WO2022160944A1 - 振膜和发声装置 - Google Patents

振膜和发声装置 Download PDF

Info

Publication number
WO2022160944A1
WO2022160944A1 PCT/CN2021/135921 CN2021135921W WO2022160944A1 WO 2022160944 A1 WO2022160944 A1 WO 2022160944A1 CN 2021135921 W CN2021135921 W CN 2021135921W WO 2022160944 A1 WO2022160944 A1 WO 2022160944A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
diisocyanate
polyurethane
isocyanate
chain extender
Prior art date
Application number
PCT/CN2021/135921
Other languages
English (en)
French (fr)
Inventor
王伟超
闫付臻
李春
王婷
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2022160944A1 publication Critical patent/WO2022160944A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/003Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor for diaphragms or their outer suspension
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • H04R7/18Mounting or tensioning of diaphragms or cones at the periphery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/025Magnetic circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2231/00Details of apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor covered by H04R31/00, not provided for in its subgroups
    • H04R2231/001Moulding aspects of diaphragm or surround
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/023Diaphragms comprising ceramic-like materials, e.g. pure ceramic, glass, boride, nitride, carbide, mica and carbon materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/025Diaphragms comprising polymeric materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of electro-acoustics, in particular to a vibrating membrane and a sound-generating device.
  • the diaphragm of the sound-emitting device mostly adopts a composite structure of high-modulus engineering plastic (PEEK) and a soft damping film (acrylic glue, silica gel, etc.), and is formed by air pressure, and the preparation method is relatively convenient and fast.
  • PEEK high-modulus engineering plastic
  • a soft damping film acrylic glue, silica gel, etc.
  • the preparation method is relatively convenient and fast.
  • the composite diaphragm often has the following defects during use: due to the high modulus, high rigidity and poor toughness of the PEEK composite material, it is difficult to obtain a low F0 (resonant frequency), the sound quality is poor, and it is difficult to obtain beautiful spatial hearing. experience and poor reliability.
  • the main purpose of the present invention is to provide a vibrating membrane and a sounding device, which aims to make the vibrating membrane have a wider moduli adjustment range, good toughness, a wider F0, and better sound quality.
  • the diaphragm proposed by the present invention is prepared by using cast-type polyurethane, and the cast-type polyurethane is prepared by reaction cross-linking of a polyurethane prepolymer and a compounding agent, and the polyurethane prepolymer is a block polymer.
  • the block polymer is formed by alternating hard segments and soft segments, the hard segment is isocyanate, the soft segment is a polyol flexible long chain, and the end groups of the block polymer are all isocyanate hard segments,
  • the Young's modulus of the diaphragm ranges from 1 MPa to 100 MPa, and the elongation at break of the diaphragm is greater than 100%.
  • the content of the hard segment accounts for 5% to 30% of the mass of the block polymer.
  • the Young's modulus of the diaphragm ranges from 3 MPa to 100 MPa.
  • the elongation at break of the diaphragm is greater than 300%.
  • the isocyanate is toluene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, naphthalene 1.5-diisocyanate, isophordione diisocyanate, m-dimethylene diisocyanate, terephthalene diisocyanate At least one of isocyanate, 3,3.-dimethyl-4,4.-biphenyl diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hydrogenated toluene diisocyanate, and trimethylhexamethylene diisocyanate; And/or, the polyol is at least one of polyester polyol and polyether polyol.
  • the hardness of the diaphragm is in the range of 10A-95A; and/or the thickness of the diaphragm is in the range of 10 ⁇ m-300 ⁇ m;
  • the compounding agent includes a chain extender and a catalyst
  • the diaphragm is formed by reacting a polyol and a polyisocyanate to generate a polyurethane prepolymer, then adding a chain extender and a catalyst, and then injecting it into the diaphragm processing mold after mixing. , and formed by cross-linking reaction.
  • the chain extender is a multifunctional low-molecular alcohol or amine compound that can react with isocyanate.
  • the chain extender is 3,3'-dichloro-4,4'-diaminodiphenylmethane, 1,4-butanediol, trimethylolpropane, triisopropanolamine, 3, At least one of 5-dimethylthiotoluenediamine, 1,4-dihydroethoxybenzene, hydroquinone bis-hydroxyethyl ether, and resorcinol-bis(P-hydroxyethyl) ether; And/or, in terms of mass percentage, the amount of the chain extender is 3%-30% of the castable polyurethane prepolymer.
  • the catalyst is at least one of butyltin dilaurate, stannous octoate, phosphoric acid, oleic acid, adipic acid, azelaic acid, and iron acetylacetonate.
  • the compounding agent further includes a filler, and the filler is at least one of carbon black, silica, clay, calcium carbonate, kaolin, talc, and glass microbeads; and/or, the compounding agent It also includes auxiliary agents, which are at least one of antioxidants, ultraviolet absorbers, anti-hydrolysis stabilizers, plasticizers, colorants, and antioxidants.
  • auxiliary agents which are at least one of antioxidants, ultraviolet absorbers, anti-hydrolysis stabilizers, plasticizers, colorants, and antioxidants.
  • the present invention also provides a sound-generating device, the sound-generating device includes a vibrating membrane, and the vibrating membrane is prepared from a cast-type polyurethane, and the cast-type polyurethane is made of a polyurethane prepolymer and a compounding agent through reaction cross-linking,
  • the polyurethane prepolymer is a block polymer, the block polymer is formed by alternately arranging hard segments and soft segments, the hard segments are isocyanates, the soft segments are polyol flexible long chains, and the block
  • the end groups of the polymer are all isocyanate hard segments, the Young's modulus of the diaphragm is in the range of 1MPa-100MPa, and the elongation at break of the diaphragm is greater than 100%.
  • the diaphragm is prepared by using cast-type polyurethane (CPU) prepolymer, and the cast-type polyurethane is prepared by reaction cross-linking of the polyurethane prepolymer plus a compounding agent.
  • the cast polyurethane is a cross-linked structure, the diaphragm modulus can be adjusted in a wide range, and it has good toughness.
  • the Young's modulus of the diaphragm is in the range of 1MPa-100MPa, and the elongation at break is greater than 100%, so that a wide range of F0 (resonant frequency), The ultimate sound experience and better reliability.
  • the diaphragm of the present invention adopts the casting molding process, and has better flatness and product stability.
  • Example 1 is a schematic diagram showing the comparison of the elongation at break test curves of the diaphragm in Example 1 of the present invention and Comparative Examples 1, 2, and 3;
  • FIG. 2 is a schematic diagram showing the comparison of the SPL frequency curves of the diaphragms in Examples 1, 2, 3 and Comparative Example 1 of the present invention
  • FIG. 3 is a schematic cross-sectional structural diagram of an acoustic speaker.
  • the invention provides a vibrating membrane, which is applied to a sound generating device.
  • the vibrating film of the invention is prepared by casting polyurethane, the casting polyurethane is a polyurethane prepolymer and a compounding agent is reacted and cross-linked, the polyurethane prepolymer is a block polymer, and the block polymer is composed of a hard segment and a soft segment.
  • the hard segment is isocyanate
  • the soft segment is a flexible long chain of polyol
  • the end groups of the block polymer are all isocyanate hard segments
  • the Young's modulus of the diaphragm is in the range of 1MPa-100MPa
  • the rupture of the diaphragm The elongation is greater than 100%.
  • the molecular structure of the polyurethane prepolymer of the present invention is as follows, wherein n is a natural number:
  • the polyurethane prepolymer is a block polymer.
  • the soft segment is composed of the flexible long chain of oligomer polyol
  • the hard segment, the hard segment and the soft segment are composed of isocyanate.
  • isocyanate groups Alternately arranged to form repeating structural units, and isocyanate groups (-NCO) are located at the ends of the block polymer.
  • the structure of the hard segment composed of isocyanate is as follows:
  • the structure of the soft segment composed of polyols is as follows:
  • the role of the hard segment here is to provide hardness and modulus, and the soft segment provides toughness.
  • the hard segment and the type of the soft segment By adjusting the type and proportion of the hard segment and the type of the soft segment, the hardness, modulus and temperature resistance of the diaphragm are adjusted.
  • a compounding agent is added during the preparation of the diaphragm, and the compounding agent and the main material polyurethane prepolymer can undergo a cross-linking reaction under certain conditions, so as to obtain a cast-type polyurethane with a cross-linked structure. Due to the cross-linked structure of cast polyurethane, compared with the PEEK composite diaphragm, its modulus can be adjusted in a wider range and has good toughness. Therefore, in the preparation of the diaphragm, the type and proportion of the hard segment, the type of the soft segment, and the weight and dosage of the compounding agent in the cast polyurethane can be adjusted to ensure that the prepared diaphragm has a better elastic modulus and a better elasticity.
  • the diaphragm of the present invention adopts the casting molding process, and has better flatness and better product stability.
  • the Young's modulus of the diaphragm ranges from 1 MPa to 100 MPa, and the elongation at break is greater than 100%.
  • the Young's modulus of the diaphragm can be optimized by optimizing the types of raw materials and the amount added in the process of preparing the diaphragm, to ensure that the Young's modulus of the diaphragm is in the range of 3MPa-100MPa. In this way, a lower F0 can be obtained flexibly according to product items, thereby achieving a perfect listening experience.
  • the elongation at break of the diaphragm is greater than 100%, and the toughness is good. Since the cast-type polyurethane is a cross-linked structure, the types of raw materials and the amount added during the preparation of the diaphragm can be reasonably adjusted to ensure that the diaphragm has a large elongation at break and good toughness, ensuring that the diaphragm has a good reliability.
  • the conventional PEEK film has high rigidity and high modulus, and it is difficult to obtain a lower F0, so that it is difficult to obtain a beautiful spatial hearing experience.
  • a wide range of quantities can be flexibly matched according to product items, and a lower F0 can be obtained to achieve a perfect listening experience.
  • the PEEK composite tape is formed into a diaphragm by air pressure, the molecular chain movement is not sufficient, the folding ring part is inevitably stretched, there is a certain stress inside, and the forming is not in place, the thickness is uneven, and the flatness is poor. And the toughness of PEEK material is poor, and the film rupture phenomenon occurs after reliability.
  • the vibrating film of the present invention adopts the casting molding process, which perfectly improves the problems of thickness uniformity and poor flatness, and has high elongation at break and good toughness, and is not prone to the problem of film rupture.
  • the elongation at break of the diaphragm is greater than 300%.
  • a diaphragm with a larger elongation at break can be obtained by optimizing the types of raw materials and the amount added during the preparation of the diaphragm.
  • the content of the hard segment accounts for 5% to 30% of the mass of the block polymer. It is understandable that if the content of the hard segment is too low, the hardness and modulus of the rubber are too low, and the F0 (resonant frequency) is too low; if the content of the hard segment is too high, the elongation at break is too small, and the hardness and modulus are too high. The loudness becomes lower and the low frequency performance is poor.
  • the amount of isocyanate is in the range of 5%-30% by mass percentage, for example, the amount of isocyanate is 5%, 10%, 15%, 20%, 25% or 30% %, so that more suitable modulus, elongation at break, F0 and low frequency performance can be obtained.
  • the modulus and elongation at break of the prepared diaphragm can be adjusted by adjusting the ratio of hard segment isocyanate in the polyurethane prepolymer, thereby ensuring the Young's modulus of the diaphragm in the range of 1MPa-100MPa , the elongation at break is greater than 100%.
  • isocyanate is selected from toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), naphthalene 1.5-diisocyanate (NDI), isophordione diisocyanate (IPDI).
  • TDI toluene diisocyanate
  • MDI diphenylmethane diisocyanate
  • HDI hexamethylene diisocyanate
  • NDI naphthalene 1.5-diisocyanate
  • IPDI isophordione diisocyanate
  • XDI m-dimethylene diisocyanate
  • PPDI p-phenylene diisocyanate
  • TODI 3,3.-dimethyl-4,4.-biphenyl diisocyanate
  • HMDI hexylmethane diisocyanate
  • HTDI hydrogenated toluene diisocyanate
  • TMDI trimethyl hexamethylene diisocyanate
  • the polyol is at least one of polyester polyol and polyether polyol.
  • Different types of soft segment have different molecular chain mobility.
  • the present invention can optimize the elongation at break of the diaphragm by adjusting the type of the soft segment, so that the elongation at break is greater than 100%.
  • the diaphragm with better temperature resistance is prepared by adjusting the proportion and type of hard-segment isocyanate in the polyurethane prepolymer and the type of soft-segment polyol, and at the same time, the diaphragm is also reasonably adjusted.
  • the hardness and thickness of the diaphragm make the hardness design more reasonable, so as to ensure that the sound-emitting device using the diaphragm has better acoustic performance.
  • the hardness of the diaphragm is in the range of 10A-95A. If the hardness of the diaphragm is lower than 10A, the rigidity of the diaphragm is poor, and polarization is easily generated, resulting in poor THD (Total Harmonic Distortion); When the hardness is higher than 95A, the elongation at break of the rubber becomes smaller, the film is easily broken in the low temperature reliability verification, which causes the product to fail, and the excessive filler in the formula leads to defects.
  • THD Total Harmonic Distortion
  • the hardness of the diaphragm is 10A, 15A, 20A, 25A, 30A, 35A, 40A, 45A, 50A, 55A, 60A, 65A, 70A, 75A, 80A, 85A, 90A or 95A.
  • the hardness of the diaphragm is in the range of 30A-90A, and the loudspeaker using the diaphragm has more excellent acoustic performance.
  • the thickness of the diaphragm is in the range of 10 ⁇ m to 300 ⁇ m. If the thickness of the diaphragm is less than 10 ⁇ m, the damping of the diaphragm is small and the listening performance is poor; if the thickness of the diaphragm is greater than 300 ⁇ m, the weight of the diaphragm is too large and the sensitivity worse. Therefore, the thickness of the diaphragm needs to be controlled within the range of 10 ⁇ m-300 ⁇ m to ensure that the sound-emitting device that should be used for the diaphragm has excellent acoustic performance. 300 ⁇ m. Preferably, the thickness of the diaphragm is in the range of 10 ⁇ m-200 ⁇ m, and the sound generating device using the diaphragm has more excellent acoustic performance
  • the molecular weight range of the cast polyurethane is 500-20000. Selecting the casting polyurethane of this molecular weight range to prepare the diaphragm can not only make the diaphragm have better temperature resistance, but also facilitate the casting and molding operation.
  • the compounding agent includes a chain extender and a catalyst.
  • the diaphragm is formed by reacting a polyol and a polyisocyanate to form a polyurethane prepolymer, then adding a chain extender and a catalyst, and injecting them into the diaphragm processing mold after mixing. And formed by cross-linking reaction.
  • the polyol and polyisocyanate are first reacted to form a liquid polyurethane prepolymer, and then a chain extender and a catalyst are added to mix evenly, and then injected into the diaphragm processing mold, and formed through a cross-linking reaction.
  • the reaction temperature of the cross-linking reaction is 20°C-230°C, and the reaction time is 5s ⁇ 30min.
  • the chain extender is a multifunctional low molecular alcohol or amine compound that can react with isocyanate.
  • Chain extender acts to cross-link with the isocyanate to adjust the hardness of the final diaphragm.
  • Chain extenders are usually multifunctional low molecular weight alcohols or amine compounds that can react with isocyanates, such as 3,3'-dichloro-4,4'-diaminodiphenylmethane (MOCA), 1,4 -Butanediol (1,4-BD), Trimethylolpropane (TMP), Triisopropanolamine, 3,5-Dimethylthiotoluenediamine, 1,4-Dihydroethoxybenzene , at least one of hydroquinone bis-hydroxyethyl ether and resorcinol-bis(P-hydroxyethyl) ether (HER).
  • MOCA 3,3'-dichloro-4,4'-diaminodiphenylmethane
  • TMP Trimethylolpropane
  • TMP Triisopropanolamine
  • the use of the above chain extender can make the polyurethane prepolymer fully cross-linking reaction, so as to obtain a cast polyurethane with better cross-linking effect, so as to ensure that the diaphragm thus prepared has a better Young's modulus and a larger. Elongation at break.
  • the amount of the chain extender should be reasonably controlled to ensure that the prepared diaphragm has suitable acoustic performance and reliability after being applied to a sounding device.
  • the amount of the chain extender is 3%-30% of the cast polyurethane.
  • the casting type polyurethane is 100 parts
  • the chain extender is 3 parts, 5 parts, 10 parts, 15 parts, 20 parts, 25 parts or 30 parts.
  • the modulus and elongation at break of the diaphragm can be optimized by adjusting the amount and type of the chain extender, so that it has a larger modulus and elongation at break.
  • the amount of the chain extender is controlled in the range of 3wt%-30wt%, so that the Young's modulus of the prepared diaphragm can be guaranteed to be in the range of 1MPa-100MPa, and the elongation at break is greater than 100%.
  • the diaphragm provided by the present invention is made of cast polyurethane (CPU), which is different from thermoplastic polyurethane (TPU), which is hydroxyl (-OH) terminated polyurethane, linear or branched.
  • the structure can be processed twice. Generally, it is cast or coated to make a film, and then the diaphragm is formed by air pressure or molding. The obtained diaphragm is prone to permanent deformation after large strain, and is assembled into a sound. Contact with glue during installation will lead to swelling, resulting in poor performance and reliability; and the cast polyurethane of the present invention is isocyanate group (-NCO) end-capped, and is integrally formed into a diaphragm by injection into a mold.
  • -NCO isocyanate group
  • the casting type polyurethane described in the present invention is a liquid rubber, which is cast and formed, and a chain extender is added for chain extension and cross-linking.
  • the chain extender is usually alcohols, amines or alcoholamines.
  • the catalyst is at least one of butyltin dilaurate, stannous octoate, phosphoric acid, oleic acid, adipic acid, azelaic acid, and iron acetylacetonate.
  • the role of the catalyst here is to speed up the cross-linking reaction, thereby speeding up the film-forming speed of the cast polyurethane and improving the preparation efficiency of the diaphragm.
  • the catalyst can be selected from one or more mixtures of the above-mentioned substances.
  • the compounding agent further includes a filler
  • the filler is at least one of carbon black, silica, clay, calcium carbonate, kaolin, talc, unsaturated carboxylic acid metal salt, and glass microbeads.
  • the compounding agent further includes an auxiliary agent
  • the auxiliary agent is at least one of an antioxidant, an ultraviolet absorber, an anti-hydrolysis stabilizer, a plasticizer, a color paste, and an anti-aging agent.
  • the addition of antioxidant can improve its antioxidant performance
  • the antioxidant can be antioxidant 2, antioxidant 4, antioxidant 6, antioxidant 1010, antioxidant 1076, antioxidant 168 At least one of the above is used in an amount of 0.5 to 5 parts by mass.
  • Anti-hydrolysis stabilizer can improve the anti-hydrolysis stability of castable polyurethane
  • plasticizer can increase the softness of castable polyurethane
  • color paste can impart a certain color
  • anti-aging agent can improve its anti-aging performance.
  • the above additives can be added to further improve the comprehensive performance of the cast polyurethane. Users can choose one or more of the above additives according to operational requirements and product requirements.
  • the castable polyurethane of the present invention is obtained by mixing the liquid polyurethane with a chain extender, a catalyst, a filler and other auxiliaries uniformly, and then injecting it into a corresponding mold and then cross-linking.
  • the cast-type polyurethane diaphragm of the present invention does not contain a foaming agent, because the addition of the foaming agent will cause thin-walled or local defects, and problems such as deformation or even film rupture are likely to occur after reliability testing, resulting in Poor performance, affecting the user experience.
  • the present invention adopts the casting type polyurethane to improve the modulus and elongation at break of the diaphragm, and to ensure that the loudspeaker using the diaphragm can still maintain the original shape and performance after high temperature reliability, and will not be deformed or broken. There are other risks, if the foaming agent is added, it will go against the concept of the present invention.
  • the preparation materials of the vibrating film of the present invention are relatively simple, the preparation process is relatively simple, the operation is relatively simple, and the preparation cost is relatively low.
  • the present invention also proposes a sound-generating device, including a sound-generating device main body and a vibrating membrane.
  • a sound-generating device main body and a vibrating membrane.
  • the specific structure of the vibrating membrane can refer to the above-mentioned embodiments. All the beneficial effects brought by the technical solution will not be repeated here.
  • FIG. 1 is an exemplary cross-sectional view of an acoustic speaker 100, wherein 10 is a speaker casing; 20 is a diaphragm according to the present invention; 30 is a voice coil; and 40 is a magnet.
  • the electrical signal is input into the voice coil 30 of the product, and the voice coil 30 is subjected to the force of the magnetic field, and moves in different amplitudes and directions with the alternating changes of the signal size and the positive and negative directions, thereby driving the diaphragm 20 to vibrate and Sound is emitted to complete the electricity-electricity-sound energy conversion process.
  • the vibrating membrane of the present invention may be a ring-shaped vibrating membrane or a flat-plate vibrating membrane, the vibrating membrane is disposed on the main body of the sound generating device, and the vibrating membrane is configured to be able to be driven to vibrate, thereby generating sound by vibrating.
  • a coil, a magnetic circuit system and other components may be arranged in the main body of the sounding device to drive the diaphragm to vibrate through electromagnetic induction.
  • the resonant frequency F0 of the micro sounding device can reach 100-1500 Hz.
  • the low frequency performance of the miniature sound generator is excellent.
  • the diaphragm of the present invention will be described in detail below through specific embodiments, wherein the difference between the F0 of the diaphragms in the embodiment and the comparative example at room temperature is within 20, that is to say, the diaphragm in the embodiment and the comparative example is within 20.
  • the F0 of the diaphragm at room temperature is similar. It is to be understood that the following description is exemplary only, rather than a specific limitation of the present invention.
  • Example 1 This example is a diaphragm prepared by using cast polyurethane.
  • the polyurethane prepolymer in the cast polyurethane is polymerized from soft segment polyester polyol and hard segment diphenylmethane diisocyanate (MDI). , wherein the content of hard segment diphenylmethane diisocyanate (MDI) is 5% (mass fraction).
  • MDI hard segment diphenylmethane diisocyanate
  • the thickness of the diaphragm prepared in this example is 150 ⁇ m and the hardness is 35A.
  • Example 2 This example is a diaphragm prepared by using cast polyurethane.
  • the polyurethane prepolymer in the cast polyurethane is polymerized from soft segment polyester polyol and hard segment diphenylmethane diisocyanate (MDI). , wherein the content of hard segment diphenylmethane diisocyanate (MDI) is 18% (mass fraction).
  • MDI hard segment diphenylmethane diisocyanate
  • the thickness of the diaphragm prepared in this example is 95 ⁇ m, and the hardness is 60A.
  • Example 3 This example is a diaphragm prepared by using cast polyurethane.
  • the polyurethane prepolymer in the cast polyurethane is polymerized from soft segment polyester polyol and hard segment diphenylmethane diisocyanate (MDI). , wherein the content of hard segment diphenylmethane diisocyanate (MDI) is 30% (mass fraction).
  • MDI hard segment diphenylmethane diisocyanate
  • the thickness of the diaphragm prepared in this example is 80 ⁇ m, and the hardness is 75A.
  • Comparative Example 1 is an engineering plastic (PEEK) composite diaphragm, the diaphragm is a 3-layer structure, wherein two surface layers are PEEK layers with a thickness of 5 ⁇ m, and the middle layer is a polyacrylate pressure-sensitive adhesive film with a thickness of 20 ⁇ m.
  • PEEK engineering plastic
  • Example 1 The diaphragms in Examples 1-3 and Comparative Example 1 were respectively tested for elongation at break in a normal room temperature environment. According to the ASTM-D882 test standard, the gauge length was 30 mm and the tensile rate was 300 mm/min. The curves are plotted in Figure 1.
  • the diaphragm prepared by using the cast polyurethane of the present invention has a larger elongation at break, and has better toughness and tensile strength. performance.
  • the diaphragm prepared by using the cast polyurethane of the present invention has higher low frequency performance and can bring a better spatial listening experience.
  • the diaphragms in Examples 1-3 and Comparative Example 1 were respectively tested for the post-reliability film-breaking rate.
  • the vibration time of the diaphragms in Comparative Example 1 and Example 1-3 was 96h under the simulated normal working environment.
  • the film breaking rate of each diaphragm was detected, and the test results were recorded in Table 1.
  • Diaphragm material Membrane rupture rate/% Comparative example 1 PEEK composite diaphragm 30
  • Example 1 (cast polyurethane diaphragm) 0
  • Example 2 (cast polyurethane diaphragm) 3
  • Example 3 (cast polyurethane diaphragm) 4
  • the warpage degree of the diaphragm in Examples 1-3 and Comparative Example 1 was tested, and the specific test method was: test the product with a tester under normal room temperature conditions.
  • the tester includes three parts: testing Probe, display, and granite platform, wherein the test probe is a non-contact displacement sensor; during the test, place the product on the three fulcrums of the granite platform, the upper and lower test probes scan the product synchronously according to the same trajectory, and record the test probe to the product The distance between the nearest surfaces, and the difference between the two test probes at each test point is calculated. Half of the difference is the test value of the warpage of the test point, and the test value of the largest warpage in each test point is taken.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

一种振膜和发声装置,所述振膜(20)采用浇注型聚氨酯制备而成,所述浇注型聚氨酯为聚氨酯预聚物外加配合剂经反应交联制成,所述聚氨酯预聚物为嵌段聚合物,所述嵌段聚合物由硬段和软段交替排列形成,所述硬段为异氰酸酯,所述软段为多元醇柔性长链,所述嵌段聚合物的端基均为异氰酸酯硬段,所述振膜(20)的杨氏模量范围为1MPa-100MPa,所述振膜(20)的断裂伸长率大于100%。该振膜(20)具有较宽的模量调节范围,具有良好的韧性,获得较为广泛的F0及更好的音质较好。

Description

振膜和发声装置 技术领域
本发明涉及电声技术领域,特别涉及一种振膜和发声装置。
背景技术
目前发声装置的振膜多采用高模量的工程塑料(PEEK)与柔软的阻尼胶膜(丙烯酸胶、硅胶等)复合结构,使用气压成型,制备方法较为方便快捷。但是,该复合振膜在使用过程中往往存在以下缺陷:由于PEEK复合材料模量高、刚性大,韧性差,较难获得低的F0(谐振频率),音质较差,难以获得优美的空间听觉体验,且可靠性较差。
发明内容
本发明的主要目的是提供一种振膜和发声装置,旨在使得振膜具有较宽的模量调节范围,并且有良好的韧性,可以获得较为广泛的F0,音质较好。
为实现上述目的,本发明提出的振膜采用浇注型聚氨酯制备而成,所述浇注型聚氨酯为聚氨酯预聚物外加配合剂经反应交联制成,所述聚氨酯预聚物为嵌段聚合物,所述嵌段聚合物由硬段和软段交替排列形成,所述硬段为异氰酸酯,所述软段为多元醇柔性长链,所述嵌段聚合物的端基均为异氰酸酯硬段,所述振膜的杨氏模量范围为1MPa-100MPa,所述振膜的断裂伸长率大于100%。
可选地,所述硬段的含量占所述嵌段聚合物质量的5%~30%。
可选地,所述振膜的杨氏模量范围为3MPa-100MPa。
可选地,所述振膜的断裂伸长率大于300%。
可选地,所述异氰酸酯为甲苯二异氰酸酯、二苯基甲烷二异氰酸酯、六亚甲基二异氰酸酯、萘1.5—二异氰酸酯、异佛二酮二异氰酸酯、间二亚甲基二异氰酸酯、对苯二异氰酸酯、3,3.-二甲基-4,4.-联苯二异氰酸酯、4,4'-二环己基甲烷二异氰酸酯、氢化甲苯二异氰酸酯、三甲基己二异氰酸酯中的至 少一种;和/或,所述多元醇为聚酯多元醇、聚醚多元醇中的至少一种。
可选地,所述振膜的硬度范围为10A-95A;和/或,所述振膜的厚度范围为10μm-300μm;
可选地,所述配合剂包括扩链剂和催化剂,所述振膜是将多元醇与多异氰酸酯反应生成聚氨酯预聚物,之后加入扩链剂和催化剂,混合后注入至振膜加工模具内,并通过交联反应成型得到。
可选地,所述扩链剂为可与异氰酸酯反应的多官能度的低分子醇类或胺类化合物。
可选地,扩链剂为3,3’-二氯-4,4’-二氨基二苯基甲烷、1,4-丁二醇、三羟甲基丙烷、三异丙醇胺、3,5-二甲基硫基甲苯二胺、1,4-二氢乙氧基苯、氢醌双羟乙基醚、间苯二酚-双(P-羟乙基)醚中的至少一种;和/或,按质量百分比计,所述扩链剂的用量为所述浇注型聚氨酯预聚物的3%-30%。
可选地,所述催化剂为二月桂酸丁基锡、辛酸亚锡、磷酸、油酸、己二酸、壬二酸、乙酰丙酮铁中的至少一种。
可选地,所述配合剂还包括填料,所述填料为炭黑、二氧化硅、粘土、碳酸钙、高岭土、滑石粉、玻璃微珠中的至少一种;和/或,所述配合剂还包括助剂,所述助剂为抗氧剂、紫外线吸收剂、抗水解稳定剂、增塑剂、色浆、防老剂中的至少一种。
本发明还提出了一种发声装置,所述发声装置包括振膜,所述振膜采用浇注型聚氨酯制备而成,所述浇注型聚氨酯为聚氨酯预聚物外加配合剂经反应交联制成,所述聚氨酯预聚物为嵌段聚合物,所述嵌段聚合物由硬段和软段交替排列形成,所述硬段为异氰酸酯,所述软段为多元醇柔性长链,所述嵌段聚合物的端基均为异氰酸酯硬段,所述振膜的杨氏模量范围为1MPa-100MPa,所述振膜的断裂伸长率大于100%。
本发明的技术方案,振膜采用浇注型聚氨酯(CPU)预聚物制备而成,浇注型聚氨酯为聚氨酯预聚物外加配合剂经反应交联制成。相较于PEEK复合振膜,浇注型聚氨酯为交联结构,振膜模量调节范围宽,且具有良好的韧性。可以通过合理调节振膜制备过程中的原料种类及其加入量,使得振膜的 杨氏模量范围为1MPa-100MPa,断裂伸长率大于100%,从而可以得到广泛的F0(谐振频率)、极致的声音体验及较好的可靠性。并且,相较于气压成型的振膜,本发明振膜采用浇注成型工艺,具有更好的平整度和产品稳定性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明实施例1和对比例1、2、3中振膜的断裂伸长率测试曲线对比示意图;
图2为本发明实施例1、2、3和对比例1中振膜的SPL频率曲线对比示意图;
图3为声学扬声器的剖视结构示意图。
附图标号说明:
标号 名称 标号 名称
100 扬声器 30 音圈
10 外壳 40 磁路系统
20 振膜    
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得 的所有其他实施例,都属于本发明保护的范围。
另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明提出一种振膜,应用于发声装置。
本发明振膜采用浇注型聚氨酯制备而成,浇注型聚氨酯为聚氨酯预聚物外加配合剂经反应交联制成,聚氨酯预聚物为嵌段聚合物,嵌段聚合物由硬段和软段交替排列形成,硬段为异氰酸酯,软段为多元醇柔性长链,嵌段聚合物的端基均为异氰酸酯硬段,振膜的杨氏模量范围为1MPa-100MPa,所述振膜的断裂伸长率大于100%。
本发明聚氨酯预聚物的分子结构如下所示,其中n为自然数:
Figure PCTCN2021135921-appb-000001
从上述分子结构中可以看出,聚氨酯预聚物是一种嵌段聚合物,一般由低聚物多元醇柔性长链构成软段部分,以异氰酸酯构成硬段部分,硬段部分和软段部分交替排列,形成重复结构单元,且异氰酸酯基(-NCO)位于所述嵌段聚合物的端部。其中异氰酸酯构成的硬段部分结构如下:
Figure PCTCN2021135921-appb-000002
多元醇组成的软段部分结构如下:
-O-R 1-O-
这里硬段部分所起的作用是提供硬度和模量,软段部分提供韧性,通过调整硬段部分的种类和比例及软段部分的种类来调节振膜的硬度、模量及耐温性能。
在制备振膜时加入了配合剂,配合剂与主体材料聚氨酯预聚物在一定条件下可以发生交联反应,以得到交联结构的浇注型聚氨酯。由于浇注型聚氨酯为交联结构,则相较于PEEK复合振膜,其模量调节范围宽,且具有良好的韧性。故在制备振膜时,可以通过调整浇注型聚氨酯中硬段部分的种类和 比例、软段部分的种类及配合剂的重量及用量来保证制备得到的振膜具有较好的弹性模量和较大的断裂伸长率。从而可以得到广泛的F0(谐振频率)、极致的声音体验及较好的可靠性。并且,相较于气压成型的振膜,本发明振膜采用浇注成型工艺,具有更好的平整度和更好的产品稳定性。可选地,保证振膜的杨氏模量范围1MPa-100MPa,断裂伸长率大于100%。
优选地,可以通过优化振膜制备过程中的原料种类及其加入量来优化振膜的杨氏模量,保证振膜的杨氏模量范围为3MPa-100MPa。如此,可以根据产品项目灵活搭配获得较低的F0,从而实现完美的听觉体验。
本发明的实施例中,振膜的断裂伸长率大于100%,韧性较好。由于浇注型聚氨酯为交联结构,可以通过合理调节振膜制备过程中的原料种类及其加入量,保证振膜具有较大的断裂伸长率,具有较好的韧性,保证振膜拥有较好的可靠性。
可以理解的,常规的PEEK薄膜刚性较大,模量高,难以获得较低的F0,从而难以获得优美的空间听觉体验,而本发明采用浇注型聚氨酯(CPU)预聚物制备的振膜模量范围广,可根据产品项目灵活搭配,可以获得较低的F0,可实现完美的听觉体验。同时,PEEK复合料带气压成型成振膜时,分子链运动不充分,折环部分不可避免的拉伸,内部存在一定应力且有成型不到位的现象,厚度不均、平整度差等现象,且PEEK物料韧性较差,可靠性后出现破膜现象。而本发明振膜采用浇注成型工艺,完美改善了厚度均匀性问题和平整度差等问题,且断裂伸长率高,韧性好,不易出现破膜问题。
优选地,振膜的断裂伸长率大于300%。可以通过优化振膜制备过程中的原料种类及其加入量,获得断裂伸长率更大的振膜。
本发明实施例中,硬段的含量占嵌段聚合物质量的5%~30%。可以理解的是,硬段部分含量太低,橡胶的硬度和模量太低,F0(谐振频率)太低;硬段部分含量太高,断裂伸长率过小,硬度和模量过高,响度变低,低频性能较差,可选地,按质量百分比计,异氰酸酯的用量范围为5%-30%,比如异氰酸酯的用量为5%、10%、15%、20%、25%或30%,如此可以获得较为合适的模量、断裂伸长率、F0及低频性能。
经发明人多次试验验证,可通过调节聚氨酯预聚物中硬段异氰酸酯的比例来调整所制备的振膜的模量和断裂伸长率,从而保证振膜的杨氏模量范围 1MPa-100MPa,断裂伸长率大于100%。
可选地,异氰酸酯选用甲苯二异氰酸酯(TDI)、二苯基甲烷二异氰酸酯(MDI)、六亚甲基二异氰酸酯(HDI)、萘1.5—二异氰酸酯(NDI)、异佛二酮二异氰酸酯(IPDI)、间二亚甲基二异氰酸酯(XDI)、对苯二异氰酸酯(PPDI)、3,3.-二甲基-4,4.-联苯二异氰酸酯(TODI)、4,4'-二环己基甲烷二异氰酸酯(HMDI)、氢化甲苯二异氰酸酯(HTDI)、三甲基己二异氰酸酯(TMDI)中的至少一种。
可选地,多元醇为聚酯多元醇、聚醚多元醇中的至少一种。
软段部分的种类不同,分子链运动能力差异较大,为达到合适的断裂伸长率,需要优化软段部分的种类,选用合适的多元醇,其中聚酯多元醇、聚醚多元醇的分子间作用力更小,分子链更柔顺,生成的浇注型聚氨酯韧性更好,断裂伸长率更大。
可以理解的,本发明可以通过调整软段的种类来优化振膜的断裂伸长率,使其断裂伸长率大于100%。
需要说明的是,在制备振膜时,通过调节聚氨酯预聚物中硬段异氰酸酯的比例及种类、软段多元醇的种类制备得到耐温性能较好的振膜,同时也合理调节了振膜的硬度和厚度,使其硬度设计较为合理,从而保证应用该振膜的发声装置具有更优异的声学性能。
本发明的实施例中,振膜的硬度范围为10A-95A,若振膜的硬度低于10A,振膜刚性差,易产生偏振,造成THD(总谐波失真,Total Harmonic Distortion)不良;若硬度高于95A,橡胶断裂伸长率变小,低温可靠性验证中易破膜造成产品失效,且配方中填料过多导致缺陷。可选地,振膜的硬度为10A、15A、20A、25A、30A、35A、40A、45A、50A、55A、60A、65A、70A、75A、80A、85A、90A或95A。优选地,振膜的硬度范围为30A-90A,使用该振膜的扬声器具有更优异的声学性能。
本发明实施例中,振膜的厚度范围为10μm-300μm,若振膜的厚度小于10um,振膜的阻尼小,听音性能差;若振膜的厚度大于300um,振膜重量过大,灵敏度变差。故需要控制振膜的厚度在10μm-300μm范围内,以保证应该该振膜的发声装置具有优异的声学性能,可选地,振膜的厚度为10μm、50μm、100μm、150μm、200μm、250μm或300μm。优选地, 振膜的厚度范围为10μm-200μm,则采用该振膜的发声装置具有更为优异的声学性能
本发明实施例中,浇注型聚氨酯的分子量范围为500-20000。选用该分子量范围的浇注型聚氨酯制备振膜,不仅可以使得振膜具有较好的耐温性能,而且便于浇注成型操作。
本发明实施例中,配合剂包括包括扩链剂和催化剂,振膜是将多元醇与多异氰酸酯反应生成聚氨酯预聚物,之后加入扩链剂和催化剂,混合后注入至振膜加工模具内,并通过交联反应成型得到。
具体操作时,先将多元醇与多异氰酸酯反应生成液体聚氨酯预聚物,然后外加扩链剂和催化剂混合均匀后,经注射进入振膜加工模具内,通过交联反应成型得到。其中,交联反应反应温度为20℃-230℃,反应时间为5s~30min。
本发明实施例中,扩链剂为可与异氰酸酯反应的多官能度的低分子醇类或胺类化合物。
这里扩链剂起到与异氰酸酯交联的作用,以调节最终振膜的硬度。扩链剂通常为可与异氰酸酯反应的多官能度的低分子醇类或胺类化合物,比如3,3’-二氯-4,4’-二氨基二苯基甲烷(MOCA)、1,4-丁二醇(1,4-BD)、三羟甲基丙烷(TMP)、三异丙醇胺、3,5-二甲基硫基甲苯二胺、1,4-二氢乙氧基苯、氢醌双羟乙基醚、间苯二酚-双(P-羟乙基)醚(HER)中的至少一种。选用上述的扩链剂可以使得聚氨酯预聚物充分发生交联反应,以得到交联效果较好的浇注型聚氨酯,从而保证由此制备的振膜具有较好的杨氏模量和较大的断裂伸长率。
在加入扩链剂时,要合理控制扩链剂的用量,以保证制备的振膜应用于发声装置后具有比较合适的声学性能和可靠性。可选地,按质量百分比计,扩链剂的用量为浇注型聚氨酯的3%-30%。比如,按质量份计,浇注型聚氨酯为100份,则扩链剂为3份、5份、10份、15份、20份、25份或30份。
在本发明的一个具体示例中,可通过调节扩链剂的用量及其种类来优化振膜的模量和断裂伸长率,使其具有较大的模量和断裂伸长率,即在制备振膜时,控制扩链剂的用量范围为3wt%-30wt%,则可保证由此制备得到的振膜杨氏模量范围1MPa-100MPa,断裂伸长率大于100%。
当然地,在制备振膜时,也可以通过同时合理调节扩链剂的用量及其种类、硬段异氰酸酯的用量及其种类、以及软段的种类来保证振膜具有较大的模量和断裂伸长率。
需要说明的是,本发明提供的振膜,采用浇注型聚氨酯(CPU)制成,区别于热塑性聚氨酯(TPU),热塑性聚氨酯(TPU)为羟基(-OH)封端的聚氨酯,是线形或支化结构,可二次加工,一般经流延或涂布制成薄膜后,再通过气压或模压制成振膜,由此制得的振膜在大应变后容易产生永久变形,且在组装成发声装置时与胶水接触导致溶胀,引起性能和可靠性不良;而本发明所述浇注型聚氨酯为异氰酸酯基(-NCO)封端,经注入模具一体成型制备成振膜,为交联结构,不可二次加工,经注入模具一体成型制备成振膜;也区别于常规的聚氨酯橡胶,常规的聚氨酯橡胶为固体橡胶,羟基(-OH)封端,一般与配合剂经过塑炼混炼加工后,通过压延制成片状或涂布成膜,再经气压或模压制成振膜,反应交联剂常为硫黄、过氧化物和异氰酸酯,由此制得的振膜硬度可调范围较窄,且因需后续粘接外壳等部件,导致发声装置气密性差。而本发明所述的浇注型聚氨酯为液态橡胶,浇注成型,外加扩链剂进行扩链和交联,扩链剂通常为醇类、胺类或醇胺类,由此制得的振膜硬度可调范围宽,且因为是与外壳一体成型,故应用该振膜的发声装置具有较好的气密性。
本发明实施例中,催化剂为二月桂酸丁基锡、辛酸亚锡、磷酸、油酸、己二酸、壬二酸、乙酰丙酮铁中的至少一种。
这里催化剂的作用是加快交联反应,从而加快浇注型聚氨酯的成膜速度,提高振膜的制备效率。催化剂可选用上述物质的其中一种或多种混合物。
本发明实施例中,配合剂还包括填料,填料为炭黑、二氧化硅、粘土、碳酸钙、高岭土、滑石粉、不饱和羧酸金属盐、玻璃微珠中的至少一种。在保证振膜具有较大的模量和断裂伸长率的基础上,加入了填料,可以进一步提高振膜的强度和韧性,从而更有效地保证振膜不易出现破膜的现象。
本发明实施例中,配合剂还包括助剂,助剂为抗氧剂、紫外线吸收剂、抗水解稳定剂、增塑剂、色浆、防老剂中的至少一种。其中,抗氧剂的加入,可以提高其抗氧化性能,抗氧剂可以是抗氧剂2、抗氧剂4、抗氧剂6、 抗氧剂1010、抗氧剂1076、抗氧剂168中的至少一种,用量为0.5~5份(质量份)。抗水解稳定剂可以提高浇注型聚氨酯的抗水解稳定性,增塑剂可以增加浇注型聚氨酯的柔软性能,色浆可以赋予一定的色彩,防老剂可以提高其防老化性能。在保证振膜具有较好的韧性的基础上,加入了上述助剂,可以进一步提高浇注型聚氨酯的综合性能,用户可以根据操作需求和产品需求来选用上述助剂的一种或多种。
可以理解的,本发明浇注型聚氨酯是由液体聚氨酯外加扩链剂、催化剂、填料以及其他助剂混合均匀后,经注射进入相应模具后交联得到。
需要说明的是,本发明的浇注型聚氨酯振膜中不含有发泡剂,因为发泡剂的加入会导致出现薄壁或局部缺陷,经过可靠性测试后容易产生变形甚至破膜等问题,导致性能不良,影响用户的使用体验。本发明采用浇注型聚氨酯旨在提高振膜的模量和断裂伸长率,且保证使用该振膜的扬声器满足在高温可靠性后仍能保持原来的形状和性能,不会出现变形、破膜等风险,若加入发泡剂则会与本发明的构思相违背。同时本发明振膜的制备原料较为简单,制备工艺较为简化,操作较为简单,制备成本相对较低。
本发明还提出了一种发声装置,包括发声装置主体和振膜,振膜的具体结构可参照上述实施例,由于发声装置采用了前述所有实施例的全部技术方案,因此至少具有前述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
如附图1是声学扬声器100的示例剖视图,其中,10为扬声器外壳;20为本发明所述振膜;30为音圈;40为磁铁。当扬声器100工作时,电信号输入产品音圈30,音圈30受到磁场的作用力,并随着信号大小、正负方向的交替变化做不同幅度和方向的运动,从而带动振膜20振动并发出声音,以完成电-力-声能量转化过程。
可选地,本发明的振膜可以为折环振膜或者平板振膜,振膜设置在发声装置主体上,振膜被配置为能够被驱动振动,通过振动进而产生声音。发声装置主体中可以配置有线圈、磁路系统等部件,通过电磁感应驱动振膜振动。
在本发明的一个具体示例中,振膜的洛氏硬度在10-95A,厚度在10-300μm这一范围时,能够使得微型发声装置的谐振频率F0达到100-1500Hz。 微型发声装置的低频性能优良。
下面通过具体实施例对本发明振膜进行详细说明,其中,实施例和对比例中的振膜在室温条件下的F0之间的差值在20以内,也就是说,实施例和对比例中的振膜在室温条件下的F0相近。值得理解的是,下面描述仅是示例性的,而不是对本发明的具体限制。
实施例1:本实施例为采用浇注型聚氨酯制备的振膜,浇注型聚氨酯中的聚氨酯预聚物是由软段聚酯多元醇和硬段二苯基甲烷二异氰酸(MDI)聚合而成,其中硬段二苯基甲烷二异氰酸(MDI)的含量为5%(质量分数)。本实施例制备得到的振膜的厚度为150μm,硬度为35A。
实施例2:本实施例为采用浇注型聚氨酯制备的振膜,浇注型聚氨酯中的聚氨酯预聚物是由软段聚酯多元醇和硬段二苯基甲烷二异氰酸(MDI)聚合而成,其中硬段二苯基甲烷二异氰酸(MDI)的含量为18%(质量分数)。本实施例制备得到的振膜的厚度为95μm,硬度为60A。
实施例3:本实施例为采用浇注型聚氨酯制备的振膜,浇注型聚氨酯中的聚氨酯预聚物是由软段聚酯多元醇和硬段二苯基甲烷二异氰酸(MDI)聚合而成,其中硬段二苯基甲烷二异氰酸(MDI)的含量为30%(质量分数)。本实施例制备得到的振膜的厚度为80μm,硬度为75A。
对比例1为工程塑料(PEEK)复合振膜,振膜为3层结构,其中两个表层均为PEEK层,厚度为5μm,中间层为聚丙烯酸酯压敏胶膜,厚度为20μm。
将实施例1-3和对比例1中的振膜进行如下性能测试:
(1)断裂伸长率测试
将实施例1-3和对比例1中的振膜在正常的室温环境下分别进行断裂伸长率测试,按照ASTM-D882测试标准,标距30mm,拉伸速率300mm/min,并将测试数据曲线绘制于图1中。
从图1中的测试曲线可以看出,相较于工程塑料(PEEK)复合振膜,本发明采用浇注型聚氨酯制备的振膜具有较大的断裂伸长率,具有较好的韧性和抗拉性能。
(2)SPL频率曲线测试
将实施例1-3和对比例1中的振膜分别进行SPL频率曲线测试,并将测试结果记录于图2中。
从图2中的测试曲线可以看出,相较于工程塑料(PEEK)复合振膜,本发明采用浇注型聚氨酯制备的振膜具有更高的低频性能,能带来更优异的空间听觉体验。
(3)可靠性后破膜率测试:
将实施例1-3和对比例1中的振膜分别进行可靠性后破膜率测试,对比例1及实施例1-3中的振膜在模拟正常工作环境下的振动时间均为96h,检测每个振膜的破膜率,并将测试结果记录于表1中。
表1 实施例1-3和对比例1中振膜的可靠性后破膜率测试结果
振膜材质 破膜率/%
对比例1(PEEK复合振膜) 30
实施例1(浇注型聚氨酯振膜) 0
实施例2(浇注型聚氨酯振膜) 3
实施例3(浇注型聚氨酯振膜) 4
从表1中的测试数据可以看出,可靠性后,本发明浇注型聚氨酯振膜的实施例1-3破膜率明显率明显低于PEEK复合振膜的破膜率。说明本发明振膜韧性较好,不易出现破膜问题。
(3)振膜成型后翘曲程度测试:
为验证本发明产品性能,测试实施例1-3和对比例1中振膜的翘曲程度,具体测试方法为:在正常室温条件下用测试仪对产品进行测试,测试仪包括三部分:测试探头、显示器、和花岗岩平台,其中测试探头为非接触式位移传感器;测试时,将产品放置在花岗岩平台的三个支点上,上下两个测试探头按照相同轨迹同步扫描产品,记录测试探头到产品最近表面的距离,求出每个测试点两个测试探头的差值,其中差值的一半即是该测试点翘曲度的测试值,其中取各个测试点中最大的翘曲度的测试值定义为该产品的翘曲度。分别根据实施例1-3和对比例1的制备方法,每个实例制作100个平行产品,分别测试各平行产品的翘曲度,统计各平行产品翘曲度的分布情况, 测试结果参见表2。
表2 实施例1-3和对比例1振膜翘曲程度测试结果
Figure PCTCN2021135921-appb-000003
从表2的测试结果可知,对比例1中的振膜采用气压成型的方式制备而成,实施例1-3为本发明所述浇注型聚氨酯振膜,采用浇注方法制备,可明显看出,本发明浇注型聚氨酯振膜的翘曲程度明显优于传统的气压成型的热塑性弹性体振膜。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (12)

  1. 一种振膜,其特征在于,所述振膜采用浇注型聚氨酯制备而成,所述浇注型聚氨酯为聚氨酯预聚物外加配合剂经反应交联制成,所述聚氨酯预聚物为嵌段聚合物,所述嵌段聚合物由硬段和软段交替排列形成,所述硬段为异氰酸酯,所述软段为多元醇柔性长链,所述嵌段聚合物的端基均为异氰酸酯硬段,所述振膜的杨氏模量范围为1MPa-100MPa,所述振膜的断裂伸长率大于100%。
  2. 如权利要求1所述的振膜,其特征在于,所述硬段的含量占所述嵌段聚合物质量的5%~30%。
  3. 如权利要求1所述的振膜,其特征在于,所述振膜的杨氏模量范围为3MPa-100MPa。
  4. 如权利要求1所述的振膜,其特征在于,所述振膜的断裂伸长率大于300%。
  5. 如权利要求1所述的振膜,其特征在于,所述异氰酸酯为甲苯二异氰酸酯、二苯基甲烷二异氰酸酯、六亚甲基二异氰酸酯、萘1.5—二异氰酸酯、异佛二酮二异氰酸酯、间二亚甲基二异氰酸酯、对苯二异氰酸酯、3,3.-二甲基-4,4.-联苯二异氰酸酯、4,4'-二环己基甲烷二异氰酸酯、氢化甲苯二异氰酸酯、三甲基己二异氰酸酯中的至少一种;
    和/或,所述多元醇为聚酯多元醇、聚醚多元醇中的至少一种。
  6. 如权利要求1所述的振膜,其特征在于,所述振膜的硬度范围为10A-95A;
    和/或,所述振膜的厚度范围为10μm-300μm。
  7. 如权利要求1至6中任一项所述的振膜,其特征在于,所述配合剂包括扩链剂和催化剂,所述振膜是将多元醇与多异氰酸酯反应生成聚氨酯预聚物,之后加入扩链剂和催化剂,混合后注入至振膜加工模具内,并通过交联反应成型得到。
  8. 如权利要求7所述的振膜,其特征在于,所述扩链剂为可与异氰酸酯反应的多官能度的低分子醇类或胺类化合物。
  9. 如权利要求8所述的振膜,其特征在于,所述扩链剂为3,3’-二氯-4,4’-二氨基二苯基甲烷、1,4-丁二醇、三羟甲基丙烷、三异丙醇胺、3,5-二甲基硫基甲苯二胺、1,4-二氢乙氧基苯、氢醌双羟乙基醚、间苯二酚-双(P-羟乙基)醚中的至少一种;
    和/或,按质量百分比计,所述扩链剂的用量为所述聚氨酯预聚物的3%-30%。
  10. 如权利要求7所述的振膜,其特征在于,所述催化剂为二月桂酸丁基锡、辛酸亚锡、磷酸、油酸、己二酸、壬二酸、乙酰丙酮铁中的至少一种。
  11. 如权利要求6所述的振膜,其特征在于,所述配合剂还包括填料,所述填料为炭黑、二氧化硅、粘土、碳酸钙、高岭土、滑石粉、玻璃微珠中的至少一种;
    和/或,所述配合剂还包括助剂,所述助剂为抗氧剂、紫外线吸收剂、抗水解稳定剂、增塑剂、色浆、防老剂中的至少一种。
  12. 一种发声装置,其特征在于,包括如权利要求1至11中任一项所述的振膜。
PCT/CN2021/135921 2021-01-29 2021-12-07 振膜和发声装置 WO2022160944A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110134112.6A CN114827875B (zh) 2021-01-29 2021-01-29 振膜和发声装置
CN202110134112.6 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022160944A1 true WO2022160944A1 (zh) 2022-08-04

Family

ID=82526023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135921 WO2022160944A1 (zh) 2021-01-29 2021-12-07 振膜和发声装置

Country Status (2)

Country Link
CN (1) CN114827875B (zh)
WO (1) WO2022160944A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004274530A (ja) * 2003-03-11 2004-09-30 Mitsubishi Plastics Ind Ltd スピーカ振動板用フィルム
CN104341579A (zh) * 2014-10-27 2015-02-11 中国科学院长春应用化学研究所 一种低形变聚氨酯减震缓冲块的制备方法
CN107810111A (zh) * 2015-07-01 2018-03-16 株式会社Lg化学 基膜
CN108976763A (zh) * 2018-05-02 2018-12-11 歌尔股份有限公司 硅油改性聚氨酯弹性体振膜以及扬声器单体
CN110804154A (zh) * 2019-10-31 2020-02-18 歌尔股份有限公司 发声装置的振膜以及发声装置
CN111935601A (zh) * 2020-09-23 2020-11-13 歌尔股份有限公司 一种发声装置的复合振膜及其制备方法、发声装置
CN111935626A (zh) * 2020-09-23 2020-11-13 歌尔股份有限公司 一种扬声器的振膜及其制备方法、扬声器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623097A (en) * 1979-08-01 1981-03-04 Matsushita Electric Ind Co Ltd Diaphragm for speaker and its production
JPS5778299A (en) * 1980-10-31 1982-05-15 Houyuu Gomme Kk Diaphragm for speaker
AU528127B2 (en) * 1980-11-20 1983-04-14 Hohyu Rubber Co. Ltd. Rubber composition
US5319718A (en) * 1991-10-11 1994-06-07 Yocum Fred D Loudspeaker cone and method for making same
JP4200599B2 (ja) * 1999-07-12 2008-12-24 オンキヨー株式会社 スピーカー用部材およびその製造方法
JP2009141808A (ja) * 2007-12-07 2009-06-25 Bridgestone Corp スピーカーエッジ用硬化性制振材料
CN108551640B (zh) * 2018-06-15 2020-09-18 歌尔股份有限公司 扬声器振膜以及扬声器
CN109495818B (zh) * 2018-11-05 2021-12-28 歌尔股份有限公司 一种振膜
CN111866669B (zh) * 2019-04-24 2021-11-16 歌尔股份有限公司 一种用于微型发声装置的振膜和微型发声装置
CN111479209B (zh) * 2020-03-16 2021-06-25 东莞市古川胶带有限公司 一种扬声器振膜复合材料
CN111935602B (zh) * 2020-09-23 2021-01-22 歌尔股份有限公司 一种发声装置的振膜及其制备方法、发声装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004274530A (ja) * 2003-03-11 2004-09-30 Mitsubishi Plastics Ind Ltd スピーカ振動板用フィルム
CN104341579A (zh) * 2014-10-27 2015-02-11 中国科学院长春应用化学研究所 一种低形变聚氨酯减震缓冲块的制备方法
CN107810111A (zh) * 2015-07-01 2018-03-16 株式会社Lg化学 基膜
CN108976763A (zh) * 2018-05-02 2018-12-11 歌尔股份有限公司 硅油改性聚氨酯弹性体振膜以及扬声器单体
CN110804154A (zh) * 2019-10-31 2020-02-18 歌尔股份有限公司 发声装置的振膜以及发声装置
CN111935601A (zh) * 2020-09-23 2020-11-13 歌尔股份有限公司 一种发声装置的复合振膜及其制备方法、发声装置
CN111935626A (zh) * 2020-09-23 2020-11-13 歌尔股份有限公司 一种扬声器的振膜及其制备方法、扬声器

Also Published As

Publication number Publication date
CN114827875A (zh) 2022-07-29
CN114827875B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
KR102636231B1 (ko) 음향 발생 장치의 진동판 및 음향 발생 장치
EP3985996A1 (en) Vibration diaphragm of sound producing device and sound producing device
CN111935626B (zh) 一种扬声器的振膜及其制备方法、扬声器
WO2021082245A1 (zh) 一种用于微型发声装置的振膜及微型发声装置
CN110708634B (zh) 发声装置的振膜以及发声装置
CN110784807A (zh) 一种发声装置的振膜以及发声装置
CN110818991A (zh) 一种发声装置的振膜以及发声装置
CN111935603A (zh) 一种发声装置的复合振膜及其制备方法、发声装置
CN110708637B (zh) 一种用于微型发声装置的振膜及微型发声装置
CN110784805A (zh) 一种用于微型发声装置的振膜及微型发声装置
WO2022160690A1 (zh) 振膜及发声装置
WO2022160944A1 (zh) 振膜和发声装置
WO2022160683A1 (zh) 振膜和发声装置
WO2022160688A1 (zh) 振膜和发声装置
WO2022160947A1 (zh) 振膜和发声装置
WO2022160687A1 (zh) 振膜和发声装置
WO2022160693A1 (zh) 振膜及发声装置
CN110784806A (zh) 一种用于微型发声装置的振膜及微型发声装置
CN110798779B (zh) 一种用于微型发声装置的振膜及微型发声装置
CN116199918B (zh) 发声装置的振膜的制备方法、振膜、发声装置
CN114827874B (zh) 振膜及发声装置
CN114071327B (zh) 发声装置的振膜及发声装置
EP3962102A1 (en) Vibration diaphragm for miniature sound production device and miniature sound production device
CN114071328A (zh) 发声装置的振膜及发声装置
CN116074700A (zh) 发声装置的振膜及发声装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922534

Country of ref document: EP

Kind code of ref document: A1