WO2022161226A1 - 一种膜片式开腔fp干涉光纤声波传感器及其制作方法 - Google Patents

一种膜片式开腔fp干涉光纤声波传感器及其制作方法 Download PDF

Info

Publication number
WO2022161226A1
WO2022161226A1 PCT/CN2022/072735 CN2022072735W WO2022161226A1 WO 2022161226 A1 WO2022161226 A1 WO 2022161226A1 CN 2022072735 W CN2022072735 W CN 2022072735W WO 2022161226 A1 WO2022161226 A1 WO 2022161226A1
Authority
WO
WIPO (PCT)
Prior art keywords
chitosan
sodium alginate
cavity
sleeve
optical fiber
Prior art date
Application number
PCT/CN2022/072735
Other languages
English (en)
French (fr)
Inventor
王文华
吴伟娜
熊正烨
师文庆
李思东
罗元政
谢玉萍
费贤翔
田秀云
王楚虹
陈芷珊
廖国健
Original Assignee
广东海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东海洋大学 filed Critical 广东海洋大学
Publication of WO2022161226A1 publication Critical patent/WO2022161226A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means

Definitions

  • the invention relates to the technical field of acoustic wave sensors, in particular to a diaphragm type open-cavity FP interference optical fiber acoustic wave sensor and a manufacturing method thereof.
  • the optical fiber sensor has electrical insulation, anti-electromagnetic interference, high sensitivity, high temperature resistance and corrosion resistance, passive sensor end, intrinsically safe, long-distance transmission without signal conversion and amplifier, and small size and light weight, so it is widely used in communications, civil engineering. , petrochemical, aerospace and other fields have a wide range of application prospects, the diaphragm Fabry-Perot interference fiber optic pressure sensor has great application potential in low-pressure environments because the diaphragm can sense very small pressure. In recent years, with the in-depth research and application of this type of diaphragm fiber optic sensor, it has been applied in the fields of liquid level and dam seepage pressure. However, in the field of dynamic pressure signal monitoring such as acoustic waves, due to the background pressure on the signal measurement Therefore, the influence of stagnation is greatly limited, and it also attracts researchers to study in this area, which has become a focus of people's attention.
  • the cavity length of the sensor FP Fabry-Pero, Fabry-Pero
  • the sensor's O The point (operating point) drifts accordingly. Therefore, in order to obtain the maximum sensitivity and linear response, and the direction of stripe change is not blurred, it is required to keep the position of point O at the midpoint of the linear interval in practical applications, otherwise it will cause the increase of sensor measurement error, decrease in sensitivity, output signal distortion, performance Therefore, the sensor must ensure that the O point does not drift with environmental factors (slowly changing pressure fluctuations, temperature changes, etc.) in practical applications. This is the measurement dynamic of the FP interference fiber optic pressure sensor. key issues when signaling.
  • the purpose of the present invention is to provide a diaphragm type open-cavity FP interference fiber optic acoustic wave sensor and a manufacturing method thereof, so as to solve the technical problems existing in the prior art, the manufacturing process is simple, fast, green and environmentally friendly, and can effectively eliminate the transmission caused by the background pressure.
  • the problem of drift of the operating point of the sensing system and the temperature-pressure cross-sensitivity problem caused by the thermal expansion of the residual air in the closed FP cavity improves the stability and reliability of the optical fiber sensing head.
  • the present invention provides a diaphragm-type open-cavity FP interference optical fiber acoustic wave sensor, comprising: an optical fiber, a sleeve, and a microporous membrane;
  • the optical fiber is inserted into the through hole, one end of the sleeve is provided with a pit, the microporous film is provided on the end face of the end of the sleeve with the pit, and the microporous film is
  • the membrane is provided with several micro-holes; the outer surface of the optical fiber is coated with optical ultraviolet glue.
  • the sleeve is a fused silica glass sleeve.
  • the microporous membrane is a chitosan microporous membrane.
  • the number of micropores is not more than two; there are no micropores on the microporous membrane corresponding to the center position of the pit.
  • the present invention also provides a method for manufacturing a diaphragm-type open-cavity FP interference optical fiber acoustic wave sensor, comprising the following steps:
  • step S4 Based on the chitosan solution prepared in step S2 and the sodium alginate with different particle sizes obtained in step S3, prepare a chitosan-sodium alginate mixed solution, and mix the chitosan-sodium alginate The solution is dried to obtain a chitosan-sodium alginate film;
  • the vertical error between the end face of the end face of the sleeve provided with the pit and the sleeve is not greater than 0.5°.
  • the method for preparing a chitosan solution with a preset concentration includes:
  • the size of the sodium alginate is 60-100 mesh or 30-60 mesh.
  • the preparation method of the chitosan-sodium alginate film includes:
  • the step S5 includes: adding a preset concentration of NaOH solution into the petri dish of the dried chitosan-sodium alginate film, and then taking out the chitosan-sodium alginate film and using it
  • the chitosan-sodium alginate film is shaken to dissolve the sodium alginate particles, and the prepared chitosan microporous film is obtained after being soaked and rinsed in deionized water until neutral, and then placed in boiling water for heat treatment.
  • the entire manufacturing process of the acoustic wave sensor of the present invention does not require chemical corrosion technology, is environmentally friendly, and the manufacturing process is simple and fast;
  • the present invention can effectively eliminate the problem of the working point drift of the sensing system caused by the background pressure and the temperature-
  • the cavity length of the Fabry-Perot cavity changes, which leads to the change of the sensor output signal.
  • due to the exhaust hole on the microporous membrane When the static or slowly changing background pressure acts on the diaphragm, it does not contribute to the deformation of the diaphragm, so it will not cause the change of the sensor output signal, which effectively improves the stability and reliability of the optical fiber sensor head.
  • FIG. 1 is a schematic structural diagram of a diaphragm-type open-cavity FP interference fiber acoustic sensor of the present invention
  • Fig. 2 is the flow chart of the preparation method of the diaphragm-type open-cavity FP interferometric optical fiber acoustic sensor of the present invention
  • FIG. 3 is a schematic diagram of the micropores on the microporous membrane in the embodiment of the present invention.
  • this embodiment provides a diaphragm-type open-cavity FP interferometric optical fiber acoustic wave sensor, including: an optical fiber, a sleeve, and a microporous membrane; the sleeve is provided with a through hole in the axial direction, and the optical fiber It is inserted into the through hole, one end of the sleeve is provided with a pit, the microporous film is arranged on the end face of the end of the sleeve with the pit, and the microporous film is provided with several The outer surface of the optical fiber is coated with optical ultraviolet glue.
  • the sleeve adopts fused silica glass sleeve.
  • the microporous membrane is prepared from a polymer material, and the polymer material has strong adhesion to the end face of the fused silica glass sleeve, so that the sensor is stable and reliable.
  • the microporous membrane is a chitosan microporous membrane.
  • the microporous membrane is provided with a number of micropores with a diameter of the order of microns, which are used as exhaust holes of the FP cavity to balance the static background pressure inside and outside the FP cavity and the pressure difference between the inside and outside of the cavity caused by changes in ambient temperature. Sonic signal pressure has no effect.
  • the number of micropores is not more than two; There are no micropores on the corresponding microporous membrane in the region).
  • the preparation method of the diaphragm-type open-cavity FP interferometric optical fiber acoustic wave sensor includes the following steps:
  • the outer diameter of the sleeve is 0.75-3mm, the length is 6-8mm, the pit is a conical pit, and the maximum depth of the pit is 0.5-1.5mm; the sleeve is a fused silica glass sleeve.
  • a chitosan solution with a preset concentration based on chitosan and acetic acid solution specifically, it includes:
  • chitosan dissolve it in 50-200ml of acetic acid solution with a concentration of 2%-5%, add 2-5 drops of defoaming agent at the same time, and then magnetically stir at room temperature for 3-5 hours, Until the chitosan is completely dissolved, prepare a chitosan solution with a concentration of 1%-3%. After the preparation is completed, let it stand, and wait until there are no air bubbles.
  • the acetic acid solution with a concentration of 2%-5% is made of distilled water and 36 % acetic acid solution for configuration.
  • the size of the sodium alginate is 60-100 mesh (that is, the diameter of the sodium alginate particles is about 250-150 ⁇ m) or 30-60 mesh (that is, the diameter of the sodium alginate particles is about 550-250 ⁇ m).
  • step S4 Based on the chitosan solution prepared in step S2 and the sodium alginate with different particle sizes obtained in step S3, prepare a chitosan-sodium alginate mixed solution, and mix the chitosan-sodium alginate The solution is dried to obtain a chitosan-sodium alginate film; it specifically includes:
  • the prepared chitosan-sodium alginate mixed solution was introduced into the petri dish, and when the solution had no bubbles and the thickness was uniform, put it in a drying vessel for 24 hours, or put it in an infrared drying oven at 50°C for 5 hours. hours, a chitosan-sodium alginate film was obtained.
  • the micropore diameter should not be too large, that is, the particle diameter of sodium alginate should not be too large, otherwise the dynamic pressure signal may be able to quickly balance the pressure inside and outside the cavity of the FP cavity, and the dynamic signal cannot be measured effectively;
  • the particle diameter of sodium should not be too small, otherwise, if the film thickness is slightly thicker, the sodium alginate particles may be wrapped inside the film, and the completely wrapped sodium alginate cannot be eluted in hot water, so it cannot form the of micropores.
  • the cavity length of the FP cavity is set according to the use requirements of the actual environment or experimental requirements; in the process of inserting the optical fiber coated with optical ultraviolet glue into the through hole of the sleeve, when the optical fiber reaches the preset cavity length Stop inserting the optical fiber, and fix the optical fiber into the through hole of the fused silica glass sleeve through high temperature curing; in this embodiment, the sensing signal demodulation device sm125 is used to determine whether the optical fiber reaches the preset cavity length.
  • the high-temperature curing is realized by UV light radiation; specifically, the UV lamp is set at a position 5-20 cm away from the sleeve, irradiated for 1-2 hours, and the optical fiber is fixed in the through hole of the fused silica glass sleeve. .
  • the working principle of the diaphragm-type open-cavity FP interference fiber optic acoustic wave sensor of the present invention is as follows:
  • the present invention ensures the pressure balance inside and outside the FP cavity through the open cavity structure, so that the O point of the sensor will not drift due to the slight fluctuation of the ambient pressure; the open cavity FP cavity also ensures that the pressure in the FP cavity increases when the ambient temperature increases.
  • the residual air will not squeeze the diaphragm outward due to thermal expansion, thus eliminating the cross-sensitivity of temperature and pressure caused by the thermal expansion of the residual air, and also eliminating the operating point drift caused by the change of the cavity length caused by the thermal expansion of the residual air extruding the diaphragm outward.
  • micropores are prepared on the film at one end of the sleeve, and the micropores provide better permeability for air particles such as oxygen.
  • the pressure outside the cavity reaches equilibrium, the deformation of the diaphragm is the smallest, and the cavity length is restored to the original cavity length. Therefore, the problem of the working point drift of the sensing system caused by the background pressure can be effectively eliminated through the chitosan microporous membrane energy source, and Temperature-pressure cross-sensitivity problem due to thermal expansion of residual air in a closed FP cavity.
  • the whole manufacturing process of the acoustic wave sensor of the present invention does not require a chemical corrosion process, which is environmentally friendly, and the manufacturing process is simple and fast; in addition, the present invention uses the open cavity structure and the micropores prepared on the film at one end of the sleeve to effectively eliminate the background pressure.
  • the cavity length of the cavity changes, which leads to the change of the sensor output signal.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Fluid Pressure (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

一种膜片式开腔FP干涉光纤声波传感器及其制作方法,传感器包括:光纤、套管、微孔膜;套管的轴向方向上设有通孔,光纤插接在通孔内,套管的一端设有凹坑,微孔膜设于套管设有凹坑的一端的端面上,微孔膜上设有若干个微孔;光纤外表面涂覆有光学紫外胶。传感器制作过程简单、快捷、绿色环保,能够有效消除背景压力引起的传感系统工作点漂移的问题以及由于密闭FP腔内残留空气热膨胀引起的温度-压力交叉敏感问题,提高了光纤传感头的稳定性、可靠性。

Description

一种膜片式开腔FP干涉光纤声波传感器及其制作方法 技术领域
本发明涉及声波传感器技术领域,特别是涉及一种膜片式开腔FP干涉光纤声波传感器及其制作方法。
背景技术
光纤传感器具有电绝缘、抗电磁干扰、灵敏度高、耐高温耐腐蚀、传感器端无源,本质安全,无需信号转换和放大器即可远距离传输,以及体积小、重量轻,因而在通信、土木工程、石油化工、航空航天等领域都有广泛的应用前景,膜片式法布里-珀罗干涉光纤压力传感器因为膜片可以感知非常微小的压力因而在低压环境具有巨大的应用潜力。近年来,随着这种膜片式光纤传感器的深入研究和应用,在液位、大坝渗压等领域已经开始应用,但是在诸如声波等动态压力信号监测领域,由于受到背景压力对信号测量的影响因而受到较大限制,同时也吸引科研人员在这方面的研究,成为人们的一个关注点。
对于动态压力信号的监测,当外界环境(温度、压力等)产生微小波动时,传感器FP(Fabry-Pero,法布里-珀罗)腔的腔长将发生相应的变化,此时传感器的O点(工作点)对应地发生漂移。因此,为了获得最大灵敏度以及线性响应、条纹变化方向不模糊,要求在实际应用时O点位置保持在线性区间的中点上,否则会造成传感器测量误差的增加、灵敏度下降、输出信号失真、性能下降甚至是条纹变化方向模糊而失效等,因此,传感器在实际应用中必须要保证O点不随环境因素(缓慢变化的压力波动、温度变化等因素)发生漂移,这是FP 干涉光纤压力传感器测量动态信号时的关键问题。
因此,有必要提供一种膜片式开腔FP干涉光纤声波传感器及其制作方法以解决O点漂移的问题。
发明内容
本发明的目的是提供一种膜片式开腔FP干涉光纤声波传感器及其制作方法,以解决现有技术中存在的技术问题,制作过程简单、快捷、绿色环保,能够有效消除背景压力引起的传感系统工作点漂移的问题、以及由于密闭FP腔内残留空气热膨胀引起的温度-压力交叉敏感问题,提高了光纤传感头的稳定性、可靠性。
为实现上述目的,本发明提供了如下方案:本发明提供一种膜片式开腔FP干涉光纤声波传感器,包括:光纤、套管、微孔膜;所述套管的轴向方向上设有通孔,所述光纤插接在所述通孔内,所述套管的一端设有凹坑,所述微孔膜设于所述套管设有凹坑的一端的端面上,所述微孔膜上设有若干个微孔;所述光纤外表面涂覆有光学紫外胶。
优选地,所述套管采用熔石英玻璃套管。
优选地,所述微孔膜采用壳聚糖微孔膜。
优选地,所述凹坑的内径所对应的微孔膜区域内,微孔的数量不大于两个;所述凹坑的中心位置所对应的微孔膜上不存在微孔。
本发明还提供一种膜片式开腔FP干涉光纤声波传感器的制作方法,包括如下步骤:
S1、获取一端设有凹坑的套管,并对所述套管进行磨砂抛光以及清洗处理;
S2、基于壳聚糖与醋酸溶液制备预设浓度的壳聚糖溶液;
S3、获取预设颗粒大小的海藻酸钠;
S4、基于步骤S2中制备好的壳聚糖溶液以及步骤S3中获取的不同颗粒大小的海藻酸钠,制备壳聚糖-海藻酸钠混合溶液,并对所述壳聚糖-海藻酸钠混合溶液进行烘干处理,得到壳聚糖-海藻酸钠薄膜;
S5、对所述壳聚糖-海藻酸钠薄膜进行处理后,溶出所述壳聚糖-海藻酸钠薄膜中的海藻酸钠颗粒,得到壳聚糖微孔膜;
S6、在所述套管设有凹坑一端的端面上涂覆一层经戊二醛交联的壳聚糖溶液,并将制备好的壳聚糖微孔膜粘接于所述套管设有凹坑一端的端面上;
S7、根据预设传感器FP腔的腔长,将光纤表面涂覆一层光学紫外胶,将涂覆有光学紫外胶的光纤插接到所述套管的通孔中,并进行固化处理,形成膜片式开腔FP干涉光纤声波传感器。
优选地,所述步骤S1中,所述套管设有凹坑一端的端面与所述套管的垂直误差不大于0.5°。
优选地,所述步骤S2中,预设浓度的壳聚糖溶液的制备方法包括:
称取0.75-3g壳聚糖,并将其溶解于50-200ml浓度为2%-5% 的醋酸溶液中,同时加入2-5滴除泡剂,然后在室温下进行磁力搅拌,直到壳聚糖完全溶解,配制成浓度为1%-3%的壳聚糖溶液。
优选地,所述步骤S3中,所述海藻酸钠的尺寸为60-100目或30-60目。
优选地,所述步骤S4中,壳聚糖-海藻酸钠薄膜的制备方法包括:
量取预设剂量的壳聚糖溶液至烧杯,并按照预设质量比称取海藻酸钠;搅拌烧杯中的壳聚糖溶液的同时撒入所述海藻酸钠,使所述海藻酸钠的颗粒之间不粘连,得到配置好的壳聚糖-海藻酸钠混合溶液;将配置好的壳聚糖-海藻酸钠混合溶液导入培养皿,并进行烘干处理,得到壳聚糖-海藻酸钠薄膜。
优选地,所述步骤S5包括:将预设浓度的NaOH溶液加入到烘干后的壳聚糖-海藻酸钠薄膜的培养皿内,然后将所述壳聚糖-海藻酸钠薄膜取出并使用去离子水浸泡冲洗至中性,再放入沸水中热处理后,震荡所述壳聚糖-海藻酸钠薄膜,使海藻酸钠颗粒溶出,得到制备好的壳聚糖微孔膜。
本发明公开了以下技术效果:
(1)本发明所述声波传感器的整个制作过程中无需化学腐蚀工艺,绿色环保,制作过程简单、快捷;
(2)本发明通过开腔结构以及套管一端的薄膜上所制备的微孔,能够有效消除背景压力引起的传感系统工作点漂移的问题、以及由于密闭FP腔内残留空气热膨胀引起的温度-压力交叉敏感问题;同时, 当外界动态压力变化作用于微孔膜时,引起法布里-珀罗腔的腔长变化,从而导致传感器输出信号的变化,同时,由于微孔膜上排气孔的存在,静态或缓慢变化的背景压力作用于膜片时,对膜片的形变没有贡献,因此不会引起传感器输出信号的变化,有效提高了光纤传感头的稳定性、可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明膜片式开腔FP干涉光纤声波传感器结构示意图;
图2为本发明膜片式开腔FP干涉光纤声波传感器制备方法流程图;
图3为本发明实施例中微孔膜上的微孔示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
参照图1所示,本实施例提供一种膜片式开腔FP干涉光纤声波传感器,包括:光纤、套管、微孔膜;所述套管的轴向方向上设有通孔,所述光纤插接在所述通孔内,所述套管的一端设有凹坑,所述微孔膜设于所述套管设有凹坑的一端的端面上,所述微孔膜上设有若干个微孔;所述光纤外表面涂覆有光学紫外胶。
其中,所述套管采用熔石英玻璃套管。
所述微孔膜由高分子材料制备而成,所述高分子材料对熔石英玻璃套管的端面粘性强,使传感器稳定、可靠。本实施例中,所述微孔膜采用壳聚糖微孔膜。
所述微孔膜上设有若干个微米量级直径的微孔,用作FP腔的排气孔,平衡FP腔内外的静态背景压力以及环境温度变化引起的腔内外压力差,但是对动态的声波信号压力不会产生影响。所述凹坑的内径所对应的微孔膜区域内,微孔的数量不大于两个;所述凹坑的中心位置(即以凹坑的中心为圆心,直径为0.05-0.15毫米的圆形区域内)所对应的微孔膜上不存在微孔。
参照图2所示,本发明所述膜片式开腔FP干涉光纤声波传感器的制备方法包括如下步骤:
S1、获取一端设有凹坑的套管,并对所述套管进行磨砂抛光以及清洗处理;
所述套管的外直径为0.75-3mm、长度6-8mm,凹坑为锥形凹坑,凹坑的最大深度为0.5-1.5mm;所述套管采用熔石英玻璃套管。
利用光线磨砂抛光机对所述套管设有凹坑一端的端面进行磨砂抛光处理,使所述端面与所述套管的垂直误差不大于0.5°;然后置于酒精溶液中超声波清洗2-5分钟,重复清洗2-3遍,随之100℃烘干1-2小时最后使用无水酒精将加工好的端面擦拭干净备用。
S2、基于壳聚糖与醋酸溶液制备预设浓度的壳聚糖溶液;具体包括:
称取0.75-3g壳聚糖,并将其溶解于50-200ml浓度为2%-5%的醋酸溶液中,同时加入2-5滴除泡剂,然后在室温下磁力搅拌3-5小时,直到壳聚糖完全溶解,配制成浓度为1%-3%的壳聚糖溶液,配制完成后静置,待没有气泡后备用;其中,浓度为2%-5%的醋酸溶液采用蒸馏水与36%的醋酸溶液进行配置。
S3、获取预设颗粒大小的海藻酸钠;
所述海藻酸钠的尺寸为60-100目(即海藻酸钠颗粒直径约250-150μm)或30-60目(即海藻酸钠颗粒直径约550-250μm)。
S4、基于步骤S2中制备好的壳聚糖溶液以及步骤S3中获取的不同颗粒大小的海藻酸钠,制备壳聚糖-海藻酸钠混合溶液,并对所述壳聚糖-海藻酸钠混合溶液进行烘干处理,得到壳聚糖-海藻酸钠薄膜;具体包括:
首先,量取10ml配制好的壳聚糖溶液(即含0.15g壳聚糖)至烧杯,将步骤S3中筛选出来的各种目数的海藻酸钠,按照壳聚糖与海 藻酸钠10:2-10:4的质量比例称取相应重量的海藻酸钠;
其次,搅拌烧杯中的壳聚糖溶液,同时往里缓慢、均匀地撒入所选定目数的海藻酸钠,使其颗粒不粘连、在壳聚糖溶液中分布均匀,得到配置好的壳聚糖-海藻酸钠混合溶液;
再次,将配置好的壳聚糖-海藻酸钠混合溶液导入培养皿,待溶液无气泡且厚度均匀时放入干燥器皿中持续干燥24小时,或者放入红外干燥箱中50℃持续烘干5小时,得到壳聚糖-海藻酸钠薄膜。
S5、对所述壳聚糖-海藻酸钠薄膜进行处理后,溶出所述壳聚糖-海藻酸钠薄膜中的海藻酸钠颗粒,得到壳聚糖微孔膜;具体包括:
将3-6%的NaOH溶液加入到烘干后的壳聚糖-海藻酸钠薄膜的培养皿内,中和薄膜中过量的醋酸;然后将薄膜取出并使用去离子水反复浸泡冲洗至中性,再放入沸水中热处理4小时,并震荡壳聚糖-海藻酸钠薄膜,使海藻酸钠颗粒溶出,得到制备好的壳聚糖微孔膜;最后将制备好的壳聚糖微孔膜放入红外干燥箱中30℃干燥3小时后取出保存备用。
为了确保传感器的有效,微孔孔径不能太大,即海藻酸钠的颗粒直径不宜过大,否则动态压力信号可能能够快速平衡FP腔的腔内外压力,无法对动态信号有效测量;另外,海藻酸钠的颗粒直径也不能太小,否则薄膜厚度稍微厚一点就可能将海藻酸钠颗粒包裹在薄膜内部,被包裹完整的海藻酸钠不能在热水中将其洗脱出来,从而不能形成所需要的微孔。
S6、在所述套管设有凹坑一端的端面上涂覆一层经戊二醛交联的 壳聚糖溶液,并将制备好的壳聚糖微孔膜粘接于所述套管设有凹坑一端的端面上;具体包括:
在锥形凹坑端面上涂上一层很薄的经戊二醛交联的壳聚糖溶液,然后迅速将微孔膜置于锥形凹坑端面并将其紧压约10-15分钟,并将粘接有微孔膜的套管移至红外干燥箱中50℃持续干燥5小时。
由于薄膜内表面的圆心区域需要对光纤的出射光束进行反射,因此,微孔位置远离锥形凹坑内径平面的中心位置,并且在凹坑内径平面上最多只有两个微孔,如图3所示。
S7、根据预设传感器FP腔的腔长,将光纤表面涂覆一层光学紫外胶,将涂覆有光学紫外胶的光纤插接到所述套管的通孔中,并进行固化处理,形成膜片式开腔FP干涉光纤声波传感器;
其中,FP腔的腔长根据实际环境的使用需求或者实验需求进行设定;将涂覆有光学紫外胶的光纤插接到所述套管的通孔的过程中,光纤达到预设腔长时停止插入光纤,通过高温固化将光纤固定到熔石英玻璃套管的通孔内;本实施例中,采用传感信号解调装置sm125来判断光纤是否达到预设腔长。另外,高温固化通过UV光辐射来实现;具体为:将UV灯设置在距离所述套管5-20厘米的位置,照射1-2小时,将光纤固定到熔石英玻璃套管的通孔内。
本发明膜片式开腔FP干涉光纤声波传感器的工作原理如下:
首先,本发明通过开腔结构确保FP腔内外的压力平衡,从而使得传感器的O点不会因为环境压力的微小波动而发生漂移;开腔式的FP腔也保证了环境温度升高时FP腔内的残留空气不会因为热膨胀而 向外挤压膜片,从而消除了残留空气热膨胀引起的温度压力交叉敏感性,也消除了残留空气热膨胀向外挤压膜片引起腔长变化而导致的工作点漂移。
其次,本发明在套管一端的薄膜上制备微孔,微孔对氧气等空气粒子提供较好的透过率,当空气通过微孔进入FP腔使得膜片两侧(即FP腔的腔内腔外)的压力达到平衡时,膜片的变形量最小,腔长恢复到原始腔长,因此,通过壳聚糖微孔膜能源有效消除背景压力引起的传感系统工作点漂移的问题、以及由于密闭FP腔内残留空气热膨胀引起的温度-压力交叉敏感问题。
本发明具有如下有益效果:
本发明所述声波传感器的整个制作过程中无需化学腐蚀工艺,绿色环保,制作过程简单、快捷;另外,本发明通过开腔结构以及套管一端的薄膜上所制备的微孔,能源有效消除背景压力引起的传感系统工作点漂移的问题、以及由于密闭FP腔内残留空气热膨胀引起的温度-压力交叉敏感问题;同时,当外界动态压力变化作用于微孔膜时,引起法布里-珀罗腔的腔长变化,从而导致传感器输出信号的变化,同时,由于微孔膜上排气孔的存在,静态或缓慢变化的背景压力作用于膜片时,对膜片的形变没有贡献,因此不会引起传感器输出信号的变化,有效提高了光纤传感头的稳定性、可靠性。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本 发明权利要求书确定的保护范围内。

Claims (10)

  1. 一种膜片式开腔FP干涉光纤声波传感器,其特征在于,包括:光纤、套管、微孔膜;所述套管的轴向方向上设有通孔,所述光纤插接在所述通孔内,所述套管的一端设有凹坑,所述微孔膜设于所述套管设有凹坑的一端的端面上,所述微孔膜上设有若干个微孔;所述光纤外表面涂覆有光学紫外胶。
  2. 根据权利要求1所述的膜片式开腔FP干涉光纤声波传感器,其特征在于,所述套管采用熔石英玻璃套管。
  3. 根据权利要求1所述的膜片式开腔FP干涉光纤声波传感器,其特征在于,所述微孔膜采用壳聚糖微孔膜。
  4. 根据权利要求3所述的膜片式开腔FP干涉光纤声波传感器,其特征在于,所述凹坑的内径所对应的微孔膜区域内,微孔的数量不大于两个;所述凹坑的中心位置所对应的微孔膜上不存在微孔。
  5. 根据权利要求4所述的膜片式开腔FP干涉光纤声波传感器的制作方法,其特征在于,包括如下步骤:
    S1、获取一端设有凹坑的套管,并对所述套管进行磨砂抛光以及清洗处理;
    S2、基于壳聚糖与醋酸溶液制备预设浓度的壳聚糖溶液;
    S3、获取预设颗粒大小的海藻酸钠;
    S4、基于步骤S2中制备好的壳聚糖溶液以及步骤S3中获取的不同颗粒大小的海藻酸钠,制备壳聚糖-海藻酸钠混合溶液,并对所述壳聚糖-海藻酸钠混合溶液进行烘干处理,得到壳聚糖-海藻酸钠薄 膜;
    S5、对所述壳聚糖-海藻酸钠薄膜进行处理后,溶出所述壳聚糖-海藻酸钠薄膜中的海藻酸钠颗粒,得到壳聚糖微孔膜;
    S6、在所述套管设有凹坑一端的端面上涂覆一层经戊二醛交联的壳聚糖溶液,并将制备好的壳聚糖微孔膜粘接于所述套管设有凹坑一端的端面上;
    S7、根据预设传感器FP腔的腔长,将光纤表面涂覆一层光学紫外胶,将涂覆有光学紫外胶的光纤插接到所述套管的通孔中,并进行固化处理,形成膜片式开腔FP干涉光纤声波传感器。
  6. 根据权利要求5所述的膜片式开腔FP干涉光纤声波传感器的制作方法,其特征在于,所述步骤S1中,所述套管设有凹坑一端的端面与所述套管的垂直误差不大于0.5°。
  7. 根据权利要求5所述的膜片式开腔FP干涉光纤声波传感器的制作方法,其特征在于,所述步骤S2中,预设浓度的壳聚糖溶液的制备方法包括:
    称取0.75-3g壳聚糖,并将其溶解于50-200ml浓度为2%-5%的醋酸溶液中,同时加入2-5滴除泡剂,然后在室温下进行磁力搅拌,直到壳聚糖完全溶解,配制成浓度为1%-3%的壳聚糖溶液。
  8. 根据权利要求5所述的膜片式开腔FP干涉光纤声波传感器的制作方法,其特征在于,所述步骤S3中,所述海藻酸钠的尺寸为60-100目或30-60目。
  9. 根据权利要求5所述的膜片式开腔FP干涉光纤声波传感器的制作方法,其特征在于,所述步骤S4中,壳聚糖-海藻酸钠薄膜的制备方法包括:
    量取预设剂量的壳聚糖溶液至烧杯,并按照预设质量比称取海藻酸钠;搅拌烧杯中的壳聚糖溶液的同时撒入所述海藻酸钠,使所述海藻酸钠的颗粒之间不粘连,得到配置好的壳聚糖-海藻酸钠混合溶液;将配置好的壳聚糖-海藻酸钠混合溶液导入培养皿,并进行烘干处理,得到壳聚糖-海藻酸钠薄膜。
  10. 根据权利要求9所述的膜片式开腔FP干涉光纤声波传感器的制作方法,其特征在于,所述步骤S5包括:将预设浓度的NaOH溶液加入到烘干后的壳聚糖-海藻酸钠薄膜的培养皿内,然后将所述壳聚糖-海藻酸钠薄膜取出并使用去离子水浸泡冲洗至中性,再放入沸水中热处理后,震荡所述壳聚糖-海藻酸钠薄膜,使海藻酸钠颗粒溶出,得到制备好的壳聚糖微孔膜。
PCT/CN2022/072735 2021-01-27 2022-01-19 一种膜片式开腔fp干涉光纤声波传感器及其制作方法 WO2022161226A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110110351.8 2021-01-27
CN202110110351.8A CN112945860B (zh) 2021-01-27 2021-01-27 一种膜片式开腔fp干涉光纤声波传感器及其制作方法

Publications (1)

Publication Number Publication Date
WO2022161226A1 true WO2022161226A1 (zh) 2022-08-04

Family

ID=76237727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072735 WO2022161226A1 (zh) 2021-01-27 2022-01-19 一种膜片式开腔fp干涉光纤声波传感器及其制作方法

Country Status (3)

Country Link
CN (1) CN112945860B (zh)
LU (1) LU501969B1 (zh)
WO (1) WO2022161226A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112945860B (zh) * 2021-01-27 2021-11-16 广东海洋大学 一种膜片式开腔fp干涉光纤声波传感器及其制作方法
CN113340492A (zh) * 2021-07-07 2021-09-03 中北大学 光纤法珀压力传感器及其敏感单元的批量化制备方法
CN113916438B (zh) * 2021-12-08 2022-02-25 广东海洋大学 消除温度干扰的法珀干涉光纤压力传感器及其制作方法
CN115855232B (zh) * 2023-02-24 2023-06-23 青岛哈尔滨工程大学创新发展中心 一种鱼鳔仿生水陆两用型光纤海洋声学传感器
CN117470288B (zh) * 2023-11-02 2024-04-16 广东海洋大学 膜片式法珀干涉与fbg复用的光纤传感器批量制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050195402A1 (en) * 2004-03-04 2005-09-08 Russell May Crystalline optical fiber sensors for harsh environments
CN102879136A (zh) * 2011-07-11 2013-01-16 广东海洋大学 壳聚糖薄膜高性能光纤压力传感头及其制作方法
CN103146036A (zh) * 2013-03-02 2013-06-12 福建农林大学 一种食品包装用高强度高抗菌性海藻酸钠膜及其制备方法
US8559770B2 (en) * 2005-03-02 2013-10-15 Fiso Technologies Inc. Fabry-perot optical sensor and method of manufacturing the same
CN104596559A (zh) * 2015-01-21 2015-05-06 哈尔滨工业大学深圳研究生院 一种基于微孔光学反射隔膜的光纤f-p多功能传感器
CN106362604A (zh) * 2016-11-24 2017-02-01 陕西聚洁瀚化工有限公司 聚电解质涂层和纳米纤维膜复合滤膜的制备方法
CN110487454A (zh) * 2019-09-18 2019-11-22 大连理工大学 一种微型膜片式光纤端部fp压力传感器、制作方法及应用
CN112945860A (zh) * 2021-01-27 2021-06-11 广东海洋大学 一种膜片式开腔fp干涉光纤声波传感器及其制作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993661A (en) * 1997-04-14 1999-11-30 The Research Foundation Of State University Of New York Macroporous or microporous filtration membrane, method of preparation and use
CN104880267A (zh) * 2015-05-28 2015-09-02 北京理工大学 一种光纤微纳法珀干涉型压力传感器及其制作方法
CN107817043B (zh) * 2017-09-22 2019-09-17 暨南大学 一种空气微腔式光纤水听器及制作方法和信号检测方法
CN110186548A (zh) * 2019-05-13 2019-08-30 天津大学 基于光纤微结构膜片的光纤f-p声传感器及其制作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050195402A1 (en) * 2004-03-04 2005-09-08 Russell May Crystalline optical fiber sensors for harsh environments
US8559770B2 (en) * 2005-03-02 2013-10-15 Fiso Technologies Inc. Fabry-perot optical sensor and method of manufacturing the same
CN102879136A (zh) * 2011-07-11 2013-01-16 广东海洋大学 壳聚糖薄膜高性能光纤压力传感头及其制作方法
CN103146036A (zh) * 2013-03-02 2013-06-12 福建农林大学 一种食品包装用高强度高抗菌性海藻酸钠膜及其制备方法
CN104596559A (zh) * 2015-01-21 2015-05-06 哈尔滨工业大学深圳研究生院 一种基于微孔光学反射隔膜的光纤f-p多功能传感器
CN106362604A (zh) * 2016-11-24 2017-02-01 陕西聚洁瀚化工有限公司 聚电解质涂层和纳米纤维膜复合滤膜的制备方法
CN110487454A (zh) * 2019-09-18 2019-11-22 大连理工大学 一种微型膜片式光纤端部fp压力传感器、制作方法及应用
CN112945860A (zh) * 2021-01-27 2021-06-11 广东海洋大学 一种膜片式开腔fp干涉光纤声波传感器及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANG, LIQIN: "Chitosan Membranes Used for Bilirubin Removal", JOURNAL OF CHEMICAL ENGINEERING OF CHINESE UNIVERSITIES, vol. 17, no. 2, 30 April 2003 (2003-04-30), pages 128 - 133, XP055955860 *

Also Published As

Publication number Publication date
CN112945860B (zh) 2021-11-16
LU501969B1 (en) 2022-08-11
CN112945860A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
WO2022161226A1 (zh) 一种膜片式开腔fp干涉光纤声波传感器及其制作方法
WO2021052123A1 (zh) 一种微型膜片式光纤端部fp压力传感器、制作方法及应用
Chen et al. Highly sensitive humidity sensor with low-temperature cross-sensitivity based on a polyvinyl alcohol coating tapered fiber
CN102879136B (zh) 壳聚糖薄膜高性能光纤压力传感头及其制作方法
CN102942354B (zh) 一种透光型气凝胶制备方法
CN110511569B (zh) 一种基于带刺空心碳微球超灵敏度压力传感薄膜及其制备方法
Fricke Aerogels
WO2023103373A1 (zh) 消除温度干扰的法珀干涉光纤压力传感器及其制作方法
CN106643901B (zh) 超高温光纤f-p温度压力复合传感器与系统
CN108254107A (zh) 一种石墨烯压力传感系统
CN112213021B (zh) 一种基于光纤珐珀的差压传感系统及其检测方法
CN112897980A (zh) 一种纤维增强二氧化硅气凝胶隔热材料的制备方法
Hou et al. Ultra-sensitive optical fiber humidity sensor via Au-film-assisted polyvinyl alcohol micro-cavity and Vernier effect
Zhang et al. Sensitivity amplification of bubble-based all-silica fiber liquid-pressure sensor by using femtosecond laser exposure
Sui et al. Optical fiber relative humidity sensor based on Fabry-Perot interferometer coated with sodium-p-styrenesulfonate/allyamine hydrochloride films
CN113970348B (zh) 一种基于级联f-p干涉仪的多参量光纤传感器
Cui et al. PMMA-coated SMF–CLF–SMF-cascaded fiber structure and its humidity sensing characteristics
CN107935406B (zh) 二氧化硅增透膜的制备方法
CN211292688U (zh) 一种具有根状电极结构的湿度传感器
CN113049181A (zh) 一种光纤法布里—珀罗真空计的制作方法
CN112051237A (zh) 一种用于检测禽流感病毒的生物传感器及其制备方法
CN109085145A (zh) 一种荧光传感薄膜及其制备方法和爆炸物探测仪
CN110907507A (zh) 一种具有根状电极结构的湿度传感器
Zhou et al. Moisture sensitive composite fiber based on agarose gel surface modification
CN212207248U (zh) 甲醛反应池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745101

Country of ref document: EP

Kind code of ref document: A1