso de filtración, osmosis, concentración o diálisis, o una combinación de los mismos.
Preferiblemente, el proceso de filtración se aplica a la filtración de un fluido. Más preferiblemente, dicho fluido se selecciona entre sangre y agua. Lo más preferiblemente, dicho fluido es agua. En el contexto de la presente invención, por “agua” se entiende agua de mar, aguas residuales municipales, agua salobre y agua de procesos industriales, tales como refrigeración, calefacción y tratamiento de agua de caldera.
En otra realización preferida, el proceso de osmosis es osmosis inversa.
En otra realización preferida, el proceso de concentración se aplica a partículas o microorganismos.
En otra realización preferida, el proceso de filtración se aplica al MBR (biorreactor de membrana).
A continuación se proporcionan vahos ejemplos que tienen por objeto ¡lustrar la invención y de ninguna manera limitar el alcance de la invención, que se establece por las reivindicaciones adjuntas.
EJEMPLOS
Materiales y procedimientos
Materiales
2-[metoxi(polietilenoxi)21-24propil]thmetoxisilano (Tech 90) de la familia química de organometoxisilanos (OS). El etanol absoluto fue comprado a Scharlab y el ácido acético fue proporcionado por Sigma-Aldhch. Un filtro de membrana de PP de laboratorio (tamaño de poro = 0,22 pm, diámetro 47 mm) fue suministrado por Filter-Lab® (FLAB®), filtro de membrana de PP de laboratorio (tamaño de poro = 0,22 pm, diámetro 47 mm) fue suministrado por Scharlab® (GVB®) y un filtro de membrana de PP comercial como la membrana Fluytec® (tamaño de poro = 40 pm) fue suministrado por Fluytec Filtration Technologies®.
Preparación de una membrana de PP modificada
En primer lugar, se preparó una solución que contenía OS. El OS se disolvió al 2 % de peso en etanokagua 95:5 con ácido acético glacial al 0,02 % como catalizador. Después de 60 minutos de hidrólisis, la solución estaba lista. La membrana de PP se sumergió (recubrimiento por inmersión) en la solución que contenía OS durante 30-60 min. Después de este tiempo, la membrana modificada se trató a 60 °C durante 60 min en un horno de convección.
Prueba 1. Medida del ángulo de contacto
Las mediciones del ángulo de contacto dinámico en la membrana se evaluaron mediante un Analizador de la forma de la gota DSA100 (Krüs GmbH) para medir las características de humectación superficial. Los resultados de estas mediciones son representativos de la hidrofilicidad de cada membrana.
Las mediciones del ángulo de contacto (CA) estático y dinámico se realizaron con gotas de 7 pl de volumen. Se tomó una imagen de cada gota y posteriormente se evaluaron los ángulos de contacto. El software ImageJ se utilizó para calcular los ángulos. Primero se midió el CA estático y a continuación el CA deslizante. En todos los experimentos, la inclinación (“tilting”) fue de hasta 90° para estudiar el CA de avance (0a) y el CA de retroceso (0r). Furmidge (véase la figura 1) asumió que la huella de la gota era rectangular durante el deslizamiento, lo que puede ser una fuente de error, pero encontró que la ecuación era lo suficientemente precisa como para ser capaz de considerar las gotas de deslizamiento en una superficie plana [5], La diferencia entre 0a y 0r se conoce como histéresis.
Prueba 2. Experimento de flujo de agua
Se realizaron experimentos de flujo de agua utilizando un sistema de configuración discontinua y un sistema de configuración continua. Ambos diagramas esquemáticos de la prueba se pueden encontrar en las figuras 2 A y B, respectivamente.
El flujo de agua se refiere al volumen de agua desionizada que pasa a través de un área de membrana unitaria por unidad de tiempo y se define como:
[EC. 1]
Figure imgf000012_0001
donde Flujo es el flujo de permeado (LMH), Vf¡itrado es el volumen de agua desionizada empleada en el experimento, Smembrana es el área de membrana efectiva (15,2 cm2) y Tf¡itrac¡ón es el tiempo de funcionamiento (h). Prueba 3. Estudio de peso
Las membranas comerciales secas y la membrana modificada seca se pesaron utilizando una balanza de cinco dígitos.
Prueba 4. Espectroscopia fotoelectrónica de rayos X.
La composición química superficial de las membranas se analizó mediante espectroscopia fotoelectrónica de rayos X (XPS, Axis Supra, Kratos) con Al y línea Ka como fuente de rayos X. Se analizaron los soportes comerciales, soportes modificados con OS, antes y después de los experimentos de flujo de agua.
Prueba 5. Estudio de la morfología de la membrana
La superficie de las membranas comerciales y las membranas modificadas se analizaron mediante microscopía electrónica de barrido (FEG-SEM, Inspect F, FEI Systems) para evaluar el cambio en la estructura de las membranas. Las muestras se recubrieron con una lámina de cobre para su observación con SEM, empleando el Sputter Coater Orion 8 HV. Para evaluar el cambio de tamaño de poro, en la membrana Fluytec® se estudió el tamaño de poro filtrando una disolución que contenía partículas entre 70 - 40 pm. El tamaño de poro de la membrana GVB modificada con OS se evaluó con una disolución de Escherichia Coli.
Prueba 6. Idoneidad de los materiales de membrana distintos del polipropileno
Con el fin de mostrar la idoneidad del material de membrana para el propósito de la presente invención, se analizaron materiales distintos del polipropileno para su permeabilidad:
- PVDF (polivinilideno)
- PSf (polisulfona)
- PA (poliamida)
- PES (polietersulfona)
Se observó que el PVDF tenía menos permeabilidad después de ser recubierto con organometoxisilano en las mismas condiciones que en la presente invención. PSf, PES y PA son, de hecho, materiales muy hidrófobos y no mostraron permeabilidad al estar recubiertos o no con organometoxisilano.
Resultados
En el primer experimento se estudió el flujo de agua a través de los soportes comerciales. Las lecturas de la permeabilidad de Fluytec® (F) y Filter-LAB® (FLAB) fueron de 22 y 3535 L/m2h, respectivamente. Los soportes se modificaron con OS y se evaluó el flujo de agua en la configuración discontinua. Los resultados corresponden al menos a tres repeticiones. La Tabla 1 y la Tabla 2 muestran estos resultados para Fluytec® y FLAB®, respectivamente. Tal como se muestra, el flujo de agua aumentó con la cantidad de OS sobre la superficie.
Tabla 1. Estudio de flujo de agua de la membrana Fluytec® cuando se filtraron 100 mi de agua desionizada. (Tiempo: registro de tiempo; Flujo: flujo de agua a través de la membrana calculado mediante la ec. 1 ; y, Fl: Mejora del fujo de agua con respecto a la membrana comercial Fluytec®).
Figure imgf000014_0001
8 29605 108650 no/ 8 29605 108650
F uv ytec® - 2% en p Heso de OS „ 8 29605 108650
8 29605 108650
* La primera filtración fue de 3 horas, pero la etapa de filtración posterior se detuvo cuando el tiempo de filtración alcanzó 4 horas, y por lo tanto no todos los 100 mL fueron filtrados. En el estudio, 22 LMH fue considerado como el flujo de agua para la membrana comercial Fluytec®.
Tabla 2. Estudio de flujo de agua de FLAB® cuando se filtraron 100 mi de agua desionizada. (Tiempo: registro de tiempo; Flujo: flujo de agua a través de la membrana calculado mediante la ec. 1 ; y, Fl: Mejora del flujo de agua con respecto a la membrana comercial).
Muestra
Figure imgf000014_0002
Tiempo (s)
Figure imgf000014_0003
Flujo (LMH)
Figure imgf000014_0004
67 3535
FLAB® 61 3883
60 3947
64 3701 -5
FLAB®- 60°C 58 4083 5
56 4229 9
56 4229 9
FLAB® - 0,02% en peso de OS 48 4934 27
49 4834 24 25 9474 144
29 8167 110
FLAB® - 2% en peso de OS
36 6579 69
35 6767 74
35 6767 74
Las propiedades de humectación superficial de los soportes comerciales antes y después del tratamiento fueron estudiadas mediante las mediciones del CA del agua. Las membranas comerciales Fluytec® y FLAB® tienen un ángulo de contacto (CA) de 104° y 130°, respectivamente. Por otro lado, Fluytec® y FLAB® modificados con 2 % de OS tienen un CA de 100° y 112°, respectivamente.
Los resultados muestran que el OS disminuye aproximadamente el 14 % del CA para FLAB®, pero el cambio es insignificante para Fluytec® (véase la figura 3)
La tabla 3 muestra la variación de las mediciones del promedio del CA de agua para Fluytec® y Fluytec®-2 % OS. En primer lugar, se estudió el CA estático y, a continuación, se midieron 0a y 0r para el ángulo de inclinación de 90°. Los valores corresponden a diferentes tiempos de permeación: antes de la filtración, después de la filtración y 48 horas después de la filtración, cuando los soportes estaban secos. En el caso de Fluytec® comercial, el aumento de CA justo después de la filtración y 48 h más tarde es del 24 % y 23 %, respectivamente. Por otro lado, el resultado más significativo se observa para Fluytec®-2 % OS. La membrana modificada aumenta abruptamente el flujo de agua y, según el estudio de permeabilidad, Fluytec®-2 % OS absorbe la gota de agua en 40 segundos.
Tabla 3. CA estático y CA de avance y retroceso para el valor del ángulo de deslizamiento de 90° para Fluytec®
Figure imgf000015_0001
El mismo estudio se realizó para FLAB®. Estos resultados se muestran en la Tabla 4. En comparación con Fluytec®, FLAB® es más hidrófobo. Cuando la superficie del equipo de ángulo de contacto, donde se encuentra FLAB®, aumenta de 0 a 90 °, la gota depositada sobre la superficie FLAB® cae. Este hecho demuestra la baja atracción entre el agua y la superficie FLAB®. Después de la filtración, una vez que FLAB® está húmeda, esta situación ya no se observa. En este caso, la gota permanece unida sobre la superficie para una inclinación de 90°. 0a y 0r son 130° y 125°, respectivamente. Además, 48 horas después de los experimentos de permeabilidad por filtración, FLAB® recupera las propiedades iniciales, ya que el CA estático es similar a los valores obtenidos con el filtro comercial y la gota de agua se desliza cuando la inclinación alcanza los 90°. Por el contrario, FLAB® - 2 % OS es ligeramente más hidrófilo que FLAB®, ya que el CA estático es menor que el del FLAB comercial en todos los experimentos (antes, después y 48 horas después de la filtración). Además, cuando la inclinación alcanza los 90°, la gota de agua permanece unida a la superficie (no se desliza), lo que indica que el OS cambia las propiedades hidrófilas. Por último, la última fila de la Tabla 4 resume el flujo de agua para FLAB® comercial y FLAB® - 2 % de OS. FLAB® - 2 % de OS muestra un aumento del 106 % con respecto al filtro comercial inicial no tratado (no cubierto con OS).
Tabla 4. Ángulo de contacto estático y ángulo de contacto de avance y retroceso para el valor de ángulo de deslizamiento de 90° para FLAB®.
Figure imgf000016_0001
Adicionalmente, se realiza el mismo estudio para GVB®. Estos resultados se muestran en la Tabla 5. En comparación con Fluytec® y FLAB® este filtro es más hidrófobo. Cuando la superficie del equipo de ángulo de contacto, donde se encuentra GVB®, aumenta de 0 a 90°, la gota depositada sobre la superficie GVB® cae. Este hecho demuestra la baja atracción entre el agua y la superficie GVB®. Después de la filtración, una vez que GVB® está húmeda, esta situación ya no se observa. En este caso, la gota permanece unida sobre la superficie para una inclinación de 90°. 0a y 0r son 121° y 117°, respectivamente. Además, 48 horas después de los experimentos de permeabilidad por filtración, GVB® recupera las propiedades iniciales, ya que el CA estático es similar a los valores obtenidos con el filtro comercial y la gota de agua se desliza cuando la inclinación alcanza los 90°. Por el contrario, GVB® - 2 % OS, inicialmente es ligeramente más hidrófobo que FLAB®, ya que el CA estático es mayor que el del FLAB®. Además, cuando la inclinación alcanza los 90°, la gota de agua permanece unida a la superficie (no se desliza), lo que indica que el OS cambia las propiedades hidrófilas. Por último, la última fila de la Tabla 5 resume el flujo de agua para GVB® comercial y GVB® - 2 % de OS. GVB® - 2 % de OS muestra un aumento del 64,4 % con respecto al filtro comercial inicial no tratado (no cubierto con OS).
Tabla 5. Ángulo de contacto estático y ángulo de contacto de avance y retroceso para el valor de ángulo de deslizamiento de 90° para GVB®
Figure imgf000017_0001
A continuación, se realizaron estudios de peso para asegurarse de que el OS aún permanece en el soporte después de los experimentos de filtración. Estos experimentos se resumen en la Tabla 6. Los resultados muestran que se observó un aumento de peso del 13,5 %, del 7,7 % y del 13,9 % en las membranas Fluytec®, FLab® y GVB®, respectivamente, después de aplicar el OS al 2 %.
Tabla 6. Pesos iniciales de la membrana y capacidades de permeación del agua.
Figure imgf000017_0002
Figure imgf000018_0001
Con el fin de evaluar el efecto a largo plazo del OS sobre la membrana y consecuentemente la estabilidad y durabilidad del rendimiento, realizamos experimentos con la configuración discontinua. La figura 5 A muestra el flujo resultante del flujo de 100 mi de agua desionizada a través de la membrana de PP Fluytec® modificada con OS en diferentes etapas hasta que el flujo alcanzó un valor de saturación. El experimento se realizó en cuatro secuencias o etapas. Después de cada una de ellas, la membrana se secó durante 24 horas a temperatura ambiente, antes de pasar a la etapa siguiente. En la figura, el flujo de agua de Fluytec® comercial no se muestra ya que el valor es demasiado bajo para la escala del eje y (<22 LMH - ver Tabla 6). Además, la figura 5 A muestra el peso correspondiente al estado "seco" de la membrana después de cada secuencia de permeación. Podemos observar que el flujo de agua y el peso de la membrana disminuyen con el número de secuencias. Este hecho probablemente indica que durante el estudio de permeación se elimina el OS en exceso en la superficie de la membrana y la superficie de la membrana pierde parte de la hidrofilicidad adquirida justo después del recubrimiento. Además, al final de las 4 secuencias, Fluytec®-2% OS mostró un valor estable de permeabilidad y un flujo de agua mucho mayor que el de Fluytec® comercial. Al mismo tiempo, solo mostró un ligero aumento de peso, lo que indica que el OS en exceso probablemente se elimine hasta formar una monocapa o unas pocas capas después de las secuencias de permeabilidad aplicadas (ver Tabla 6).
La figura 5 B y Tabla 6 recogen los resultados de FilterLAB® modificada con OS al 2 %. Al inicio de los experimentos, FilterLAB-2% OS muestra un aumento de peso del 7,7 % con respecto a FilterLAB® comercial. La primera filtración con 100 mi tiene el flujo de agua más elevado. Las series tercera y cuarta muestran valores estables en términos de flujo de agua y peso de membrana. Esto indica que todo el OS en exceso fue probablemente eliminado, permaneciendo una monocapa de autoensamblaje de OS sobre la superficie. Además, si estos resultados se comparan con los resultados de flujo y peso resumidos en la Tabla 6, puede concluirse que el OS modificó la superficie de la membrana y mejoró el flujo de agua aproximadamente un 45 % con respecto a la membrana FLAB comercial. Para investigar más a fondo la estabilidad de las membranas de PP recubiertas con OS, se realizaron mediciones en una configuración continua. En la tabla 6 se resume el flujo de agua inicial (medido con la configuración discontinua) para las membranas comerciales iniciales y las membranas modificadas con OS.
La figura 5 muestra el flujo de agua para las membranas Fluytec® y FLAB® modificadas con OS al 2 % cuando los experimentos se realizaron con configuración continua. La primera secuencia consistió en medir el flujo de agua durante 24 horas. Después de esto, las membranas se remojaron en agua desionizada durante 24 horas. Finalmente, las membranas se midieron de nuevo durante 72 horas de funcionamiento continuo. En estos experimentos, podemos considerar que el flujo de agua se mantiene constante.
La figura 6 A no muestra el valor del flujo de agua para Fluytec® comercial, ya que, con una configuración continua, el agua no fluye a través de la membrana debido a su hidrofobicidad.
La figura 5 B muestra el mismo experimento para FilterLAB® y FLAB®-2 % OS. FilterLAB®- 2% OS mostró una permeabilidad mucho mayor (43%) que la de FilterLAB® comercial.
Por último, al comparar el rendimiento entre las configuraciones continuas y discontinuas descritas en las figuras 5 y 6, observamos que la configuración continua muestra una mejora en el flujo de agua porque la membrana siempre se mantiene húmeda.
Tabla 7. Peso inicial de los soportes y capacidades de permeación del agua estudiadas en una configuración discontinua.
Figure imgf000019_0001
La figura 6 muestra la XPS para Fluytec® y FLAB® (A); y, Fluytec®-2% OS y FLAB®- 2% OS antes (B) y después (C) de utilizarse en experimentos de flujo de agua. El pico mayor en energía de unión (B.E.) de 281 eV se atribuye al enlace C-C y el pico en B.E. de 530 eV corresponde al oxígeno. Los gráficos correspondientes a Fluytec® muestran tres espectros: arriba, indica la primera lámina; int, indica la lámina intermedia; y, abajo, indica la tercera lámina, ya que esta membrana tiene tres láminas. En el caso de FLAB®, los gráficos muestran sólo dos espectros: arriba, indica la superficie superior; y abajo, indica la superficie inferior, ya que FLAB® consiste en una sola lámina. Como se puede observar en la figura 7 A, los soportes comerciales no muestran el pico de O en la XPS. Este hecho se debe al hecho de que el PP sólo tiene C y H en su estructura. La figura 7 B muestra la XPS para el soporte modificado con OS (Fluytec®-2% OS y FLAB® (R)-2 %OS). En estos experimentos, el pico de O aparece, lo que indica que el OS se ha depositado sobre la superficie. Finalmente, la Figura 7 C muestra la XPS para Fuytec®-2% OS y FLAB®-2 % OS antes de utilizarse en experimentos de flujo de agua. Este análisis muestra que después de llevarse a cabo la filtración de agua, el SO permaneció sobre la superficie de la membrana.
En el estudio de modificación de tamaño de poro se prepara una disolución de 50 g/L de partículas de poliestireno de tamaño esférico igual y mayor a 40 pm. La disolución de partículas inicial tuvo un valor de 34 ± 2 NTU (Nephelotmethc Turbidity Unit). Después del filtrado de esta disolución empleando la membrana Fluytec - 2 % OS la lectura de NTU fue de cero. En este sentido, la Fluytec modificada retiene partículas de mayor tamaño de 40 pm.
La membrana GVB - 2 % OS se evaluó en la eliminación de E. coli. Las E. Coli se determinaron mediante la prueba Colibert-18 (ISO 9308-2: 2012). Los resultados se expresan como el número más probable de coliformes (MPN) por 100 mi, siendo el límite de cuantificación de 1 MPN / 100 mi. Se parte de una disolución de 14.6 MPN/100 mL de E. Coli. En el experimento se filtra 1 L. En la analítica final se obtuvo 0 MPN/100 mL. Este hecho indica que la membrana retuvo las E. Coli del medio.
Por último, la Tabla 8 muestra las capacidades de permeación del agua medidas utilizando otros materiales: PVDF, PSf, PA y PES. La tabla resume la permeabilidad evaluada en la configuración discontinua con soporte no modificado y soportes modificados con OS. La última columna corresponde a la mejora del flujo de agua con respecto a la membrana comercial. En estos experimentos, las capacidades de permeación no mejoraron en ningún caso.
Tabla 8. Estudio de flujo de agua para membranas de PVDF, PSf, PA y PES cuando se filtraron 100 mi de agua desionizada en la configuración discontinua. (Tiempo: registro de tiempo; Flujo: flujo de agua a través de la membrana calculado mediante la ec. 1 ; y, Fl: Mejora del flujo de agua con respecto a la membrana comercial).
Muestra
Figure imgf000020_0001
Tiempo (s) Flujo (LMH) PVDF 255 929
PVDF - 2% en peso de OS 570 416 -55
PSf 0 0
PSf - 2% en peso de OS 0 0 0
Figure imgf000021_0001
Conclusiones
Los resultados anteriores confirman que la humectabilidad superficial de una membrana de polipropileno (como Fluytec®, FLAB®, o GVB®) es mejorada sorprendentemente por organometoxisilanos. Además, al emplear la modificación química con OS sobre la membrana, no se observan cambios en la estructura (Figura 4), mientras que la membrana de PP tal como se produce presenta propiedades de hidrofilicidad mejoradas.
Referencias
1 AL-Hobaib, A. S., J. El Ghoul, and L. El Mir. 2016. “Fabrication of Polyamide Membrane Reached by MgTiO3nanoparticles for Ground Water Purification.” Desalination and Water Treatment 57(19): 8639-48.
2.- CN 106310958 B
3.- Dong, Lei Xi et al. 2016. “A Thin-Film Nanocomposite Nanofiltration Membrane Prepared on a Support with in Situ Embedded Zeolite Nanoparticles.” Separation and Purification Technology 166: 230-39.
4.- Fang, Baohong et al. 2009. “Modification of Polyethersulfone Membrane by Grafting Bovine Serum Albumin on the Surface of Polyethersulfone/Poly(Acrylonitrile-Co-Acrylic Acid) Blended Membrane.” Journal of Membrane Science 329(1-2): 46-55.
5.- Furmidge, C. G.L. 1962. “Studies at Phase Interfaces. I. The Sliding of Liquid Drops on Solid Surfaces and a Theory for Spray Retention.” Journal of Colloid Science 17(4): 309- 24.
6.- US 7,264,728 B2
7.- Kim, Hyun II, and Sung Soo Kim. 2006. “Plasma Treatment of Polypropylene and Polysulfone Supports for Thin Film Composite Reverse Osmosis Membrane.” Journal of Membrane Science 286(1-2): 193-201.
8.- Li, Qiang et al. 2015. “Influence of Silica Nanospheres on the Separation Performance of Thin Film Composite Poly(Piperazine-Amide) Nanofiltration Membranes.” Applied Surface Science 324: 757-64. 9.- Lv, Yan et al. 2016. “Novel Nanofiltration Membrane with Ultrathin Zirconia Film as Selective Layer.” Journal of Membrane Science 500: 265-71.
10.- Murphy, Fionn, Ciaran Ewins, Frederic Carbonnier, and Brian Quinn. 2016. “Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment.” Environmental Science and Technology 50(11): 5800-5808.
11.- Pan, Yang et al. 2017. “A Novel Antifouling and Antibacterial Surface-Functionalized PVDF Ultrafiltration Membrane via Binding Ag/SiO2 Nanocomposites.” Journal of Chemical Technology and Biotechnology 92(3): 562-72.
12.- Spori, Doris Madeleine. 2010. “Structural Influences on Self-Cleaning Surfaces.” : 1- 201.
13.- Sumisha, Anappara et al. 2015. “Functionalized Titanate Nanotube-Polyetherimide Nanocomposite Membrane for Improved Salt Rejection under Low Pressure Nanofiltration.” RSC Advances 5(49): 39464-73. www.rsc.org/advances (February 4, 2020).
14.- Tang, Yong Jian et al. 2017. “Improving the Chlorine-Tolerant Ability of Polypiperazine- Amide Nanofiltration Membrane by Adding NH2-PEG-NH2 in the Aqueous Phase.” Journal of Membrane Science 538: 9-17.
15.- US 10,472,769 B2
16.- Wang, Sheng Yao et al. 2018. “Novel Ultrafiltration Membranes with Excellent Antifouling Properties and Chlorine Resistance Using a Poly(Vinyl Chloride)-Based Copolymer.” Journal of Membrane Science 549: 101-10.
17.- Wang, Songhe et al. 2020. “Design and Preparation of Polypropylene Ultrafiltration Membrane with Ultrahigh Flux for Both Water and Oil.” Separation and Purification Technology 238 (2020) 116455.
18.- Wenten, I G et al. 2020. “Preparation of Antifouling Polypropylene/ZnO Composite Hollow Fiber Membrane by Dip-Coating Method for Peat Water Treatment.” Journal of Water Process Engineering 34 (2020) 101158.
19.- US 9,415,351
20.- CN 107519768 B
21.- WO 1999020378 A1

Claims

22 REIVINDICACIONES
1. Una membrana de polipropileno (PP) recubierta con un organometoxisilano solo o combinado con partículas de óxido.
2. La membrana de PP según la reivindicación 1 , en la que dichas partículas de óxido se seleccionan entre micropartículas o nanopartículas de óxido de grafeno y mi ero partículas o nanopartículas de óxido de titanio.
3. La membrana de PP según la reivindicación 1 o 2, en la que la membrana de PP tiene un tamaño de poro que varía de 0,1 a 100 .m.
4. La membrana de PP según cualquiera de las reivindicaciones 1 a 3, en la que la membrana de PP tiene un tamaño de poro que varía de 0,1 a 50 .m.
5. La membrana de PP según cualquiera de las reivindicaciones 1 a 4, en la que dicho organometoxisilano tiene la fórmula (I):
R1-O-(R2O)x.y-(CH2)3-Si-(OCH3)3.a
R3a en la que, independientemente, R1 es un grupo alquilo C1-C8; R2 es un grupo alquilo C1- C8; R3 es un grupo alquilo C1-C8; en la que a es 0, 1 o 2, y en la que X-Y es 6 - 9, 9 - 12, 21-24, o 25 - 30.
6. La membrana de PP según la reivindicación 5, en la que R1 = R3 = metilo y R2 = etilo.
7. La membrana de PP según la reivindicación 5 o 6, en la que a es 0.
8. La membrana de PP según cualquiera de las reivindicaciones 5 a 7, en la que X-Y es 21-24.
9. La membrana de PP según la reivindicación 5, en la que el organometoxisilano es 2- [metoxi(polietilenoxi)21-23propil]trimetoxisilano.
10. La membrana de PP según cualquiera de las reivindicaciones 1 a 9, que comprende además al menos una capa sobre el recubrimiento de organometoxisilano y/o al menos una capa debajo de la membrana de PP.
11. Un procedimiento para la fabricación de la membrana de PP según cualquiera de las reivindicaciones 1 a 10, que comprende las etapas de a) preparar una solución de organometoxisilano disolviendo el organometoxisilano en una mezcla de alcohol y agua, llevando a cabo una reacción de hidrólisis catalizada por ácido; b) sumergir una membrana de PP en la solución obtenida en la etapa a). c) fijar y secar la membrana de PP obtenida en la etapa b).
12. El procedimiento según la reivindicación 11 , en el que la solución de organometoxisilano en la etapa a) se combina con partículas de óxido.
13. El procedimiento según la reivindicación 11 , en el que el procedimiento comprende además la etapa d) de recubrir por pulverización la membrana de PP con partículas de óxido.
14. El procedimiento según reivindicación 12 ó 13, en el que dichas partículas de óxido se seleccionan entre micropartículas o nanopartículas de óxido de grafeno y mi ero partículas o nanopartículas de óxido de titanio.
15. El procedimiento según cualquiera de las reivindicaciones 11 a 14, en el que el proceso de fijación en dicha etapa c) se realiza calentando la membrana de PP a una temperatura entre 50 y 70 °C, o aplicando luz UV sobre la membrana PP, o una combinación de los mismos.
16. El procedimiento según cualquiera de las reivindicaciones 11 a 15, que comprende además una etapa final de eliminación del exceso de organometoxisilano
17. El procedimiento según la reivindicación 16, en el que dicha etapa de eliminar el exceso de organometoxisilano se realiza mediante lavado con agua desionizada, acetona o etanol o bajo ultrasonidos, o una combinación de los mismos.
18. El procedimiento según cualquiera de las reivindicaciones 11 a 17, en el que la concentración de organometoxisilano en la solución final de la etapa a) es del 0,01 al 10 % en peso.
19. El procedimiento según cualquiera de las reivindicaciones 11 a 18, en el que la proporción de etanokagua en la etapa a) es 95:5 (v:v).
20. El procedimiento según cualquiera de las reivindicaciones 11 a 19, en el que la etapa a) se lleva a cabo durante 5 a 60 minutos.
21. El procedimiento según cualquiera de las reivindicaciones 11 a 20, en el que la etapa b) se lleva a cabo durante 5 a 120 minutos.
22. El procedimiento según cualquiera de las reivindicaciones 11 a 21 , en el que la etapa c) se lleva a cabo durante 30 a 120 minutos.
23. Un dispositivo que comprende la membrana PP según cualquiera de las reivindicaciones 1 a 10.
24. Uso del dispositivo según la reivindicación 23 para un proceso de filtración, osmosis, concentración o diálisis, o una combinación de los mismos.
25. El uso según la reivindicación 24, en el que el proceso de filtración se aplica a la filtración de un fluido.
26. El uso según la reivindicación 25, en el que dicho fluido se selecciona entre sangre y agua.
27. El uso según la reivindicación 26, en el que dicho fluido es agua.
28. El uso según la reivindicación 24, en el que el proceso de osmosis es osmosis inversa.
29. El uso según la reivindicación 24, en el que el proceso de concentración se aplica a partículas o microorganismos.
30. El uso según la reivindicación 24, en el que el proceso de filtración se aplica a MBR.
PCT/ES2021/070060 2021-01-27 2021-01-27 Membrana de polipropileno (pp) recubierta con un organometoxisilano, procedimiento para su fabricación y usos WO2022162251A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21722271.0A EP4286035A1 (en) 2021-01-27 2021-01-27 Polypropylene (pp) membrane coated with an organomethoxysilane, method for manufacturing same and uses thereof
PCT/ES2021/070060 WO2022162251A1 (es) 2021-01-27 2021-01-27 Membrana de polipropileno (pp) recubierta con un organometoxisilano, procedimiento para su fabricación y usos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2021/070060 WO2022162251A1 (es) 2021-01-27 2021-01-27 Membrana de polipropileno (pp) recubierta con un organometoxisilano, procedimiento para su fabricación y usos

Publications (1)

Publication Number Publication Date
WO2022162251A1 true WO2022162251A1 (es) 2022-08-04

Family

ID=75728865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070060 WO2022162251A1 (es) 2021-01-27 2021-01-27 Membrana de polipropileno (pp) recubierta con un organometoxisilano, procedimiento para su fabricación y usos

Country Status (2)

Country Link
EP (1) EP4286035A1 (es)
WO (1) WO2022162251A1 (es)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999020378A1 (en) 1997-10-20 1999-04-29 Korea Research Institute Of Chemical Technology A manufacturing method of composite membrane having hydrophilic coating layer on hydrophobic support membrane
US7264728B2 (en) 2002-10-01 2007-09-04 Dow Corning Corporation Method of separating components in a sample using silane-treated silica filter media
US20150265977A1 (en) * 2014-03-21 2015-09-24 General Electric Company Fouling resistant membranes for water treatment
US9415351B2 (en) 2012-06-08 2016-08-16 Lg Chem, Ltd. High permeate flux reverse osmosis membrane including surface-treated zeolite and method of manufacturing the same
CN106310958A (zh) 2016-08-23 2017-01-11 武汉理工大学 一种疏水型高分子膜复合涂覆亲水化改性方法
CN107349797A (zh) * 2016-05-10 2017-11-17 宁波水艺膜科技发展有限公司 一种超亲水聚合物微孔膜及其制造方法
CN107519768A (zh) 2017-08-17 2017-12-29 河南科技大学 一种亲水陶瓷复合膜及其制备方法
US10472769B2 (en) 2013-10-10 2019-11-12 The Regents Of The University Of Michigan Silane based surfaces with extreme wettabilities
US20200338554A1 (en) * 2019-04-23 2020-10-29 Sumitomo Rubber Industries, Ltd. Medical analysis device and cell analysis method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999020378A1 (en) 1997-10-20 1999-04-29 Korea Research Institute Of Chemical Technology A manufacturing method of composite membrane having hydrophilic coating layer on hydrophobic support membrane
US7264728B2 (en) 2002-10-01 2007-09-04 Dow Corning Corporation Method of separating components in a sample using silane-treated silica filter media
US9415351B2 (en) 2012-06-08 2016-08-16 Lg Chem, Ltd. High permeate flux reverse osmosis membrane including surface-treated zeolite and method of manufacturing the same
US10472769B2 (en) 2013-10-10 2019-11-12 The Regents Of The University Of Michigan Silane based surfaces with extreme wettabilities
US20150265977A1 (en) * 2014-03-21 2015-09-24 General Electric Company Fouling resistant membranes for water treatment
CN107349797A (zh) * 2016-05-10 2017-11-17 宁波水艺膜科技发展有限公司 一种超亲水聚合物微孔膜及其制造方法
CN106310958A (zh) 2016-08-23 2017-01-11 武汉理工大学 一种疏水型高分子膜复合涂覆亲水化改性方法
CN107519768A (zh) 2017-08-17 2017-12-29 河南科技大学 一种亲水陶瓷复合膜及其制备方法
US20200338554A1 (en) * 2019-04-23 2020-10-29 Sumitomo Rubber Industries, Ltd. Medical analysis device and cell analysis method

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
AL-HOBAIB, A. S.J. EL GHOULL. EL MIR: "Fabrication of Polyamide Membrane Reached by MgTi03nanoparticles for Ground Water Purification", DESALINATION AND WATER TREATMENT, vol. 57, no. 19, 2016, pages 8639 - 48
DONG, LEI XI ET AL.: "A Thin-Film Nanocomposite Nanofiltration Membrane Prepared on a Support with in Situ Embedded Zeolite Nanoparticles", SEPARATION AND PURIFICATION TECHNOLOGY, vol. 166, 2016, pages 230 - 39, XP029538313, DOI: 10.1016/j.seppur.2016.04.043
FANG, BAOHONG ET AL.: "Modification of Polyethersulfone Membrane by Grafting Bovine Serum Albumin on the Surface of Polyethersulfone/Poly(Acrylonitrile-Co-Acrylic Acid) Blended Membrane", JOURNAL OF MEMBRANE SCIENCE, vol. 329, no. 1-2, 2009, pages 46 - 55, XP025941835, DOI: 10.1016/j.memsci.2008.12.008
FURMIDGE, C. G.L.: "Studies at Phase Interfaces. I. The Sliding of Liquid Drops on Solid Surfaces and a Theory for Spray Retention", JOURNAL OF COLLOID SCIENCE, vol. 17, no. 4, 1962, pages 309 - 24, XP024209766, DOI: 10.1016/0095-8522(62)90011-9
KIM, HYUN IISUNG SOO KIM: "Plasma Treatment of Polypropylene and Polysulfone Supports for Thin Film Composite Reverse Osmosis Membrane", JOURNAL OF MEMBRANE SCIENCE, vol. 286, no. 1-2, 2006, pages 193 - 201, XP024931619, DOI: 10.1016/j.memsci.2006.09.037
LI, QIANG ET AL.: "Influence of Silica Nanospheres on the Separation Performance of Thin Film Composite Poly(Piperazine-Amide) Nanofiltration Membranes", APPLIED SURFACE SCIENCE, vol. 324, 2015, pages 757 - 64, XP029111276, DOI: 10.1016/j.apsusc.2014.11.031
LV, YAN ET AL.: "Novel Nanofiltration Membrane with Ultrathin Zirconia Film as Selective Layer", JOURNAL OF MEMBRANE SCIENCE, vol. 500, 2016, pages 265 - 71, XP029355513, DOI: 10.1016/j.memsci.2015.11.046
MURPHYFIONNCIARAN EWINSFREDERIC CARBONNIERBRIAN QUINN: "Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment", ENVIRONMENTAL SCIENCE AND TECHNOLOGY, vol. 50, no. 11, 2016, pages 5800 - 5808, XP055678444, DOI: 10.1021/acs.est.5b05416
PAN, YANG ET AL.: "A Novel Antifouling and Antibacterial Surface-Functionalized PVDF Ultrafiltration Membrane via Binding Ag/Si02 Nanocomposites", JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, vol. 92, no. 3, 2017, pages 562 - 72
SPORI, DORIS MADELEINE, STRUCTURAL INFLUENCES ON SELF-CLEANING SURFACES, 2010, pages 1 - 201
SUMISHA, ANAPPARA ET AL.: "Functionalized Titanate Nanotube-Polyetherimide Nanocomposite Membrane for Improved Salt Rejection under Low Pressure Nanofiltration", RSC ADVANCES, vol. 5, no. 49, 2015, pages 39464 - 73
TANG, YONG JIAN ET AL.: "Improving the Chlorine-Tolerant Ability of Polypiperazine-Amide Nanofiltration Membrane by Adding NH2-PEG-NH2 in the Aqueous Phase", JOURNAL OF MEMBRANE SCIENCE, vol. 538, 2017, pages 9 - 17, XP085054019, DOI: 10.1016/j.memsci.2017.05.049
WANG, SHENG YAO ET AL.: "Novel Ultrafiltration Membranes with Excellent Antifouling Properties and Chlorine Resistance Using a Poly(Vinyl Chloride)-Based Copolymer", JOURNAL OF MEMBRANE SCIENCE, vol. 549, 2018, pages 101 - 10, XP055760874, DOI: 10.1016/j.memsci.2017.11.074
WANG, SONGHE ET AL.: "Design and Preparation of Polypropylene Ultrafiltration Membrane with Ultrahigh Flux for Both Water and Oil", SEPARATION AND PURIFICATION TECHNOLOGY, vol. 238, 2020, pages 116455
WENTEN, I G ET AL.: "Preparation of Antifouling Polypropylene/ZnO Composite Hollow Fiber Membrane by Dip-Coating Method for Peat Water Treatment", JOURNAL OF WATER PROCESS ENGINEERING, vol. 34, 2020, pages 101158

Also Published As

Publication number Publication date
EP4286035A1 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
EP3389836B1 (en) Selectively permeable graphene oxide membrane
KR101677800B1 (ko) 내구성이 우수한 폴리아미드계 수처리 분리막 및 그 제조방법
JP5181119B2 (ja) オルガノポリシロキサンコポリマーからの多孔質膜
EP2789379B1 (en) Reverse osmosis membrane comprising silver nanowire layer, and preparation method thereof
EP2929928B1 (en) Polyamide-based water treatment separation membrane having improved fouling resistance and method for manufacturing same
US20160325239A1 (en) Composite polyamide membrane including cellulose-based quaternary ammonium coating
EP2965802A1 (en) Polyamide-based water treatment membrane with remarkable contamination resistance, and preparation method therefor
KR20130108073A (ko) 복합 반투막
KR101716007B1 (ko) 고성능 폴리아미드계 건식 수처리 분리막 및 그 제조방법
CN212663244U (zh) 过滤器、滤筒及多孔聚合物滤膜
JP2018187533A (ja) 複合半透膜
WO2022162251A1 (es) Membrana de polipropileno (pp) recubierta con un organometoxisilano, procedimiento para su fabricación y usos
TWI793648B (zh) 抗酸過濾介質
CN216677758U (zh) 复合多孔过滤膜及过滤器
WO2021262750A1 (en) Composite filter media
JPH1128466A (ja) 逆浸透複合膜による水の逆浸透処理方法
TW201822875A (zh) 中空纖維膜、過濾模組及廢水處理裝置
KR20160071855A (ko) 수처리 분리막의 제조 방법 및 이를 이용하여 제조된 수처리 분리막
CN115003406A (zh) 水可湿性滤膜及其制备
KR20150079205A (ko) 양전하성 오염물질에 대한 내오염성이 우수한 분리막 및 이의 제조방법
KR20210105360A (ko) 복합 반투막

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21722271

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021722271

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021722271

Country of ref document: EP

Effective date: 20230828