WO2022161451A1 - 一种功率电子开关管的高边电流采集及安全保护电路 - Google Patents

一种功率电子开关管的高边电流采集及安全保护电路 Download PDF

Info

Publication number
WO2022161451A1
WO2022161451A1 PCT/CN2022/074488 CN2022074488W WO2022161451A1 WO 2022161451 A1 WO2022161451 A1 WO 2022161451A1 CN 2022074488 W CN2022074488 W CN 2022074488W WO 2022161451 A1 WO2022161451 A1 WO 2022161451A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic switch
switch tube
power electronic
power supply
signal
Prior art date
Application number
PCT/CN2022/074488
Other languages
English (en)
French (fr)
Inventor
袁廷华
Original Assignee
合肥创源车辆控制技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥创源车辆控制技术有限公司 filed Critical 合肥创源车辆控制技术有限公司
Priority to EP22745323.0A priority Critical patent/EP4287487A4/en
Priority to JP2023546213A priority patent/JP2024504823A/ja
Priority to US18/274,468 priority patent/US20240128964A1/en
Publication of WO2022161451A1 publication Critical patent/WO2022161451A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0027Measuring means of, e.g. currents through or voltages across the switch
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0063High side switches, i.e. the higher potential [DC] or life wire [AC] being directly connected to the switch and not via the load

Definitions

  • the invention relates to the technical field of on-current detection of a high-side driven power electronic switch tube and the safety protection of the power electronic switch tube, in particular to a high-side current acquisition and safety protection circuit of a power electronic switch tube.
  • the current detection methods of high-side driven power electronic switch tubes mainly include current loop type, Hall device type and integrated circuit sensor type.
  • the current loop type or Hall type current sensor is bulky, and the integrated circuit type current sensor is more expensive.
  • the detection resistor is usually placed at a high position between the positive electrode of the power supply voltage and the power electronic switch tube, and then the signal is amplified by the operational amplifier to realize the current detection.
  • the common-mode voltage of the sense amplifier is close to the supply voltage, this wide range of common-mode voltage requires the op amp to have high common-mode characteristics, which in turn increases cost.
  • the purpose of the present invention is to provide a current collection circuit and a safety protection circuit of a high-side power electronic switch tube with simple structure and relatively low cost.
  • the present invention adopts the following technical solutions:
  • a high-side current acquisition and safety protection circuit of a power electronic switch tube comprising:
  • Power electronic switch tube used to drive the load
  • Power supply used to provide power supply energy for power electronic switch tubes
  • the control module is used for sensing the current source signal contained in the power electronic switch tube, and converting the sensed current source signal into a control signal for safety protection of the power electronic switch tube;
  • the isolated power supply is used to provide working power for the control module, and the negative pole of the isolated power supply is connected to the positive pole of the power supply.
  • the input end of the power electronic switch tube is connected to the power supply VP, and the output end is connected to the load, and the power electronic switch tube includes an insulated gate MOS tube and an IGBT tube.
  • control module includes a logic control unit, a signal conditioning unit for transforming the current source signal of the power electronic switch tube, and a drive conditioning unit for transforming the safety protection control signal input by the logic control unit.
  • the signal conditioning unit includes a resistor R2, a resistor R3 and a reference power supply VW; one end of the resistor R2 is connected to the source of the power electronic switch tube, the other end is connected to one end of the resistor R3, and the other end of the resistor R3 is connected to the reference power supply.
  • VW; the reference power VW is an independent power source or a voltage source output by the D/A converter in the logic control unit.
  • the signal conditioning unit includes a resistor R4, a resistor R5, a resistor R6 and an operational amplifier OP; one end of the resistor R4 is connected to the drain of the power electronic switch tube, the other end is connected to the positive electrode of the operational amplifier OP, and one end of the resistor R5 is connected.
  • the source of the power electronic switch tube is connected, the other end is connected to the negative electrode of the operational amplifier OP, one end of the resistor R6 is connected to the negative electrode of the operational amplifier OP, and the other end is connected to the output end of the operational amplifier OP.
  • the output port IO-1 of the logic control unit is connected to the command input port CIN of the drive conditioning unit, and the output port OUT of the drive conditioning unit is connected to the control terminal TG of the power electronic switch tube 1, and the control terminal TG passes through the resistor R1.
  • the input signal of the input port CIN of the drive conditioning unit is a logic level signal
  • the output signal of the output port OUT of the drive conditioning unit is the level signal of the drive power electronic switch
  • the level signal is used to control the conduction of the MOS tube in the power electronic switch tube.
  • the logic control unit includes an A/D converter, a digital logic comparator and a digital threshold level unit; the input of the A/D converter is the output of the signal conditioning unit; the logic control unit is used for protection
  • the power electronic switch tube the first input end of the digital logic comparator is connected to the output conversion result of the A/D converter, the second input end is connected to the configurable digital threshold level unit, and the output of the digital logic comparator is connected to the drive conditioning unit
  • the input CIN terminal of the digital logic comparator includes a virtual digital logic comparator realized by operation logic or a digital logic comparator configured by software.
  • the logic control unit further includes a logic analog comparator, the first input end of the analog logic comparator is connected to the output end of the signal conditioning circuit, the second input end is connected to a configurable analog threshold level, and the analog logic comparator The output of the device is connected to the input CIN terminal of the drive conditioning unit.
  • the outputs of the digital logic comparator and the analog logic comparator are all connected to the output terminal IO-1 of the logic control unit, and the logic control unit performs a logical AND operation on the outputs of the digital logic comparator and the analog logic comparator. Output to the CIN input of the drive conditioning unit.
  • the isolated power supply includes a DC/DC isolated power supply, and the negative pole of the isolated power supply is connected to the positive pole of the power supply through at least one diode.
  • the current sensing signal source in the present invention is taken from the on-resistance of the power electronic switch tube itself, which eliminates the need for additional additional sensors, reduces the volume, and reduces the cost.
  • connection method of the isolated power supply and the power power supply in the present invention provides a safe power supply for the conduction work and safety protection of the driving MOS tube, and improves the reliability of the power electronic switch tube.
  • the present invention organically combines the control module, the isolated power supply and the power electronic switch tube into an intelligent electronic switch assembly with safety protection and current detection, the logic control unit and the current source signal conditioning circuit have simple structures, short logic circuits, Easy to implement.
  • the present invention upgrades the ordinary electronic switch tube to an intelligent electronic switch tube with safety protection and current detection, and has the advantages of simple structure, reliable operation, low cost and wide application.
  • the present invention can reduce the volume and cost of the system constructed by the present invention while ensuring reliable performance.
  • FIG. 1 is a schematic diagram of the circuit principle of Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of the circuit principle of Embodiment 2 of the present invention.
  • FIG. 3 is a schematic diagram of a circuit principle of Embodiment 3 of the present invention.
  • the high-side current acquisition and safety protection circuit of the power electronic switch tube includes the power electronic switch tube 1 for driving the load 2, the power supply for providing power energy for the power electronic switch tube, and the power sensor for sensing power.
  • the electronic switch tube contains the current source signal and converts the sensed current source signal into a control signal for safety protection of the power electronic switch tube 3, and the isolated power supply 4 provides the control module with working power.
  • the power input end of the power electronic switch tube 1 described in this preferred embodiment is connected to the power source VP, the output end is connected to the load 2, and the other end of the load is connected to the ground of the power source.
  • the power electronic switch tube 1 includes an insulated gate MOS tube and an IGBT tube.
  • the current sensing signal source in the present invention is taken from the on-resistance of the power electronic switch tube 1 itself, so that additional additional sensors can be omitted.
  • the isolated power supply 4 includes a DC/DC isolated power supply driven by the power supply, and the negative pole of the isolated power supply 4 is connected to the positive pole of the power supply.
  • the positive pole of the power supply is set as the reference ground level of the control module 3, so that the signal conditioning circuit 32 and the logic control unit 31 are simplified, and the requirements of the control system on circuit performance are reduced.
  • control module 3 includes a logic control unit 31, a signal conditioning unit 32 for transforming the current source signal of the power electronic switch to meet the requirements of the A/D sampling level signal of the logic control unit, and a logic control unit for transforming The input safety protection control signal satisfies the drive conditioning unit 33 required by the level signal for driving the power electronic switch tube to be turned off or turned on.
  • the logic control unit 31 includes a single-chip microcomputer, a CPLD and an FPGA.
  • the signal conditioning unit 32 is an implementation of a bias resistor. As shown in FIG. 1 , the power electronic switch tube 1 is an N-type MOS tube, and the signal conditioning unit 32 includes a resistor R2 , a resistor R3 and a reference power supply VW. One end of the resistor R2 is connected to the source of the power electronic switch tube 1 , and the other end is connected to one end of the resistor R3 . The other end of the resistor R3 is connected to a reference power supply VW, and the reference power supply VW is an independent power supply or a voltage source output by the D/A converter in the logic control unit 31 .
  • the logic control unit 31 is provided with an A/D converter connected to the other end of the resistor R2 and a D/A converter connected to the other end of the resistor R3.
  • the output port IO-1 of the logic control unit 31 is connected to the command input port CIN of the drive conditioning unit 33, the output port OUT of the drive conditioning unit 33 is connected to the control terminal TG, and the control terminal TG is connected to the power electronic switch tube through the resistor R1. 1 gate.
  • the input signal CIN of the drive conditioning unit 33 is a logic level signal, and the output signal OUT of the drive conditioning unit 33 is a level signal for driving the power electronic switch 1 , which can control the on and off of the MOS transistor.
  • the working principle of the high-side current acquisition of the power electronic switch tube is:
  • the on-resistance between the drain and the source of the power electronic switch tube 1 is RON.
  • the difference signal VDS is connected to the VI+ and VI- terminals of the signal conditioning unit 32 as the current source signal of the power electronic switch tube 1 .
  • a negative level signal is presented to the A/D converter of the logic control unit 31, so a forward bias circuit should be connected.
  • the forward bias circuit is composed of an independent voltage regulator VW, resistor R2 and resistor R3.
  • the forward bias circuit makes the VDS voltage a positive level signal at the input end of the A/D converter.
  • the formula for calculating the voltage at the junction of resistor R2 and resistor R3 is:
  • VIA (R2*VW-R3*VI-)/(R2+R3)
  • the threshold unit VIG of the logic control unit 31 is pre-set with a safety protection current threshold (notation is omitted in the figure), when the A/D sampling current value of the logic control unit 31 is greater than the set current threshold VIG through software comparison, the logic control unit The control port BD1 of 31 outputs a shutdown signal at the output port IO-1.
  • the shutdown signal is converted by the drive conditioning unit 33 and then output by the OUT port to turn off the power electronic switch tube 1, thereby protecting the safety of the power electronic switch tube.
  • the A/D sampling current value can also be read and used by other external units or systems (the specific circuit form example and description are omitted).
  • the signal conditioning unit 32 is an implementation of an operational amplifier. As shown in FIG. 2 , the signal conditioning unit 32 includes a resistor R4 , a resistor R5 , a resistor R6 and an operational amplifier OP. One end of the resistor R4 is connected to the drain of the power electronic switch tube 1 , and the other end is connected to the positive electrode of the operational amplifier OP. One end of the resistor R5 is connected to the source of the power electronic switch tube 1 , and the other end is connected to the negative electrode of the operational amplifier OP. One end of the resistor R6 is connected to the negative electrode of the operational amplifier OP, and the other end is connected to the output end of the operational amplifier OP.
  • the on-resistance between the drain and the source of the power electronic switch tube 1 is RON.
  • the signal conditioning unit 32 includes an operational amplifier OP, the output voltage of the operational amplifier OP is VIA, and the voltage calculation formula of the output voltage VIA is:
  • VIA (VI+-VI-)*(R6/R5)
  • the negative signal received at its VI- input distorts the amplified output.
  • the negative output terminal VP of the isolated power supply 4 is connected in series with one or more diodes and then connected to the positive terminal of the power supply VP.
  • the voltage formed by the load current on its internal resistance is generally lower than the forward conduction voltage of the diode (the forward conduction voltage of the diode is about 0.6V), and the series After the diode is connected, the ground level VPP of the control module 3 is lower than VP, so the signal received by the op-amp at the negative end is a positive signal.
  • the safety protection circuit and principle of this embodiment are the same as those of the first embodiment.
  • an analog comparator is added to the logic control unit 31, and other parts are the same as those of the second embodiment.
  • the logic control unit 31 includes an analog comparator ACOMP composed of discrete components and a digital comparator DCOMP configured by a digital logic unit.
  • the negative terminal of the analog comparator is connected to the output terminal of the operational amplifier OP1, and the positive terminal is connected to the analog comparison threshold setting unit AVIG.
  • the negative terminal of the digital comparator DCOMP is connected to the output terminal of the A/D converter, and the positive terminal is connected to the digital comparison threshold unit DVIG.
  • the port IO-1 has a logical AND relationship to the output port of the analog comparator ACOMP and the output port of the digital comparator DCOM, that is, no matter which comparator outputs the logic shutdown signal, the port IO-1 outputs the logic shutdown signal.
  • the input signal CIN of the drive conditioning unit is a logic level signal
  • the output signal OUT of the drive unit is a level signal for driving the power electronic switch 1 , which can turn off the conduction of the MOS transistor.
  • the working principle of the current collecting circuit of this embodiment is the same as that of the second embodiment.
  • the working principle of the analog comparator ACOMP outputting the turn-off logic signal is as follows: the logic control unit 31 sets the current threshold value to the threshold value unit AVIG of the analog comparator ACOMP in advance, and when the value VIA level value of the output terminal of the operational amplifier is greater than the set value When the current threshold is AVIG, the comparator ACOMP outputs a signal to turn off the power electronic switch tube 1.
  • the working principle of the digital comparator DCOM outputting the turn-off logic signal is as follows: the logic control unit 31 sets a current threshold value to the threshold value unit DVIG of the digital comparator DCOMP in advance, and when the output of the A/D converter is greater than the set current threshold value During DVIG, the comparator DCOMP outputs a signal to turn off the power electronic switch tube 1.
  • the digital comparator DCOMP can set different output control logics.
  • the control logic simultaneously outputs the overload current value collected by the A/D converter to the negative terminal of the digital comparator DCOMP, so that the digital comparator DCOMP outputs a shutdown signal.
  • any turn-off signal will cause the logic output port IO-1 to output a turn-off signal to the input port CIN of the drive conditioning unit 33, so that The power electronic switch tube 1 is turned off.
  • the digital comparator DCOMP is under software control, the software is logically set to maintain this turn-off logic once the digital comparator DCOMP outputs a turn-off signal, ie regardless of the value it is loaded into its input port by the A/D converter
  • the logic control unit 31 does not turn on the power electronic switch tube 1 until the logic control unit 31 receives other external signals for turning on the power electronic switch tube.

Landscapes

  • Control Of Voltage And Current In General (AREA)
  • Amplifiers (AREA)
  • Electronic Switches (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

本发明提供一种功率电子开关管的高边电流采集及安全保护电路,包括用于驱动负载的功率电子开关管、为功率电子开关管提供电源能量的功率电源、用于传感功率电子开关管包含的电流源信号,并将传感的电流源信号转换为对功率电子开关管进行安全保护的控制信号的控制模块以及为控制模块提供工作电源的隔离电源,其中隔离电源的负极与功率电源的正极连接。本发明结构简洁、控制可靠、成本低。

Description

一种功率电子开关管的高边电流采集及安全保护电路 技术领域
本发明涉及高边驱动的功率电子开关管的导通电流检测及功率电子开关管的安全保护技术领域,具体涉及一种功率电子开关管的高边电流采集及安全保护电路。
背景技术
高边驱动的功率电子开关管的电流检测方法主要有电流环式、霍尔器件式和集成电路传感器形式三种。电流环式或霍尔式电流传感器体积较大,而集成电路式电流传感器成本较高。
目前,为降低成本,通常将检测电阻放在电源电压正极和功率电子开关管之间的高位,再经过运放对信号放大来实现电流检测。然而,由于检测放大器的共模电压接近电源电压,这种宽范围的共模电压要求运放具有高共模特性,反而会带来成本的增高。
因此,对于使用功率电子开关管数量较多的场合,例如汽车,降低功率电子开关管的电流检测和保护成本显得较为重要。
发明内容
本发明的目的在于提供一种结构简单、成本相对较低的高边功率电子开关管的电流采集电路及安全保护电路。
为实现上述目的,本发明采用如下技术方案:
一种功率电子开关管的高边电流采集及安全保护电路,包括:
功率电子开关管,用于驱动负载;
功率电源,用于为功率电子开关管提供电源能量;
控制模块,用于传感功率电子开关管的包含的电流源信号,并将传感的电流 源信号转换为对功率电子开关管进行安全保护的控制信号;
隔离电源,用于为控制模块提供工作电源,所述隔离电源的负极与功率电源的正极连接。
进一步的,所述功率电子开关管的输入端连接功率电源VP,输出端连接负载,所述功率电子开关管包括绝缘栅极MOS管和IGBT管。
进一步的,所述控制模块包括逻辑控制单元、用于变换功率电子开关管电流源信号的信号调理单元以及用于变换逻辑控制单元输入的安全保护控制信号的驱动调理单元。
进一步的,所述信号调理单元包括电阻R2、电阻R3和参考电源VW;所述电阻R2的一端连接功率电子开关管的源极、另一端连接电阻R3的一端,电阻R3的另一端连接参考电源VW;所述参考电源VW为独立电源或由逻辑控制单元中的D/A变换器输出的电压源。
进一步的,所述信号调理单元包括电阻R4、电阻R5、电阻R6和运算放大器OP;所述电阻R4的一端连接功率电子开关管的漏极、另一端连接运算放大器OP的正极,电阻R5的一端连接功率电子开关管的源极、另一端连接运算放大器OP的负极,电阻R6的一端连接运算放大器OP的负极、另一端连接运算放大器OP的输出端。
进一步的,所述逻辑控制单元的输出端口IO-1与驱动调理单元的命令输入端口CIN连接,驱动调理单元的输出端口OUT连接到功率电子开关管1的控制端TG,控制端TG通过电阻R1连接到功率电子开关管的栅极;所述驱动调理单元的输入端口CIN的输入信号为逻辑电平信号,驱动调理单元的输出端口OUT的输出信号为驱动功率电子开关管的电平信号,该电平信号用于控制功率电子开关管中的MOS管的导通。
进一步的,所述逻辑控制单元包括A/D转换器、数字逻辑比较器和数字阈值 电平单元;所述A/D转换器的输入为信号调理单元的输出;所述逻辑控制单元用于保护功率电子开关管,数字逻辑比较器的第一输入端连接A/D转换器的输出转换结果,第二输入端连接可配置的数字阈值电平单元,数字逻辑比较器的输出连接到驱动调理单元的输入CIN端,所述数字逻辑比较器包含通过运算逻辑实现的虚拟数字逻辑比较器或通过软件配置的数字逻辑比较器。
进一步的,所述逻辑控制单元还包括逻辑模拟比较器,所述模拟逻辑比较器的第一输入端连接信号调理电路的输出端,第二输入端连接可配置的模拟阈值电平,模拟逻辑比较器的输出连接到驱动调理单元的输入CIN端。
进一步的,所述数字逻辑比较器和模拟逻辑比较器的输出均连接到逻辑控制单元的输出端IO-1,且逻辑控制单元对数字逻辑比较器和模拟逻辑比较器的输出进行逻辑与操作后输出到驱动调理单元的CIN输入端。
进一步的,所述隔离电源包括DC/DC隔离电源,所述隔离电源的负极至少通过一个二极管与功率电源的正极连接。
工业实用性
(1)本发明中的电流传感信号源取自功率电子开关管自身的导通内阻,省去了额外的附加传感器,减小了体积、降低了成本。
(2)本发明中的隔离电源与功率电源的连接方式,为驱动MOS管的导通工作及安全保护提供了一个安全电源,提高了功率电子开关管的可靠性。
(3)本发明将控制模块、隔离电源和功率电子开关管有机的结合为一个带有安全保护和电流检测的智能电子开关组件,逻辑控制单元和电流源信号调理电路结构简单、逻辑线路短、实施方便。
(4)本发明将普通电子开关管提升为带有安全保护和电流检测的智能电子开关管,结构简单、工作可靠、成本低、应用广泛。本发明通过提供一种结构简洁、性能要求低的功率电子开关管的高边电流采集和安全控制电路,在保证可靠 性能的同时使本发明构建的系统体积减小、成本降低。
附图说明
图1为本发明实施例一的电路原理示意图;
图2为本发明实施例二的电路原理示意图;
图3为本发明实施例三的电路原理示意图。
图中:1、功率电子开关管;2、负载;3、控制模块;31、逻辑控制单元;32、信号调理单元;33、驱动调理单元;4、隔离电源。
具体实施方式
下面结合附图对本发明的一种优选实施方式做详细的说明。
如图1所示的功率电子开关管的高边电流采集及安全保护电路,包括用于驱动负载2的功率电子开关管1、为功率电子开关管提供电源能量的功率电源、用于传感功率电子开关管包含的电流源信号,并将传感的电流源信号转换为对功率电子开关管进行安全保护的控制信号的控制模块3,以及为控制模块提供工作电源的隔离电源4。
本优选实施例所述的功率电子开关管1的电源输入端连接功率电源VP,输出端连接负载2,负载的另一端连接功率电源的地。所述功率电子开关管1包括绝缘栅极MOS管和IGBT管。本发明中的电流传感信号源取自功率电子开关管1自身的导通内阻,可以省去额外的附加传感器。所述隔离电源4包括由功率电源驱动的DC/DC隔离电源,所述隔离电源4的负极与功率电源的正极连接。本发明设置功率电源的正极为控制模块3的参考地电平,使得信号调理电路32和逻辑控制单元31变得简单、控制系统对电路性能的要求降低。
具体的,所述控制模块3包括逻辑控制单元31、用于变换功率电子开关管的电流源信号以满足逻辑控制单元A/D采样电平信号要求的信号调理单元32以及用于变换逻辑控制单元输入的安全保护控制信号以满足驱动功率电子开关管关 断或开通的电平信号要求的驱动调理单元33。所述逻辑控制单元31包含单片机、CPLD和FPGA。
本优选实施例所述的信号调理单元通过以下实施方式:
实施例一
信号调理单元32为偏置电阻的实现方式。如图1所示,所述的功率电子开关管1为N型MOS管,所述信号调理单元32包括电阻R2、电阻R3和参考电源VW。所述电阻R2的一端连接功率电子开关管1的源极、另一端连接电阻R3的一端。所述电阻R3的另一端连接参考电源VW,所述参考电源VW为独立电源或由所述逻辑控制单元31中D/A变换器输出的电压源。所述逻辑控制单元31设置有与电阻R2另一端连接的A/D转换器以及与所述电阻R3另一端连接的D/A转换器。所述逻辑控制单元31的输出端口IO-1与驱动调理单元33的命令输入端口CIN连接,驱动调理单元33的输出端口OUT连接到控制端TG,控制端TG通过电阻R1连接到功率电子开关管1的栅极。所述驱动调理单元33的输入信号CIN为逻辑电平信号,驱动调理单元33的输出信号OUT为驱动功率电子开关管1的电平信号,该电平信号能控制MOS管的导通和关闭。
功率电子开关管的高边电流采集的工作原理为:
所述功率电子开关管1的漏极和源极间的导通电阻为RON,当功率电子开关管1导通时,电流IA在其内阻上产生电压差信号VDS=IA*RON,这个电压差信号VDS作为功率电子开关管1的电流源信号接入信号调理单元32的VI+和VI-端。因为功率电子开关管1源极的电平低于漏极的电平,对逻辑控制单元31的A/D转换器呈现负电平信号,所以要接入正向偏置电路。正向偏置电路由独立稳压源VW和电阻R2、电阻R3组成,正向偏置电路使VDS电压在A/D转换器的输入端为正电平信号。电阻R2和电阻R3连接点处的电压计算公式为:
VIA=(R2*VW-R3*VI-)/(R2+R3);
在具体的实施过程中,选取(R2*VW-R3*VI-)>0。
上述功率电子开关管的高边电流安全保护工作原理为:
预先对逻辑控制单元31的阈值单元VIG设置安全保护电流阀值(图示标注略),当逻辑控制单元31的A/D采样电流值通过软件比较大于设置的电流阀值VIG时,逻辑控制单元31的控制端口BD1在输出端口IO-1输出关断信号,该关断信号经驱动调理单元33变换后由OUT端口输出,关断功率电子开关管1,从而保护了功率电子开关管的安全。
同时A/D采样电流值也可被其它外接的单元或系统读出使用(具体电路形式示例及说明略)。
实施例二
信号调理单元32为运算放大器的实现方式。如图2所示,所述信号调理单元32包括电阻R4、电阻R5、电阻R6以及运算放大器OP。所述电阻R4的一端连接功率电子开关管1的漏极、另一端连接运算放大器OP的正极。所述电阻R5的一端连接功率电子开关管1的源极、另一端连接运算放大器OP的负极。所述电阻R6的一端连接运算放大器OP的负极、另一端连接运算放大器OP的输出端。
上述功率电子开关管的高边电流采集的工作原理为:
所述功率电子开关管1的漏极和源极间的导通电阻为RON。当功率电子开关管1导通时,电流IA在其内阻上产生电压差信号VDS=IA*RON,这个电压差信号VDS作为功率电子开关管1的电流源信号接入信号调理单元32的VI+和VI-端。信号调理单元32内含运算放大器OP,运算放大器OP的输出电压为VIA,输出电压VIA的电压计算公式为:
VIA=(VI+-VI-)*(R6/R5);
当信号调理单元32的运算放大器OP使用单电源供电时,其VI-输入端接收的负信号使放大输出失真。为使VI-端的信号为正,隔离电源4的负极输出端VP 串接一个或多个二极管后与功率电源VP的正极连接。因为功率电子开关管1的导通电阻一般为几毫欧,所以负载电流在其内阻上形成的电压一般低于二极管的正向导通电压(二极管的正向导通电压约为0.6V),串接二极管后控制模块3的地电平VPP低于VP,因此运放在负极端接收的信号为正极性信号。
本实施例的安全保护电路及原理同实施例一。
实施例三
在实施例二的基础上,将所述逻辑控制单元31添加一个模拟比较器,其它部分与实施例二相同。
具体的,如图3所示,所述逻辑控制单元31内含由分立元件组成的模拟比较器ACOMP和由数字逻辑单元配置的数字比较器DCOMP。该模拟比较器的负极端连接运算放大器OP1的输出端、正极端连接模拟比较阀值设置单元AVIG。该数字比较器DCOMP的负极端连接A/D转换器的输出端、正极端连接数字比较阀值单元DVIG。其中端口IO-1对模拟比较器ACOMP的输出端口和数字比较器DCOM的输出端口是逻辑与关系,即无论是哪一个比较器输出逻辑关断信号,端口IO-1均输出逻辑关断信号。驱动调理单元的输入信号CIN为逻辑电平信号,驱动单元的输出信号OUT为驱动功率电子开关1的电平信号,该电平信号能关断MOS管的导通。
本实施例的电流采集电路的工作原理与实施例二相同。
所述模拟比较器ACOMP输出关断逻辑信号的工作原理为:所述逻辑控制单元31预先对模拟比较器ACOMP的阀值单元AVIG设置电流阀值,当运放输出端的值VIA电平值大于设置的电流阀值AVIG时,比较器ACOMP输出关断功率电子开关管1的信号。
所述数字比较器DCOM输出关断逻辑信号的工作原理为:逻辑控制单元31预先对数字比较器DCOMP的阀值单元DVIG设置电流阀值,当A/D转换器的输出大于设置的电流阀值DVIG时,比较器DCOMP输出关断功率电子开关管1的信号。
因为数字比较器DCOMP的输出只受软件控制,所以数字比较器DCOMP可以设置不同的输出控制逻辑。
实际应用时可以设置为:当流过负载的电流大于设置的电流阀值DVIG、需要对电子开关管进行保护时可以设置为两个步骤:
(1)加载到模拟比较器ACOMP负极端的电平信号VIA使模拟比较器ACOMP输出关断信号。
(2)控制逻辑同时把A/D转换器采集的过载电流值输出到数字比较器DCOMP的负极端,使数字比较器DCOMP输出关断信号。
由于输出端口IO-1对所述的两个比较器是逻辑与关系,因此,任何一个关断信号均会使逻辑输出端口IO-1对驱动调理单元33的输入端口CIN输出关断信号,使功率电子开关管1关断。由于所述数字比较器DCOMP受软件控制,软件逻辑上设置为:一旦数字比较器DCOMP输出关断信号就保持这个关断逻辑,即不论其由A/D转换器加载到其输入端口的值如何变化,直到该逻辑控制单元31接收到其它外部开启功率电子开关管的信号后才使功率电子开关管1导通。
以上所述实施方式仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明的权利要求书确定的保护范围内。

Claims (10)

  1. 一种功率电子开关管的高边电流采集及安全保护电路,其特征在于,包括:
    功率电子开关管(1),用于驱动负载(2);
    功率电源,用于为功率电子开关管提供电源能量;
    控制模块(3),用于传感功率电子开关管的包含的电流源信号,并将传感的电流源信号转换为对功率电子开关管进行安全保护的控制信号;
    隔离电源(4),用于为控制模块提供工作电源,所述隔离电源的负极与功率电源的正极连接。
  2. 根据权利要求1所述的一种功率电子开关管的高边电流采集及安全保护电路,其特征在于,所述功率电子开关管(1)的输入端连接功率电源VP,输出端连接负载,所述功率电子开关管(1)包括绝缘栅极MOS管和IGBT管。
  3. 根据权利要求2所述的一种功率电子开关管的高边电流采集及安全保护电路,其特征在于,所述控制模块(3)包括逻辑控制单元(31)、用于变换功率电子开关管电流源信号的信号调理单元(32)以及用于变换逻辑控制单元输入的安全保护控制信号的驱动调理单元(33)。
  4. 根据权利要求3所述的一种功率电子开关管的高边电流采集及安全保护电路,其特征在于,所述信号调理单元(32)包括电阻R2、电阻R3和参考电源VW;所述电阻R2的一端连接功率电子开关管的源极、另一端连接电阻R3的一端,电阻R3的另一端连接参考电源VW;所述参考电源VW为独立电源或由逻辑控制单元中的D/A变换器输出的电压源。
  5. 根据权利要求3所述的一种功率电子开关的高边电流采集及安全保护电路,其特征在于,所述信号调理单元(32)包括电阻R4、电阻R5、电阻R6和运算放大器OP;所述电阻R4的一端连接功率电子开关管(1)的漏极、另一端连接运算放大器OP的正极,电阻R5的一端连接功率电子开关管(1)的源极、另一端连接运算放大器OP的负极,电阻R6的一端连接运算放大器OP的负极、另一端连 接运算放大器OP的输出端。
  6. 根据权利要求3所述的一种功率电子开关管的高边电流采集及安全保护电路,其特征在于,所述逻辑控制单元(31)的输出端口IO-1与驱动调理单元(33)的命令输入端口CIN连接,驱动调理单元(33)的输出端口OUT连接到功率电子开关管(1)的控制端TG,控制端TG通过电阻R1连接到功率电子开关管(1)的栅极;所述驱动调理单元(33)的输入端口CIN的输入信号为逻辑电平信号,驱动调理单元(33)的输出端口OUT的输出信号为驱动功率电子开关管的电平信号,该电平信号用于控制功率电子开关管(1)中的MOS管的导通。
  7. 根据权利要求6所述的一种功率电子开关管的高边电流采集及安全保护电路,其特征在于,所述逻辑控制单元(31)包括A/D转换器、数字逻辑比较器和数字阈值电平单元;所述A/D转换器的输入为信号调理单元(32)的输出;所述逻辑控制单元(31)用于保护功率电子开关管,数字逻辑比较器的第一输入端连接A/D转换器的输出转换结果,第二输入端连接可配置的数字阈值电平单元,数字逻辑比较器的输出连接到驱动调理单元(33)的输入CIN端,所述数字逻辑比较器包含通过运算逻辑实现的虚拟数字逻辑比较器或通过软件配置的数字逻辑比较器。
  8. 根据权利要求7所述的一种功率电子开关管的高边电流采集及安全保护电路,其特征在于,所述逻辑控制单元(31)还包括逻辑模拟比较器,所述模拟逻辑比较器的第一输入端连接信号调理电路(32)的输出端,第二输入端连接可配置的模拟阈值电平,模拟逻辑比较器的输出连接到驱动调理单元(33)的输入CIN端。
  9. 根据权利要求8所述的一种功率电子开关管的高边电流采集及安全保护电路,其特征在于,所述数字逻辑比较器和模拟逻辑比较器的输出均连接到逻辑控制单元(31)的输出端IO-1,且逻辑控制单元(31)对数字逻辑比较器和模拟逻 辑比较器的输出进行逻辑与操作后输出到驱动调理单元(33)的CIN输入端。
  10. 根据权利要求1所述的一种功率电子开关管的高边电流采集及安全保护电路,其特征在于,所述隔离电源(4)包括DC/DC隔离电源,所述隔离电源(4)的负极至少通过一个二极管与功率电源的正极连接。
PCT/CN2022/074488 2021-01-29 2022-01-28 一种功率电子开关管的高边电流采集及安全保护电路 WO2022161451A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22745323.0A EP4287487A4 (en) 2021-01-29 2022-01-28 VOLTAGE SIDE CURRENT COLLECTION AND SAFETY PROTECTION CIRCUIT FOR A POWER ELECTRONIC SWITCHING TUBE
JP2023546213A JP2024504823A (ja) 2021-01-29 2022-01-28 パワー電子スイッチトランジスタのハイサイド電流収集及び安全保護回路
US18/274,468 US20240128964A1 (en) 2021-01-29 2022-01-28 High-side current acquisition and safety protection circuit of a power electronic switch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110130329.XA CN114826226A (zh) 2021-01-29 2021-01-29 一种功率电子开关管的高边电流采集及安全保护电路
CN202110130329.X 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022161451A1 true WO2022161451A1 (zh) 2022-08-04

Family

ID=82525781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074488 WO2022161451A1 (zh) 2021-01-29 2022-01-28 一种功率电子开关管的高边电流采集及安全保护电路

Country Status (5)

Country Link
US (1) US20240128964A1 (zh)
EP (1) EP4287487A4 (zh)
JP (1) JP2024504823A (zh)
CN (1) CN114826226A (zh)
WO (1) WO2022161451A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141193A (en) * 1999-03-15 2000-10-31 National Semiconductor Corporation Shunt regulator with shutdown protection to prevent excessive power dissipation
US20090179685A1 (en) * 2008-01-10 2009-07-16 Nec Electronics Corporation Power switch circuit having variable resistor coupled between input terminal and output transistor and changing its resistance based on state of output transistor
CN201388158Y (zh) * 2009-02-26 2010-01-20 佛山市顺德区瑞德电子实业有限公司 具有短路保护的半导体制冷用反激电源
CN202019301U (zh) * 2011-01-26 2011-10-26 陈冠豪 车用大功率dc/dc驱动电源

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331625A (ja) * 1996-06-11 1997-12-22 Yazaki Corp インテリジェントパワースイッチ及びスイッチング装置
US7940034B2 (en) * 2008-05-19 2011-05-10 Infineon Technologies Austria Ag Apparatus for detecting a state of operation of a power semiconductor device
JP5499877B2 (ja) * 2010-04-23 2014-05-21 三菱電機株式会社 電力用半導体装置
JP6065808B2 (ja) * 2013-10-24 2017-01-25 三菱電機株式会社 半導体装置及び半導体モジュール
US11128290B2 (en) * 2019-07-24 2021-09-21 Abb Schweiz Ag Temperature-adaptive short circuit protection for semiconductor switches

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141193A (en) * 1999-03-15 2000-10-31 National Semiconductor Corporation Shunt regulator with shutdown protection to prevent excessive power dissipation
US20090179685A1 (en) * 2008-01-10 2009-07-16 Nec Electronics Corporation Power switch circuit having variable resistor coupled between input terminal and output transistor and changing its resistance based on state of output transistor
CN201388158Y (zh) * 2009-02-26 2010-01-20 佛山市顺德区瑞德电子实业有限公司 具有短路保护的半导体制冷用反激电源
CN202019301U (zh) * 2011-01-26 2011-10-26 陈冠豪 车用大功率dc/dc驱动电源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4287487A4 *

Also Published As

Publication number Publication date
JP2024504823A (ja) 2024-02-01
US20240128964A1 (en) 2024-04-18
EP4287487A1 (en) 2023-12-06
CN114826226A (zh) 2022-07-29
EP4287487A4 (en) 2024-07-31

Similar Documents

Publication Publication Date Title
TWI482402B (zh) 自舉型閘極驅動器
CN108258650B (zh) 一种低边驱动的过流保护电路
CN111884565B (zh) 一种深海电机大功率驱动器
WO2022161451A1 (zh) 一种功率电子开关管的高边电流采集及安全保护电路
CN220209947U (zh) 一种具有温度补偿的自保护电路、预充电路及直流系统
CN113067457A (zh) 一种基于桥式电路的电流采样电路
CN209516620U (zh) 一种直流电源的输出保护电路
WO2023138161A1 (zh) 低边驱动电路及具有其的电子设备、车辆
CN209823402U (zh) 电机反向电动势开关保护电路
CN208369548U (zh) 一种igbt驱动保护电路
CN209448415U (zh) 一种用于驱动桥mosfet短路保护电路
CN218648795U (zh) 一种igbt过流保护电路
JPWO2022044123A5 (zh)
CN112952767A (zh) 一种检测mos管ds电压实现短路保护的电路及其方法
CN214380094U (zh) 一种伺服驱动器的输入电源防反接电路
CN221726225U (zh) 信号输出电路和安全激光雷达
CN220022318U (zh) 一种小型高性能直流电机驱动板
CN113359063B (zh) 带接反保护的开路检测电路
CN218850381U (zh) 一种异步电机控制系统过流硬件保护装置
CN218124677U (zh) Igbt过流保护电路
CN220473608U (zh) 一种利用单电源运放实现的充放双向电流检测电路
CN212115193U (zh) 马达恒速电路
CN116169633B (zh) 一种电流保护半导体电路
CN219999349U (zh) 一种pwm驱动信号的缓冲电路
CN221101288U (zh) 一种高精度防倒灌电流的54Voring电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745323

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18274468

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023546213

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022745323

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022745323

Country of ref document: EP

Effective date: 20230829