WO2022162245A1 - Aluminium alloy, component made of an aluminium alloy, and method for producing a component made of an aluminium alloy - Google Patents

Aluminium alloy, component made of an aluminium alloy, and method for producing a component made of an aluminium alloy Download PDF

Info

Publication number
WO2022162245A1
WO2022162245A1 PCT/EP2022/052358 EP2022052358W WO2022162245A1 WO 2022162245 A1 WO2022162245 A1 WO 2022162245A1 EP 2022052358 W EP2022052358 W EP 2022052358W WO 2022162245 A1 WO2022162245 A1 WO 2022162245A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
silicon
casting
aluminum
cast
Prior art date
Application number
PCT/EP2022/052358
Other languages
German (de)
French (fr)
Inventor
Jan STEGLICH
Marcel Rosefort
Original Assignee
Trimet Aluminium Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trimet Aluminium Se filed Critical Trimet Aluminium Se
Priority to EP22709599.9A priority Critical patent/EP4284954A1/en
Priority to CN202280012637.5A priority patent/CN117062926A/en
Publication of WO2022162245A1 publication Critical patent/WO2022162245A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium

Definitions

  • Aluminum alloy aluminum alloy component and method of manufacturing an aluminum alloy component
  • the present invention relates to an aluminum alloy for die casting, an aluminum alloy die cast component and a die casting method for producing an aluminum alloy component.
  • Die-casting is an economical process for the series production of components, for example for motor vehicles.
  • structural components for motor vehicles on the one hand low weight and low unit costs are desired, on the other hand there are high demands on the ductility of the material and the energy absorption capacity of the finished component.
  • the energy absorption capacity of the finished component is particularly important for components that are intended to deform in the event of a crash.
  • the aluminum alloys suitable for this are also referred to as crash alloys.
  • the material should be able to be processed reliably and allow a high series quality with as little mold wear as possible and as little post-processing of the cast structural components as possible.
  • Structural components for the automotive industry are becoming ever larger and more complex due to the integration of components and functions.
  • a waiver of the heat treatment and possible straightening processes of these thin-walled but large-area components results in considerable costs.
  • advantage for automobile production This advantage applies in particular to battery housings in hybrid and electric vehicles. Battery boxes are integrated into the vehicle's support structure and have to carry the loads in the event of a crash.
  • an aluminum cast alloy is sought that is suitable for the production of structural components for the automotive industry, which should have good crash properties, using the die-casting process.
  • an aluminum-silicon cast alloy according to claim 1 which has the following alloy components in addition to at least 88% by weight aluminum:
  • Zinc between 0.2 and 0.8% by weight
  • Chromium between 0.1 and 0.3% by weight
  • Magnesium with up to 0.05% by weight Magnesium with up to 0.05% by weight.
  • the silicon content of the aluminum-silicon cast alloy is preferably between 7.0 and 8.5% by weight and particularly preferably between 7.5 and 8.5% by weight.
  • the alloy preferably has one or more of the following alloy components:
  • Titanium between 0.04 and 0.15% by weight
  • iron with up to 0.2% by weight, Copper with up to 0.5% by weight, preferably up to 0.2
  • Molybdenum and/or zirconium together up to 0.25% by weight.
  • the magnesium content is preferably at most 0.01% by weight.
  • the aluminium-silicon cast alloy can contain up to 0.15% by weight of hafnium, cerium, lanthanum and/or another rare earth element.
  • the aluminium-silicon cast alloy AISi8ZnMn according to the invention is suitable for producing structural components with good crash properties, for example for the automotive industry in the die-casting process.
  • the components produced with the aluminum-silicon cast alloy according to the invention do not require any heat treatment after the die-casting process in order to achieve high ductility and high energy absorption capacity.
  • Die-cast components made from the aluminum-silicon cast alloy according to the invention exhibit good folding behavior and can therefore be used as crash-relevant components.
  • Previously known cast alloys for components with good crash properties either require heat treatment, e.g. solution annealing (see DIN EN 1706 EN-AC-43500,) or are difficult to cast in die casting (see DIN EN 1706 EN-AC-51500, AIMg5Si2Mn ).
  • the aluminium-silicon casting alloy AISi8ZnMn according to the invention can be easily cast in pressure die-casting due to its silicon content.
  • the flowability, mold filling and demoulding is comparable to the standard materials EN-AC-43500 and AISiOMn.
  • Die-casting alloys that require solution annealing after casting are usually cast using vacural casting - ie using a vacuum pressure die-casting process - because with classic die-casting machines there is a risk of blistering (risk of blistering), so that they are not suitable for solution annealing.
  • the standard crash alloys are alloys that require solution annealing and are therefore not cast on "classic" die casting machines.
  • the aluminium-silicon cast alloy according to the invention achieves the desired properties in terms of ductility of the material and energy absorption capacity of the finished component even without solution annealing, so that structural components produced using the aluminium-silicon cast alloy according to the invention can be used for their final purpose, e.g. as part of a vehicle without the component having to be solution annealed between die casting and installation in the vehicle.
  • the aluminum-silicon cast alloy according to the invention is very ductile and exhibits a bending angle of greater than 60°.
  • the yield point R p0.2 and the elongation at break A are due to the mixed-crystal strengthening of zinc, titanium and molybdenum in the aluminium-silicon system increased.
  • Manganese and chromium are used to ensure that the components can be removed from the die casting mold despite the low silicon and iron content.
  • a method for producing a structural component in particular for a motor vehicle, is also proposed, which is characterized in that the structural component is cast using the aluminum-silicon cast alloy according to the invention, preferably in a die-casting process.
  • the die casting mold is preferably heated to a temperature between 105° C. and 290° C. before casting and the melt of the aluminum-silicon casting alloy according to the invention preferably has a temperature between 690° C. and 725° C. immediately before casting .
  • the melt is around 10°C to 20°C hotter than in conventional die-casting processes, for example with the aluminium-silicon casting alloy AISi10MnMg.
  • the mold is somewhat colder than was usual up until then. There is preferably no solution annealing between die casting and final use of the component.
  • solution annealing is necessary for conventional components that deform in the event of a crash in order to improve the energy absorption capacity
  • a component made from the aluminum-silicon cast alloy according to the invention does not require solution annealing - on the contrary, solution annealing could actually worsen the properties.
  • the production of components from the aluminium-silicon cast alloy according to the invention is therefore more economical and the properties achieved are better.
  • a component in particular a structural component, preferably for a motor vehicle, made from the aluminum-silicon cast alloy according to the invention is also proposed.
  • the structural component is preferably a battery housing for a hybrid vehicle or a purely electric vehicle.
  • the component is preferably not solution annealed.
  • the aluminium-silicon cast alloy according to the invention is a die-cast alloy with good castability, mold filling and flowability.
  • the aluminum-silicon cast alloy according to the invention has a high ductility without heat treatment of the cast parts.
  • the aluminum-silicon casting alloy according to the invention is suitable for the pressure-casting production of structural components.
  • the very high ductility of the aluminum-silicon cast alloy according to the invention and a high energy absorption capacity enable it to be used for crash-relevant components.
  • the aluminum-silicon casting alloy according to the invention is suitable for die-casting structural components, in particular battery housings for electric and hybrid vehicles.
  • the aluminum-silicon casting alloy according to the invention is suitable for the die-casting of large components with shot weights >25 kg due to its high flowability and low tendency to stick in die-casting.
  • the aluminum-silicon casting alloy according to the invention can be applied directly to existing die-casting processes as an AISi alloy system.
  • Due to the combination of Mn, Cr and Mo in the Al-Si system, the aluminum-silicon casting alloy according to the invention has a low tendency to stick in die-casting molds.
  • the die-cast components made from the aluminum-silicon cast alloy according to the invention are suitable for industrial joining processes, in particular also for punch riveting, also with sheet metal, profiles and other materials.
  • Table 1 Main alloy range of an alloy AISi8ZnMn according to the invention
  • Table 2 (in the appendix) lists various materials and their properties.
  • the materials were manufactured and cast into permanent mold specimens for round tensile bars.
  • the tensile bars were used to determine the mechanical (mecha.) properties and the bending angle. All results apply to separately cast permanent mold specimens in condition F (as-cast condition, without heat treatment).
  • condition F as-cast condition, without heat treatment
  • the elements of the alloys in round brackets were varied in the tests in order to quantify their influence.
  • Table 2 shows that the bending angle of the newly developed materials could be almost doubled compared to the existing materials.
  • the two materials with a gray background were used for further die-casting tests and crash tests. For die-casting tests, 240 kg each of the two materials shown in italics in Table 2 (see appendix) were produced and cast into structural components in the form of a profile.
  • the die-casting tests show very good castability with low iron and manganese content of the alloys and good mechanical properties.
  • a crash test that was passed on the drop tower test stand, it was determined that the first fold of the profile remained free of cracks for 5 ms. It is required that the structural component remains free of cracks for at least 3.5 ms.
  • the die casting tests were accompanied by chill casting tests to determine the notched impact strength as a measure of the energy absorption behavior of the component. It is noticeable that the notched impact strength of the test alloys could be increased by more than four times compared to conventional aluminum die-casting alloys in condition F. The components made of these materials do not require any heat treatment.
  • Table 3 Comparison of the impact strength with mechanical properties of the two test alloys (see Table 2) above and a conventional aluminum die-cast alloy below:
  • FIG. 1 shows the yield strength R p0.2 and the elongation at break A of eight alloys tested with different zinc and titanium contents with two newly developed variants called Milestone 4.
  • Milestone 4 had the goal of increasing the yield strength, keeping the elongation at break to > 14% and at the same time limiting the use of peritectic elements to avoid the formation of undesired intermetallic phases.
  • the results of "Milestone 4" in Figure 2 surprisingly showed that these goals could be achieved with two materials.
  • the analyzes of the materials "Milestone 4" in Figure 1 are listed in Table 4 (in the appendix) and designated AISi8Zn0.6Mn0.35Zr and AISi8Zn0.4Mn0.35Cr according to the order.
  • the alloys are already very ductile in chill casting without heat treatment. Experience has shown that the strength in die casting increases significantly, with the elongation at break remaining about the same, which means that it is suitable as a naturally ductile cast alloy for structural components, in particular battery boxes for electric vehicles with crash properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Body Structure For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

The invention relates to an aluminium-silicon casting alloy which as well as aluminium and unavoidable impurities contains at least the following alloy constituents: silicon between 6.0 and 8.5% by weight, zinc between 0.2 and 0.8% by weight, manganese between 0.2 and 0.6% by weight, chromium between 0.1 and 0.3% by weight, and magnesium at up to 0.05% by weight. The invention also relates to a structural component made of the aluminium-silicon casting alloy and to a pressure casting method for producing a structural component.

Description

Aluminiumlegierung, Bauteil aus einer Aluminiumlegierung und Verfahren zum Herstel- len eines Bauteils aus einer Aluminiumlegierung Aluminum alloy, aluminum alloy component and method of manufacturing an aluminum alloy component
Die Erfindung betrifft eine Aluminiumlegierung für das Druckgießen, ein druckgegossenes Bauteil aus einer Aluminiumlegierung und ein Druckgießverfahren zum Herstellen eines Bauteils aus einer Aluminiumlegierung. The present invention relates to an aluminum alloy for die casting, an aluminum alloy die cast component and a die casting method for producing an aluminum alloy component.
Druckgießen ist ein wirtschaftliches Verfahren für die Serienproduktion von Bauteilen bei- spielsweise für Kraftfahrzeuge. Bei Strukturbauteilen für Kraftfahrzeuge werden einerseits ein niedriges Gewicht und geringe Stückkosten gewünscht, andererseits bestehen hohe Anforderungen an die Duktilität des Werkstoffes und das Energieabsorptionsvermögen des fertigen Bauteils. Das Energieabsorptionsvermögen des fertigen Bauteils ist insbesondere für solche Bauteile von Bedeutung, die sich im Crashfall verformen sollen. Die hierfür ge- eigneten Aluminiumlegierungen werden auch als Crash-Legierungen bezeichnet. Außer- dem soll sich der Werkstoff zuverlässig verarbeiten lassen und eine hohe Serienqualität mit möglich geringem Formverschließ und möglichst geringer Nachbearbeitung der gegos- senen Strukturbauteile erlauben. Die-casting is an economical process for the series production of components, for example for motor vehicles. In the case of structural components for motor vehicles, on the one hand low weight and low unit costs are desired, on the other hand there are high demands on the ductility of the material and the energy absorption capacity of the finished component. The energy absorption capacity of the finished component is particularly important for components that are intended to deform in the event of a crash. The aluminum alloys suitable for this are also referred to as crash alloys. In addition, the material should be able to be processed reliably and allow a high series quality with as little mold wear as possible and as little post-processing of the cast structural components as possible.
Strukturbauteile für die Automobilindustrie werden durch Bauteil- und Funktionsintegration stetig größer und komplexer. Ein Verzicht auf die Wärmebehandlung und möglichen Richt- prozesse dieser dünnwandigen, aber großflächigen Bauteile bringt einen erheblichen Kos- tenvorteil für die Automobilproduktion. Dieser Vorteil gilt insbesondere für Batteriegehäu- sen von Hybrid- und Elektrofahrzeugen. Batteriekästen werden in die Tragstruktur des Fahrzeugs integriert und müssen im Crash-Fall die Lasten mit aufnehmen. Structural components for the automotive industry are becoming ever larger and more complex due to the integration of components and functions. A waiver of the heat treatment and possible straightening processes of these thin-walled but large-area components results in considerable costs. advantage for automobile production. This advantage applies in particular to battery housings in hybrid and electric vehicles. Battery boxes are integrated into the vehicle's support structure and have to carry the loads in the event of a crash.
Daher wird eine Aluminium-Gusslegierung gesucht, die sich zur Herstellung von Struktur- bauteilen für die Automobilindustrie, die gute Crash-Eigenschaften haben soll, im Druck- gussverfahren eignet. Therefore, an aluminum cast alloy is sought that is suitable for the production of structural components for the automotive industry, which should have good crash properties, using the die-casting process.
Erfindungsgemäß wird dieses Ziel mit einer Aluminium-Silizium-Gusslegierung gemäß An- spruch 1 erreicht, die neben mindestens 88 Gew. % Aluminium folgende Legierungsbe- standteile aufweist: According to the invention, this goal is achieved with an aluminum-silicon cast alloy according to claim 1, which has the following alloy components in addition to at least 88% by weight aluminum:
Silizium zwischen 6,0 und 8,5 Gew. % Silicon between 6.0 and 8.5% by weight
Zink zwischen 0,2 und 0,8 Gew. % Zinc between 0.2 and 0.8% by weight
Mangan zwischen 0,2 und 0,6 Gew. % Manganese between 0.2 and 0.6% by weight
Chrom zwischen 0,1 und 0,3 Gew. % und Chromium between 0.1 and 0.3% by weight and
Magnesium mit bis zu 0,05 Gew. %. Magnesium with up to 0.05% by weight.
Vorzugsweise beträgt der Siliziumgehalt der Aluminium-Silizium-Gusslegierung zwischen 7,0 und 8,5 Gew. % und besonders bevorzugt zwischen 7,5 und 8,5 Gew. %. The silicon content of the aluminum-silicon cast alloy is preferably between 7.0 and 8.5% by weight and particularly preferably between 7.5 and 8.5% by weight.
Vorzugsweise weist die Legierung einen oder mehrere der folgenden Legierungsbestand- teile auf: The alloy preferably has one or more of the following alloy components:
Strontium zwischen 0,01 und 0,02 Gew. % und Strontium between 0.01 and 0.02% by weight and
Titan zwischen 0,04 und 0,15 Gew. % Titanium between 0.04 and 0.15% by weight
Weitere Legierungsbestandteile können Other alloy components can
Eisen mit bis zu 0,2 Gew. %, Kupfer mit bis zu 0,5 Gew. %, vorzugsweise bis zu 0,2 iron with up to 0.2% by weight, Copper with up to 0.5% by weight, preferably up to 0.2
Gew. % und/oder % by weight and/or
Molybdän und/oder Zirkonium mit zusammen bis zu 0,25 Gew. % sein. Molybdenum and/or zirconium together up to 0.25% by weight.
Vorzugsweise beträgt der Magnesiumgehalt maximal 0,01 Gew. %. The magnesium content is preferably at most 0.01% by weight.
Außerdem kann die Aluminium-Silizium-Gusslegierung bis zu 0,15 Gew. % Hafnium, Cer, Lanthan und/oder ein anders Seltenerdelement enthalten. In addition, the aluminium-silicon cast alloy can contain up to 0.15% by weight of hafnium, cerium, lanthanum and/or another rare earth element.
Der Rest sind jeweils Aluminium und übliche Begleitelemente. The rest are each aluminum and usual accompanying elements.
Die erfindungsgemäße Aluminium-Silizium-Gusslegierung AISi8ZnMn eignet sich dazu, um beispielsweise für die Automobilindustrie im Druckgussverfahren Strukturbauteile mit guten Crash-Eigenschaften herzustellen. Die mit der erfindungsgemäßen Aluminium-Sili- zium-Gusslegierung hergestellten Bauteile benötigen nach dem Druckgussprozess keine Wärmebehandlung, um eine hohe Duktilität und ein hohes Energieabsorptionsvermögen zu erreichen. Druckgussbauteile aus der erfindungsgemäßen Aluminium-Silizium-Gussle- gierung zeigen ein gutes Faltverhalten und können somit als crash-relevante Bauteile ein- gesetzt werden. The aluminium-silicon cast alloy AISi8ZnMn according to the invention is suitable for producing structural components with good crash properties, for example for the automotive industry in the die-casting process. The components produced with the aluminum-silicon cast alloy according to the invention do not require any heat treatment after the die-casting process in order to achieve high ductility and high energy absorption capacity. Die-cast components made from the aluminum-silicon cast alloy according to the invention exhibit good folding behavior and can therefore be used as crash-relevant components.
Vorbekannte Gusslegierungen für Bauteile mit guten Crash-Eigenschaften benötigen ent- weder eine Wärmebehandlung, z.B. ein Lösungsglühen (siehe DIN EN 1706 EN-AC- 43500,) oder lassen sich im Druckguss schlecht gießen (siehe DIN EN 1706 EN-AC-51500, AIMg5Si2Mn). Die erfindungsgemäße Aluminium-Silizium-Gusslegierung AISi8ZnMn ist durch seinen Siliziumgehalt im Druckguss gut gießbar. Die Fließfähigkeit, Formfüllung und Entformbarkeit ist vergleichbar zu serienmäßig eingesetzten Werkstoffen EN-AC-43500 und AISiOMn. Previously known cast alloys for components with good crash properties either require heat treatment, e.g. solution annealing (see DIN EN 1706 EN-AC-43500,) or are difficult to cast in die casting (see DIN EN 1706 EN-AC-51500, AIMg5Si2Mn ). The aluminium-silicon casting alloy AISi8ZnMn according to the invention can be easily cast in pressure die-casting due to its silicon content. The flowability, mold filling and demoulding is comparable to the standard materials EN-AC-43500 and AISiOMn.
Druckgusslegierungen, die nach dem Gießen eine Lösungsglühung benötigen, werden üb- licher Weise mittels Vacural-Guss - d.h. mittels eines Vakuum-Druckgießverfahrens - ge- gossen, denn bei klassischen Druckgussmaschinen besteht die Gefahr von Blasenbildun- gen (Blistergefahr), so dass sie für ein Lösungsglühen nicht tauglich sind. Die Standard-Crash-Legierungen sind Legierungen, die eine Lösungsglühung benötigen und somit nicht auf „klassischen“ Druckgussmaschinen vergossen werden. Die-casting alloys that require solution annealing after casting are usually cast using vacural casting - ie using a vacuum pressure die-casting process - because with classic die-casting machines there is a risk of blistering (risk of blistering), so that they are not suitable for solution annealing. The standard crash alloys are alloys that require solution annealing and are therefore not cast on "classic" die casting machines.
Die erfindungsgemäße Aluminium-Silizium-Gusslegierung erreicht die gewünschten Ei- genschaften hinsichtlich Duktilität des Werkstoffes und Energieabsorptionsvermögen des fertigen Bauteils auch ohne eine Lösungsglühung, so dass mittels der erfindungsgemäßen Aluminium-Silizium-Gusslegierung hergestellte Strukturbauteile ihrer endgültigen Verwen- dung z.B. als Bestandteil eines Fahrzeugs zugeführt werden können, ohne dass das Bau- teil zwischen dem Druckgießen und dem Einbau im Fahrzeug lösungsgeglüht werden muss. The aluminium-silicon cast alloy according to the invention achieves the desired properties in terms of ductility of the material and energy absorption capacity of the finished component even without solution annealing, so that structural components produced using the aluminium-silicon cast alloy according to the invention can be used for their final purpose, e.g. as part of a vehicle without the component having to be solution annealed between die casting and installation in the vehicle.
Die erfindungsgemäße Aluminium-Silizium-Gusslegierung ist durch ihren sehr niedrigen Eisen- und Mangangehalt sehr duktil und zeigt einen Biegewinkel von größer 60°. Due to its very low iron and manganese content, the aluminum-silicon cast alloy according to the invention is very ductile and exhibits a bending angle of greater than 60°.
Enthält die erfindungsgemäße Aluminium-Silizium-Gusslegierung gemäß einer bevorzug- ten Variante mindestens 0,05 Gew. % Molybdän wird die Dehngrenze Rp0,2 und die Bruch- dehnung A durch die Mischkristallverfestigung von Zink, Titan und Molybdän im Aluminium- Silizium-System gesteigert. If the aluminium-silicon cast alloy according to the invention contains at least 0.05% by weight of molybdenum according to a preferred variant, the yield point R p0.2 and the elongation at break A are due to the mixed-crystal strengthening of zinc, titanium and molybdenum in the aluminium-silicon system increased.
Um die Entformbarkeit der Bauteile aus der Druckgussform trotz des niedrigen Silizium- und Eisengehalts zu gewährleisten, werden Mangan und Chrom eingesetzt. Manganese and chromium are used to ensure that the components can be removed from the die casting mold despite the low silicon and iron content.
Eine Begrenzung des Magnesiumgehalts auf maximal 0,05 Gew. %, vorzugsweise maxi- mal 0,01 Gew. % hat sich ebenfalls als vorteilhaft erwiesen. Limiting the magnesium content to a maximum of 0.05% by weight, preferably a maximum of 0.01% by weight, has also proven to be advantageous.
Erfindungsgemäß wird auch ein Verfahren zum Herstellen eines Strukturbauteils insbeson- dere für ein Kraftfahrzeug vorgeschlagen, dass sich dadurch auszeichnet, dass das Struk- turbauteil unter Verwendung der erfindungsgemäßen Aluminium-Silizium-Gusslegierung gegossen wird, und zwar vorzugsweise in einem Druckgussverfahren. According to the invention, a method for producing a structural component, in particular for a motor vehicle, is also proposed, which is characterized in that the structural component is cast using the aluminum-silicon cast alloy according to the invention, preferably in a die-casting process.
Vorzugsweise wird die Druckgussform auf eine Temperatur zwischen 105°C und 290°C vor dem Gießen temperiert und die Schmelze aus der erfindungsgemäßen Aluminium-Si- lizium-Gusslegierung hat unmittelbar vor dem Gießen vorzugsweise eine Temperatur zwi- schen 690°C bis 725°C. Damit ist die Schmelze etwa 10°C bis 20°C heißer als bei üblichen Druckgussverfahren zum Beispiel mit der Aluminium-Silizium-Gusslegierung AISi10MnMg. Die Gussform ist hingegen etwas kälter als bis dahin üblich. Vorzugsweise erfolgt zwischen dem Druckgießen und einer endgültigen Verwendung des Bauteils kein Lösungsglühen. Während das Lösungsglühen bei herkömmlichen für sich im Crash-Fall verformende Bauteile nötig ist, um das Energieabsorptionsvermögen zu verbes- sern, benötigt ein Bauteil aus der erfindungsgemäßen Aluminium-Silizium-Gusslegierung gerade kein Lösungsglühen - im Gegenteil, ein Lösungsglühen könnte die Eigenschaften eher verschlechtern. Das Herstellen von Bauteilen aus der erfindungsgemäßen Aluminium- Silizium-Gusslegierung ist somit wirtschaftlicher und die erzielten Eigenschaften sind bes- ser. The die casting mold is preferably heated to a temperature between 105° C. and 290° C. before casting and the melt of the aluminum-silicon casting alloy according to the invention preferably has a temperature between 690° C. and 725° C. immediately before casting . This means that the melt is around 10°C to 20°C hotter than in conventional die-casting processes, for example with the aluminium-silicon casting alloy AISi10MnMg. The mold, on the other hand, is somewhat colder than was usual up until then. There is preferably no solution annealing between die casting and final use of the component. While solution annealing is necessary for conventional components that deform in the event of a crash in order to improve the energy absorption capacity, a component made from the aluminum-silicon cast alloy according to the invention does not require solution annealing - on the contrary, solution annealing could actually worsen the properties. The production of components from the aluminium-silicon cast alloy according to the invention is therefore more economical and the properties achieved are better.
Erfindungsgemäß wird auch ein Bauteil, insbesondere ein Strukturbauteil vorzugsweise für ein Kraftfahrzeug aus der erfindungsgemäßen Aluminium-Silizium-Gusslegierung vorge- schlagen. Das Strukturbauteil ist vorzugsweise ein Batteriegehäuse für ein Hybrid- oder ein reines Elektrofahrzeug. Das Bauteil ist vorzugsweise nicht lösungsgeglüht. According to the invention, a component, in particular a structural component, preferably for a motor vehicle, made from the aluminum-silicon cast alloy according to the invention is also proposed. The structural component is preferably a battery housing for a hybrid vehicle or a purely electric vehicle. The component is preferably not solution annealed.
Mit der erfindungsgemäßen Aluminium-Silizium-Gusslegierung und daraus hergestellten Strukturbauteile- können folgende Vorteile erzielt werden: - Die erfindungsgemäße Aluminium-Silizium-Gusslegierung ist Druckgusslegierung mit guter Gießbarkeit, Formfüllung und Fließfähigkeit. - Die erfindungsgemäße Aluminium-Silizium-Gusslegierung hat eine hohe Duktilität ohne Wärmebehandlung der Gussteile. - Die erfindungsgemäße Aluminium-Silizium-Gusslegierung ist zur Druckgussproduk- tion von Strukturbauteilen geeignet. - Die sehr hohe Duktilität der erfindungsgemäßen Aluminium-Silizium-Gusslegierung und ein hohes Energieabsorptionsvermögen ermöglichen den Einsatz für crashrele- vante Bauteile. - Die erfindungsgemäße Aluminium-Silizium-Gusslegierung ist zum Druckguss von Strukturbauteilen, insbesondere von Batteriegehäusen für Elektro- und Hybridfahr- zeuge, geeignet. - Die erfindungsgemäße Aluminium-Silizium-Gusslegierung ist durch ihre hohe Fließ- fähigkeit und geringe Klebeneigung im Druckguss zum Druckguss von Großbautei- len mit Schussgewichten > 25 kg geeignet. - Die erfindungsgemäße Aluminium-Silizium-Gusslegierung ist als AISi-Legierungs- system auf bestehende Druckgussprozesse direkt übertragbar. - Die erfindungsgemäße Aluminium-Silizium-Gusslegierung hat durch Kombination von Mn, Cr und Mo im Al-Si-System eine geringe Klebeneigung in Druckgussformen. - Die aus der Die erfindungsgemäßen Aluminium-Silizium-Gusslegierung hergestell- ten Druckgussbauteile eignen sich für industrielle Fügeverfahren, insbesondere auch zum Stanznieten, auch mit Blechen, Profilen und anderen Werkstoffen. The following advantages can be achieved with the aluminium-silicon cast alloy according to the invention and structural components produced from it: The aluminium-silicon cast alloy according to the invention is a die-cast alloy with good castability, mold filling and flowability. - The aluminum-silicon cast alloy according to the invention has a high ductility without heat treatment of the cast parts. - The aluminum-silicon casting alloy according to the invention is suitable for the pressure-casting production of structural components. - The very high ductility of the aluminum-silicon cast alloy according to the invention and a high energy absorption capacity enable it to be used for crash-relevant components. - The aluminum-silicon casting alloy according to the invention is suitable for die-casting structural components, in particular battery housings for electric and hybrid vehicles. The aluminum-silicon casting alloy according to the invention is suitable for the die-casting of large components with shot weights >25 kg due to its high flowability and low tendency to stick in die-casting. - The aluminum-silicon casting alloy according to the invention can be applied directly to existing die-casting processes as an AISi alloy system. - Due to the combination of Mn, Cr and Mo in the Al-Si system, the aluminum-silicon casting alloy according to the invention has a low tendency to stick in die-casting molds. - The die-cast components made from the aluminum-silicon cast alloy according to the invention are suitable for industrial joining processes, in particular also for punch riveting, also with sheet metal, profiles and other materials.
Beispiele und Versuchsergebnisse Examples and test results
Eine beispielhafte Aluminium-Silizium-Gusslegierung gemäß der Erfindung ist in der fol- genden Tabelle widergegeben: An exemplary aluminium-silicon cast alloy according to the invention is given in the following table:
Tabelle 1 : Hauptlegierungsbereich einer erfindungsgemäßen Legierung AISi8ZnMn
Figure imgf000008_0001
Table 1: Main alloy range of an alloy AISi8ZnMn according to the invention
Figure imgf000008_0001
In Tabelle 2 (im Anhang) sind verschiedene Werkstoffe und deren Eigenschaften aufgelis- tet. Table 2 (in the appendix) lists various materials and their properties.
Die Werkstoffe wurden hergestellt und zu Kokillengussproben für Rundzugstäbe vergos- sen. Die Zugstäbe wurden verwendet, um die mechanischen (mecha.) Eigenschaften so- wie den Biegewinkel zu ermitteln. Alle Ergebnisse gelten für getrennt gegossene Kokillen- gussproben im Zustand F (Gusszustand, ohne Wärmebehandlung). Die Elemente der Le- gierungen in runden Klammern wurden bei den Versuchen variiert, um deren Einfluss zu quantifizieren. Tabelle 2 zeigt, dass der Biegewinkel der neu entwickelten Werkstoffe im Verglich zu den existierenden Werkstoffen, nahezu verdoppelt werden konnte. Die beiden grau hinterlegten Werkstoffe wurden für weitergehende Druckgussversuche und Crash- Tests eingesetzt. Für Druckgussversuche wurden jeweils 240 kg der beiden in Tabelle 2 (siehe Anhang) kursiv dargestellten Werkstoffe hergestellt und zu Strukturbauteilen in Form eines Profils vergossen. Die Druckgussversuche zeigen eine sehr gute Gießbarkeit bei niedrigem Ei- sen- und Mangangehalt der Legierungen und gute mechanische Eigenschaften. In einen bestandenen Crash-Test auf dem Fallturm-Versuchsstandwurde ermittelt, dass die erste Falte des Profils 5 ms rissfrei blieben. Gefordert ist, dass das Strukturbauteil für mindestens 3,5 ms rissfrei bleibt. The materials were manufactured and cast into permanent mold specimens for round tensile bars. The tensile bars were used to determine the mechanical (mecha.) properties and the bending angle. All results apply to separately cast permanent mold specimens in condition F (as-cast condition, without heat treatment). The elements of the alloys in round brackets were varied in the tests in order to quantify their influence. Table 2 shows that the bending angle of the newly developed materials could be almost doubled compared to the existing materials. The two materials with a gray background were used for further die-casting tests and crash tests. For die-casting tests, 240 kg each of the two materials shown in italics in Table 2 (see appendix) were produced and cast into structural components in the form of a profile. The die-casting tests show very good castability with low iron and manganese content of the alloys and good mechanical properties. In a crash test that was passed on the drop tower test stand, it was determined that the first fold of the profile remained free of cracks for 5 ms. It is required that the structural component remains free of cracks for at least 3.5 ms.
Die Druckgussversuche wurden begleitet durch Kokillengussversuche zur Ermittlung der Kerbschlagzähigkeit als Maß für das Energieabsorptionsverhalten des Bauteils. Es fällt auf, dass die Kerbschlagzähigkeit der Versuchslegierungen um mehr als das Vierfache im Ver- gleich zu herkömmlichen Aluminium Druckgusslegierungen in Zustand F gesteigert werden konnte. Die Bauteile aus diesen Werkstoffen brauchen keine Wärmebehandlung. The die casting tests were accompanied by chill casting tests to determine the notched impact strength as a measure of the energy absorption behavior of the component. It is noticeable that the notched impact strength of the test alloys could be increased by more than four times compared to conventional aluminum die-casting alloys in condition F. The components made of these materials do not require any heat treatment.
Tabelle 3: Vergleich der Kerbschlagzähigkeit mit mechanischen Eigenschaften der beiden Versuchslegierungen (siehe Tabelle 2) oben und eine herkömmliche Aluminium Druck- gusslegierung unten: Table 3: Comparison of the impact strength with mechanical properties of the two test alloys (see Table 2) above and a conventional aluminum die-cast alloy below:
AISi8ZnMnMo(Cr,Fe)
Figure imgf000009_0001
AISi8ZnMnMo(Cr,Fe)
Figure imgf000009_0001
AISi8ZnMnMo(Zr)
Figure imgf000009_0002
herkömmliche Aluminium Druckgusslegierung
Figure imgf000009_0003
Die Druckgussversuche der Muster-Strukturbauteile haben gezeigt, dass beide in Tabelle 2 kursiv dargestellten Werkstoffe eine Dehngrenze von ca. 105 MPa erzielt haben. Durch eine Zugabe von Zink (Zn) und Titan (Ti) konnte die Dehngrenze weiter erhöht werden. Es hat sich gezeigt, dass Ti einen deutlichen und Zn einen geringen Einfluss auf die Misch- kristallverfestigung im Kokillenguss haben.
AISi8ZnMnMo(Zr)
Figure imgf000009_0002
conventional die-cast aluminum alloy
Figure imgf000009_0003
The die-casting tests on the sample structural components have shown that both of the materials shown in italics in Table 2 have achieved a yield strength of approx. 105 MPa. The yield point could be further increased by adding zinc (Zn) and titanium (Ti). It has been shown that Ti has a significant influence and Zn has a minor influence on solid solution strengthening in chill casting.
In Figur 1 sind die Dehngrenze Rp0,2 und die Bruchdehnung A von acht untersuchten Le- gierungen mit unterschiedlichem Zink- und Titangehalt mit zwei neu entwickelten Varianten mit der Bezeichnung Meilenstein 4 dargestellt. Meilenstein 4 hatte das Ziel, die Dehngrenze anzuheben, die Bruchdehnung auf > 14 % zu halten und gleichzeitig den Einsatz von peri- tektischen Elementen zu limitieren um die Bildung von ungewünschten intermetallischen Phasen zu vermeiden. Die Ergebnisse „Meilenstein 4“ in Abbildung 2 haben überraschend gezeigt, dass diese Ziele mit zwei Werkstoffen erreicht werden konnten. FIG. 1 shows the yield strength R p0.2 and the elongation at break A of eight alloys tested with different zinc and titanium contents with two newly developed variants called Milestone 4. Milestone 4 had the goal of increasing the yield strength, keeping the elongation at break to > 14% and at the same time limiting the use of peritectic elements to avoid the formation of undesired intermetallic phases. The results of "Milestone 4" in Figure 2 surprisingly showed that these goals could be achieved with two materials.
Die Analysen der Werkstoffe „Meilenstein 4“ in Figur 1 sind in Tabelle 4 (im Anhang) auf- geführt und entsprechend der Reihenfolge als AISi8Zn0,6Mn0,35Zr und AISi8Zn0,4Mn0,35Cr bezeichnet. Die Legierungen sind bereits im Kokillenguss sehr duktil ohne eine Wärmebehandlung. Erfahrungsgemäß steigen die Festigkeiten im Druckguss deutlich an, bei etwa gleichbleibender Bruchdehnung, wodurch die Eignung als naturduktile Gusslegierung für Strukturbauteile, insbesondere Batterie kästen für Elektrofahrzeuge mit Crash-Eigenschaften, gegeben ist. The analyzes of the materials "Milestone 4" in Figure 1 are listed in Table 4 (in the appendix) and designated AISi8Zn0.6Mn0.35Zr and AISi8Zn0.4Mn0.35Cr according to the order. The alloys are already very ductile in chill casting without heat treatment. Experience has shown that the strength in die casting increases significantly, with the elongation at break remaining about the same, which means that it is suitable as a naturally ductile cast alloy for structural components, in particular battery boxes for electric vehicles with crash properties.
Figure imgf000011_0001
Figure imgf000011_0001
Figure imgf000012_0001
Figure imgf000012_0001

Claims

Patentansprüche: Patent Claims:
1. Aluminium-Silizium-Gusslegierung, die neben Aluminium und unvermeidbaren Ver- unreinigungen wenigstens folgende Legierungsbestandteile aufweist: 1. Aluminium-silicon cast alloy which, in addition to aluminum and unavoidable impurities, has at least the following alloy components:
Silizium zwischen 6,0 und 8,5 Gew. % Silicon between 6.0 and 8.5% by weight
Zink zwischen 0,2 und 0,8 Gew. % Zinc between 0.2 and 0.8% by weight
Mangan zwischen 0,2 und 0,6 Gew. % Manganese between 0.2 and 0.6% by weight
Chrom zwischen 0,1 und 0,3 Gew. % und Chromium between 0.1 and 0.3% by weight and
Magnesium bis zu 0,05 Gew. % Magnesium up to 0.05% by weight
2. Aluminium-Silizium-Gusslegierung gemäß Anspruch 1 , die zwischen 0,01 und 0,022. aluminum-silicon casting alloy according to claim 1, between 0.01 and 0.02
Gew. % Strontium aufweist. % by weight of strontium.
3. Aluminium-Silizium-Gusslegierung gemäß Anspruch 1 oder 2, die zwischen 0,04 und 0,15 Gew. % Titanaufweist. A cast aluminium-silicon alloy according to claim 1 or 2, comprising between 0.04 and 0.15% by weight titanium.
4. Aluminium-Silizium-Gusslegierung gemäß wenigstens einem der Ansprüche 1 bis 3, die bis zu 0,2 Gew. % Eisen aufweist. 4. Aluminum-silicon casting alloy according to at least one of claims 1 to 3, which has up to 0.2% by weight of iron.
5. Aluminium-Silizium-Gusslegierung gemäß wenigstens einem der Ansprüche 1 bis 4, die bis zu 0,5 Gew. % Kupfer aufweist. 5. Aluminum-silicon casting alloy according to at least one of claims 1 to 4, which has up to 0.5% by weight of copper.
6. Aluminium-Silizium-Gusslegierung gemäß wenigstens einem der Ansprüche 1 bis 5, die bis zu 0,01 Gew. % Magnesium aufweist. 6. Aluminum-silicon cast alloy according to at least one of claims 1 to 5, which has up to 0.01% by weight of magnesium.
7. Aluminium-Silizium-Gusslegierung gemäß wenigstens einem der Ansprüche 1 bis 6, die bis zu 0,25 Gew. % Molybdän und/oder Zirkonium aufweist. 7. Aluminum-silicon casting alloy according to at least one of claims 1 to 6, which has up to 0.25% by weight of molybdenum and/or zirconium.
8. Aluminium-Silizium-Gusslegierung gemäß wenigstens einem der Ansprüche 1 bis 7, die bis zu 0,15 Gew. % Hafnium, Cer und/oder ein anders Seltenerdelement auf- weist. 8. Aluminum-silicon casting alloy according to at least one of claims 1 to 7, which has up to 0.15% by weight of hafnium, cerium and/or another rare earth element.
9. Strukturbauteil insbesondere für ein Kraftfahrzeug, dadurch gekennzeichnet, das das Strukturbauteil aus einer Aluminium-Silizium-Gusslegierung gemäß einem der Ansprüche 1 bis 8 gegossen ist. 9. Structural component, in particular for a motor vehicle, characterized in that the structural component is cast from an aluminum-silicon cast alloy according to one of claims 1 to 8.
10. Strukturbauteil insbesondere für ein Kraftfahrzeug, dadurch gekennzeichnet, dass das fertige Strukturbauteil nicht lösungsgeglüht ist. 10. Structural component, in particular for a motor vehicle, characterized in that the finished structural component is not solution annealed.
11. Strukturbauteil gemäß Anspruch 9 oder 10, dadurch gekennzeichnet, dass das Strukturbauteil ein Batteriegehäuse für ein Hybrid- oder Elektrofahrzeug ist. 11. Structural component according to claim 9 or 10, characterized in that the structural component is a battery housing for a hybrid or electric vehicle.
12. Verfahren zum Herstellen eines Bauteils, insbesondere eines Strukturbauteils vor- zugsweise für ein Kraftfahrzeug, dadurch gekennzeichnet, dass das Bauteil unter Verwendung der Aluminium-Silizium-Gusslegierung gemäß einem der Ansprüche 1 bis 7 gegossen wird. 12. A method for producing a component, in particular a structural component, preferably for a motor vehicle, characterized in that the component is cast using the aluminum-silicon cast alloy according to any one of claims 1 to 7.
13. Verfahren gemäß Anspruch 12, dadurch gekennzeichnet, dass das Bauteil in einem Druckgussverfahren gegossen wird. 13. The method according to claim 12, characterized in that the component is cast in a die-casting process.
14. Verfahren gemäß Anspruch 13, dadurch gekennzeichnet, dass für das Druckgießen eine Druckgussform verwendet wird, die vor dem Gießen auf eine Temperatur zwi- schen 105°C und 290°C temperiert wird. 14. The method according to claim 13, characterized in that a die-casting mold is used for the die-casting, which is tempered to a temperature between 105°C and 290°C before the casting.
15. Verfahren gemäß Anspruch 13 oder 14, dadurch gekennzeichnet, dass die Schmelze aus der erfindungsgemäßen Aluminium-Silizium-Gusslegierung unmittel- bar vor dem Gießen eine Temperatur zwischen 690°C bis 725°C hat. 15. The method according to claim 13 or 14, characterized in that the melt of the aluminium-silicon cast alloy according to the invention has a temperature of between 690°C and 725°C immediately before casting.
16. Verfahren gemäß wenigstens einem der Ansprüche 13 bis 15, dadurch gekenn- zeichnet, dass zwischen dem Druckgießen und einer endgültigen Verwendung des Bauteils kein Lösungsglühen erfolgt. 16. The method according to at least one of claims 13 to 15, characterized in that no solution annealing takes place between the die casting and a final use of the component.
PCT/EP2022/052358 2021-02-01 2022-02-01 Aluminium alloy, component made of an aluminium alloy, and method for producing a component made of an aluminium alloy WO2022162245A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22709599.9A EP4284954A1 (en) 2021-02-01 2022-02-01 Aluminium alloy, component made of an aluminium alloy, and method for producing a component made of an aluminium alloy
CN202280012637.5A CN117062926A (en) 2021-02-01 2022-02-01 Aluminum alloy, component made of aluminum alloy, and method for manufacturing component made of aluminum alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021102268.1A DE102021102268A1 (en) 2021-02-01 2021-02-01 Aluminum alloy, aluminum alloy component and method of manufacturing an aluminum alloy component
DE102021102268.1 2021-02-01

Publications (1)

Publication Number Publication Date
WO2022162245A1 true WO2022162245A1 (en) 2022-08-04

Family

ID=80735408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/052358 WO2022162245A1 (en) 2021-02-01 2022-02-01 Aluminium alloy, component made of an aluminium alloy, and method for producing a component made of an aluminium alloy

Country Status (4)

Country Link
EP (1) EP4284954A1 (en)
CN (1) CN117062926A (en)
DE (1) DE102021102268A1 (en)
WO (1) WO2022162245A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040088857A (en) * 2003-04-14 2004-10-20 현대자동차주식회사 Composition of aluminum alloy for cylinder head with improved fatigue/intensity property
CN106244864A (en) * 2016-08-30 2016-12-21 苏州梅克卡斯汽车科技有限公司 A kind of automobile turbocharger housing and preparation method thereof
US20200131605A1 (en) * 2018-10-29 2020-04-30 Fna Group, Inc. Aluminum alloy
CN112048645A (en) * 2020-08-24 2020-12-08 山东弗泽瑞金属科技有限公司 Preparation method and equipment of die-casting aluminum alloy material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1246256B (en) 1957-11-26 1967-08-03 North American Aviation Inc Process to improve the strength and ductility of aluminum-silicon cast alloys
AT14019U1 (en) 2014-02-14 2015-02-15 Amag Casting Gmbh cast alloy
KR101641170B1 (en) 2014-09-02 2016-07-20 삼성전자주식회사 Aluminum alloy for diecasting and manufacturing method thereof
DE102016004216A1 (en) 2016-04-07 2016-09-29 Daimler Ag Aluminum alloy, in particular for a casting method, and method for producing a component from such an aluminum alloy
WO2018113838A1 (en) 2016-12-22 2018-06-28 Ksm Castings Group Gmbh Al casting alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040088857A (en) * 2003-04-14 2004-10-20 현대자동차주식회사 Composition of aluminum alloy for cylinder head with improved fatigue/intensity property
CN106244864A (en) * 2016-08-30 2016-12-21 苏州梅克卡斯汽车科技有限公司 A kind of automobile turbocharger housing and preparation method thereof
US20200131605A1 (en) * 2018-10-29 2020-04-30 Fna Group, Inc. Aluminum alloy
CN112048645A (en) * 2020-08-24 2020-12-08 山东弗泽瑞金属科技有限公司 Preparation method and equipment of die-casting aluminum alloy material

Also Published As

Publication number Publication date
EP4284954A1 (en) 2023-12-06
CN117062926A (en) 2023-11-14
DE102021102268A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
EP3314031B1 (en) High strength and easily reformable almg tape and method for producing the same
DE102013012259B3 (en) Aluminum material with improved precipitation hardening, process for its production and use of the aluminum material
EP1682688B1 (en) Al-Mg-Si cast aluminium alloy containing scandium
EP3176275B2 (en) Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component
DE60020188T2 (en) Process for the production of aluminum alloy molded parts of type 2024
EP2888382B1 (en) Aluminium alloy strip which is resistant to intercrystalline corrosion and method for producing same
DE112008003052T5 (en) Product of Al-Mg-Zn wrought alloy and manufacturing method therefor
EP1518000B1 (en) Al/cu/mg/ag alloy with si, semi-finished product made from such an alloy and method for production of such a semi-finished product
WO2005078147A1 (en) Material based on an aluminum alloy, method for the production thereof and its use
WO2011000635A1 (en) Almgsi strip for applications having high plasticity requirements
US6267922B1 (en) Precipitation-hardened aluminum alloys for automotive structural applications
WO2009090228A1 (en) Parts made of high-strength, ductile cast steel having a high manganese content, method for the production thereof, and use thereof
DE102013002632B4 (en) Aluminum-silicon diecasting alloy and method of making a die cast component
DE102011112005A1 (en) Alloy, preferably aluminum casting alloy, useful e.g. as a sand or die casting alloy, comprises a specified range of silicon, zinc, iron, copper, magnesium, strontium, sodium, antimony and aluminum
DE69919307T2 (en) ALUMINUM PLATE FOR AUTOMOBILES AND CORRESPONDING MANUFACTURING PROCESS
EP1748088B1 (en) Process for producing a semi-finished product or component for chassis or structural automotive applications
WO2022162245A1 (en) Aluminium alloy, component made of an aluminium alloy, and method for producing a component made of an aluminium alloy
EP3423606B1 (en) Aluminium casting alloy
EP2088216A1 (en) Aluminium alloy
DE19713398A1 (en) Highly ductile aluminium@-manganese@-iron@-magnesium@ alloy
DE102015007929A1 (en) Cast aluminum alloy, method of manufacturing an aluminum cast alloy component and using an aluminum casting alloy
EP0211831B1 (en) Process for the cold extrusion of aluminium or aluminium alloys
WO2023169657A1 (en) Semi-finished product made of wrought aluminium alloy, the production and use thereof, and a product produced therefrom
WO2004005564A1 (en) Am-magnesium pressure die cast alloy and method for producing an interior fitting from an am-magnesium pressure die cast alloy
DE102010020268A1 (en) Aluminum-magnesium alloy product for automotive molded parts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22709599

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280012637.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022709599

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022709599

Country of ref document: EP

Effective date: 20230901