CN110207732A - 一种超高温蓝宝石光纤f-p温度应变复合传感器 - Google Patents
一种超高温蓝宝石光纤f-p温度应变复合传感器 Download PDFInfo
- Publication number
- CN110207732A CN110207732A CN201910286745.1A CN201910286745A CN110207732A CN 110207732 A CN110207732 A CN 110207732A CN 201910286745 A CN201910286745 A CN 201910286745A CN 110207732 A CN110207732 A CN 110207732A
- Authority
- CN
- China
- Prior art keywords
- sapphire
- fiber
- face
- temperature
- sapphire fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010980 sapphire Substances 0.000 title claims abstract description 146
- 229910052594 sapphire Inorganic materials 0.000 title claims abstract description 146
- 239000000835 fiber Substances 0.000 title claims abstract description 90
- 150000001875 compounds Chemical class 0.000 title claims abstract description 15
- 239000013307 optical fiber Substances 0.000 claims abstract description 13
- 239000013078 crystal Substances 0.000 claims description 5
- 239000004575 stone Substances 0.000 claims description 4
- 239000000853 adhesive Substances 0.000 claims description 3
- 230000001070 adhesive effect Effects 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 239000010437 gem Substances 0.000 claims description 3
- 229910001751 gemstone Inorganic materials 0.000 claims description 3
- 239000003292 glue Substances 0.000 claims description 3
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000003466 welding Methods 0.000 claims description 3
- 241001062009 Indigofera Species 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 11
- 238000012544 monitoring process Methods 0.000 abstract description 8
- 230000035945 sensitivity Effects 0.000 abstract description 7
- 230000002411 adverse Effects 0.000 abstract description 4
- 230000003287 optical effect Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- -1 FBG compound Chemical class 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35306—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
- G01D5/35309—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
- G01D5/35312—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/3537—Optical fibre sensor using a particular arrangement of the optical fibre itself
- G01D5/3538—Optical fibre sensor using a particular arrangement of the optical fibre itself using a particular type of fiber, e.g. fibre with several cores, PANDA fiber, fiber with an elliptic core or the like
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Optical Transform (AREA)
Abstract
本发明涉及光纤传感技术领域,特指一种超高温蓝宝石光纤F‑P温度应变复合传感器,包括第一蓝宝石单晶光纤、第二蓝宝石单晶光纤、蓝宝石晶片与两端设有开口的蓝宝石毛细管,第一蓝宝石单晶光纤的倾斜端面与第二蓝宝石单晶光纤的平整端面分别通过蓝宝石毛细管的两端开口插入到蓝宝石毛细管腔体中,蓝宝石晶片设于第一蓝宝石单晶光纤的倾斜端面与第二蓝宝石单晶光纤的平整端面之间,蓝宝石晶片一侧的平整端面与第二蓝宝石单晶光纤的平整端面平行对准且不接触,蓝宝石晶片另一侧与第一蓝宝石单晶光纤的倾斜端面接触。采用这样的结构设置,可实现从室温到1400℃的大范围温度测量,能满足超高温恶劣环境下的应变、温度同时监测,测量灵敏度高、精度高。
Description
技术领域
本发明涉及光纤传感技术领域,特指一种超高温蓝宝石光纤F-P温度应变复合传感器。
背景技术
航空航天、石油化工等超高温环境下的应变测量一直都是传感探测领域的难点,恶劣的超高温环境会影响传统电类传感器和测量仪表的性能,光纤传感器具有结构简单、抗电磁干扰、测量精度高、测量动态范围大等特点,在超高温环境下的应变监测中具有广阔应用前景。目前常用于应变测量的光学法布里-珀罗(Fabry–Pérot,F-P)传感器和光纤布拉格光栅(Fiber Bragg Grating,FBG)传感器存在温度应变交叉敏感、测量量程有限和1400℃以上超高温环境下材料机械强度下降等问题,很大程度上制约了超高温领域光纤传感技术的发展。
由于蓝宝石单晶(Al2O3)熔化温度为2053℃,具有高强度、高硬度(为石英的7倍)、高抗磨损性、高耐热性、高抗腐蚀性、高化学惰性、高热传导性。单晶蓝宝石光纤天然的耐高温特性使其经过一定封装增加机械强度后可长期应用于1400℃以上的超高温环境中,是超高温应变测量的极佳选择。基于蓝宝石晶片的光纤温度传感器具有从紫外到远红外区域的宽透明度,被证明是监测超高温度的理想设备。
目前,已有基于石英光纤的EFPI/FBG复合传感器,其结构实质是EFPI应变传感器与耐高温FBG传感器的复用,仅能满足600℃以下的温度和应变的同时监测。能适用于1400℃超高温环境下应变、温度同时监测的光纤传感器尚属空白。
发明内容
针对现有技术的不足,本发明提供了一种超高温蓝宝石光纤F-P温度应变复合传感器,第一蓝宝石单晶光纤、第二蓝宝石单晶光纤、蓝宝石晶片和蓝宝石毛细管本身的材质选用Al2O3,本身具有耐高温性能,第二蓝宝石单晶光纤平整端面与蓝宝石晶片平整端面之间的空气腔形成非本征型光纤法布里-珀罗干涉仪结构,可对大量程范围应变进行实时监测,可实现从室温到1400℃的大范围温度测量,能满足超高温恶劣环境下的应变、温度同时监测,测量灵敏度高、精度高。
为了实现上述目的,本发明应用的技术方案如下:
一种超高温蓝宝石光纤F-P温度应变复合传感器,包括第一蓝宝石单晶光纤、第二蓝宝石单晶光纤、蓝宝石晶片与两端设有开口的蓝宝石毛细管,第一蓝宝石单晶光纤的倾斜端面与第二蓝宝石单晶光纤的平整端面分别通过蓝宝石毛细管的两端开口插入到蓝宝石毛细管腔体中,蓝宝石晶片设于第一蓝宝石单晶光纤的倾斜端面与第二蓝宝石单晶光纤的平整端面之间,蓝宝石晶片一侧的平整端面与第二蓝宝石单晶光纤的平整端面平行对准且不接触,蓝宝石晶片另一侧与第一蓝宝石单晶光纤的倾斜端面接触。
进一步而言,所述第一蓝宝石单晶光纤的倾斜端面采用在原平整端面上经研磨与光纤径向形成5°~10°的倾斜角。
进一步而言,所述第一蓝宝石单晶光纤、第二蓝宝石单晶光纤和蓝宝石晶片分别与蓝宝石毛细管的内腔以CO2激光焊接的方式连接或通过无机耐高温胶胶粘方式连接,第二蓝宝石单晶光纤的另一端面经过激光开有小孔,且小孔孔径小于4μm。
进一步而言,所述蓝宝石晶片的两个端面平整,厚度为0.5mm、外径为120μm,蓝宝石晶片的一侧经刻蚀形成直径为100μm、深度为200μm,且端面平整的凹腔,并依次经过RCA清洗和去离子水超声清洗。
进一步而言,所述蓝宝石毛细管的内径为130~135μm。
进一步而言,所述第一蓝宝石单晶光纤和第二蓝宝石单晶光纤的外径均为125μm,第二蓝宝石单晶光纤的长度为4~6mm。
本发明有益效果:
1)第二蓝宝石单晶光纤平整端面与蓝宝石晶片平整端面之间的空气腔形成非本征型光纤法布里-珀罗干涉仪结构,可对大量程范围应变进行实时监测;
2)蓝宝石晶片两个端面之间形成本征型光纤法布里-珀罗干涉仪结构,可实现从室温到1400℃的大范围温度测量;
3)能满足超高温恶劣环境下的应力、温度同时监测,测量灵敏度高、精度高,并具有温度自补偿的功能。
附图说明
图1是本发明整体结构示意图。
1.第一蓝宝石单晶光纤;2.第二蓝宝石单晶光纤;3.蓝宝石晶片;4.蓝宝石毛细管。
具体实施方式
下面结合附图与实施例对本发明的技术方案进行说明。
如图1所示,本发明所述一种超高温蓝宝石光纤F-P温度应变复合传感器,包括第一蓝宝石单晶光纤1、第二蓝宝石单晶光纤2、蓝宝石晶片3与两端设有开口的蓝宝石毛细管4,第一蓝宝石单晶光纤1的倾斜端面与第二蓝宝石单晶光纤2的平整端面分别通过蓝宝石毛细管4的两端开口插入到蓝宝石毛细管4腔体中,蓝宝石晶片3设于第一蓝宝石单晶光纤1的倾斜端面与第二蓝宝石单晶光纤2的平整端面之间,蓝宝石晶片3一侧的平整端面与第二蓝宝石单晶光纤2的平整端面平行对准且不接触,蓝宝石晶片3另一侧与第一蓝宝石单晶光纤1的倾斜端面接触。
本发明采用这样的结构设置,由于第一蓝宝石单晶光纤1、第二蓝宝石单晶光纤2、蓝宝石晶片3和蓝宝石毛细管4本身的材质选用Al2O3,本身就具有耐高温性能,蓝宝石晶片3一侧的平整端面与第二蓝宝石单晶光纤2的平整端面平行对准且不接触,也就是说第二蓝宝石单晶光纤2平整端面与蓝宝石晶片3平整端面之间的空气腔形成非本征型光纤法布里-珀罗干涉仪结构,可对大量程范围应变进行实时监测,可实现从室温到1400℃的大范围温度测量,能满足超高温恶劣环境下的应变、温度同时监测,测量灵敏度高、精度高。
实际应用中,在所述蓝宝石毛细玻璃管4腔体中第二蓝宝石单晶光纤2、蓝宝石晶片3与蓝宝石毛细管4的内径相匹配来实现第二蓝宝石单晶光纤2与蓝宝石晶片3之间的平行对准。
优选的,蓝宝石晶片3一侧的平整端面与第二蓝宝石单晶光纤2的平整端面的间距为300μm~400μm。
实际应用中,蓝宝石晶片3另一侧与第一蓝宝石单晶光纤1的倾斜端面接触,可避免第一蓝宝石单晶光纤1与蓝宝石晶片3之间形成新的F-P腔。
更具体而言,所述第一蓝宝石单晶光纤1的倾斜端面采用在原平整端面上经研磨与光纤径向形成5°~10°的倾斜角。
优选的,本发明第一蓝宝石单晶光纤1的倾斜端面采用在原平整端面上经研磨与光纤径向形成8°的倾斜角。
更具体而言,所述第一蓝宝石单晶光纤1、第二蓝宝石单晶光纤2和蓝宝石晶片3分别与蓝宝石毛细管4的内腔以CO2激光焊接的方式连接或通过无机耐高温胶胶粘方式连接,第二蓝宝石单晶光纤2的另一端面经过激光开有小孔,且小孔孔径小于4μm。采用这样的结构设置,可避免超高温环境下蓝宝石毛细管4腔内气压的改变对测量的影响。
更具体而言,所述蓝宝石晶片3的两个端面平整,厚度为0.5mm、外径为120μm,蓝宝石晶片3的一侧经刻蚀形成直径为100μm、深度为200μm,且端面平整的凹腔,并依次经过RCA清洗和去离子水超声清洗。
实际应用中,本发明所述的蓝宝石晶片3是所述超高温蓝宝石光纤F-P温度应变复合传感器的温度敏感元件,通过改变其有效区域的厚度来调整所述超高温蓝宝石光纤F-P温度应变复合传感器的温度灵敏度。
更具体而言,所述蓝宝石毛细管4的内径为130~135μm。
实际应用中,本发明所述蓝宝石毛细管4是所述超高温蓝宝石光纤F-P温度应变复合传感器的敏感部位,通过改变其长度来调整所述超高温蓝宝石光纤F-P温度应变复合传感器的应变灵敏度。
更具体而言,所述第一蓝宝石单晶光纤1和第二蓝宝石单晶光纤2的外径均为125μm,第二蓝宝石单晶光纤2的长度为4~6mm。
以上对本发明实施例中的技术方案进行了描述,但本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护范围之内。
Claims (6)
1.一种超高温蓝宝石光纤F-P温度应变复合传感器,其特征在于:包括第一蓝宝石单晶光纤(1)、第二蓝宝石单晶光纤(2)、蓝宝石晶片(3)与两端设有开口的蓝宝石毛细管(4),所述第一蓝宝石单晶光纤(1)的倾斜端面与第二蓝宝石单晶光纤(2)的平整端面分别通过蓝宝石毛细管(4)的两端开口插入到蓝宝石毛细管(4)腔体中,所述蓝宝石晶片(3)设于第一蓝宝石单晶光纤(1)的倾斜端面与第二蓝宝石单晶光纤(2)的平整端面之间,所述蓝宝石晶片(3)一侧的平整端面与第二蓝宝石单晶光纤(2)的平整端面平行对准且不接触,所述蓝宝石晶片(3)另一侧与第一蓝宝石单晶光纤(1)的倾斜端面接触。
2.根据权利要求1所述的一种超高温蓝宝石光纤F-P温度应变复合传感器,其特征在于:所述第一蓝宝石单晶光纤(1)的倾斜端面采用在原平整端面上经研磨与光纤径向形成5°~10°的倾斜角。
3.根据权利要求1所述的一种超高温蓝宝石光纤F-P温度应变复合传感器,其特征在于:所述第一蓝宝石单晶光纤(1)、第二蓝宝石单晶光纤(2)和蓝宝石晶片(3)分别与蓝宝石毛细管(4)的内腔以CO2激光焊接的方式连接或通过无机耐高温胶胶粘方式连接,所述第二蓝宝石单晶光纤(2)的另一端面经过激光开有小孔,且小孔孔径小于4μm。
4.根据权利要求1所述的一种超高温蓝宝石光纤F-P温度应变复合传感器,其特征在于:所述蓝宝石晶片(3)的两个端面平整,厚度为0.5mm、外径为120μm,所述蓝宝石晶片(3)的一侧经刻蚀形成直径为100μm、深度为200μm,且端面平整的凹腔,并依次经过RCA清洗和去离子水超声清洗。
5.根据权利要求1所述的一种超高温蓝宝石光纤F-P温度应变复合传感器,其特征在于:所述蓝宝石毛细管(4)的内径为130~135μm。
6.根据权利要求1所述的一种超高温蓝宝石光纤F-P温度应变复合传感器,其特征在于:所述第一蓝宝石单晶光纤(1)和第二蓝宝石单晶光纤(2)的外径均为125μm,所述第二蓝宝石单晶光纤(2)的长度为4~6mm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910286745.1A CN110207732B (zh) | 2019-04-10 | 2019-04-10 | 一种超高温蓝宝石光纤f-p温度应变复合传感器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910286745.1A CN110207732B (zh) | 2019-04-10 | 2019-04-10 | 一种超高温蓝宝石光纤f-p温度应变复合传感器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110207732A true CN110207732A (zh) | 2019-09-06 |
CN110207732B CN110207732B (zh) | 2024-06-18 |
Family
ID=67785291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910286745.1A Active CN110207732B (zh) | 2019-04-10 | 2019-04-10 | 一种超高温蓝宝石光纤f-p温度应变复合传感器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110207732B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111854813A (zh) * | 2020-07-27 | 2020-10-30 | 中国电子科技集团公司第四十九研究所 | 一种温度自补偿式非本征法布里珀罗腔及制作方法 |
CN114279353A (zh) * | 2021-12-28 | 2022-04-05 | 中国人民解放军国防科技大学 | 一种蓝宝石光纤f-p腔级联sfbg的高温应变传感器 |
CN114509016A (zh) * | 2021-12-24 | 2022-05-17 | 北京遥测技术研究所 | 一种高温efpi型光纤应变传感器及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06174947A (ja) * | 1992-12-09 | 1994-06-24 | Mitsubishi Electric Corp | 光ファイバ端末 |
US7336862B1 (en) * | 2007-03-22 | 2008-02-26 | General Electric Company | Fiber optic sensor for detecting multiple parameters in a harsh environment |
CN106066215A (zh) * | 2016-07-29 | 2016-11-02 | 武汉理工大学 | 一种蓝宝石高温传感器 |
CN206133075U (zh) * | 2016-11-01 | 2017-04-26 | 天津恒瑜晶体材料股份有限公司 | 蓝宝石单晶光纤端帽与蓝宝石单晶毛细管的连接结构 |
CN106643901A (zh) * | 2016-12-29 | 2017-05-10 | 武汉理工大学 | 超高温光纤f‑p温度压力复合传感器与系统 |
CN209689648U (zh) * | 2019-04-10 | 2019-11-26 | 武汉理工大学 | 一种超高温蓝宝石光纤f-p温度应变复合传感器 |
-
2019
- 2019-04-10 CN CN201910286745.1A patent/CN110207732B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06174947A (ja) * | 1992-12-09 | 1994-06-24 | Mitsubishi Electric Corp | 光ファイバ端末 |
US7336862B1 (en) * | 2007-03-22 | 2008-02-26 | General Electric Company | Fiber optic sensor for detecting multiple parameters in a harsh environment |
CN106066215A (zh) * | 2016-07-29 | 2016-11-02 | 武汉理工大学 | 一种蓝宝石高温传感器 |
CN206133075U (zh) * | 2016-11-01 | 2017-04-26 | 天津恒瑜晶体材料股份有限公司 | 蓝宝石单晶光纤端帽与蓝宝石单晶毛细管的连接结构 |
CN106643901A (zh) * | 2016-12-29 | 2017-05-10 | 武汉理工大学 | 超高温光纤f‑p温度压力复合传感器与系统 |
CN209689648U (zh) * | 2019-04-10 | 2019-11-26 | 武汉理工大学 | 一种超高温蓝宝石光纤f-p温度应变复合传感器 |
Non-Patent Citations (2)
Title |
---|
刘琨;: "蓝宝石光纤空气隙非本征型法布里-珀罗高温传感器复用技术研究", 制造业自动化, no. 05 * |
童杏林 等: "基于Fabry-Perot 干涉的高温温度、压力、应变、 振动传感器研究进展", 《光学与光电技术》, vol. 20, no. 1 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111854813A (zh) * | 2020-07-27 | 2020-10-30 | 中国电子科技集团公司第四十九研究所 | 一种温度自补偿式非本征法布里珀罗腔及制作方法 |
CN111854813B (zh) * | 2020-07-27 | 2022-02-15 | 中国电子科技集团公司第四十九研究所 | 一种温度自补偿式非本征法布里珀罗腔及制作方法 |
CN114509016A (zh) * | 2021-12-24 | 2022-05-17 | 北京遥测技术研究所 | 一种高温efpi型光纤应变传感器及其制备方法 |
CN114509016B (zh) * | 2021-12-24 | 2024-03-29 | 北京遥测技术研究所 | 一种高温efpi型光纤应变传感器及其制备方法 |
CN114279353A (zh) * | 2021-12-28 | 2022-04-05 | 中国人民解放军国防科技大学 | 一种蓝宝石光纤f-p腔级联sfbg的高温应变传感器 |
CN114279353B (zh) * | 2021-12-28 | 2023-08-29 | 中国人民解放军国防科技大学 | 一种蓝宝石光纤f-p腔级联sfbg的高温应变传感器 |
Also Published As
Publication number | Publication date |
---|---|
CN110207732B (zh) | 2024-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN209689648U (zh) | 一种超高温蓝宝石光纤f-p温度应变复合传感器 | |
CN110207732A (zh) | 一种超高温蓝宝石光纤f-p温度应变复合传感器 | |
JP5021457B2 (ja) | 光センサ | |
US9989385B2 (en) | Method of assembling an optical sensor | |
US7762720B1 (en) | Fabrication of miniature fiber-optic temperature sensors | |
CN107063554B (zh) | 一种一体化光纤大压力传感器及其制作方法 | |
US11397301B2 (en) | Sensors including a housing, a diamond diaphragm, and an optical cable, and methods of manufacturing the sensors | |
CN103644987A (zh) | 带有温度自补偿的光纤f-p腔压力传感器 | |
CN102587893B (zh) | 一种光纤温度压力传感器及其探头 | |
WO2019109905A1 (zh) | 法珀传感器及其制造方法 | |
CN108759704A (zh) | 一种光纤f-p复合腔型高温应变传感器 | |
CN106643901B (zh) | 超高温光纤f-p温度压力复合传感器与系统 | |
CN104501729B (zh) | 一种基于mems工艺的光纤f-p应变计及成型方法 | |
CN208155479U (zh) | 双腔结构的光纤温度与压力传感器 | |
CN103913254A (zh) | 一种蓝宝石光纤高温传感器及其制作方法 | |
CN106289570A (zh) | 光纤法珀温度传感器 | |
US9810594B2 (en) | Thermally stable high temperature pressure and acceleration optical interferometric sensors | |
CN108572047A (zh) | 一种基于多个法布里-珀罗微腔的光纤气压传感装置 | |
CN106289339A (zh) | 基于析晶的光纤法布里‑珀罗腔高温传感器及制造方法 | |
CN102944328B (zh) | 折射率不敏感的温度传感器的制备方法及测量装置 | |
CN108731840A (zh) | 双腔结构的光纤温度与压力传感器及其制备方法 | |
CN110160571B (zh) | 一种基于硅芯光纤的法布里珀罗传感器及其制备和应用 | |
CN102410850A (zh) | 一种反射式光纤传感器装置 | |
CN107560755A (zh) | 蓝宝石基光纤f‑p温度压力复合传感器及其制备方法 | |
CN107300437A (zh) | 一种基于微椭球空气腔的光纤压力传感器及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |