CN214380094U - 一种伺服驱动器的输入电源防反接电路 - Google Patents

一种伺服驱动器的输入电源防反接电路 Download PDF

Info

Publication number
CN214380094U
CN214380094U CN202023140280.6U CN202023140280U CN214380094U CN 214380094 U CN214380094 U CN 214380094U CN 202023140280 U CN202023140280 U CN 202023140280U CN 214380094 U CN214380094 U CN 214380094U
Authority
CN
China
Prior art keywords
power supply
mosfet
voltage
servo driver
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202023140280.6U
Other languages
English (en)
Inventor
王超
李卢毅
杨志达
姜哲
邹黎明
姚鹏飞
金鸿飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou Shuguang Opto Electronics Automatic Control Co ltd
Original Assignee
Yangzhou Shuguang Opto Electronics Automatic Control Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou Shuguang Opto Electronics Automatic Control Co ltd filed Critical Yangzhou Shuguang Opto Electronics Automatic Control Co ltd
Priority to CN202023140280.6U priority Critical patent/CN214380094U/zh
Application granted granted Critical
Publication of CN214380094U publication Critical patent/CN214380094U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Direct Current Motors (AREA)
  • Electronic Switches (AREA)
  • Inverter Devices (AREA)

Abstract

本实用新型公开了一种伺服驱动器的输入电源防反接电路,包括采样模块、比较模块、驱动模块和MOSFET;采样模块采集伺服驱动器的直流电源电压,输出至比较模块与阈值电压进行比较,输出相应电平信号至驱动模块,驱动模块根据输入的电平信号导通或关断MOSFET,MOSFET控制电路中的正向和反向电流通路,进而控制电机倒灌至直流电源的能量。本实用新型在进行防反接保护的基础上对电机倒灌至直流电源的能量进行了控制,解决在使用直流电源供电时电路功耗大或无法对电机倒灌至直流电源的能量进行控制的问题,提高了伺服驱动器的可靠性,且电路占用空间少,减小了伺服驱动器的体积。

Description

一种伺服驱动器的输入电源防反接电路
技术领域
本实用新型涉及电力电子技术领域,特别是一种伺服驱动器的输入电源防反接电路。
背景技术
在采用直流供电的伺服驱动器中,为了防止操作人员误将直流电源正负极反接从而对伺服驱动器造成致命性损坏,伺服驱动器内部一般设计安装有输入电源防反接电路。输入电源防反接电路通常仅形成单一的正向电流通路,因此当直流电源反接时,伺服驱动器中没有反向电流通路,也就不会造成伺服驱动器的损坏。
现有伺服驱动器输入电源防反接电路中最简单的一种是将二极管串联在供电回路中,如图1所示,该电路利用二极管的单向导通性来避免直流电源反接时的反向电流,但是在伺服驱动器正常运行的过程中,所有供电电流都流经该二极管造成二极管功耗过大,导致整个伺服驱动器效率降低,温升变快。
一种改进的伺服驱动器输入电源防反接电路是用MOSFET取代二极管串联到供电回路中,如图2所示,若直流电源反接,则该MOSFET没有驱动电压,从而保持关断状态,因此供电回路中没有反向电流通路,伺服驱动器不会损坏。仅当直流电源供电极性正确时,该MOSFET才会导通,此时供电电流全部流经MOSFET。考虑到MOSFET导通电阻很小,因此该方法相较于串联二极管的方法能够明显减小功率损耗。
但是,由于MOSFET的双向导通性,这种串联MOSFET的方法不能对在伺服驱动器正常运行时电机倒灌至直流电源的能量进行控制。若倒灌能量过多,则直流电源将发生损坏,影响系统的可靠性。
实用新型内容
本实用新型的目的在于提供一种功率损耗小、电路简单、可靠性高、体积小、成本低的电机驱动器输入电源防反接电路。
实现本实用新型目的的技术解决方案为:一种伺服驱动器的输入电源防反接电路,包括采样模块、比较模块、驱动模块和MOSFET;
所述采样模块,用于对伺服驱动器输入直流电源电压进行采样;
所述比较模块,用于将直流电源电压采样值与阈值进行比较,并输出比较结果;
所述驱动模块,用于根据比较结果来导通或关断MOSFET;
所述MOSFET导通时,电路中存在双向电流通路;所述MOSFET关断时,电路中仅存在正向电流通路。
进一步地,所述采样模块采用电阻分压的方式对伺服驱动器直流电源电压进行采样。
进一步地,所述比较模块采用迟滞比较器对直流电源电压采样结果和阈值电压进行比较,当直流电源电压高于正阈值时,比较器输出电平低于设定值;当直流电源电压低于负阈值时,比较器输出电平高于设定值。
进一步地,所述驱动模块采用集成驱动芯片,集成驱动芯片的输出端通过门极电阻和下拉电阻连接至MOSFET的门极;当输入信号电平低于设定值时,输出用于关断MOSFET的驱动电压;当输入信号电平高于设定值时,输出用于导通MOSFET的驱动电压。
进一步地,所述MOSFET采用N沟道MOSFET,N-MOSFET的漏极连接直流电源负极,源极连接后级负载负极,当驱动电压高于设定值时,MOSFET导通,电路中存在双向电流通路;当驱动电压低于设定值时,MOSFET关断,电路中仅存在正向电流通路。
本实用新型与现有及技术相比,其显著优点在于:(1)直流电源反接时,采样模块、比较模块、驱动模块皆无电源,MOSFET因为驱动端下拉电阻的存在而保持关断状态,使伺服驱动器中无反向电流通路,起到了防反接的作用;(2)直流电源连接正确,电机仅从直流电源吸收能量或电机倒灌至直流电源能量较少时,比较模块输出高电平,驱动模块导通MOSFET,所有供电电流流经MOSFET,利用MOSFET的低导通电阻特性,减小了功率损耗;(3)直流电源连接正确,电机倒灌太多能量至直流电源,导致直流电源电压升高时,则比较模块输出低电平,驱动模块关断MOSFET,此时正向电流仍能通过MOSFET的体并联二极管流过,而反向电流(倒灌电流)则无通路,因此保护了直流电源,提高了伺服驱动器的可靠性;(4)采用大电流MOSFET,体积小且功耗小,散热要求低,减小了伺服驱动器中防反接电路占用的空间,从而减小伺服驱动器体积,且电路简单可靠,成本低。
附图说明
图1是串联二极管的伺服驱动器输入电源防反接电路的结构示意图。
图2是串联MOSFET的伺服驱动器输入电源防反接电路的结构示意图。
图3是本实用新型一种伺服驱动器的输入电源防反接电路的结构示意图。
图4是本实用新型实施例中的伺服驱动器的输入电源防反接电路的结构示意图,其中(a)是电路原理图,(b)是结构示意图。
具体实施方式
结合图3,本实用新型一种伺服驱动器的输入电源防反接电路,包括采样模块、比较模块、驱动模块和MOSFET;
所述采样模块,用于对伺服驱动器输入直流电源电压进行采样,采集伺服驱动器的直流电源电压,其输出连接至比较模块的输入;
所述比较模块,用于将直流电源电压采样值与阈值进行比较,并输出比较结果,具体为:将直流电源采样电压与阈值电压进行比较,输出相应电平信号,该电平信号连接至驱动模块;
所述驱动模块,用于根据比较结果电平信号来导通或关断MOSFET;
所述MOSFET,控制电路中的正向和反向电流通路,进而控制电机倒灌至直流电源的能量;所述MOSFET导通时,电路中存在双向电流通路,电机既能够从直流电源吸收能量也能够倒灌能量至直流电源;所述MOSFET关断时,电路中仅存在正向电流通路,从而防止电机能量倒灌至直流电源。
进一步地,所述采样模块可使用如电阻分压采样、电压传感器采样等多种采样方式,只要能够将直流电源电压转换为适合后级输入的电压即可;
进一步地,所述比较模块可使用如单门限比较器、迟滞比较器等多种比较器,只要能够当直流电源电压过高时输出相应电平信号即可;
优选地,所述比较模块采用迟滞比较器对直流电源电压采样结果和阈值电压进行比较,当直流电源电压高于正阈值时,比较器输出电平低于设定值;当直流电源电压低于负阈值时,比较器输出电平高于设定值
进一步地,所述驱动模块可以采用分立元件搭建,也可以使用集成驱动芯片,只要能够根据输入电平信号确保MOSFET可靠导通或关断即可;
优选地,所述驱动模块采用集成驱动芯片,当输入信号电平低于设定值时,输出用于关断MOSFET的驱动电压;当输入信号电平高于设定值时,输出用于导通MOSFET的驱动电压。
进一步地,所述MOSFET可使用N-MOSFET或P-MOSFET,只要能够控制伺服驱动器中的电流通路即可,若使用N-MOSFET,则该MOSFET的D极(漏极)连接直流电源负极,S极(源极)连接后级负载负极,若使用P-MOSFET,则该MOSFET的D极(漏极)连接直流电源正极,S极(源极)连接后级负载正极;
优选地,所述MOSFET采用N沟道MOSFET,N-MOSFET的漏极连接直流电源负极,源极连接后级负载负极,当驱动电压高于设定值时,MOSFET导通,电路中存在双向电流通路;当驱动电压低于设定值时,MOSFET关断,电路中仅存在正向电流通路
本实用新型的具体工作流程如下:
1、若直流电源反接,则采样模块、比较模块、驱动模块皆无电源,MOSFET因为下拉电阻的存在保持关断状态,电路中无反向电流通路,因此直流电源反接不会损坏伺服驱动器,起到了防反接的作用。
2、直流电源连接正确,电机仅从直流电源吸收能量或电机倒灌至直流电源能量较少时,直流电源电压将处在合理范围,此时比较模块将采样模块采集到的电压与阈值进行比较,输出高电平,驱动模块根据输入的高电平产生合适的驱动电压使MOSFET导通,所有电机吸收或倒灌的电流均流经MOSFET,考虑到MOSFET导通电阻很小,因此功率损耗得到减小。
3、直流电源连接正确,电机倒灌至直流电源能量较多时,直流电源电压将被抬高至不合理范围,此时比较模块将采样模块采集到的电压与阈值进行比较,输出低电平,驱动模块根据输入的低电平产生合适的驱动电压使MOSFET关断,从而关闭了电路中倒灌电流的通路,电机能量不再倒灌至直流电源,保护了直流电源,提高了伺服驱动器的可靠性。而正向电流仍可以从MOSFET的体并联二极管流过,不影响电机从直流电源吸收能量。当直流电源电压恢复到合理范围内后,MOSFET将再次被导通,因此不影响伺服驱动器后续正常运行。
下面结合附图和具体实施例对本实用新型作进一步的详细说明。
实施例
本实施例以直流电源供电的低压伺服驱动器应用为例,要求具有直流电源防反接保护功能,且要求当直流电源电压因电机倒灌能量被抬高后需进行保护。
如图4(a)~(b)所示,在本实施例中,直流电源电压采样模块采用电阻分压采样的方式,采样模块输出电压Vdc_s与直流电源电压Vdc成比例关系:
Vdc_s=Vdc*R2/(R1+R2)
在本实施例中,比较模块采用迟滞比较器,采样模块的输出电压Vdc_s连接至比较器U1的反相输入端,参考电压Vref连接至比较器U1的同相输入端,反馈电阻Rf连接在比较器U1的同相输入端与输出端之间,构成迟滞比较器的形式。当Vdc_s逐渐增大时,一旦超过正阈值Vth+,则比较器输出低电平;当Vdc_s逐渐减小时,一旦小于负阈值Vth-,则比较器输出高电平:
Vth+=Vref+(Vcc-Vref)*R3/(R3+Rf+R4)
Vth-=Vref*Rf/(R3+Rf)
在本实施例中,驱动模块采用集成驱动芯片U2。比较模块输出信号Vcomp连接至该芯片的开关信号输入端,集成驱动芯片U2的输出端通过门极电阻Rg和下拉电阻R5连接至MOSFET的G极(门极)。若Vcomp为高电平,则集成驱动芯片U2输出Vg的电压等级为Vcc,峰值电流为2A;若Vcomp为低电平,则集成驱动芯片U2输出Vg的电压为0V。
在本实施例中,MOSFET采用N沟道MOSFET,Q1的D极(漏极)连接直流电源负极,S极(源极)连接后级负极,若驱动信号Vg的电压为Vcc,则该MOSFET导通,若驱动信号Vg的电压为0V,则该MOSFET关断。
若直流电源反接,则采样模块、比较模块和驱动模块皆无电源Vcc,由于下拉电阻R5的存在,Q1保持关断状态,电路中并无反向电流通路,因此直流电源反接不会损坏伺服驱动器,起到了防反接的作用。
若直流电源连接正确,电机仅从直流电源吸收能量或电机倒灌至直流电源能量较少时,直流电源电压Vdc将处在合理范围,此时采样模块输出电压Vdc_s电压较低,未超过正阈值电压Vth+,因此比较模块输出信号Vcomp为高电平,则集成驱动芯片U2输出电压等级为Vcc,峰值电流2A的驱动信号,Q1导通,所有电机吸收或倒灌的电流均流经Q1,考虑到Q1导通电阻很小,因此功率损耗得到减小。
若直流电源连接正确,电机倒灌至直流电源能量较多时,直流电源电压Vdc将被抬高至不合理范围,此时采样模块输出电压Vdc_s电压较高,超过了正阈值电压Vth+,因此比较模块输出信号Vcomp为低电平,则集成驱动芯片U2输出电压为0V的驱动信号,Q1关断,从而关闭了电路中反向电流通路,电机能量不再倒灌至直流电源,保护了直流电源,提高了伺服驱动器的可靠性。而正向电流仍可以从Q1的体并联二极管流过,不影响电机从直流电源吸收能量。当直流电源电压恢复到合理范围内后,采样模块输出电压Vdc_s将小于负阈值电压Vth-,MOSFET将再次被导通,因此不影响伺服驱动器后续正常运行。

Claims (5)

1.一种伺服驱动器的输入电源防反接电路,其特征在于,包括采样模块、比较模块、驱动模块和MOSFET;
所述采样模块,用于对伺服驱动器输入直流电源电压进行采样;
所述比较模块,用于将直流电源电压采样值与阈值进行比较,并输出比较结果;
所述驱动模块,用于根据比较结果来导通或关断MOSFET;
所述MOSFET导通时,电路中存在双向电流通路;所述MOSFET关断时,电路中仅存在正向电流通路。
2.根据权利要求1所述的伺服驱动器的输入电源防反接电路,其特征在于,所述采样模块采用电阻分压的方式对伺服驱动器直流电源电压进行采样。
3.根据权利要求1所述的伺服驱动器的输入电源防反接电路,其特征在于,所述比较模块采用迟滞比较器对直流电源电压采样结果和阈值电压进行比较,当直流电源电压高于正阈值时,比较器输出电平低于设定值;当直流电源电压低于负阈值时,比较器输出电平高于设定值。
4.根据权利要求1、2或3所述的伺服驱动器的输入电源防反接电路,其特征在于,所述驱动模块采用集成驱动芯片,集成驱动芯片的输出端通过门极电阻和下拉电阻连接至MOSFET的门极;当输入信号电平低于设定值时,输出用于关断MOSFET的驱动电压;当输入信号电平高于设定值时,输出用于导通MOSFET的驱动电压。
5.根据权利要求4所述的伺服驱动器的输入电源防反接电路,其特征在于,所述MOSFET采用N沟道MOSFET,N-MOSFET的漏极连接直流电源负极,源极连接后级负载负极,当驱动电压高于设定值时,MOSFET导通,电路中存在双向电流通路;当驱动电压低于设定值时,MOSFET关断,电路中仅存在正向电流通路。
CN202023140280.6U 2020-12-23 2020-12-23 一种伺服驱动器的输入电源防反接电路 Active CN214380094U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202023140280.6U CN214380094U (zh) 2020-12-23 2020-12-23 一种伺服驱动器的输入电源防反接电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202023140280.6U CN214380094U (zh) 2020-12-23 2020-12-23 一种伺服驱动器的输入电源防反接电路

Publications (1)

Publication Number Publication Date
CN214380094U true CN214380094U (zh) 2021-10-08

Family

ID=77987909

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202023140280.6U Active CN214380094U (zh) 2020-12-23 2020-12-23 一种伺服驱动器的输入电源防反接电路

Country Status (1)

Country Link
CN (1) CN214380094U (zh)

Similar Documents

Publication Publication Date Title
US9793260B2 (en) System and method for a switch having a normally-on transistor and a normally-off transistor
US6559689B1 (en) Circuit providing a control voltage to a switch and including a capacitor
TWI482402B (zh) 自舉型閘極驅動器
US8970265B2 (en) Systems and methods for driving a load under various power conditions
US9035635B2 (en) Using synchronous converter in asynchronous mode to prevent current reversal during battery charging
US7379282B1 (en) Input and output isolating diode for power dissipation reduction of power supplies
EP2350824B1 (en) System and method for emulating an ideal diode in a power control device
TW201535972A (zh) 半導體裝置
US20040070906A1 (en) Synchronous buck and boost regulator power reduction circuit using high side sensing
US11722053B2 (en) Over current protection concept for negative load current of power device gate drivers
CN109194126B (zh) 一种电源切换电路
US20180159520A1 (en) Active gate bias driver
CN214380094U (zh) 一种伺服驱动器的输入电源防反接电路
EP2672617A1 (en) A buck converter with reverse current protection, and a photovoltaic system
CN112615361A (zh) 一种伺服驱动器的输入电源防反接电路
CN116260315A (zh) 一种具备逐周电流检测型失效保护和氮化镓直驱能力的升降压转换器
CN213990523U (zh) 一种同步整流装置
CN210866051U (zh) 具有保护功能的感性线圈驱动电路
JP2020188673A (ja) 電気回路及び電源装置
US9882490B2 (en) Parallel high side switches for a buck converter
US8508205B2 (en) Buck DC-to-DC converter and method
JP2000184695A (ja) 電源装置
Broadmeadow et al. An improved gate driver for power MOSFETs using a cascode configuration
CN116760286B (zh) 一种开关电源驱动电路及开关电源
US20230370056A1 (en) Protection for switched electronic devices

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant