WO2022160456A1 - 一种高强高塑轻合金材料及其制备方法与应用 - Google Patents

一种高强高塑轻合金材料及其制备方法与应用 Download PDF

Info

Publication number
WO2022160456A1
WO2022160456A1 PCT/CN2021/084379 CN2021084379W WO2022160456A1 WO 2022160456 A1 WO2022160456 A1 WO 2022160456A1 CN 2021084379 W CN2021084379 W CN 2021084379W WO 2022160456 A1 WO2022160456 A1 WO 2022160456A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
preparation
temperature
strength
light alloy
Prior art date
Application number
PCT/CN2021/084379
Other languages
English (en)
French (fr)
Inventor
刘运腾
杨帆
赵东清
周吉学
刘洪涛
吴建华
马百常
张素卿
Original Assignee
山东省科学院新材料研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东省科学院新材料研究所 filed Critical 山东省科学院新材料研究所
Publication of WO2022160456A1 publication Critical patent/WO2022160456A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the invention belongs to the technical field of metal material preparation, and in particular relates to a high-strength and high-plastic light alloy material and a preparation method and application thereof.
  • Light alloys refer to alloys formed by the fusion of two or more metal elements (such as aluminum, magnesium, titanium, etc.) with a density of less than or equal to 4.5g/ cm3 .
  • metal elements such as aluminum, magnesium, titanium, etc.
  • grain refinement can improve the strength and plasticity of the material at the same time. Grain refinement to the nanometer scale severely increases the resistance to dislocation generation and movement, which in turn leads to reduced plasticity and ductility of ultrafine-grained materials.
  • the bimodal grain size distribution structure has achieved good results in the experiments to improve the strength and plasticity of magnesium alloys - large grains improve material plasticity, and small grains improve material strength.
  • the preparation of the above bimodal structure requires low temperature or large plastic deformation preparation (such as equal channel angular extrusion, high pressure torsion); and the alloys in the experiments are mostly pure metals or low alloyed materials. Therefore, the engineering application of the above method is rare.
  • cryogenic treatment is also an effective way to improve the strong plasticity of materials.
  • its treatment process requires a large amount of liquid nitrogen cooling, and the cost is relatively high; and the cryogenic treatment of products in the engineering field is often limited in size and cannot be promoted on a large scale.
  • the present invention provides a high-strength and high-plastic light alloy material and a preparation method and application thereof.
  • Deformed light alloy material That is, the plasticity of the material is improved by the micron-scale grains, and the strength of the material is improved by the fine disperse phase.
  • a first aspect of the present invention provides a method for preparing a high-strength and high-plastic light alloy material, which is obtained by sequentially subjecting the heat-treatable-strengthened light alloy material to solution treatment, cold treatment, high temperature deformation, cold treatment, and aging treatment to obtain high-strength and high-plasticity materials.
  • Light alloy material is obtained by sequentially subjecting the heat-treatable-strengthened light alloy material to solution treatment, cold treatment, high temperature deformation, cold treatment, and aging treatment to obtain high-strength and high-plasticity materials.
  • the design idea of the present invention is to prepare high-strength and high-plastic light alloys by subjecting "heat-treatable reinforced light alloy materials” to "solid solution treatment", “cold treatment”, “high temperature deformation”, “cold treatment”, “aging treatment” and other methods.
  • the idea is as follows.
  • Heat-treatable reinforced light alloy material is the basis for the preparation of high-strength or ultra-high-strength magnesium alloys, because the material contains a certain proportion of alloying elements to ensure that enough second phases are generated in the subsequent preparation process, and then High strength is achieved through the strengthening of the second phase, and only when the second phase is dispersed as much as possible can it be possible to obtain higher strength and plasticity of the material.
  • the preparation of high-strength and high-plastic light alloys is achieved by conventional means or methods such as solution treatment + high temperature deformation + aging treatment, combined with cold treatment technology, to achieve the purpose of controlling the grain size and the size/distribution of the second phase of the material.
  • the cold treatment of the present invention can achieve the purpose of its treatment through the natural environment temperature, and can promote the formation of atomic clusters and GP regions through the cold treatment, thereby obtaining good mechanical properties.
  • the present invention is significantly different from the patent CN109468559A "a preparation method of a high-performance magnesium alloy extruded profile", and the preparation process adopts cold treatment instead of cryogenic treatment. That is, it is not necessary to use liquid nitrogen, but a similar treatment effect can be obtained.
  • the second aspect of the present invention provides a high-strength and high-plastic light alloy material obtained by the above preparation method.
  • the third aspect of the present invention provides the application of the above-mentioned high-strength and high-plastic light alloy material in the preparation of aerospace, automobile and electronic products.
  • the present invention has achieved the following beneficial effects:
  • the present invention changes the process route of conventional solution treatment-thermal deformation-aging treatment, and adds a cold treatment process after solution treatment and thermal deformation respectively, which can improve the material quality without greatly increasing the production cost. strength and plasticity.
  • the process can be industrialized on a large scale and has good application and promotion prospects.
  • the cold treatment in the present invention can be processed by the natural environment temperature in winter in the northern region of my country, which saves the use of refrigerants such as liquid nitrogen, does not greatly increase the cost, and also avoids the rapid cooling in the liquid nitrogen cryogenic treatment process.
  • the workpiece is cracked.
  • the cold treatment of the present invention before high-temperature deformation can promote the formation of a small amount of uniformly distributed second phases.
  • These small second phases can pin the grain boundaries, hinder the abnormal growth of recrystallized grains during high-temperature deformation, and form uniform Distribute the micron-scale grain structure, which will improve the uniform elongation of the material, which in turn improves the plasticity of the material.
  • the cold treatment after high temperature deformation of the present invention can promote the formation of atomic clusters, GP regions and finely dispersed second phases, and avoid the generation of coarse second phases.
  • dislocations can bypass fine particles during deformation and form dislocation loops around them, which increases the plasticity of the material to some extent, and as the deformation progresses, multiple dislocations bypass the dispersion Phase particles will lead to dislocation clogging, which will increase the resistance of subsequent dislocation bypassing, that is, the deformation resistance of the material will gradually increase, which will lead to work hardening of the material.
  • the conventional artificial aging treatment can promote the atomic clusters and GP regions obtained before to gradually grow into a small second phase, and further improve the strength of the material.
  • FIG. 1 is a TEM photograph of the ZK60 magnesium alloy provided in Example 1 of the present invention.
  • FIG. 2 is a photo of the microstructure of the ZK60 magnesium alloy provided in Example 1 of the present invention.
  • FIG. 3 is a photo of the microstructure of the ZK60 magnesium alloy provided in Comparative Example 1 of the present invention.
  • the present invention proposes a method for preparing high-strength and high-plastic light alloy materials.
  • the heat-treatable strengthening light alloy material is obtained by successively solution treatment, cold treatment, high temperature deformation, cold treatment, and aging treatment to obtain high-strength and high-plastic light alloy material.
  • the heat-treatable-strengthened light alloy refers to a light alloy whose mechanical properties can be significantly improved through heat treatment.
  • the heat-treatable strengthening light alloy material is one of 6000 series aluminum alloys, 7000 series aluminum alloys, or AZ80, AZ61, ZK60, and WE43 magnesium alloys.
  • the solution treatment also known as homogenization treatment, refers to the process in which the alloying elements are dissolved into the light alloy matrix by the high temperature heat treatment of the cast rod to form an ⁇ solid solution microstructure.
  • the solution treatment temperature is 5-20°C lower than the solidus temperature of the material, and the treatment time is 8h-96h.
  • the temperature of the cast rod is lowered to room temperature by means of strong air cooling or water cooling.
  • the cold treatment refers to a treatment process of placing in an environment of 0 to -25° C. for 1 h to 2400 h.
  • the cold treatment process adopts a natural environment with a temperature of -10 to -25°C, and a time of 24h-2400h.
  • the temperature of the deformation zone is 10-50° C. lower than the solidus of the material.
  • the high-temperature deformation method includes one of rolling, extrusion, and forging.
  • the temperature of the deformed product is rapidly reduced to room temperature by means of strong air cooling or water cooling.
  • the aging treatment is maintained at 25-250° C. for 1-100 h.
  • the material after the aging treatment, the material is naturally cooled to room temperature.
  • the second aspect of the present invention provides a high-strength and high-plastic light alloy material obtained by the above preparation method.
  • the third aspect of the present invention provides the application of the above-mentioned high-strength and high-plastic light alloy material in the preparation of aerospace, automobile and electronic products.
  • a method for preparing a high-performance ZK60 magnesium alloy is sequentially subjected to solution treatment, cold treatment 1, hot extrusion, cold treatment 2, and aging treatment.
  • the solution treatment process was as follows: 420°C for 16h; the heating rate was 1°C/min; air-cooled to room temperature after solution treatment.
  • the cold treatment 1 process is: -20°C, heat preservation for 24h.
  • the hot extrusion process is as follows: the preheating temperature of the billet is 300°C, the temperature is kept for 2h, and the heating rate is 2°C/min; the die temperature is the same as the extrusion cylinder temperature, which is 280°C; the extrusion ratio is 30, and the extrusion speed is 5mm/s . Air-cooled after extrusion.
  • Cold treatment 2 is: -10 °C cold treatment for 48h.
  • the aging process was as follows: 170°C for 10h; the heating rate was 1°C/min.
  • a method for preparing high-performance 6063 aluminum alloy the 6063 aluminum alloy is sequentially subjected to solution treatment, cold treatment 1, hot extrusion, cold treatment 2, and aging treatment.
  • the solution treatment process is: 560 °C for 8 hours; the heating rate is 1 °C/min; air-cooled to room temperature after solution treatment.
  • Cold treatment 1 process is: -10 °C, heat preservation 24h.
  • the hot extrusion process is as follows: the preheating temperature of the billet is 480°C, the temperature is kept for 2h, and the heating rate is 3°C/min; the die temperature is the same as the extrusion cylinder temperature, which is 450°C; the extrusion ratio is 20, and the extrusion speed is 10mm/s . Air-cooled after extrusion.
  • Cold treatment 2 is: -10 °C cold treatment for 36h.
  • the aging process is: 175°C for 8h; the heating rate is 1.5°C/min.
  • a method for preparing high-performance 6061 aluminum alloy the 6061 aluminum alloy is sequentially subjected to solution treatment, cold treatment 1, hot extrusion, cold treatment 2, and aging treatment.
  • the solution treatment process is: 560 °C for 8h; the heating rate is 1 °C/min; water quenching after solution treatment.
  • the cold treatment 1 process is: -15°C, heat preservation for 24h.
  • the hot extrusion process is as follows: the preheating temperature of the billet is 480°C, the temperature is kept for 2h, and the heating rate is 3°C/min; the die temperature is the same as the extrusion cylinder temperature, which is 450°C; the extrusion ratio is 20, and the extrusion speed is 10mm/s ; Water cooling after extrusion.
  • Cold treatment 2 is: -15°C cold treatment for 48h.
  • the aging process is: 175°C for 8h; the heating rate is 1.5°C/min.
  • a method for preparing a high-performance VW94 magnesium alloy is sequentially subjected to solution treatment, cold treatment 1, hot extrusion, cold treatment 2, and aging treatment.
  • the solution treatment process is as follows: 510 °C for 16 h; the heating rate is 1 °C/min; after solution treatment, air-cooled to room temperature.
  • Cold treatment 1 process is: -25 °C, heat preservation 24h.
  • the hot extrusion process is as follows: the preheating temperature of the billet is 440°C, the temperature is kept for 2h, and the heating rate is 2°C/min; the die temperature is the same as the extrusion cylinder temperature, which is 420°C; the extrusion ratio is 30, and the extrusion speed is 3mm/s . Air-cooled after extrusion.
  • Cold treatment 2 is: -25 °C cold treatment for 48h.
  • the aging process is as follows: 200°C for 40h; the heating rate is 2°C/min.
  • a preparation method of ZK60 magnesium alloy is sequentially subjected to solution treatment, hot extrusion and aging treatment.
  • Example 1 Compared with Example 1, other parameters are the same except for the lack of cold treatment 1 and cold treatment 2 processes.
  • a method for preparing 6063 aluminum alloy which comprises the steps of sequentially performing solution treatment, hot extrusion and aging treatment on the 6063 aluminum alloy.
  • Example 2 Compared with Example 2, other parameters are the same except for the lack of cold treatment 1 and cold treatment 2 processes.
  • a preparation method of 6061 aluminum alloy is to perform solution treatment, hot extrusion and aging treatment in sequence on the 6061 aluminum alloy.
  • Example 3 Compared with Example 3, other parameters are the same except for the lack of cold treatment 2 process.
  • a preparation method of VW94 magnesium alloy which comprises the following steps of performing solid solution treatment, hot extrusion and aging treatment on the VW94 magnesium alloy.
  • Example 4 Compared with Example 4, other parameters are the same except for the lack of cold treatment 1 process.
  • the mechanical properties and average grain size of the alloys in the examples of the present invention and the comparative examples are shown in Table 1.
  • the test method of mechanical properties is carried out according to GB T 228.1-2010; the measurement method of average grain size is carried out according to GBT6394-2002.
  • the high-strength and high-plastic light alloy material prepared by the present invention has good mechanical properties, and can better meet the requirements for high-performance light alloy materials in the fields of aerospace, automobile, electronics and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)
  • Extrusion Of Metal (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种高强度高塑性轻合金材料及其制备方法与应用,将可热处理强化轻合金材料依次通过固溶处理、冷处理、高温变形、冷处理、时效处理来得到高强高塑轻合金材料。在高温变形前冷处理,可以促进少量均匀分布第二相的形成,这些细小的第二相可以钉扎晶界,阻碍高温变形过程中再结晶晶粒的异常长大,形成均匀分布微米尺度的晶粒组织,这将提高材料的均匀延伸率,进而提高材料的塑性。

Description

一种高强高塑轻合金材料及其制备方法与应用 技术领域
本发明属于金属材料制备技术领域,具体涉及一种高强度高塑性轻合金材料及其制备方法与应用。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
轻合金是指由两种或两种以上密度小于或等于4.5g/cm 3的金属元素(如铝、镁、钛等)熔合而成的合金。近年来,快速发展的航空航天、汽车、建筑和机械制造等行业对轻合金需求不断增加,并且对强度和塑性提出更高的要求,这使得高强度高塑性轻合金逐步成为研发的主要方向。
目前,大多数高强度轻合金都是高合金化材料,采用固溶时效工艺析出强化提高材料的强度。虽然第二相析出强化效果比较显著,但塑性也因第二相的产生而大幅度下降。
近年来,国内外学者们在提高轻合金强度、塑性和成形性等方面做了大量的工作。上海交通大学在高性能镁合金材料开发及应用方面取得了一系列科研成果。其中,吴国华及其课题组阐明了稀土镁合金强韧化理论与耐热机制,开发了高强耐热新型镁稀土合金材料;并通过调控镁合金熔体的预结晶组织与结构,实现了铸态组织微细化和均质化。重庆大学潘复生团队提出“固溶强化增塑”理论,并基于此开发了多种新型高性能镁合金;在熔铸和塑性加工领域,开发出无熔剂纯净化技术和非对称加工技术,显著提高了镁合金材料的性能。
根据霍尔佩奇关系,细化晶粒可以同时提高材料的强度和塑性。晶粒细化到纳米尺度后,会严重增加位错产生和运动的阻力,进而导致超细晶材料的塑性和延展性降低。近年来,双峰晶粒尺寸分布组织在提高镁合金强度和塑性的实验中,取得了良好的效果——大晶粒提高材料塑性、小晶粒提高材料强度。然而,制备上述双峰组织需要低温或者大塑性变形制备(如等通道角挤压、高压扭转);并且实验中的合金大多是纯金属或低合金化材料。因此,上述方法的工程应用还不多见。
另外,深冷处理也是改善材料强塑性的一个有效途径。但其处理过程需要大量液氮冷却,成本较高;且工程领域产品的深冷处理常常受到尺寸限制,而无法大规模推广。
因此,开发一种低成本的高强高塑轻合金材料的制备方法是轻合金工程应用迫切需要解决的问题,相关技术是目前研究的热点。
发明内容
本发明针对目前高强度轻合金塑性较低问题,提供了一种高强高塑轻合金材料及其制备方法与应用,其目的是通过工业化技术,制备含有微米尺度晶粒和纳米尺度第二相的变形轻合金材料。即,通过微米尺度晶粒改善材料塑性,通过细小弥散相改善材料强度。
为了实现上述目的,本发明第一方面提供一种高强高塑轻合金材料的制备方法,将可热处理强化轻合金材料依次通过固溶处理、冷处理、高温变形、冷处理、时效处理来得到高强高塑轻合金材料。
本发明的设计思路为,将“可热处理强化轻合金材料”经过“固溶处理”、“冷处理”、“高温变形”、“冷处理”、“时效处理”等方法制备高强高塑轻合金,具体思路如下。
(1)“可热处理强化轻合金材料”是制备高强度或超高强度镁合金的基础,因为材料中含有一定比例的合金化元素,才能保证后续制备过程中产生足够多的第二相,进而通过第二相强化达到高强度,并且只有第二相尽可能的弥散分布,才可能使该材料获得更高的强度和塑性。
(2)高强高塑轻合金的制备是通过固溶处理+高温变形+时效处理等常规手段或方法,结合冷处理工艺,达到控制材料的晶粒度和第二相尺度/分布的目的。本发明的冷处理可通过自然环境温度实现其处理的目的,通过冷处理可促进原子团簇以及GP区的形成,进而获得良好的力学性能。
需要特别指出的是,本发明与专利CN109468559A“一种高性能镁合金挤压型材的制备方法”有明显区别,制备工艺采用冷处理而非深冷处理。即,不必使用液氮,却能得到相似的处理效果。
本发明第二方面提供了一种上述制备方法得到的高强高塑轻合金材料。
本发明第三方面提供了上述高强高塑轻合金材料在制备航空航天、汽车、电子产品中的应用。
与现有技术相比,本发明取得了以下有益效果:
(1)本发明改变了常规的固溶处理-热变形-时效处理的工艺路线,分别在固溶处理和热变形之后加入了冷处理工艺,可在不大幅增加生产成本的前提下,同时提高材料的强度和塑性。该工艺可以大规模工业化生产,具有良好的应用和推广前景。
(2)本发明中的冷处理可以借助在我国北方地区的冬天自然环境温度处理,省去了液氮等制冷剂的使用,不会大幅增加成本,也避免了液氮深冷处理工艺中快冷导致的工件开裂。
(3)本发明在高温变形前冷处理,可以促进少量均匀分布第二相的形成, 这些细小的第二相可以钉扎晶界,阻碍高温变形过程中再结晶晶粒的异常长大,形成均匀分布微米尺度的晶粒组织,这将提高材料的均匀延伸率,进而提高材料的塑性。
(4)本发高温变形后的冷处理,可促进原子团簇、GP区以及弥散细小的第二相形成,避免产生粗大第二相。根据Orowan机制,变形过程中位错可以绕过细小粒子,并在其周围形成位错环,这在某种程度上增加了材料的塑性,而随着变形的进行,多个位错绕过弥散相粒子,就会导致位错塞积,这使后续位错绕过阻力加大,即材料的变形抗力逐步增大,进而导致材料的加工硬化。
(5)在冷处理后,采用常规的人工时效处理,可以促使之前得到的原子团簇和GP区,逐步长大成细小的第二相,进一步提高材料的强度。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例1所提供的ZK60镁合金的TEM照片。
图2为本发明实施例1所提供的ZK60镁合金的显微组织照片。
图3为本发明对比例1所提供的ZK60镁合金的显微组织照片。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说 明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,现有技术中没有一种低成本制备高强高塑轻合金材料的方法,为了解决如上的技术问题,本发明提出了一种高强高塑轻合金材料的制备方法,将可热处理强化轻合金材料依次通过固溶处理、冷处理、高温变形、冷处理、时效处理来得到高强高塑轻合金材料。
其中,所述可热处理强化轻合金,是指通过热处理可以显著提高其力学性能的轻合金。
本发明的一个或多个实施方式中,可热处理强化轻合金材料为6000系铝合金、7000系铝合金或AZ80、AZ61、ZK60、WE43镁合金中的一种。
所述固溶处理,也称均匀化处理,是指铸棒通过高温热处理使合金化元素固溶到轻合金基体中,形成α固溶体显微组织的过程。
本发明的一个或多个实施方式中,固溶处理温度比材料的固相线温度低5~20℃,处理时间为8h-96h。
本发明的一个或多个实施方式中,固溶处理后,通过强风冷或水冷方式使铸棒温度降至室温。
本发明的一个或多个实施方式中,所述冷处理,是指在0~-25℃的环境中放置1h~2400h的处理过程。
优选的,冷处理过程采用温度为-10~-25℃的自然环境,时间为24h-2400h。
本发明的一个或多个实施方式中,所述高温变形中,变形区温度比材料的固相线低10~50℃。
本发明的一个或多个实施方式中,所述高温变形方式包括轧制、挤压、锻压中的一种。
本发明的一个或多个实施方式中,高温变形后,通过强风冷或水冷方式使变形产品温度迅速降至室温。
本发明的一个或多个实施方式中,时效处理为在25~250℃保温1~100h。
本发明的一个或多个实施方式中,时效处理后,材料自然冷却至室温。
本发明第二方面提供了一种上述制备方法得到的高强高塑轻合金材料。
本发明第三方面提供了上述高强高塑轻合金材料在制备航空航天、汽车、电子产品中的应用。
为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例与对比例详细说明本发明的技术方案。
实施例1
一种高性能ZK60镁合金制备方法,将ZK60镁合金依次进行固溶处理、冷处理1、热挤压、冷处理2、时效处理。
固溶处理工艺为:420℃保温16h;升温速率为1℃/min;固溶处理后风冷至室温。
冷处理1工艺为:-20℃,保温24h。
热挤压工艺为:坯料预热温度300℃,保温2h,升温速率为2℃/min;模具温度和挤压筒温度相同,为280℃;挤压比为30,挤压速度为5mm/s。挤压后风冷。
冷处理2为:-10℃冷处理48h。
时效工艺为:170℃保温10h;升温速率为1℃/min。
实施例2
一种高性能6063铝合金制备方法,将6063铝合金依次进行固溶处理、冷处理1、热挤压、冷处理2、时效处理。
固溶处理工艺为:560℃保温8h;升温速率为1℃/min;固溶处理后风冷至室温。
冷处理1工艺为:-10℃,保温24h。
热挤压工艺为:坯料预热温度480℃,保温2h,升温速率为3℃/min;模具温度和挤压筒温度相同,为450℃;挤压比为20,挤压速度为10mm/s。挤压后风冷。
冷处理2为:-10℃冷处理36h。
时效工艺为:175℃保温8h;升温速率为1.5℃/min。
实施例3
一种高性能6061铝合金制备方法,将6061铝合金依次进行固溶处理、冷处理1、热挤压、冷处理2、时效处理。
固溶处理工艺为:560℃保温8h;升温速率为1℃/min;固溶处理后水淬。
冷处理1工艺为:-15℃,保温24h。
热挤压工艺为:坯料预热温度480℃,保温2h,升温速率为3℃/min;模具温度和挤压筒温度相同,为450℃;挤压比为20,挤压速度为10mm/s;挤压后水冷。
冷处理2为:-15℃冷处理48h。
时效工艺为:175℃保温8h;升温速率为1.5℃/min。
实施例4
一种高性能VW94镁合金制备方法,将VW94镁合金依次进行固溶处理、冷处理1、热挤压、冷处理2、时效处理。
固溶处理工艺为:510℃保温16h;升温速率为1℃/min;固溶处理后风冷至室温。
冷处理1工艺为:-25℃,保温24h。
热挤压工艺为:坯料预热温度440℃,保温2h,升温速率为2℃/min;模具温度和挤压筒温度相同,为420℃;挤压比为30,挤压速度为3mm/s。挤压后风冷。
冷处理2为:-25℃冷处理48h。
时效工艺为:200℃保温40h;升温速率为2℃/min。
对比例1
一种ZK60镁合金制备方法,将ZK60镁合金依次进行固溶处理、热挤压、时效处理。
与实施例1相比,除了缺少冷处理1和冷处理2工艺外,其他参数均相同。
对比例2
一种6063铝合金制备方法,将6063铝合金依次进行固溶处理、热挤压、时效处理。
与实施例2相比,除了缺少冷处理1和冷处理2工艺外,其他参数均相同。
对比例3
一种6061铝合金制备方法,将6061铝合金依次进行固溶处理、热挤压、时效处理。
与实施例3相比,除了缺少冷处理2工艺外,其他参数均相同。
对比例4
一种VW94镁合金制备方法,将VW94镁合金依次进行固溶处理、热挤压、时效处理。
与实施例4相比,除了缺少冷处理1工艺外,其他参数均相同。
本发明实施例及对比例的合金力学性能和平均晶粒尺寸见表1。力学性能 测试方法依据GB T 228.1-2010执行;平均晶粒尺寸测量方法依据GBT6394-2002执行。
表1轻合金挤压材室温力学性能与平均晶粒尺寸
Figure PCTCN2021084379-appb-000001
比较本发明的实施例与对比例可以看出:本发明制备的高强高塑轻合金挤 压材的平均晶粒尺寸和力学性能均明显优于对比例。
对比实施例1和对比例1中ZK60合金的显微组织照片可以看出:本发明实施例1制备的ZK60镁合金材料中晶粒更均匀细小,且含有纳米尺度的第二相,因而,其力学性能明显优于对比例1。
因此,本发明制备的高强高塑性轻合金材料力学性能良好,能更好的满足航空航天、汽车、电子等领域对高性能轻合金材料的需求。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种高强高塑轻合金材料的制备方法,其特征在于:将可热处理强化轻合金材料依次通过固溶处理、冷处理、高温变形、冷处理、时效处理来得到高强高塑轻合金材料。
  2. 如权利要求1所述的制备方法,其特征在于:可热处理强化轻合金材料为6000系铝合金、7000系铝合金或AZ80、AZ61、ZK60、WE43镁合金中的一种。
  3. 如权利要求1所述的制备方法,其特征在于:固溶处理温度比材料的固相线温度低5~20℃,处理时间为8h-96h;
    固溶处理后,通过强风冷或水冷方式使铸棒温度降至室温。
  4. 如权利要求1所述的制备方法,其特征在于:所述冷处理,是指在0~-25℃的环境中放置1h~2400h的处理过程。
  5. 如权利要求1所述的制备方法,其特征在于:所述高温变形中,变形区温度比材料的固相线低10~50℃。
  6. 如权利要求1所述的制备方法,其特征在于:所述高温变形方式为轧制、挤压、锻压中的一种。
  7. 如权利要求1所述的制备方法,其特征在于:高温变形后,通过强风冷或水冷方式使变形产品温度迅速降至室温。
  8. 如权利要求1所述的制备方法,其特征在于:时效处理为在25~250℃保温1~100h;时效处理后,材料自然冷却至室温。
  9. 一种采用权利要求1-8任一项所述的制备方法得到的高强高塑轻合金材料。
  10. 权利要求9所述的高强高塑轻合金材料在制备航空航天、汽车、电子产品中的应用。
PCT/CN2021/084379 2021-01-27 2021-03-31 一种高强高塑轻合金材料及其制备方法与应用 WO2022160456A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110110797.0 2021-01-27
CN202110110797.0A CN112899593B (zh) 2021-01-27 2021-01-27 一种高强高塑轻合金材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2022160456A1 true WO2022160456A1 (zh) 2022-08-04

Family

ID=76118852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084379 WO2022160456A1 (zh) 2021-01-27 2021-03-31 一种高强高塑轻合金材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN112899593B (zh)
WO (1) WO2022160456A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117165877A (zh) * 2023-11-01 2023-12-05 湖南卓创精材科技股份有限公司 一种提高铝合金性能的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114369776B (zh) * 2022-01-14 2022-08-30 合肥工业大学 一种提高(Ce+Yb)复合改性亚共晶Al-Si-Mg-Cu-Cr合金强度的方法
CN115323291A (zh) * 2022-06-29 2022-11-11 西安航天精密机电研究所 一种铝合金铸件低温存储热处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017082304A (ja) * 2015-10-29 2017-05-18 株式会社神戸製鋼所 極低温域での耐衝撃性に優れるアルミニウム合金構造部材
CN108203795A (zh) * 2016-12-16 2018-06-26 镇江创智特种合金科技发展有限公司 一种轧制态铝合金深冷处理方法
CN108774697A (zh) * 2018-06-27 2018-11-09 山东南山铝业股份有限公司 一种铝型材及其加工方法与应用
CN109468559A (zh) * 2017-09-08 2019-03-15 山东省科学院新材料研究所 一种高性能镁合金挤压型材的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665413B2 (ja) * 2004-03-23 2011-04-06 日本軽金属株式会社 高剛性・低線膨張率を有する鋳造用アルミニウム合金
CN102127725A (zh) * 2011-02-21 2011-07-20 中南大学 一种高强度高韧性镁合金板带材的制备方法
CN103882354B (zh) * 2014-02-18 2015-11-11 中南大学 一种显著提升铝合金综合性能的热处理工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017082304A (ja) * 2015-10-29 2017-05-18 株式会社神戸製鋼所 極低温域での耐衝撃性に優れるアルミニウム合金構造部材
CN108203795A (zh) * 2016-12-16 2018-06-26 镇江创智特种合金科技发展有限公司 一种轧制态铝合金深冷处理方法
CN109468559A (zh) * 2017-09-08 2019-03-15 山东省科学院新材料研究所 一种高性能镁合金挤压型材的制备方法
CN108774697A (zh) * 2018-06-27 2018-11-09 山东南山铝业股份有限公司 一种铝型材及其加工方法与应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117165877A (zh) * 2023-11-01 2023-12-05 湖南卓创精材科技股份有限公司 一种提高铝合金性能的制备方法
CN117165877B (zh) * 2023-11-01 2024-01-23 湖南卓创精材科技股份有限公司 一种提高铝合金性能的制备方法

Also Published As

Publication number Publication date
CN112899593B (zh) 2022-09-13
CN112899593A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
WO2022160456A1 (zh) 一种高强高塑轻合金材料及其制备方法与应用
CN106148792B (zh) 高强度高Gd含量的变形镁合金及其制备方法
WO2020082779A1 (zh) 高强镁合金型材及其制备工艺与应用
CN113430403B (zh) 一种预时效制备高强韧稀土镁合金的方法
CN112410691B (zh) 一种铝锂合金材料退火工艺
CN112553511B (zh) 一种6082铝合金材料及其制备方法
CN113293273A (zh) 一种紧固件用2xxx系铝合金棒材、线材的加工方法
CN114182147B (zh) 一种高强高导热镁合金及其制备方法
CN110195178B (zh) 一种高强高塑性耐热耐燃镁合金及其制造方法
CN111004950B (zh) 2000铝合金型材及其制造方法
CN107488800B (zh) 具有提高的强度和伸长率的包含析出物的Al-Zn合金及其制造方法
CN113430429A (zh) 一种多元耐热变形稀土铝合金及其制备方法
CN109536803B (zh) 一种高延展性低稀土镁合金板材及其制备方法
CN115125423B (zh) 一种高强高成形性镁锂合金及其制备方法和应用
CN109161828A (zh) 一种用于降低t5状态铝合金型材表面粗晶的加工工艺及铝合金型材
CN113718139A (zh) 一种Al-Mg-Si-Cu-Mn铝合金及其挤压材的加工方法
CN110952005A (zh) 一种快速挤压高性能变形铝合金及其制备方法
CN114351062B (zh) 一种Al-Zn-Mg-Cu合金细晶板材制备方法及其应用
CN110144533A (zh) 一种调控2219铝合金环件粗大第二相的方法
CN116640972B (zh) 一种具有高强度、高韧性的Al-Mg-Si系合金及其制备方法
CN117364001A (zh) 一种亚微米超高强耐腐蚀铝合金处理工艺
Zhang et al. The microstructure evolution and mechanical properties improvement of the AZ61 alloy by adding Sc
CN114990395B (zh) 一种含稀土元素的高强度变形铝合金及其制备方法
CN114561575A (zh) 一种复合添加Er、Zr的高强韧铝合金制备方法
RU2345173C1 (ru) Способ получения сверхпластичных листов из алюминиевых сплавов системы алюминий-магний-литий

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922055

Country of ref document: EP

Kind code of ref document: A1