WO2022160875A1 - 功能材料、发光基板及其制备方法和发光装置 - Google Patents

功能材料、发光基板及其制备方法和发光装置 Download PDF

Info

Publication number
WO2022160875A1
WO2022160875A1 PCT/CN2021/131144 CN2021131144W WO2022160875A1 WO 2022160875 A1 WO2022160875 A1 WO 2022160875A1 CN 2021131144 W CN2021131144 W CN 2021131144W WO 2022160875 A1 WO2022160875 A1 WO 2022160875A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
hole injection
hole transport
hole
layer
Prior art date
Application number
PCT/CN2021/131144
Other languages
English (en)
French (fr)
Inventor
李彦松
吴海东
王蓓
杜小波
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/927,542 priority Critical patent/US20230354698A1/en
Publication of WO2022160875A1 publication Critical patent/WO2022160875A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present disclosure relates to the technical field of lighting and display, and in particular, to a material with hole injection and/or hole transport functions, a light-emitting substrate, a preparation method thereof, and a light-emitting device.
  • OLED Organic Light-Emitting Diode, Organic Light Emitting Diode
  • OLED Organic Light-Emitting Diode
  • a material with hole injection and/or hole transport functions comprising: a host material; and a crystallization inhibitor doped in the host material; wherein the crystallization inhibitor can inhibit the The matrix material is crystallized during the evaporation process, and the crystallization inhibitor has a hole injection and/or hole transport function.
  • the host material includes at least one of a hole injection material and a hole transport material.
  • the host material includes a hole injection material and a hole transport material.
  • the crystallization inhibitor is selected from any one or a mixed material of two or more derivatives of aromatic amines.
  • the crystallization inhibitor is selected from N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'- Diamine, N,N'-bis( ⁇ -naphthyl)-N,N'-diphenyl-4,4'-binaphthylamine, N,N'-bis(3,4-dimethylphenyl) )-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine, N,N,N',N'-tetrakis(4-methylphenyl)-1,1 Any one or a mixed material of two or more of '-biphenyl-4,4'-diamine and 4,4',4"-tris[phenyl(m-tolyl)amino]triphenylamine.
  • the weight part of the host material is 90 to 99 parts; the crystallization inhibitor The weight part is 1 to 10 parts.
  • the weight part of the host material is 93 to 97 parts; the balance is the Crystallization inhibitor.
  • the weight portion of the host material is 5 to 40 parts by weight , and the remainder is the hole transport material.
  • the weight portion of the host material is 25 to 35 parts by weight , and the remainder is the hole transport material.
  • the hole injection material is selected from 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene, 2 ,3,5,6-tetrafluoro-7,7',8,8'-tetracyanodimethyl-p-benzene and tris (4-bromophenyl) ammonium hexachloroantimonate any one or two or more of mixed materials.
  • the hole transport material is selected from N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4-4'-diphenyl Any one or a mixture of two or more of amine (NPB), triphenyldiamine derivatives, TPTE and 1,3,5-tris(N-3-methylphenyl-N-phenylamino)benzene Material.
  • a light-emitting substrate comprising: a substrate; and a plurality of light-emitting devices disposed on the substrate; at least one light-emitting device includes: a stacked first electrode and a second electrode, disposed on the first electrode A light-emitting layer between an electrode and a second electrode; and a functional layer disposed between the first electrode and the light-emitting layer; the material of the functional layer is selected from the above-mentioned materials with hole injection and and/or materials with hole transport function.
  • the light emitting substrate further includes a pixel definition layer, the pixel definition layer has a plurality of openings; and/or hole transport function film, the film with hole injection and/or hole transport function includes a portion located in the opening and a portion located outside the opening, the hole injection and/or hole transport function The portion of the functional thin film located in the opening constitutes a functional layer included in the light emitting device.
  • the functional layer is a hole injection layer, and the thickness of the hole injection layer is 1 nm ⁇ 10 nm.
  • the at least one light emitting device includes at least one of a red light emitting device, a green light emitting device, or a blue light emitting device.
  • a light-emitting device comprising the above-mentioned light-emitting substrate.
  • a method for preparing a light-emitting substrate comprising:
  • a plurality of light-emitting devices are formed on the substrate; wherein, at least one light-emitting device is the light-emitting device as described above.
  • the forming a plurality of light-emitting devices on the substrate includes:
  • a thin film with hole injection and/or hole transport functions is formed on the substrate and on the side of the pixel defining layer away from the substrate by an evaporation process, and the film has hole injection and/or hole transport functions.
  • the thin film with transport function includes a portion located in the opening and a portion located outside the opening, and the portion of the thin film with hole injection and/or hole transport function located in the opening constitutes a functional layer included in the light-emitting device.
  • FIG. 1 is a cross-sectional structural view of a light-emitting substrate according to some embodiments
  • FIG. 2 is a top structural view of a light-emitting substrate according to some embodiments.
  • Example 3 is a voltage-current density graph of Comparative Example 2 and Experimental Example 3 according to some embodiments.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C”, and both include the following combinations of A, B, and C: A only, B only, C only, A and B , A and C, B and C, and A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Exemplary embodiments are described herein with reference to cross-sectional and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes of the drawings due to, for example, manufacturing techniques and/or tolerances, are contemplated.
  • example embodiments should not be construed as limited to the shapes of the regions shown herein, but to include deviations in shapes due, for example, to manufacturing. For example, an etched area shown as a rectangle will typically have curved features.
  • the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of example embodiments.
  • a light-emitting device which includes a light-emitting substrate, and may of course include other components, such as a circuit for providing electrical signals to the light-emitting substrate to drive the light-emitting substrate to emit light, the circuit It may be called a control circuit, and may include a circuit board and/or an IC (Integrate Circuit) that is electrically connected to the light-emitting substrate.
  • a control circuit may include a circuit board and/or an IC (Integrate Circuit) that is electrically connected to the light-emitting substrate.
  • the light-emitting device may be a lighting device, and in this case, the light-emitting device is used as a light source to realize a lighting function.
  • the light-emitting device may be a backlight module in a liquid crystal display device, a lamp for internal or external lighting, or various signal lights, and the like.
  • the light-emitting device may be a display device, and in this case, the light-emitting substrate is a display substrate for realizing the function of displaying an image (ie, a picture).
  • the light emitting device may comprise a display or a product incorporating a display.
  • the display may be a flat panel display (Flat Panel Display, FPD), a microdisplay, and the like.
  • the display can be a transparent display or an opaque display according to whether the user can see the scene behind the display.
  • the display may be a flexible display or a normal display (which may be called a rigid display).
  • products incorporating displays may include: computer monitors, televisions, billboards, laser printers with display capabilities, telephones, cell phones, Personal Digital Assistants (PDAs), laptop computers, digital cameras, camcorders Recorders, viewfinders, vehicles, large walls, theater screens or stadium signage, etc.
  • PDAs Personal Digital Assistants
  • laptop computers digital cameras
  • camcorders Recorders viewfinders
  • vehicles large walls, theater screens or stadium signage, etc.
  • the light-emitting substrate 1 includes a substrate 11 , a pixel defining layer 12 disposed on the substrate 11 , and a plurality of light-emitting devices 13 .
  • the pixel defining layer 12 has a plurality of openings Q, and the plurality of light emitting devices 13 can be arranged in a one-to-one correspondence with the plurality of openings Q.
  • the plurality of light emitting devices 13 here may be all or part of the light emitting devices 13 included in the light emitting substrate 1 ; the plurality of openings Q may be all or part of the openings on the pixel defining layer 12 .
  • At least one light emitting device 13 may include a first electrode 131, a second electrode 132, and a light emitting layer 133 disposed between the first electrode 131 and the second electrode 132, and each light emitting layer 133 may Include a portion located in one opening Q.
  • the first electrode 131 may be an anode, and in this case, the second electrode 132 is a cathode. In other embodiments, the first electrode 131 may be a cathode, and in this case, the second electrode 132 may be an anode.
  • the material of the anode can be selected from high work function materials, such as ITO (Indium Tin Oxides, indium tin oxide), IZO (Indium Zinc Oxide, indium zinc oxide) or composite materials (such as Ag/ITO, Al/ ITO, Ag/IZO or Al/IZO, where "Ag/ITO” refers to a stacked structure composed of metal silver electrodes and ITO electrodes, and “Al/ITO” refers to: a stacked structure composed of metal aluminum electrodes and ITO electrodes Laminated structure, "Ag/IZO” refers to a laminated structure composed of metallic silver electrodes and IZO electrodes, and “Al/IZO” refers to a laminated structure composed of metallic aluminum electrodes and IZO electrodes.
  • high work function materials such as ITO (Indium Tin Oxides, indium tin oxide), IZO (Indium Zinc Oxide, indium zinc oxide) or composite materials (such as Ag/ITO, Al/ ITO, Ag/IZO
  • the material of the cathode can be selected from low work function materials, such as one of metal materials such as metal materials Mg, Ag, Al, Li, K, and Ca, or an alloy Mg x Ag (1- x) , Li x Al (1-x) , Li x Ca (1-x) , Li x Ag (1-x) , the thickness can be 10nm ⁇ 20nm.
  • metal materials such as metal materials Mg, Ag, Al, Li, K, and Ca
  • an alloy Mg x Ag (1- x) Li x Al (1-x) , Li x Ca (1-x) , Li x Ag (1-x)
  • the thickness can be 10nm ⁇ 20nm.
  • x is the mass proportion of metallic Mg in the alloy Mg x Ag (1-x) , and the remainder is metallic Ag.
  • x is the mass proportion of metallic Li in the alloy Li x Al (1-x) , and the balance is metallic Al.
  • x is the mass proportion of metallic Li in the alloy Li x Ca (1-x) , and the balance is metallic calcium.
  • x is the mass proportion of metallic Li in the alloy Li x Ag (1-x) , and the balance is metallic silver.
  • the light-emitting principle of the light-emitting device 13 is: through a circuit connected with the anode and the cathode, the anode is used to inject holes into the light-emitting layer 133, and the cathode is used to inject electrons into the light-emitting layer 133, and the formed electrons and holes are in the light-emitting layer 133.
  • Excitons are formed in the light-emitting layer 133, and the excitons transition back to the ground state by radiation to emit photons.
  • the light-emitting substrate 1 can also be provided with a driving circuit connected to each light-emitting device 13, and the driving circuit can be connected to the control circuit to drive each light-emitting device 13 to emit light according to the electrical signal input by the control circuit.
  • the driving circuit may be an active driving circuit or a passive driving circuit.
  • the light-emitting substrate 1 can emit white light, monochromatic light (single-color light), or color-adjustable light.
  • the light-emitting substrate 1 can emit white light.
  • at least one light emitting device 13 includes at least two light emitting devices 13 emitting colors, such as a blue light emitting device 13B, a green light emitting device 13G, and a red light emitting device 13R.
  • the light emitting substrate 1 can present white light by controlling the light emitting device 13B emitting blue light, the light emitting device 13G emitting green light, and the light emitting device 13R emitting red light to emit light simultaneously to realize light mixing.
  • the light-emitting substrate 1 can be used for lighting, that is, it can be applied to a lighting device.
  • the light-emitting substrate 1 can emit monochromatic light.
  • a plurality of light-emitting devices 13 for example, all of the light-emitting devices 13 included in the light-emitting substrate 1 emits monochromatic light (eg, red light).
  • each light-emitting device 13 emits red light.
  • Light emitting device 13R At this time, red light emission can be realized by driving each light emitting device 13 to emit light.
  • the light-emitting substrate 1 is similar in structure to the plurality of light-emitting devices 13 described in the first example. In this case, the blue-emitting light-emitting device 13B, the green-emitting light-emitting device 13G and the The red-emitting light-emitting device 13R realizes monochromatic light emission.
  • the light-emitting substrate 1 can be used for lighting, that is, it can be applied to a lighting device, and it can also be used to display a single-color image or screen, that is, it can be applied to a display device.
  • the light-emitting substrate 1 can emit light with tunable colors (ie, colored light).
  • the light-emitting substrate 1 is similar in structure to the plurality of light-emitting devices described in the first example.
  • the brightness of the light-emitting device 13 By controlling the brightness of the light-emitting device 13 , the color and brightness of the mixed light emitted by the light-emitting substrate 1 can be controlled, and color light emission can be realized.
  • the light-emitting substrate 1 can be used to display images or pictures, that is, it can be used in a display device.
  • the light-emitting substrate 1 can also be used in a lighting device.
  • the light-emitting substrate 1 includes a display area A and a peripheral area S disposed around the display area A.
  • the display area A includes a plurality of sub-pixel areas P, each sub-pixel area P corresponds to an opening, one opening corresponds to a light-emitting device, and each sub-pixel area P is provided with a pixel driving circuit 200 for driving the corresponding light-emitting device to emit light.
  • the peripheral area S is used for wiring, such as connecting the gate driving circuit 100 of the pixel driving circuit 200 .
  • the light emitting device 13 may further include: a functional layer 134 disposed between the first electrode 131 and the light emitting layer 133 .
  • the functional layer 134 can be any one of the hole injection layer 134a, the hole transport layer 134b and the electron blocking layer 134c.
  • the functional layer 134 can be any one of the electron injection layer 134d, the electron transport layer 134e and the hole blocking layer 134f.
  • the material of the functional layer 134 can be selected from the group having the function of hole injection and/or hole transport s material.
  • the material of the functional layer 134 can be selected from materials with electron injection and/or electron transport functions .
  • the material of the functional layer 134 is selected from materials having hole injection and/or hole transport functions. That is, the functional layer 134 is any one of the hole injection layer 134a, the hole transport layer 134b and the electron blocking layer 134c, the first electrode 131 is an anode, and the second electrode 132 is a cathode.
  • the plurality of light emitting devices 13 include a thin film 300 with hole injection and/or hole transport function disposed on the side of the pixel defining layer 12 away from the substrate 11 , and having hole injection
  • the thin film 300 with hole injection and/or hole transport function includes a portion located in each opening Q and a portion located outside each opening Q, and the portion of the thin film 300 with hole injection and/or hole transport function located in each opening Q constitutes the functional layer 134 included in each light emitting device 13 .
  • the thin film 300 with hole injection and/or hole transport function can be formed by evaporation.
  • the functional layer 134 may be the hole injection layer 134a, and the thin film 300 with hole injection and/or hole transport functions may ) formed by evaporation.
  • Evaporation refers to the process of evaporating or sublimating the substance to be formed into a film in a vacuum, so that it is precipitated on the surface of the workpiece or substrate.
  • a crucible is used to hold organic materials
  • the crucible mouth is equipped with a crucible cover
  • the crucible cover has multiple nozzles.
  • the organic materials in the crucible are ejected from the nozzles to form a film on the substrate.
  • some embodiments of the present disclosure provide a material with hole injection and/or hole transport functions, including: a host material, and a crystallization inhibitor doped in the host material.
  • the crystallization inhibitor can inhibit the crystallization of the host material during the evaporation process, and the crystallization inhibitor has the function of hole injection and/or hole transport.
  • the material with hole injection and/or hole transport function can be used to make any one of the hole injection layer 134a, the hole transport layer 134b and the electron blocking layer 134c, it can be known that the hole injection layer 134a, the hole transport layer 134b and the electron blocking layer 134c
  • the material with hole injection and/or hole transport function may be one or a mixed material of two or more of hole injection material, hole transport material and electron blocking material.
  • the material with hole injection and/or hole transport function focuses on having better The hole injection effect, when applied, can be used to reduce the energy level difference between the cathode and the hole transport layer 134b.
  • the host material can be selected from hole injection materials, or hole injection materials and hole transport materials. mixed materials, or hole transport materials doped with p-type doping materials, etc.
  • the material with hole injection and/or hole transport function In the case where the material with hole injection and/or hole transport function is used to fabricate the hole transport layer 134b, the material with hole injection and/or hole transport function focuses on having better hole transport Compared with the hole injection material, it needs to have higher hole mobility, and the HOMO (highest occupied molecular orbital, the highest occupied molecular orbital) energy level of the material is between the hole injection layer 134a and the light emitting layer 133. In time, therefore, in this case, the matrix material can be selected from hole transport materials.
  • the material with hole injection and/or hole transport function In the case where the material with hole injection and/or hole transport function is used to fabricate the electron blocking layer 134c, the material with hole injection and/or hole transport function has a better hole transport effect. At the same time, it also has a certain electron blocking effect, and the LUMO (lowest unoccupied molecular orbital, the lowest unoccupied molecular orbital) energy level of the material is relatively high. Therefore, in this case, the host material can be selected from electron blocking materials.
  • the specific material of the crystallization inhibitor is not limited, as long as the crystallization inhibitor is doped into the matrix material, the crystallization of the matrix material can be inhibited during the evaporation process, and the properties of the matrix material itself are not affected.
  • the crystallization inhibitor is selected from any one or a mixture of two or more derivatives of aromatic amines.
  • the derivatives of aromatic amines themselves form a relatively dense film during evaporation, crystallization is difficult to occur. Therefore, derivatives of aromatic amines are used as crystallization inhibitors to evaporate together with matrix materials that are prone to crystallization. Plating can achieve the purpose of inhibiting the crystallization of the matrix material.
  • the crystallization inhibitor is selected from N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine , N,N'-bis( ⁇ -naphthyl)-N,N'-diphenyl-4,4'-binaphthylamine, N,N'-bis(3,4-dimethylphenyl)- N,N'-Diphenyl-1,1'-biphenyl-4,4'-diamine, N,N,N',N'-tetrakis(4-methylphenyl)-1,1'- A mixed material of any one or two or more of biphenyl-4,4'-diamine and 4,4',4"-tris[phenyl(m-tolyl)amino]triphenylamine.
  • the doping amount of the crystallization inhibitor is not specifically limited, and the doping amount of the crystallization inhibitor may also be different for host materials with different properties and functions.
  • the weight part of the host material may be 90 to 99 parts, and the weight part of the crystallization inhibitor is 1 servings to 10 servings.
  • Parts by weight represent the mass ratios occupied by several substances.
  • 1 part is taken as 1 g as an example, then the total mass of the material with hole injection and/or hole transport function is 100 g, and the mass of the host material can be 90 g ⁇ 99g, and the balance is crystallization inhibitor.
  • the mass of the crystallization inhibitor is 100 g minus 90 g, which is equal to 10 g.
  • the mass of the matrix material is 91g
  • the mass of the crystallization inhibitor is 100g minus 91g, which is equal to 9g
  • the mass of the matrix material is 92g
  • the mass of the crystallization inhibitor is 100g minus 92g, which is equal to 8g, and so on,...
  • the mass of the matrix material is 99 g
  • the mass of the crystallization inhibitor is 100 g minus 99 g, which is equal to 1 g.
  • the crystallization inhibitor can play the technical effect of inhibiting crystallization without affecting the properties of the matrix material itself.
  • the weight part of the host material is 93 to 97 parts;
  • the weight part is 3 to 7 parts.
  • the hole injection layer 134a and the hole transport layer 134b are formed by evaporation, and it can be known that, in some embodiments, the host material includes at least one of a hole injection material and a hole transport material. That is, the above functional layer 134 is a hole injection layer 134a or a hole transport layer 134b.
  • the functional layer 134 is a hole injection layer 134a.
  • the hole transport material is doped with a p-type dopant material
  • the functional layer 134 is a hole injection layer 134a.
  • the hole transport material is not doped with p-type dopant material
  • the functional layer 134 is the hole transport layer 134b.
  • the thin film 300 Compared with the thin film 300, it can solve the problem that in the related art, when the thin film 300 with hole injection and/or hole transport function is formed by evaporation to form the functional layer 134, the material crystallization phenomenon easily occurs during the evaporation process, so that This leads to the problem of crystal plugging in the mass production process.
  • the hole transport material is doped with a p-type dopant material as a host material for direct evaporation, by doping a crystallization inhibitor in the host material, the hole transport material is doped with p-type doping material, so that the red light-emitting device, the blue light-emitting device and the green light-emitting device caused by the high hole mobility are reduced.
  • the host material includes a hole injection material and a hole transport material.
  • the hole injection material and the hole transport material may be doped or not doped with a p-type dopant material. It can be set according to the actual application.
  • a material with hole injection and/or hole transport function can be used as a material for making the hole injection layer
  • the functional layer 134 can be a hole injection layer 134a
  • the thickness of the hole injection layer 134a can be 1 nm to 10 nm.
  • the hole injection material is selected from 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene (2,3 ,6,7,10,11-HexaazatriphenylenehexacabonitrileSynonym, HAT-CN), 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanodimethyl-p-benzoquinone (2,3, Any of 5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane, F4-TCNQ) and Tris(4-bromophenyl)ammoniumyl hexachloroantimonate (TBAHA) one or a mixture of two or more materials.
  • TSAHA Tris(4-bromophenyl)ammoniumyl hexachloroantimonate
  • the hole transport material is selected from N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4-4'-diamine ( N,N'-Bis(1-naphthalenyl)-N,N'-bisphenyl-(1,1'-biphenyl)-4,4'-diamine, NPB), triphenyldiamine derivatives (N,N' -diphenyl-N,N'-bis(3-methylphenyl)-1,1-biphenyl-4,4'-diamine, TPD), TPTE and 1,3,5-tris(N-3-methylphenyl- Any one or a mixture of two or more of N-phenylamino)benzene (1,3,5-Tris(diphenylamino)benzene, TDAB).
  • the host material includes a hole injection material and a hole transport material
  • the weight portion of the host material is determined
  • the weight portion of the hole injection material is 5 to 40 parts
  • the balance is holes transfer material
  • the weight part of the host material is 90 parts to 99 parts
  • the weight part of the hole injection material is 5 parts to 40 parts
  • the weight part of the hole transport material can be 50 parts to 94 parts .
  • the mass of the matrix material is 90g-99g
  • the mass of the hole injection material is 5g-40g
  • the balance is the hole transport material.
  • the mass of the hole transport material is 90g minus 5g, which is equal to 85g, and when the mass of the hole injection material is 40g.
  • the mass of the hole transport material is 90g minus 40g, which is equal to 50g.
  • the mass of the hole injection material is 20g
  • the mass of the hole transport material is 90g minus 20g, which is equal to 70g.
  • the mass of the hole transport material is 90g minus 30g, which is equal to 60g.
  • the mass of the hole transport material is 99g minus 5g, which is equal to 94g, and when the mass of the hole injection material is 40g, The mass of the hole transport material is 99g minus 40g, which is equal to 59g.
  • the mass of the hole injection material is 20g
  • the mass of the hole transport material is 99g minus 20g, which is equal to 79g
  • the mass of the hole injection material is 30g.
  • the mass of the hole transport material is 99g minus 30g, which equals 69g.
  • the weight part of the hole injection material is 25 to 35 parts, and the balance is the hole transport material.
  • the weight part of the host material is 90 parts to 99 parts
  • the weight part of the hole injection material is 25 parts to 35 parts
  • the weight part of the hole transport material can be 55 parts to 74 parts .
  • the mass of the matrix material is 90 g to 99 g
  • the mass of the hole injection material is 25 g to 40 g
  • the balance is the hole transport material.
  • the mass of the hole transport material is 90 g minus 25 g, which is equal to 65 g.
  • the mass of the hole transport material is 90 g minus 35 g, which is equal to 55 g.
  • the mass of the hole transport material is 90 g minus 30 g, which is equal to 60 g.
  • the mass of the hole transport material is 99 g minus 25 g, which is equal to 74 g.
  • the mass of the hole transport material is 99 g minus 35 g, which is equal to 64 g.
  • the mass of the hole transport material is 99 g minus 30 g, which is equal to 69 g.
  • the mass of the hole transport material is 93 g minus 25 g, which is equal to 68 g.
  • the mass of the hole transport material is 93 g minus 35 g, which is equal to 58 g.
  • the mass of the hole transport material is 93 g minus 30 g, which is equal to 63 g.
  • the mass of the host material is 97 g minus 25 g, which is equal to 72 g.
  • the mass of the hole transport material is 97 g minus 35 g, which is equal to 62 g.
  • the mass of the hole transport material is 97 g minus 30 g, which is equal to 67 g.
  • the mass of the host material is 95 g minus 25 g, which is equal to 70 g.
  • the mass of the hole transport material is 95 g minus 35 g, which is equal to 60 g.
  • the mass of the hole transport material is 95 g minus 30 g, which is equal to 65 g.
  • the above-mentioned materials with hole injection and/or hole transport functions are used for the hole injection layer 134a, and the light emitting device 13 may further include a hole transport layer 134b, an electron blocking layer 134c, an electron injection layer
  • the material of the hole transport layer 134b may be selected from N,N'-bis(1-naphthyl)-N,N'-diphenyl Base-1,1'-biphenyl-4-4'-diamine (N,N'-Bis(1-naphthalenyl)-N,N'-bisphenyl-(1,1'-biphenyl)-4,4' -diamine, NPB), triphenyldiamine derivatives (N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1-biphenyl-4,4'-di
  • the material of the electron blocking layer 134c may be selected from 2-(4-tert-butylphenyl)-5-(4-biphenyl)1,3,4-oxadiazole and 3(biphenyl)-4-benzene- Any one or a mixed material of two or more of 5-(4-tert-butylphenyl)-4H-1,2,4-triazole, the thickness can be 5nm-10nm.
  • the material of the electron injection layer 134d can be selected from alkali metal fluoride MF (M can be selected from Li, Na, K, Rb, Cs, etc.), Li 2 O and LiBO 2 any one or a mixed material of two or more, the thickness It may be 5 nm to 10 nm.
  • the material of the electron transport layer 134e is selected from 2-(4-biphenylyl)-5-phenyloxadiazole (2-(4-Biphenylyl)-5-phenyl-1,3,4-oxadiazole, PBD), 2 ,5-Di(1-naphthyl)-1,3,4-oxadiazole (2,5-Di(1-naphthyl)-1,3,4-oxadiazole, BND) and 2,4,6-tri Any one or a mixture of two or more of phenoxy-1,3,5-triazine (1,3,5-Triazine, 2,4,6-triphenoxy, TRZ), the thickness can be 10nm ⁇ 40nm .
  • the light-emitting substrate 1 may further include a light extraction layer 14 disposed on the substrate 11 and located on the side of the plurality of light-emitting devices 13 away from the substrate.
  • the light extraction layer 14 is configured to extract the light emitted from the plurality of light emitting devices 13 . That is, the light-emitting substrate 1 may be a top-emitting light-emitting substrate.
  • the light extraction layer 14 utilizes the refraction and total reflection of light, and the light extraction layer 14 is made of a material with a higher refractive index to break the total reflection inside the light-emitting device 13, thereby extracting the light.
  • the refractive index of the material of the light extraction layer 14 may be greater than or equal to 1.8.
  • Some embodiments of the present disclosure provide a method for preparing a light-emitting substrate, including:
  • a plurality of light emitting devices 13 are formed on the substrate 11 .
  • the material of one functional layer 134 in at least one light-emitting device 13 is selected from the above-mentioned materials with hole injection and/or hole transport functions.
  • the material with hole injection and/or hole transport functions includes a host material, and a crystallization inhibitor doped in the host material, the crystallization inhibitor can inhibit the crystallization of the host material during the evaporation process, and the crystallization inhibitor has empty space Hole injection and/or hole transport functions.
  • forming a plurality of light emitting devices 13 on the substrate 11 may include:
  • a thin film 300 with hole injection and/or hole transport function is formed on the substrate 11 and on the side of the pixel defining layer 12 away from the substrate 11 by an evaporation process, and a thin film with hole injection and/or hole transport function 300 includes a part located in each opening Q and a part located outside each opening Q, and the part of the thin film 300 with hole injection and/or hole transport function located in each opening Q constitutes the The functional layer 134.
  • the thin film 300 with hole injection and/or hole transport function can be formed on the substrate 11 by evaporating a material with hole injection and/or hole transport function, that is, A functional layer 134 (eg, a hole injection layer 134 a ) included in each light emitting device 13 is formed on the substrate 11 .
  • a material with hole injection and/or hole transport function that is, A functional layer 134 (eg, a hole injection layer 134 a ) included in each light emitting device 13 is formed on the substrate 11 .
  • the materials with hole injection and/or hole transport functions include host materials and crystalline dopants, in the case where the host materials are selected from hole injection materials, it is different from vapor deposition hole injection alone. Compared with other materials, the addition of crystalline dopants can avoid problems such as crystalline plugging.
  • the doping amount is high, the problem of poor signal crosstalk between the red light emitting device, the blue light emitting device and the green light emitting device will not occur. Solve the problems of crystal plugging and poor thermal stability of the device when the hole injection material is evaporated alone in the related art, and red light emission is likely to occur when the hole transport material and the p-type dopant material are co-evaporated. The defect of the problem of poor signal crosstalk between the device, the blue light emitting device and the green light emitting device.
  • the preparation method of the light-emitting substrate 1 may further include: forming the light extraction layer 14 through an evaporation or inkjet printing process.
  • the functional layer 134 is used as the hole injection layer 134a as an example for description. 134f, electron injection layer 134d, electron transport layer 134e, electron blocking layer 134c, and even the materials, thicknesses and preparation methods used for the red, green and blue light-emitting layers are the same, and the functional layer 134 is formed with The pixel defining layer 12 is prepared by evaporation on the substrate 11 .
  • the material and preparation method of the functional layer 134 during the fabrication of the light-emitting substrate 1 will be described.
  • the material of the functional layer 134 is selected from hole injection materials, such as 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaaza Triphenylene (2,3,6,7,10,11-HexaazatriphenylenehexacabonitrileSynonym, HAT-CN) is formed on the substrate 11 on which the pixel defining layer 12 is formed by vapor deposition as a thin film having a hole injection function.
  • hole injection materials such as 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaaza Triphenylene (2,3,6,7,10,11-HexaazatriphenylenehexacabonitrileSynonym, HAT-CN) is formed on the substrate 11 on which the pixel defining layer 12 is formed by vapor deposition as a thin film having a hole injection function.
  • the material of the functional layer 134 is selected from hole transport materials, such as N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4 -4'-diamine (N,N'-Bis(1-naphthalenyl)-N,N'-bisphenyl-(1,1'-biphenyl)-4,4'-diamine, NPB), and hole transport material is doped with p-type dopant material.
  • a thin film having a hole injection function is formed on the substrate 11 on which the pixel defining layer 12 is formed by vapor deposition.
  • the material of the functional layer 134 is selected from hole injection materials and hole transport materials, such as Tris(4-bromophenyl)ammoniumyl hexachloroantimonate (TBAHA) and N,N'-Bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4-4'-diamine(N,N'-Bis(1-naphthalenyl)- N,N'-bisphenyl-(1,1'-biphenyl)-4,4'-diamine, NPB).
  • TSAHA Tris(4-bromophenyl)ammoniumyl hexachloroantimonate
  • NPB Tris(4-bromophenyl)ammoniumyl hexachloroantimonate
  • NPB Tris(4-bromophenyl)ammoniumyl hexachloroantimonate
  • NPB Tris(4-bromophen
  • the material of the functional layer 134 is selected from the hole injection material and the crystallization inhibitor, wherein the hole injection material is the same as the hole injection material in Comparative Example 1, and the crystallization inhibitor is N,N'-diphenyl -N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine, the mass ratio of hole injection material and crystallization inhibitor was 90:10, A thin film having a hole injection function is formed by plating on the substrate 11 on which the pixel defining layer 12 is formed.
  • the material of the functional layer 134 is selected from hole transport material and crystallization inhibitor, wherein the hole transport material is the same as the hole transport material in Comparative Example 2, and the crystallization inhibitor is N,N'-diphenyl -N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine, the mass ratio of hole transport material and crystallization inhibitor was 97:3
  • a thin film having a hole injection function is formed by plating on the substrate 11 on which the pixel defining layer 12 is formed.
  • the material of the functional layer 134 is selected from hole injection material, hole transport material and crystallization inhibitor, wherein the hole injection material and hole transport material are the same as the hole injection material and hole injection material in Comparative Example 3.
  • the hole transport material is the same
  • the crystallization inhibitor is N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine, empty
  • the mass ratio of the hole injection material, the hole transport material and the crystallization inhibitor is 30:69:1, and a thin film with hole injection function is formed on the substrate 11 on which the pixel defining layer 12 is formed by evaporation.
  • Comparative Example 1 In the fabricated light-emitting substrates, it was found through experiments that in Comparative Example 1, Comparative Example 2 and Comparative Example 3, the problem of crystal plugging would occur during the evaporation process. Compared with Comparative Example 1, Experimental Example 1 can improve evaporation. Crystal plugging problem during plating. Compared with Comparative Example 2, Experimental Example 2 can improve the problem of crystal plugging during vapor deposition. Compared with Comparative Example 3, Experimental Example 3 can improve the problem of crystal plugging during vapor deposition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种具有空穴注入和/或空穴传输功能的材料,包括:基质材料;以及掺杂在所述基质材料中的结晶抑制剂;其中,所述结晶抑制剂能够抑制所述基质材料在蒸镀过程中结晶,且所述结晶抑制剂具有空穴注入和/或空穴传输功能。

Description

功能材料、发光基板及其制备方法和发光装置
本申请要求于2021年01月27日提交的、申请号为202110111865.5的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及照明和显示技术领域,尤其涉及一种具有空穴注入和/或空穴传输功能材料、发光基板及其制备方法和发光装置。
背景技术
OLED(Organic Light-Emitting Diode,有机发光二极管)具有自发光、广视角、反应时间快、发光效率高、工作电压低、基板厚度薄、可制作大尺寸与可弯曲式基板及制程简单等特性,被誉为下一代的“明星”显示技术。
发明内容
一方面,提供一种具有空穴注入和/或空穴传输功能的材料,包括:基质材料;以及掺杂在所述基质材料中的结晶抑制剂;其中,所述结晶抑制剂能够抑制所述基质材料在蒸镀过程中结晶,且所述结晶抑制剂具有空穴注入和/或空穴传输功能。
在一些实施例中,所述基质材料包括空穴注入材料和空穴传输材料中的至少一种。
在一些实施例中,所述基质材料包括空穴注入材料和空穴传输材料。
在一些实施例中,所述结晶抑制剂选自芳胺的衍生物中的任一种或两种以上的混合材料。
在一些实施例中,所述结晶抑制剂选自N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'-联苯-4,4'-二胺、N,N′-二(α-萘基)-N,N′-二苯基-4,4′-联萘胺、N,N'-二(3,4-二甲基苯基)-N,N’-二苯基-1,1'-联苯-4,4'-二胺、N,N,N',N'-四(4-甲基苯基)-1,1'-联苯-4,4'-二胺和4,4′,4”-三[苯基(间甲苯基)氨基]三苯胺中的任一种或两种以上的混合材料。
在一些实施例中,以所述具有空穴注入和/或空穴传输功能的材料的重量份为100份为基准,所述基质材料的重量份为90份~99份;所述结晶抑制剂的重量份为1份~10份。
在一些实施例中,以所述具有空穴注入和/或空穴传输功能的材料的重量份为100份为基准,所述基质材料的重量份为93份~97份;余量为所述结晶抑制剂。
在一些实施例中,在所述基质材料包括空穴注入材料和空穴传输材料, 且所述基质材料的重量份确定的情况下,所述空穴注入材料的重量份为5份~40份,余量为所述空穴传输材料。
在一些实施例中,在所述基质材料包括空穴注入材料和空穴传输材料,且所述基质材料的重量份确定的情况下,所述空穴注入材料的重量份为25份~35份,余量为所述空穴传输材料。
在一些实施例中,所述空穴注入材料选自2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲、2,3,5,6-四氟-7,7',8,8'-四氰二甲基对苯和三(4-溴苯基)六氯锑酸铵中的任一种或两种以上的混合材料。
在一些实施例中,所述空穴传输材料选自N,N'-二(1-萘基)-N,N'-二苯基-1,1'-联苯-4-4'-二胺(NPB)、三苯基二胺衍生物、TPTE和1,3,5-三(N-3-甲基苯基-N-苯基氨基)苯中的任一种或两种以上的混合材料。
另一方面,提供一种发光基板,包括:衬底;以及设置于所述衬底上的多个发光器件;至少一个发光器件包括:层叠的第一电极和第二电极,设置于所述第一电极和第二电极之间的发光层;以及设置于所述第一电极和所述发光层之间的一层功能层;所述功能层的材料选自如上所述的具有空穴注入和/或空穴传输功能的材料。
在一些实施例中,所述发光基板还包括像素界定层,所述像素界定层具有多个开口;所述多个发光器件包括设置于所述像素界定层远离衬底一侧的具有空穴注入和/或空穴传输功能的薄膜,所述具有空穴注入和/或空穴传输功能的薄膜包括位于开口中的部分和位于开口以外的部分,所述具有空穴注入和/或空穴传输功能的薄膜位于开口中的部分构成发光器件所包含的功能层。
在一些实施例中,所述功能层为空穴注入层,所述空穴注入层的厚度为1nm~10nm。
在一些实施例中,所述至少一个发光器件包括发红光的发光器件、发绿光的发光器件或发蓝光的发光器件中的至少一种。
另一方面,提供一种发光装置,包括如上所述的发光基板。
又一方面,提供一种发光基板的制备方法,包括:
在衬底上形成多个发光器件;其中,至少一个发光器件为如上所述的发光器件。
在一些实施例中,在所述发光基板还包括像素界定层,且所述像素界定层具有多个开口的情况下,所述在衬底上形成多个发光器件,包括:
通过蒸镀工艺在所述衬底上且位于所述像素界定层远离所述衬底一侧形成具有空穴注入和/或空穴传输功能的薄膜,所述具有空穴注入和/或空穴传输 功能的薄膜包括位于开口中的部分和位于开口以外的部分,所述具有空穴注入和/或空穴传输功能的薄膜位于开口中的部分构成发光器件所包含的功能层。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的发光基板的剖视结构图;
图2为根据一些实施例的发光基板的俯视结构图;
图3为根据一些实施例的对比例2和实验例3的电压-电流密度曲线图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同 含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
本公开的一些实施例提供了一种发光装置,该发光装置包括发光基板,当然还可以包括其他部件,例如可以包括用于向发光基板提供电信号,以驱动该发光基板发光的电路,该电路可以称为控制电路,可以包括与发光基板电连接的电路板和/或IC(Integrate Circuit,集成电路)。
在一些实施例中,该发光装置可以为照明装置,此时,发光装置用作光源,实现照明功能。例如,发光装置可以是液晶显示装置中的背光模组,用于内部或外部照明的灯,或各种信号灯等。
在另一些实施例中,该发光装置可以为显示装置,此时,该发光基板为显示基板,用于实现显示图像(即画面)功能。发光装置可以包括显示器或包含显示器的产品。其中,显示器可以是平板显示器(Flat Panel Display,FPD),微型显示器等。若按照用户能否看到显示器背面的场景划分,显示器可以是透明显示器或不透明显示器。若按照显示器能否弯折或卷曲,显示器可以是柔性显示器或普通显示器(可以称为刚性显示器)。示例的,包含显示器的产品可以包括:计算机显示器,电视,广告牌,具有显示功能的激光打印机, 电话,手机,个人数字助理(Personal Digital Assistant,PDA),膝上型计算机,数码相机,便携式摄录机,取景器,车辆,大面积墙壁,剧院的屏幕或体育场标牌等。
本公开的一些实施例提供了一种发光基板1,如图1所示,该发光基板1包括衬底11、设置在衬底11上的像素界定层12和多个发光器件13。其中,该像素界定层12具有多个开口Q,多个发光器件13可以与多个开口Q一一对应设置。这里的多个发光器件13可以是发光基板1包含的全部或部分发光器件13;多个开口Q可以是像素界定层12上的全部或部分开口。
在多个发光器件13中,至少一个发光器件13可以包括第一电极131、第二电极132,以及设置于第一电极131和第二电极132之间的发光层133,每个发光层133可以包括位于一个开口Q中的部分。
在一些实施例中,如图1所示,该第一电极131可以为阳极,此时,该第二电极132为阴极。在另一些实施例中,该第一电极131可以为阴极,此时,该第二电极132为阳极。
在一些实施例中,阳极的材料可以选自高功函材料,如ITO(Indium Tin Oxides,氧化铟锡)、IZO(Indium Zinc Oxide,氧化铟锌)或复合材料(如Ag/ITO,Al/ITO,Ag/IZO或Al/IZO,其中,“Ag/ITO”是指:由金属银电极和ITO电极堆叠的叠层结构,“Al/ITO”是指:由金属铝电极和ITO电极堆叠的叠层结构,“Ag/IZO”是指:由金属银电极和IZO电极堆叠的叠层结构,“Al/IZO”是指:由金属铝电极和IZO电极堆叠的叠层结构。
在一些实施例中,阴极的材料可以选自低功函材料,如金属材料Mg、Ag、Al、Li、K和Ca等金属材料的一种,或上述金属材料的合金Mg xAg (1-x)、Li xAl (1-x)、Li xCa (1-x)、Li xAg (1-x)中的一种,厚度可以为10nm~20nm。其中,在合金Mg xAg (1-x)中,x是合金Mg xAg (1-x)中金属Mg的质量占比,余量为金属Ag。在合金Li xAl (1-x)中,x是合金Li xAl (1-x)中金属Li的质量占比,余量为金属Al。依次类推,在合金Li xCa (1-x)中,x是合金Li xCa (1-x)中金属Li的质量占比,余量为金属钙。在合金Li xAg (1-x)中,x是合金Li xAg (1-x)中金属Li的质量占比,余量为金属银。
对于OLED发光器件而言,该发光器件13的发光原理为:通过阳极和阴极连接的电路,利用阳极向发光层133注入空穴,阴极向发光层133注入电子,所形成的电子和空穴在发光层133中形成激子,激子通过辐射跃迁回到基态,发出光子。
发光基板1上还可以设置连接各个发光器件13的驱动电路,驱动电路可 以与控制电路连接,以根据控制电路输入的电信号,驱动各个发光器件13发光。该驱动电路可以为有源驱动电路或者无源驱动电路。
该发光基板1可以发白光、单色光(单一颜色的光)或颜色可调的光等。
在第一种示例中,该发光基板1可以发白光。此时,如图1所示,至少一个发光器件13包括至少两种发光颜色的发光器件13,如发蓝光的发光器件13B、发绿光的发光器件13G和发红光的发光器件13R。此时,可以通过控制发蓝光的发光器件13B、发绿光的发光器件13G和发红光的发光器件13R同时发光,实现混光,以使发光基板1呈现白光。
在该示例中,该发光基板1可用于照明,即可以应用于照明装置中。
在第二种示例中,该发光基板1可以发单色光。第一种情况,发光基板1包含的多个发光器件13(例如可以是全部的发光器件13)均发单色光(如红光),此时,每个发光器件13均为发红光的发光器件13R。这时,可以通过驱动每个发光器件13发光,以实现发红光。第二种情况,该发光基板1与第一种示例中所描述的多个发光器件13的结构相类似,此时,可以通过单独驱动发蓝光的发光器件13B、发绿光的发光器件13G和发红光的发光器件13R实现单色发光。
在该示例中,该发光基板1可用于照明,即可以应用于照明装置中,也可以用于显示单一色彩的图像或画面,即可应用于显示装置中。
在第三种示例中,该发光基板1可以发颜色可调的光(即彩色光),该发光基板1与第一种示例中所描述的多个发光器件的结构相类似的,通过对各个发光器件13的亮度进行控制,即可对该发光基板1发出的混合光的颜色和亮度进行控制,可实现彩色发光。
在该示例中,该发光基板1可用于显示图像或画面,即可应用于显示装置中,当然,该发光基板1也可以用于照明装置中。
在第三种示例中,以该发光基板1为显示基板为例,如全彩显示面板,如图2所示,该发光基板1包括显示区A和设置于显示区A周边的周边区S。显示区A包括多个亚像素区P,每个亚像素区P对应一个开口,一个开口对应一个发光器件,每个亚像素区P中设置有用于驱动对应的发光器件发光的像素驱动电路200。周边区S用于布线,如连接像素驱动电路200的栅极驱动电路100。
在一些实施例中,如图1所示,发光器件13还可以包括:设置于第一电极131和发光层133之间的一层功能层134。
其中,根据第一电极131可以为阳极,可以得知,该功能层134可以为 空穴注入层134a、空穴传输层134b和电子阻挡层134c中的任意一层。根据第二电极131可以为阴极,可以得知,该功能层134可以为电子注入层134d、电子传输层134e和空穴阻挡层134f中的任意一层。
在功能层134为空穴注入层134a、空穴传输层134b和电子阻挡层134c中的任意一层的情况下,该功能层134的材料可以选自具有空穴注入和/或空穴传输功能的材料。
该功能层134可以为电子注入层134d、电子传输层134e和空穴阻挡层134f中的任意一层的情况下,该功能层134的材料可以选自具有电子注入和/或电子传输功能的材料。
在一些实施例中,功能层134的材料选自具有空穴注入和/或空穴传输功能的材料。也即,该功能层134为空穴注入层134a、空穴传输层134b和电子阻挡层134c中的任意一层,且第一电极131为阳极,第二电极132为阴极。
在一些实施例中,如图1所示,多个发光器件13包括设置于像素界定层12远离衬底11一侧的具有空穴注入和/或空穴传输功能的薄膜300,具有空穴注入和/或空穴传输功能的薄膜300包括位于每个开口Q中的部分和位于每个开口Q以外的部分,具有空穴注入和/或空穴传输功能的薄膜300位于每个开口中的部分Q构成每个发光器件13所包含的功能层134。此时,该具有空穴注入和/或空穴传输功能的薄膜300可以通过蒸镀形成。
示例的,功能层134可以为空穴注入层134a,具有空穴注入和/或空穴传输功能的薄膜300可以通过对具有空穴注入和/或空穴传输功能的材料(如空穴注入材料)蒸镀形成。
蒸镀是指将待成膜的物质置于真空中进行蒸发或升华,使之在工件或基片表面析出的过程。在蒸镀过程中,使用坩埚盛装有机材料,坩埚口配有坩埚盖,坩埚盖上具有多个喷嘴,通过对坩埚进行加热,使其中的有机材料从喷嘴喷出至基板上成膜。
需要说明的是,在相关技术中,在通过蒸镀形成具有空穴注入和/或空穴传输功能的薄膜300,以形成相应的功能层134的情况下,对于某些具有空穴注入和/或空穴传输功能的材料而言,容易在蒸镀过程中出现材料结晶现象,从而使得在量产过程中发生结晶堵口的问题,并会对器件的热稳定性产生影响。
基于此,本公开的一些实施例提供一种具有空穴注入和/或空穴传输功能的材料,包括:基质材料,以及掺杂在基质材料中的结晶抑制剂。其中,结晶抑制剂能够抑制基质材料在蒸镀过程中结晶,且结晶抑制剂具有空穴注入 和/或空穴传输功能。
其中,根据该具有空穴注入和/或空穴传输功能的材料可以用于制作空穴注入层134a、空穴传输层134b和电子阻挡层134c中的任意一层,可以得知,该具有空穴注入和/或空穴传输功能的材料可以为空穴注入材料、空穴传输材料和电子阻挡材料中的一种或两种以上的混合材料。
示例的,在该具有空穴注入和/或空穴传输功能的材料用于制作空穴注入层134a的情况下,该具有空穴注入和/或空穴传输功能的材料侧重于具有较好的空穴注入效果,在应用时,可以用于减小阴极和空穴传输层134b之间的能级差,这时,基质材料可以选自空穴注入材料,或者空穴注入材料和空穴传输材料的混合材料,或者掺杂有p型掺杂材料的空穴传输材料等。
在该具有空穴注入和/或空穴传输功能的材料用于制作空穴传输层134b的情况下,该具有空穴注入和/或空穴传输功能的材料侧重于具有较好的空穴传输效果,相比于空穴注入材料而言,需要具有较高的空穴迁移率,材料的HOMO(highest occupied molecular orbital,最高占据分子轨道)能级介于空穴注入层134a和发光层133之间,因此,在此情况下,基质材料可以选自空穴传输材料。
在该具有空穴注入和/或空穴传输功能的材料用于制作电子阻挡层134c的情况下,该具有空穴注入和/或空穴传输功能的材料在具有较好的空穴传输效果的同时,还具有一定的电子阻挡作用,材料的LUMO(lowest unoccupied molecular orbital,最低未占据分子轨道)能级较高,因此,在此情况下,基质材料可以选自电子阻挡材料。
无论以上哪种情况,针对基质材料在蒸镀过程中容易发生结晶,通过在基质材料中掺杂结晶抑制剂,均能够起到抑制基质材料结晶的技术效果,而由于该结晶抑制剂具有空穴注入和/或空穴传输功能,因此,在加入该结晶抑制剂后,不会对基质材料本身的性质产生影响,可实现产业化应用。
其中,对结晶抑制剂的具体材料不做限定,只要在基质材料中掺杂结晶抑制剂之后,能够抑制基质材料在蒸镀过程中结晶,且不对基质材料本身的性质产生影响即可。
在一些实施例中,结晶抑制剂选自芳胺的衍生物中的任一种或两种以上的混合材料。在这些实施例中,由于芳胺的衍生物本身在蒸镀中成膜较为致密,很难发生结晶,因此,通过选用芳胺的衍生物作为结晶抑制剂,与容易发生结晶的基质材料一起蒸镀,即可达到抑制基质材料结晶的目的。
在一些实施例中,结晶抑制剂选自N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'- 联苯-4,4'-二胺、N,N′-二(α-萘基)-N,N′-二苯基-4,4′-联萘胺、N,N'-二(3,4-二甲基苯基)-N,N’-二苯基-1,1'-联苯-4,4'-二胺、N,N,N',N'-四(4-甲基苯基)-1,1'-联苯-4,4'-二胺和4,4′,4”-三[苯基(间甲苯基)氨基]三苯胺中的任一种或两种以上的混合材料。
其中,对结晶抑制剂的掺杂量不做具体限定,针对不同性质和功能的基质材料,结晶抑制剂的掺杂量也可以不同。
在一些实施例中,以具有空穴注入和/或空穴传输功能的材料的重量份为100份为基准,基质材料的重量份可以为90份~99份,结晶抑制剂的重量份为1份~10份。
重量份是表示几种物质各占有的质量比例,这里以1份为1g为例,则具有空穴注入和/或空穴传输功能的材料的总质量为100g,基质材料的质量可以为90g~99g,余量则为结晶抑制剂。
示例的,具有空穴注入和/或空穴传输功能的材料的总质量为100g,基质材料的质量为90g的情况下,结晶抑制剂的质量为100g减90g,等于10g。基质材料的质量为91g的情况下,结晶抑制剂的质量为100g减91g,等于9g,基质材料的质量为92g的情况下,结晶抑制剂的质量为100g减92g,等于8g,依次类推,…基质材料的质量为99g的情况下,结晶抑制剂的质量为100g减99g,等于1g。
在这些实施例中,在此质量占比下,结晶抑制剂即可起到抑制结晶,并不对基质材料本身的性质造成影响的技术效果。
为了进一步减少结晶,在一些实施例中,以具有空穴注入和/或空穴传输功能的材料的重量份为100份为基准,基质材料的重量份为93份~97份;结晶抑制剂的重量份为3份~7份。
针对在相关技术中,空穴注入层134a和空穴传输层134b通过蒸镀形成,可以得知,在一些实施例中,基质材料包括空穴注入材料和空穴传输材料中的至少一种。也即,以上功能层134为空穴注入层134a或空穴传输层134b。
在这些实施例中,在基质材料包括空穴注入材料的情况下,功能层134为空穴注入层134a。在基质材料包括空穴传输材料的情况下,具有两种情况,第一种情况,空穴传输材料中掺杂有p型掺杂材料,功能层134为空穴注入层134a。第二种情况,空穴传输材料中不掺杂p型掺杂材料,功能层134为空穴传输层134b。无论以上哪种情况,通过在基质材料中掺杂结晶抑制剂,均能够起到抑制基质材料结晶的技术效果,因此,与相关技术中通过蒸镀形成具有空穴注入和/或空穴传输功能的薄膜300相比,能够解决相关技术中, 在通过蒸镀形成具有空穴注入和/或空穴传输功能的薄膜300,以形成功能层134,容易在蒸镀过程中出现材料结晶现象,从而使得在量产过程中发生结晶堵口的问题。同时,通过实验发现,与在相关技术中,将空穴传输材料中掺杂p型掺杂材料作为基质材料直接用于蒸镀相比,通过在基质材料中掺杂结晶抑制剂,还能够在一定程度上减小在相关技术中,在空穴传输材料中掺杂p型掺杂材料,使得空穴迁移率过高所导致的发红光的发光器件、发蓝光的发光器件和发绿光的发光器件之间的信号串扰不良的问题。
在一些实施例中,基质材料包括空穴注入材料和空穴传输材料。其中,空穴注入材料和空穴传输材料中可以掺杂或不掺杂p型掺杂材料。可以根据实际应用进行设置。在这些实施例中,具有空穴注入和/或空穴传输功能的材料可以作为空穴注入层的制作材料,该功能层134可以为空穴注入层134a,该空穴注入层134a的厚度可以为1nm~10nm。
在一些实施例中,空穴注入材料选自2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(2,3,6,7,10,11-HexaazatriphenylenehexacabonitrileSynonym,HAT-CN)、2,3,5,6-四氟-7,7',8,8'-四氰二甲基对苯醌(2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane,F4-TCNQ)和三(4-溴苯基)六氯锑酸铵(Tris(4-bromophenyl)ammoniumyl hexachloroantimonate,TBAHA)中的任一种或两种以上的混合材料。
在一些实施例中,空穴传输材料选自N,N'-二(1-萘基)-N,N'-二苯基-1,1'-联苯-4-4'-二胺(N,N'-Bis(1-naphthalenyl)-N,N'-bisphenyl-(1,1'-biphenyl)-4,4'-diamine,NPB)、三苯基二胺衍生物(N,N′-diphenyl-N,N′-bis(3-methylphenyl)-1,1-biphenyl-4,4′-diamine,TPD)、TPTE和1,3,5-三(N-3-甲基苯基-N-苯基氨基)苯(1,3,5-Tris(diphenylamino)benzene,TDAB)中的任一种或两种以上的混合材料。
在一些实施例中,在基质材料包括空穴注入材料和空穴传输材料,且基质材料的重量份确定的情况下,空穴注入材料的重量份为5份~40份,余量为空穴传输材料。
也即,在基质材料的重量份为90份~99份的情况下,由于空穴注入材料的重量份为5份~40份,因此,空穴传输材料的重量份可以为50份~94份。
这里,仍然以1份为1g为例,则基质材料的质量为90g~99g,空穴注入材料的质量为5g~40g,余量为空穴传输材料。
示例的,以基质材料的质量为90g为例,在空穴注入材料的质量为5g的 情况下,空穴传输材料的质量为90g减5g,等于85g,在空穴注入材料的质量为40g的情况下,空穴传输材料的质量为90g减40g,等于50g,在空穴注入材料的质量为20g的情况下,空穴传输材料的质量为90g减20g,等于70g,在空穴注入材料的质量为30g的情况下,空穴传输材料的质量为90g减30g,等于60g。
以基质材料的质量为99g为例,在空穴注入材料的质量为5g的情况下,空穴传输材料的质量为99g减5g,等于94g,在空穴注入材料的质量为40g的情况下,空穴传输材料的质量为99g减40g,等于59g,在空穴注入材料的质量为20g的情况下,空穴传输材料的质量为99g减20g,等于79g,在空穴注入材料的质量为30g的情况下,空穴传输材料的质量为99g减30g,等于69g。
在一些实施例中,在上述基质材料的重量份确定的情况下,空穴注入材料的重量份为25份~35份,余量为空穴传输材料。
也即,在基质材料的重量份为90份~99份的情况下,由于空穴注入材料的重量份为25份~35份,因此,空穴传输材料的重量份可以为55份~74份。
在此,仍然以1份为1g为例,则基质材料的质量为90g~99g,空穴注入材料的质量为25g~40g,余量为空穴传输材料。
其中,以基质材料的质量为90g为例,在空穴注入材料的质量为25g的情况下,空穴传输材料的质量为90g减25g,等于65g。在空穴注入材料的质量为35g的情况下,空穴传输材料的质量为90g减35g,等于55g。在空穴注入材料的质量为30g的情况下,空穴传输材料的质量为90g减30g,等于60g。
以基质材料的质量为99g为例,在空穴注入材料的质量为25g的情况下,空穴传输材料的质量为99g减25g,等于74g。在空穴注入材料的质量为35g的情况下,空穴传输材料的质量为99g减35g,等于64g。在空穴注入材料的质量为30g的情况下,空穴传输材料的质量为99g减30g,等于69g。
以基质材料的质量为93g为例,在空穴注入材料的质量为25g的情况下,空穴传输材料的质量为93g减25g,等于68g。在空穴注入材料的质量为35g的情况下,空穴传输材料的质量为93g减35g,等于58g。在空穴注入材料的质量为30g的情况下,空穴传输材料的质量为93g减30g,等于63g。
以基质材料的质量为97g为例,在空穴注入材料的质量为25g的情况下,空穴传输材料的质量为97g减25g,等于72g。在空穴注入材料的重量份为35g的情况下,空穴传输材料的质量为97g减35g,等于62g。在空穴注入材料的质量为30g的情况下,空穴传输材料的质量为97g减30g,等于67g。
以基质材料的质量为95g为例,在空穴注入材料的质量为25g的情况下,空穴传输材料的质量为95g减25g,等于70g。在空穴注入材料的质量为35g的情况下,空穴传输材料的质量为95g减35g,等于60g。在空穴注入材料的质量为30g的情况下,空穴传输材料的质量为95g减30g,等于65g。
在一些实施例中,在上述具有空穴注入和/或空穴传输功能的材料用于空穴注入层134a,且发光器件13还可以包括空穴传输层134b、电子阻挡层134c、电子注入层134d、电子传输层134e和空穴阻挡层134f中的至少一个的情况下,空穴传输层134b的材料可以选自N,N'-二(1-萘基)-N,N'-二苯基-1,1'-联苯-4-4'-二胺(N,N'-Bis(1-naphthalenyl)-N,N'-bisphenyl-(1,1'-biphenyl)-4,4'-diamine,NPB)、三苯基二胺衍生物(N,N′-diphenyl-N,N′-bis(3-methylphenyl)-1,1-biphenyl-4,4′-diamine,TPD)、TPTE和1,3,5-三(N-3-甲基苯基-N-苯基氨基)苯(1,3,5-Tris(diphenylamino)benzene,TDAB)中的任一种或两种以上的混合材料,厚度可以为100~130nm。
电子阻挡层134c的材料可以选自2-(4-叔丁基苯基)-5-(4-联苯基)1,3,4-二唑和3(联苯基)-4-苯-5-(4-叔丁基苯基)-4H-1,2,4-三唑中的任一种或两种以上的混合材料,厚度可以为5nm~10nm。
电子注入层134d的材料可以选自碱金属氟化物MF(M可以选择Li、Na、K、Rb、Cs等)、Li 2O和LiBO 2中的任一种或两种以上的混合材料,厚度可以为5nm~10nm。
电子传输层134e的材料选自2-(4-联苯基)-5-苯基恶二唑(2-(4-Biphenylyl)-5-phenyl-1,3,4-oxadiazole,PBD)、2,5-二(1-萘基)-1,3,4-恶二唑(2,5-Di(1-naphthyl)-1,3,4-oxadiazole,BND)和2,4,6-三苯氧基-1,3,5-三嗪(1,3,5-Triazine,2,4,6-triphenoxy,TRZ)中的任一种或两种以上的混合材料,厚度可以为10nm~40nm。
在一些实施例中,发光基板1还可以包括设置于衬底11上,且位于多个发光器件13远离衬底一侧的光取出层14。光取出层14被配置为将多个发光器件13发出的光取出。也即该发光基板1可以为顶发光型发光基板。
其中,光取出层14是利用光的折射和全反射,通过折射率较高的材料制作光取出层14,打破发光器件13内部的全反射,从而将光提取出来。
光取出层14的材料的折射率可以大于或等于1.8。
本公开的一些实施例提供一种发光基板的制备方法,包括:
在衬底11上形成多个发光器件13。其中,至少一个发光器件13中的一 层功能层134的材料选自上述具有空穴注入和/或空穴传输功能的材料。该具有空穴注入和/或空穴传输功能的材料包括基质材料,以及掺杂在基质材料中的结晶抑制剂,结晶抑制剂能够抑制基质材料在蒸镀过程中结晶,且结晶抑制剂具有空穴注入和/或空穴传输功能。
在一些实施例中,在发光基板1包括像素界定层12,像素界定层12具有多个开口Q的情况下,在衬底11上形成多个发光器件13,可以包括:
通过蒸镀工艺在衬底11上且位于像素界定层12远离衬底11一侧形成具有空穴注入和/或空穴传输功能的薄膜300,具有空穴注入和/或空穴传输功能的薄膜300包括位于每个开口Q中的部分和位于每个开口Q以外的部分,具有空穴注入和/或空穴传输功能的薄膜300位于每个开口Q中的部分构成每个发光器件13所包含的功能层134。
在这些实施例中,可以通过对具有空穴注入和/或空穴传输功能的材料以蒸镀的方式在衬底11上形成具有空穴注入和/或空穴传输功能的薄膜300,即可在衬底11上形成每个发光器件13所包含的功能层134(如空穴注入层134a)。在此过程中,由于具有空穴注入和/或空穴传输功能的材料包括基质材料和结晶掺杂剂,因此,在基质材料选自空穴注入材料的情况下,与单独蒸镀空穴注入材料相比,结晶掺杂剂的加入能够避免发生结晶堵口等问题,与空穴传输材料与p型掺杂材料共同蒸镀相比,可以在空穴传输材料中加大p型掺杂材料的掺杂量,亦不会出现发红光的发光器件、发蓝光的发光器件和发绿光的发光器件之间的信号串扰不良的问题。解决了相关技术中在单独蒸镀空穴注入材料时,容易发生结晶堵口和器件热稳定性差的问题,以及在空穴传输材料和p型掺杂材料共同蒸镀容易出现发红光的发光器件、发蓝光的发光器件和发绿光的发光器件之间的信号串扰不良的问题的缺陷。
其中,以上仅是以功能层为空穴注入层134a为例进行的描述,本领域技术人员能够理解的是,在功能层134为空穴传输层134b的情况下,以上方法也同样适用。
在一些实施例中,在该发光基板1还包括光取出层14的情况下,该发光基板1的制备方法还可以包括:通过蒸镀或喷墨打印工艺形成光取出层14。
为了对本公开提供的实施例的技术效果进行客观评价,以下,将以对比例和实验例对本公开进行示例性地描述。
其中,需要说明的是,在以下的对比例和实验例中,均是以功能层134作为空穴注入层134a为例进行的说明,其余功能材料层如空穴传输层134b、空穴阻挡层134f、电子注入层134d、电子传输层134e、电子阻挡层134c,甚 至红色发光层、绿色发光层和蓝色发光层所采用的材料、厚度和制备方法均相同,且功能层134是在形成有像素界定层12的衬底11上通过蒸镀进行制备。以下,将仅对在发光基板1在制作过程中功能层134的材料和制备方法进行描述。
对比例1
在对比例1中,功能层134的材料选自空穴注入材料,如2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(2,3,6,7,10,11-HexaazatriphenylenehexacabonitrileSynonym,HAT-CN),通过蒸镀在形成有像素界定层12的衬底11上形成具有空穴注入功能的薄膜。
对比例2
在对比例2中,功能层134的材料选自空穴传输材料,如N,N'-二(1-萘基)-N,N'-二苯基-1,1'-联苯-4-4'-二胺(N,N'-Bis(1-naphthalenyl)-N,N'-bisphenyl-(1,1'-biphenyl)-4,4'-diamine,NPB),且空穴传输材料中掺杂有p型掺杂材料。通过蒸镀在形成有像素界定层12的衬底11上形成具有空穴注入功能的薄膜。
对比例3
在对比例3中,功能层134的材料选自空穴注入材料和空穴传输材料,如三(4-溴苯基)六氯锑酸铵(Tris(4-bromophenyl)ammoniumyl hexachloroantimonate,TBAHA)和N,N'-二(1-萘基)-N,N'-二苯基-1,1'-联苯-4-4'-二胺(N,N'-Bis(1-naphthalenyl)-N,N'-bisphenyl-(1,1'-biphenyl)-4,4'-diamine,NPB)。其中,空穴注入材料和空穴传输材料的质量比例如为30:70,通过蒸镀在形成有像素界定层12的衬底11上形成具有空穴注入功能的薄膜。
实验例1
在实验例1中,功能层134的材料选自空穴注入材料和结晶抑制剂,其中,空穴注入材料与对比例1中空穴注入材料相同,结晶抑制剂为N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'-联苯-4,4'-二胺,空穴注入材料和结晶抑制剂的质量比为90:10,通过蒸镀在形成有像素界定层12的衬底11上形成具有空穴注入功能的薄膜。
实施例2
在实验例2中,功能层134的材料选自空穴传输材料和结晶抑制剂,其中,空穴传输材料与对比例2中空穴传输材料相同,结晶抑制剂为N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'-联苯-4,4'-二胺,空穴传输材料和结晶抑制剂的质量比为97:3,通过蒸镀在形成有像素界定层12的衬底11上形成具有空穴注 入功能的薄膜。
实验例3
在实验例3中,功能层134的材料选自空穴注入材料、空穴传输材料和结晶抑制剂,其中,空穴注入材料和空穴传输材料与对比例3中的空穴注入材料和空穴传输材料相同,结晶抑制剂为N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'-联苯-4,4'-二胺,空穴注入材料、空穴传输材料和结晶抑制剂的质量比为30:69:1,通过蒸镀在形成有像素界定层12的衬底11上形成具有空穴注入功能的薄膜。
在制作的发光基板中,通过实验发现,对比例1、对比例2和对比例3中在蒸镀过程中均会出现结晶堵口问题,而实验例1与对比例1相比,能够改善蒸镀过程中的结晶堵口问题。实验例2与对比例2相比,能够改善蒸镀过程中的结晶堵口问题。实验例3与对比例3相比,能够改善蒸镀过程中的结晶堵口问题。而对比例2和对比例3中在蒸镀完成后均出现了发红光的发光器件、发绿光的发光器件和发蓝光的发光器件的信号串扰不良的问题,而相应地,实验例2和实验例3中均不会出现信号串扰不良的问题。
在以上基础上,通过对对比例2和实验例3所获得的器件性能进行测试,得到如图3所示的电压-电流密度曲线图。由图3可知,对比例2和实验例3所制备的器件的电学性能基本相同,并不存在明显的电学性能不良的问题,可见,通过在基质材料中添加结晶抑制剂,不仅能够解决相关技术中的堵口问题和信号串扰问题,还能够达到一定的电学性能要求,具有良好的应用价值。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种具有空穴注入和/或空穴传输功能的材料,包括:
    基质材料;以及
    掺杂在所述基质材料中的结晶抑制剂;
    其中,所述结晶抑制剂能够抑制所述基质材料在蒸镀过程中结晶,且所述结晶抑制剂具有空穴注入和/或空穴传输功能。
  2. 根据权利要求1所述的具有空穴注入和/或空穴传输功能的材料,其中,
    所述基质材料包括空穴注入材料和空穴传输材料中的至少一种。
  3. 根据权利要求1或2所述的具有空穴注入和/或空穴传输功能的材料,其中,
    所述基质材料包括空穴注入材料和空穴传输材料。
  4. 根据权利要求1~3任一项所述的具有空穴注入和/或空穴传输功能的材料,其中,
    所述结晶抑制剂选自芳胺的衍生物中的任一种或两种以上的混合材料。
  5. 根据权利要求4所述的具有空穴注入和/或空穴传输功能的材料,其中,
    所述结晶抑制剂选自N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'-联苯-4,4'-二胺、N,N′-二(α-萘基)-N,N′-二苯基-4,4′-联萘胺、N,N'-二(3,4-二甲基苯基)-N,N’-二苯基-1,1'-联苯-4,4'-二胺、N,N,N',N'-四(4-甲基苯基)-1,1'-联苯-4,4'-二胺和4,4′,4”-三[苯基(间甲苯基)氨基]三苯胺中的任一种或两种以上的混合材料。
  6. 根据权利要求1~5任一项所述的具有空穴注入和/或空穴传输功能的材料,其中,
    以所述具有空穴注入和/或空穴传输功能的材料的重量份为100份为基准,所述基质材料的重量份为90份~99份;所述结晶抑制剂的重量份为1份~10份。
  7. 根据权利要求6所述的具有空穴注入和/或空穴传输功能的材料,其中,
    以所述具有空穴注入和/或空穴传输功能的材料的重量份为100份为基准,所述基质材料的重量份为93份~97份;余量为所述结晶抑制剂。
  8. 根据权利要求6或7所述的具有空穴注入和/或空穴传输功能的材料,其中,
    在所述基质材料包括空穴注入材料和空穴传输材料,且所述基质材料的重量份确定的情况下,所述空穴注入材料的重量份为5份~40份,余量为所述空穴传输材料。
  9. 根据权利要求8所述的具有空穴注入和/或空穴传输功能的材料,其中,
    在所述基质材料包括空穴注入材料和空穴传输材料,且所述基质材料的 重量份确定的情况下,所述空穴注入材料的重量份为25份~35份,余量为所述空穴传输材料。
  10. 根据权利要求2~9任一项所述的具有空穴注入和/或空穴传输功能的材料,其中,
    所述空穴注入材料选自2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲、2,3,5,6-四氟-7,7',8,8'-四氰二甲基对苯和三(4-溴苯基)六氯锑酸铵中的任一种或两种以上的混合材料。
  11. 根据权利要求2~10任一项所述的具有空穴注入和/或空穴传输功能的材料,其中,
    所述空穴传输材料选自N,N'-二(1-萘基)-N,N'-二苯基-1,1'-联苯-4-4'-二胺(NPB)、三苯基二胺衍生物、TPTE和1,3,5-三(N-3-甲基苯基-N-苯基氨基)苯中的任一种或两种以上的混合材料。
  12. 一种发光基板,包括:
    衬底;以及
    设置于所述衬底上的多个发光器件;
    至少一个发光器件包括:层叠的第一电极和第二电极,设置于所述第一电极和第二电极之间的发光层;以及设置于所述第一电极和所述发光层之间的一层功能层;
    所述功能层的材料选自如权利要求1~11任一项所述的具有空穴注入和/或空穴传输功能的材料。
  13. 根据权利要求12所述的发光基板,其中,
    所述发光基板还包括像素界定层,所述像素界定层具有多个开口;
    所述多个发光器件包括设置于所述像素界定层远离衬底一侧的具有空穴注入和/或空穴传输功能的薄膜,所述具有空穴注入和/或空穴传输功能的薄膜包括位于开口中的部分和位于开口以外的部分,所述具有空穴注入和/或空穴传输功能的薄膜位于开口中的部分构成发光器件所包含的功能层。
  14. 根据权利要求12或13所述的发光基板,其中,
    所述功能层为空穴注入层,所述空穴注入层的厚度为1nm~10nm。
  15. 根据权利要求12~14任一项所述的发光器件,其中,
    所述至少一个发光器件包括发红光的发光器件、发绿光的发光器件或发蓝光的发光器件中的至少一种。
  16. 一种发光装置,包括如权利要求12~15任一项所述的发光基板。
  17. 一种发光基板的制备方法,包括:
    在衬底上形成多个发光器件;
    其中,至少一个发光器件包括:层叠的第一电极和第二电极,形成在所述第一电极和第二电极之间的发光层;以及形成在所述第一电极和所述发光层之间的一层功能层;
    所述功能层的材料选自如权利要求1~11任一项所述的具有空穴注入和/或空穴传输功能的材料。
  18. 根据权利要求17所述的发光基板的制备方法,其中,
    在所述发光基板还包括像素界定层,且所述像素界定层具有多个开口的情况下,所述在衬底上形成多个发光器件,包括:
    通过蒸镀工艺在所述衬底上且位于所述像素界定层远离所述衬底一侧形成具有空穴注入和/或空穴传输功能的薄膜,所述具有空穴注入和/或空穴传输功能的薄膜包括位于开口中的部分和位于开口以外的部分,所述具有空穴注入和/或空穴传输功能的薄膜位于开口中的部分构成发光器件所包含的功能层。
PCT/CN2021/131144 2021-01-27 2021-11-17 功能材料、发光基板及其制备方法和发光装置 WO2022160875A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/927,542 US20230354698A1 (en) 2021-01-27 2021-11-17 Functional material, light-emitting substrate and manufacturing method therefor, and light-emitting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110111865.5 2021-01-27
CN202110111865.5A CN112928228A (zh) 2021-01-27 2021-01-27 功能材料、发光基板及其制备方法和发光装置

Publications (1)

Publication Number Publication Date
WO2022160875A1 true WO2022160875A1 (zh) 2022-08-04

Family

ID=76167148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131144 WO2022160875A1 (zh) 2021-01-27 2021-11-17 功能材料、发光基板及其制备方法和发光装置

Country Status (3)

Country Link
US (1) US20230354698A1 (zh)
CN (1) CN112928228A (zh)
WO (1) WO2022160875A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112928228A (zh) * 2021-01-27 2021-06-08 京东方科技集团股份有限公司 功能材料、发光基板及其制备方法和发光装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070145888A1 (en) * 2005-11-16 2007-06-28 Idemitsu Kosan Co., Ltd. Aromatic amine derivatives and organic electroluminescence device using the same
CN102356060A (zh) * 2009-03-19 2012-02-15 三井化学株式会社 芳香族胺衍生物及使用其的有机场致发光元件
CN103594659A (zh) * 2012-08-17 2014-02-19 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN108676025A (zh) * 2018-06-14 2018-10-19 孝感寰誉新材科技有限公司 一种新型oled空穴传输材料的制备方法
CN112928228A (zh) * 2021-01-27 2021-06-08 京东方科技集团股份有限公司 功能材料、发光基板及其制备方法和发光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070145888A1 (en) * 2005-11-16 2007-06-28 Idemitsu Kosan Co., Ltd. Aromatic amine derivatives and organic electroluminescence device using the same
CN102356060A (zh) * 2009-03-19 2012-02-15 三井化学株式会社 芳香族胺衍生物及使用其的有机场致发光元件
CN103594659A (zh) * 2012-08-17 2014-02-19 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN108676025A (zh) * 2018-06-14 2018-10-19 孝感寰誉新材科技有限公司 一种新型oled空穴传输材料的制备方法
CN112928228A (zh) * 2021-01-27 2021-06-08 京东方科技集团股份有限公司 功能材料、发光基板及其制备方法和发光装置

Also Published As

Publication number Publication date
CN112928228A (zh) 2021-06-08
US20230354698A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
US11444138B2 (en) Display panel, fabrication method therefor, and display device
CN105590956B (zh) 有机发光器件和包括有机发光器件的显示单元
TWI490210B (zh) 有機電致發光元件及顯示裝置
US8076841B2 (en) Organic electroluminescent display apparatus
US11711933B2 (en) OLED device structures
KR101634814B1 (ko) 유기 발광 소자, 및 이것을 구비한 표시장치 및 조명 장치
US8829497B2 (en) Display element, display device, and electronic apparatus
EP2159843A2 (en) Color display device and method for manufacturing the same
US10541276B2 (en) Double-sided organic light-emitting diode lighting panel
JP4544937B2 (ja) 有機機能素子、有機el素子、有機半導体素子、有機tft素子およびそれらの製造方法
CN109817695B (zh) 一种oled显示面板及制备方法、显示装置
CN101783396B (zh) 有机电致发光器件、显示器和电子装置
CN113130817A (zh) 显示装置及其制造方法
WO2022160875A1 (zh) 功能材料、发光基板及其制备方法和发光装置
Kanno et al. High efficiency stacked organic light-emitting diodes employing Li2O as a connecting layer
US11170709B2 (en) Multi-mode OLED display
KR20220109306A (ko) 다중 청색 방출 레이어를 구비한 멀티모달 마이크로캐비티 오엘이디
US8183771B2 (en) Organic light emitting diode and method of fabricating the same
JP2000091077A (ja) 有機電界発光素子
JP2004103247A (ja) 有機el表示装置
JP2011029322A (ja) 表示装置および表示装置の製造方法
US20080265760A1 (en) Organic light-emitting display device
KR100565742B1 (ko) 유기전계발광소자
WO2022138709A1 (ja) 表示装置および電子機器
US20230200230A1 (en) Light-emitting device, light-emitting substrate and light-emitting apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/11/2023)