CN106643901B - 超高温光纤f-p温度压力复合传感器与系统 - Google Patents

超高温光纤f-p温度压力复合传感器与系统 Download PDF

Info

Publication number
CN106643901B
CN106643901B CN201611246502.8A CN201611246502A CN106643901B CN 106643901 B CN106643901 B CN 106643901B CN 201611246502 A CN201611246502 A CN 201611246502A CN 106643901 B CN106643901 B CN 106643901B
Authority
CN
China
Prior art keywords
temperature
pressure
sensitive chamber
fiber
sapphire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611246502.8A
Other languages
English (en)
Other versions
CN106643901A (zh
Inventor
童杏林
杨华东
张宝林
邓承伟
张翠
曹驰
刘访
郑志远
吴轶豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201611246502.8A priority Critical patent/CN106643901B/zh
Publication of CN106643901A publication Critical patent/CN106643901A/zh
Application granted granted Critical
Publication of CN106643901B publication Critical patent/CN106643901B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35312Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot

Abstract

本发明涉及光纤传感器技术领域,具体指超高温光纤F‑P温度压力复合传感器与系统;复合传感器与系统包括宽带光源、复合探头、耦合器、信号解调单元和处理终端,所述耦合器通过石英光纤分别与宽带光源和信号解调单元连接,耦合器与复合探头之间通过蓝宝石光纤连接;所述复合探头包括耐高温壳体和光学校准器,耐高温壳体内设有蓝宝石基底制作的温压复合谐振腔,光学校准器的前端穿过耐高温壳体进而与温压复合谐振腔对应设置;本发明结构合理,满足1200℃以上超高温环境的温度和压力测量,温度测定值可以补偿压力腔的腔长变化,有效提高压力值测定的精确度。

Description

超高温光纤F-P温度压力复合传感器与系统
技术领域
本发明涉及光纤传感器技术领域,具体指超高温光纤F-P温度压力复合传感器与系统。
背景技术
微机电系统(MEMS),也叫做微电子机械系统、微系统、微机械等,是在微电子技术(半导体制造技术)基础上发展起来的,融合了光刻、腐蚀、薄膜、LIGA、硅微加工、非硅微加工和精密机械加工等技术制作的高科技电子机械器件。MEMS是一个独立的智能系统,具有微型化、智能化、多功能、高集成度和适于大批量生产等基本特点。其系统尺寸在几毫米乃至更小,其内部结构一般在微米甚至纳米量级。光纤传感技术作为一种新型的传感技术,具有传统电学传感无法比拟的优势,如:测量精度高、测量动态范围大、响应速度快、不受电磁干扰、防爆防燃、防腐蚀、易于远距离测量和复用、尺寸小、结构简单、机械强度高等。因此,光纤传感器在化工、桥梁、航空、军事等得到广泛的应用。将MEMS技术和光纤传感技术结合制作的光纤MEMS传感器具有尺寸小、易于工业化生产、测量精度高、耐腐蚀耐高温等诸多优势,具有巨大的应用前景。
高温传感器一直是传感器应用领域的难点,同时也是研究的重点。目前,传统电类传感器如热电偶等测量温度一般为几百度,特殊材料制作的可以达到1000多度,但其成本较高,且在上述易燃易爆环境下并不适用,也存在电磁干扰导致测量精度不高等问题,普通光纤光栅类传感器如公开号CN101046412,公开了一种光纤光栅高温传感系统,采用两个热膨胀系数不同、长度不同的金属条和光纤光栅制作成传感探头,其有效提高了光纤光栅本身温度测量的局限性,且具有抗电磁干扰和本征防爆的特点,但最高测量温度只达到600°,无法满足超高温环境下物理参数测量的需求。因此,现有技术还有待于改进和发展。
发明内容
针对以上问题,本发明提供了一种结构合理、稳定可靠、精确度高的超高温光纤F-P温度压力复合传感器与系统。
为了实现上述目的,本发明采用的技术方案如下:
本发明所述的超高温光纤F-P温度压力复合传感器与系统,包括宽带光源、复合探头、耦合器、信号解调单元和处理终端,所述耦合器通过石英光纤分别与宽带光源和信号解调单元连接,信号解调单元与处理终端连接,耦合器与复合探头之间通过蓝宝石光纤连接;所述复合探头包括耐高温壳体和光学校准器,耐高温壳体内设有蓝宝石基底制作的温压复合谐振腔,光学校准器的前端穿入耐高温壳体进而与温压复合谐振腔对应设置,蓝宝石光纤的前端穿设于光学校准器内。
进一步而言,所述耐高温壳体的前端设有安装槽,温压复合谐振腔嵌设于安装槽内,且温压复合谐振腔与耐高温壳体之间粘接有耐高温无机胶;所述光学校准器从耐高温壳体后端穿入安装槽且与温压复合谐振腔对应设置,耐高温壳体上设有与光学校准器固定连接的合金螺钉。
进一步而言,所述温压复合谐振腔包括温敏腔和压敏腔,温敏腔和压敏腔均为蓝宝石基制备而来;所述温敏腔的前后两端均为光学平面进而构成本征型蓝宝石F-P腔,压敏腔的后端面为光学平面,压敏腔的后端面上设有凹槽,且温敏腔的前端面与压敏腔的后端面键合连接从而使凹槽构成非本征型空气F-B腔。
进一步而言,所述蓝宝石光纤的前端穿设于光学校准器内且与温敏腔的后端面对应设置,蓝宝石光纤的前端具有抛磨成型面,抛磨成型面为5-8°的光学斜面或曲面透镜结构。
本发明还提供了一种蓝宝石基F-P谐振腔的制备工艺,其步骤如下:
步骤1,将蓝宝石基底切割出温敏腔和压敏腔所需的规格毛片,再在压敏腔毛片上腐蚀一个凹槽,将两个毛片分别进行抛磨;
步骤2,对两个温敏腔和压敏腔进行亲水预处理;
步骤3,将温敏腔的前端光学平面与压敏腔后端面对接;
步骤4,将温敏腔和压敏腔进行低温预键合;
步骤5,将经过预键合的温敏腔和压敏腔进行高温扩散键合。
本发明有益效果为:本发明结构合理,复合探头采用耐高温材料封装制作,蓝宝石基底采用MEMS工艺制作的本征型蓝宝石F-P腔和非本征型空气F-B腔,可实现结构的微型化和批量加工,满足1200℃以上超高温环境的温度和压力测量,纯光探测反馈信号采用相位解调方式解析,温度测定值可以补偿压力腔的腔长变化,可以有效提高压力值测定的精确度。
附图说明
图1是本发明的整体结构示意图;
图2是本发明的复合探头内部放大结构示意图。
图中:
1、宽带光源;2、耦合器;3、信号解调单元;4、耐高温壳体;5、温压复合谐振腔;21、石英光纤;22、蓝宝石光纤;23、抛磨成型面;31、处理终端;41、光学校准器;42、合金螺钉;43、耐高温无机胶;44、合金螺钉;51、温敏腔;52、压敏腔;53、凹槽。
具体实施方式
下面结合附图与实施例对本发明的技术方案进行说明。
如图1、图2所示,本发明所述的超高温光纤F-P温度压力复合传感器与系统,包括宽带光源1、复合探头、耦合器2、信号解调单元3和处理终端31,所述耦合器2通过石英光纤21分别与宽带光源1和信号解调单元3连接,信号解调单元3与处理终端31连接,耦合器2与复合探头之间通过蓝宝石光纤22连接;所述复合探头包括耐高温壳体4和光学校准器41,耐高温壳体4内设有蓝宝石基底制作的温压复合谐振腔5,光学校准器41的前端穿入耐高温壳体4进而与温压复合谐振腔5对应设置,蓝宝石光纤22的前端穿设于光学校准器41内;上述部件构成本发明的主体结构,宽带光源1发出的光依次经过石英光纤21、耦合器2、蓝宝石光纤22进入温压复合谐振腔5产生干涉信号,干涉信号由温压复合谐振腔5反射依次经过蓝宝石光纤22、耦合器2、石英光纤21传输给信号解调单元3进行腔长解调,再由处理终端31解析并显示温度和压力测定值;所述复合探头整体采用耐高温材料制作,且温压复合谐振腔5由蓝宝石基底制作,从而可在1200℃以上环境中实现温度压力检测,F-P温压复合谐振腔5测定温度值可以补偿压力腔受温度影响产生的腔长变化,从而可获得更精确的压力测定值。
更具体而言,所述耐高温壳体4的前端设有安装槽42,温压复合谐振腔5嵌设于安装槽42内,且温压复合谐振腔5与耐高温壳体4之间粘接有耐高温无机胶43;所述光学校准器41从耐高温壳体4后端穿入安装槽42且与温压复合谐振腔5对应设置,耐高温壳体4上设有与光学校准器41固定连接的合金螺钉44,所述耐高温壳体4、合金螺钉44和耐高温无机胶43均可耐受1200℃以上的高温高压环境,所述安装槽43用于嵌装和定位温压复合谐振腔5从而使其与光学校准器41配对,光学校准器41通过合金螺钉44固定在耐高温壳体4上。
更具体而言,所述温压复合谐振腔5包括温敏腔51和压敏腔52,温敏腔51和压敏腔52均为蓝宝石基制备而来;所述温敏腔51的前后两端均为光学平面进而构成本征型蓝宝石F-P腔,压敏腔52的后端面为光学平面,压敏腔52的后端面上设有凹槽53,且温敏腔51的前端面与压敏腔52的后端面键合连接从而使凹槽53构成非本征型空气F-B腔;所述温敏腔51和压敏腔52均为蓝宝石基材制备从而使其本身能耐受超过1200℃的环境,温敏腔51和压敏腔52为配对结构且分别通过MEMS工艺切割、抛磨、腐蚀而成,其中压敏腔52的对接面上蚀刻有凹槽53,且温敏腔51和压敏腔52之间的对接面均抛磨呈光学平面,从而二者对接键合后形成内部含空腔的一体结构,所述宽带光源1发出的光进入温敏腔51构成的本征型蓝宝石F-P腔和压敏腔52构成的非本征型空气F-B腔,产生的干涉信号反射回信号解调单元3,通过对漫反射干涉信号解析获得相应的温度测定值和压力测定值,进而再对压力腔受到的温度干涉造成的腔长变化进行弥补,从而获得精确度更高的压力值。
更具体而言,所述蓝宝石光纤22的前端穿设于光学校准器41内且与温敏腔51的后端面对应设置,蓝宝石光纤22的前端具有抛磨成型面23,抛磨成型面23为5-8°的光学斜面或曲面透镜结构;所述蓝宝石光纤22的前端与温敏腔51后端面相对从而构成光线的进出路径,蓝宝石光纤22的前端穿设于光学校准器41内且由耐高温无机胶43固定,抛磨成型面23可消除蓝宝石光纤22的端面与温敏腔51之间形成F-P腔造成信号干涉的问题。
本发明还提供了上述蓝宝石基F-P谐振腔的制备工艺,其步骤如下:
步骤1,将蓝宝石基底切割出温敏腔51和压敏腔52所需的规格毛片,再在压敏腔52毛片上腐蚀一个凹槽53,将两个毛片分别进行抛磨;
步骤2,对两个温敏腔51和压敏腔52进行亲水预处理;
步骤3,将温敏腔51的前端光学平面与压敏腔52后端面对接;
步骤4,将温敏腔51和压敏腔52进行低温预键合;
步骤5,将经过预键合的温敏腔51和压敏腔52进行高温扩散键合。
以上结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护范围之内。

Claims (4)

1.超高温光纤F-P温度压力复合传感器系统,包括宽带光源(1)、复合探头、耦合器(2)、信号解调单元(3)和处理终端(31),其特征在于:所述耦合器(2)通过石英光纤(21)分别与宽带光源(1)和信号解调单元(3)连接,信号解调单元(3)与处理终端(31)连接,耦合器(2)与复合探头之间通过蓝宝石光纤(22)连接;所述复合探头包括耐高温壳体(4)和光学校准器(41),耐高温壳体(4)内设有蓝宝石基底制作的温压复合谐振腔(5),光学校准器(41)的前端穿入耐高温壳体(4)进而与温压复合谐振腔(5)对应设置,蓝宝石光纤(22)的前端穿设于光学校准器(41)内;
所述温压复合谐振腔(5)包括温敏腔(51)和压敏腔(52),温敏腔(51)和压敏腔(52)均为蓝宝石基制备而来;所述温敏腔(51)的前后两端均为光学平面进而构成本征型蓝宝石F-P腔,压敏腔(52)的后端面为光学平面,压敏腔(52)的后端面上设有凹槽(53),且温敏腔(51)的前端面与压敏腔(52)的后端面键合连接从而使凹槽(53)构成非本征型空气F-P腔。
2.根据权利要求1所述的超高温光纤F-P温度压力复合传感器系统,其特征在于:所述耐高温壳体(4)的前端设有安装槽(42),温压复合谐振腔(5)嵌设于安装槽(42)内,且温压复合谐振腔(5)与耐高温壳体(4)之间粘接有耐高温无机胶(43);所述光学校准器(41)从耐高温壳体(4)后端穿入安装槽(42)且与温压复合谐振腔(5)对应设置,耐高温壳体(4)上设有与光学校准器(41)固定连接的合金螺钉(44)。
3.根据权利要求1所述的超高温光纤F-P温度压力复合传感器系统,其特征在于:所述蓝宝石光纤(22)的前端穿设于光学校准器(41)内且与温敏腔(51)的后端面对应设置,蓝宝石光纤(22)的前端具有抛磨成型面(23),抛磨成型面(23)为5-8°的光学斜面或曲面透镜结构。
4.一种制备权利要求1所述的超高温光纤F-P温度压力复合传感器系统中的温压复合谐振腔的方法,其特征在于,其步骤如下:
所述温压复合谐振腔(5)包括温敏腔(51)和压敏腔(52),温敏腔(51)和压敏腔(52)均为蓝宝石基制备而来;所述温敏腔(51)的前后两端均为光学平面进而构成本征型蓝宝石F-P腔,压敏腔(52)的后端面为光学平面,压敏腔(52)的后端面上设有凹槽(53),且温敏腔(51)的前端面与压敏腔(52)的后端面键合连接从而使凹槽(53)构成非本征型空气F-P腔;
步骤1,将蓝宝石基底切割出温敏腔(51)和压敏腔(52)所需的规格毛片,再在压敏腔(52)毛片上腐蚀一个凹槽(53),将两个毛片分别进行抛磨;
步骤2,对两个温敏腔(51)和压敏腔(52)进行亲水预处理;
步骤3,将温敏腔(51)的前端光学平面与压敏腔(52)后端面对接;
步骤4,将温敏腔(51)和压敏腔(52)进行低温预键合;
步骤5,将经过预键合的温敏腔(51)和压敏腔(52)进行高温扩散键合。
CN201611246502.8A 2016-12-29 2016-12-29 超高温光纤f-p温度压力复合传感器与系统 Active CN106643901B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611246502.8A CN106643901B (zh) 2016-12-29 2016-12-29 超高温光纤f-p温度压力复合传感器与系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611246502.8A CN106643901B (zh) 2016-12-29 2016-12-29 超高温光纤f-p温度压力复合传感器与系统

Publications (2)

Publication Number Publication Date
CN106643901A CN106643901A (zh) 2017-05-10
CN106643901B true CN106643901B (zh) 2018-06-26

Family

ID=58837169

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611246502.8A Active CN106643901B (zh) 2016-12-29 2016-12-29 超高温光纤f-p温度压力复合传感器与系统

Country Status (1)

Country Link
CN (1) CN106643901B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107560755A (zh) * 2017-07-17 2018-01-09 西北工业大学 蓝宝石基光纤f‑p温度压力复合传感器及其制备方法
CN107843291A (zh) * 2017-11-03 2018-03-27 中国航空工业集团公司北京长城计量测试技术研究所 一种光纤温度压力复合传感器
CN108663160B (zh) * 2018-05-15 2020-07-03 哈尔滨工业大学 一种光学复合传感器探头
CN110207732A (zh) * 2019-04-10 2019-09-06 武汉理工大学 一种超高温蓝宝石光纤f-p温度应变复合传感器
CN110057388B (zh) * 2019-05-13 2021-04-27 山东大学 一种基于金金键合制备穿孔结构光学腔f-p光纤传感器的方法
CN111854813B (zh) * 2020-07-27 2022-02-15 中国电子科技集团公司第四十九研究所 一种温度自补偿式非本征法布里珀罗腔及制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103674322A (zh) * 2013-12-20 2014-03-26 陕西电器研究所 一种采用分离式探头的蓝宝石光纤温度传感器
CN105043588A (zh) * 2015-06-03 2015-11-11 北京理工大学 一种高温温度和压力光纤法布里珀罗复合微纳传感器
CN106092394A (zh) * 2016-06-23 2016-11-09 重庆大学 基于光纤法珀传感器的高温应变测量系统及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7421162B2 (en) * 2005-03-22 2008-09-02 General Electric Company Fiber optic sensing device and method of making and operating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103674322A (zh) * 2013-12-20 2014-03-26 陕西电器研究所 一种采用分离式探头的蓝宝石光纤温度传感器
CN105043588A (zh) * 2015-06-03 2015-11-11 北京理工大学 一种高温温度和压力光纤法布里珀罗复合微纳传感器
CN106092394A (zh) * 2016-06-23 2016-11-09 重庆大学 基于光纤法珀传感器的高温应变测量系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蓝宝石光纤高温传感器抗冲击性能的测试研究;李园;《计算机测量与控制》;20130228;第21卷(第2期);330-332 *

Also Published As

Publication number Publication date
CN106643901A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN106643901B (zh) 超高温光纤f-p温度压力复合传感器与系统
US20220026297A1 (en) Miniature diaphragm-based fiber-optic tip fp pressure sensor, and fabrication method and application thereof
CN103557929B (zh) 一种基于石墨烯膜的光纤法珀声压传感器制作方法及其测量方法、装置
CN105675114B (zh) 一种光纤efpi超声波传感器
CN103234673B (zh) 一种在高温环境下具有高稳定性的压力传感器微纳结构
CN107063554B (zh) 一种一体化光纤大压力传感器及其制作方法
CN106441657A (zh) 基于法珀腔的碳化硅基高温压力传感器及其制备方法
WO2008092372A1 (fr) Détecteur de fabry-pérot à fibre optique et son procédé de fabrication
KR20010071501A (ko) 광섬유 압력 센서 및 그 변형, 및 가요성 반사막을제조하는 방법
Shao et al. All-sapphire-based fiber-optic pressure sensor for high-temperature applications based on wet etching
CN106197782B (zh) 微型非本征光纤法珀压力传感器
Wang et al. Package-friendly piezoresistive pressure sensors with on-chip integrated packaging-stress-suppressed suspension (PS3) technology
CN108931321B (zh) 梁-岛-膜一体化谐振式压力传感器结构及制造方法
Liang et al. All-SiC fiber-optic sensor based on direct wafer bonding for high temperature pressure sensing
CN102889901A (zh) 一种光纤珐珀传感器及其制作方法
CN105509940A (zh) 一种光纤传感探头及制备方法
CN112880887B (zh) 一种真空封装的石墨烯谐振式光纤压力传感器及其制作方法
CN108760148B (zh) 一种绝压式光纤法珀碳化硅耐高温航空压力传感器
CN110631616B (zh) 一种超高温微型光纤efpi应变传感器
CN108444623A (zh) 基于硅薄膜的高灵敏压力传感器及其制备方法
CN105953958A (zh) 全石英光纤珐珀压力传感器
CN106289570A (zh) 光纤法珀温度传感器
CN201017062Y (zh) 光纤法珀温度、应变和压力传感器
CN205538040U (zh) 一种光纤传感探头
CN107827077A (zh) 一种压阻式mems温度传感器及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Tong Xinglin

Inventor after: Yang Huadong

Inventor after: Zhang Baolin

Inventor after: Deng Chengwei

Inventor after: Zhang Cui

Inventor after: Cao Chi

Inventor after: Liu Fang

Inventor after: Zheng Zhiyuan

Inventor after: Wu Diehao

Inventor before: Tong Xinglin

Inventor before: Yang Huadong

Inventor before: Zhang Baolin

Inventor before: Deng Chengwei

Inventor before: Zhang Cui

Inventor before: Cao Chi

Inventor before: Liu Fang

Inventor before: Zheng Zhiyuan

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant