WO2022158759A1 - 에너지 저장 장치용 건식 전극의 제조 방법, 건식 전극 및 이를 포함하는 이차전지 - Google Patents

에너지 저장 장치용 건식 전극의 제조 방법, 건식 전극 및 이를 포함하는 이차전지 Download PDF

Info

Publication number
WO2022158759A1
WO2022158759A1 PCT/KR2022/000117 KR2022000117W WO2022158759A1 WO 2022158759 A1 WO2022158759 A1 WO 2022158759A1 KR 2022000117 W KR2022000117 W KR 2022000117W WO 2022158759 A1 WO2022158759 A1 WO 2022158759A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
dry
film
dry electrode
insulating
Prior art date
Application number
PCT/KR2022/000117
Other languages
English (en)
French (fr)
Inventor
정구승
이남정
곽상민
이기석
신동오
유광호
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220000797A external-priority patent/KR20220105120A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22742735.8A priority Critical patent/EP4207338A1/en
Priority to CN202280006861.3A priority patent/CN116325211A/zh
Priority to US18/029,832 priority patent/US20230369557A1/en
Publication of WO2022158759A1 publication Critical patent/WO2022158759A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing a dry electrode for an energy storage device, which enables the formation of a dry electrode with excellent physical properties by forming a uniform insulating film on the edge portion of the dry electrode, and a dry electrode formed by this method and a secondary comprising the same It's about batteries.
  • lithium secondary batteries are not only an energy source for mobile devices, but also electric vehicles and hybrid electric vehicles that can replace vehicles using fossil fuels such as gasoline vehicles and diesel vehicles, which are one of the main causes of air pollution.
  • the use as a power source for automobiles is being realized, and the range of use is also expanding for purposes such as electric power auxiliary power through grid formation.
  • the manufacturing process of such a lithium secondary battery is largely divided into three steps: an electrode process, an assembly process, and a chemical conversion process.
  • the electrode process is again divided into an active material mixing process, an electrode coating process, a drying process, a rolling process, a slitting process, a winding process, and the like.
  • the electrode mixture composition in the form of a slurry is applied on the current collector in electrode coating. Then, an electrode was formed by a wet process in which the solvent was removed through drying.
  • electrode active material particles, a conductive material, and an organic binder capable of forming into fibers are mixed in a solid state and kneaded by shear force to obtain a dry electrode powder, and then this dry electrode powder is calendered.
  • a method of processing and manufacturing in the form of a mixture film for dry electrodes was mainly applied.
  • an insulating layer capable of suppressing the occurrence of the short circuit is generally formed on the edge portion (uncoated portion) where the active material layer of the positive electrode is not previously formed.
  • an object of the present invention is to provide a method for manufacturing a dry electrode for an energy storage device, which enables the formation of a dry electrode having excellent physical properties by forming a uniform insulating film on the edge portion of the dry electrode.
  • Another object of the present invention is to provide a dry electrode film or dry electrode for an energy storage device, which is manufactured by the above method, includes an insulating film uniform in the edge portion, and has excellent overall physical properties.
  • Another object of the present invention is to provide a secondary battery including the dry electrode.
  • the present invention comprises the steps of: dry mixing 30 to 85 wt% of insulating inorganic particles and 15 to 70 wt% of a fiberizable organic binder to form dry insulating powder under the application of shear force; forming an insulating film for dry electrodes by calendering the dry insulating powder between a plurality of rolls; and laminating the insulating film for the dry electrode on a metal current collector.
  • the step of forming the dry insulating powder is
  • the present invention also provides a film-like active material layer comprising electrode active material particles, a conductive material and a fiberized organic binder; and a film-like insulating layer formed on at least one edge of the active material layer and including insulating inorganic particles and a fibrous organic binder.
  • the dry electrode film itself may be used as a dry electrode for an energy storage device such as a secondary battery, or may be used as an intermediate for manufacturing such a dry electrode.
  • the present invention is a mixture film for dry electrodes; and an insulating film for dry electrodes formed on at least one edge portion thereof,
  • the insulating film for a dry electrode includes an insulating inorganic particle and a fibrous organic binder, and provides a dry electrode for an energy storage device having a resistance of 500 M ⁇ or more.
  • the present invention provides a secondary battery in which an electrode assembly including a positive electrode, a negative electrode, and a separator is embedded in a battery case together with a lithium-containing non-aqueous electrolyte, wherein the positive electrode or the negative electrode is a secondary including the dry electrode film or the dry electrode battery is provided. .
  • the safety of the secondary battery including the dry electrode can be further improved by minimizing a problem such as a short circuit occurring at the edge portion between the electrodes.
  • the disadvantage that a slitting process is added due to the non-uniformity of the edge in the dry electrode formed by the conventional method can also be solved.
  • the dry electrode can be manufactured in a simplified process by forming the insulating film together with the electrode mixture film without applying the wet process, the use of a large amount of solvent or the use of a drying process/device is omitted It is possible to manufacture a dry electrode having excellent physical properties very simply and easily while taking advantage of the dry process.
  • the present invention can greatly contribute to improving the overall characteristics of the secondary battery, reducing the process cost, and improving the efficiency of the process.
  • FIG. 1 is a process flowchart for an example of a method for manufacturing a dry electrode according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram schematically illustrating an example of a process of performing a calendering process in a method of manufacturing a dry electrode according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view schematically illustrating an example of a dry electrode according to another embodiment of the present invention.
  • the insulating inorganic particles and the organic binder in a predetermined amount are mixed and kneaded under the application of a shear force, and then the dry insulating powder formed therefrom is calendered to form an insulating film for a dry electrode.
  • a uniform insulating film included in the dry electrode may be formed through the dry process.
  • such an insulating film may be formed together in the same process as the mixture film for dry electrodes, and as a result, it is preferable to form a uniform insulating film on the edge portion of the dry electrode without using a separate wet process. becomes possible
  • a problem such as a short circuit occurring at an edge portion between both electrodes can be minimized, thereby further improving the safety of the secondary battery.
  • the disadvantage of adding a slitting process due to the non-uniformity of the edge in the dry electrode formed by the conventional method can also be solved, and the wet process for forming the insulating film is not required, thereby maximizing the advantages of the dry process can do.
  • a subsequent process is performed in a state in which 30 to 85% by weight of the insulating inorganic particles and 15 to 70% by weight of the organic binder are mixed to prepare an insulating film and a dry electrode.
  • the organic binder becomes excessively fibrous in the subsequent kneading process, which may adversely affect the process progress for forming the insulating film.
  • the content of the organic binder is too small, sufficient fiberization is not achieved, as is confirmed in Comparative Examples to be described later, and agglomeration is not achieved enough to form a mixture mass, or an insulating film for dry electrodes is not formed properly. , its physical properties may be deteriorated.
  • FIG. 1 is a process flowchart for an example of a method for manufacturing a dry electrode according to an embodiment of the present invention
  • FIG. 2 is a process for performing a calendering process in a method for manufacturing a dry electrode according to an embodiment of the present invention. It is a schematic diagram showing a brief example.
  • a mixture including insulating inorganic particles and an organic binder of a predetermined content is first prepared.
  • the mixing process is performed so that the insulating inorganic particles and the organic binder are uniformly distributed, and since they are mixed in a powder form, it is not limited as long as it enables simple mixing thereof, and can be mixed by various methods. have. However, since a solvent is not used in the method of one embodiment, the mixing may be performed by dry mixing, or by adding the materials to a device such as a blender.
  • the mixing may be prepared by mixing in a mixer at 5000 rpm to 20000 rpm for 30 seconds to 2 minutes, specifically, 10000 rpm to 15000 rpm for 30 seconds to 1 minute to ensure uniformity.
  • the type of the insulating inorganic particles to be mixed is not particularly limited, and, for example, any inorganic oxide particles previously known to be usable for forming an insulating layer in a secondary battery may be used. More specifically, as the insulating additive particles, at least one inorganic oxide particle selected from the group consisting of Al 2 O 3 , SiO 2 , TiO 2 , MgO, CaO, PaO, ZnO, Fe 2 O 3 , kaolin, and boehmite can be used.
  • any polymer binder that can be formed in the form of fine fibers under the application of shear force may be used.
  • an organic binder include a polytetrafluoroethylene (PTFE)-based polymer, a polyvinylidene fluoride (PVDF) polymer, a polyolefin-based polymer, or a mixture thereof, and more suitable
  • a polymer binder including polytetrafluoroethylene or polyvinylidene fluoride may be used.
  • the polytetrafluoroethylene or polyvinylidene fluoride may be included in an amount of 60% by weight or more, or 70 to 100% by weight based on the total weight of the organic binder.
  • organic binder may further include other polymerizable binders such as polyethylene oxide (PEO).
  • PEO polyethylene oxide
  • the mixing step 30 to 85% by weight, or 40 to 80% by weight of the insulating inorganic particles, and 15 to 70% by weight, or 20 to 60% by weight of the organic binder may be dry mixed.
  • the content of the organic binder when the content of the organic binder is too large outside the above range, it may adversely affect the progress of the process for forming the insulating film.
  • the insulating film for a dry electrode when the content of the organic binder is too small, the insulating film for a dry electrode may not be properly formed or its physical properties may be deteriorated.
  • a kneading process under the application of shear force for fiberizing the organic binder in the mixture may be performed.
  • the kneading process may be carried out using, for example, a kneader such as a kneader, and through the kneading process, the organic binder is fibrous and the insulating inorganic particles are combined or connected to form a mixture mass having a solid content of 100% by weight. can be formed.
  • a kneader such as a kneader
  • the kneading process may be performed for 1 minute to 30 minutes at a speed of 10 rpm to 100 rpm, and specifically, may be performed for 3 minutes to 7 minutes at a speed of 40 rpm to 70 rpm, in this case, the shear rate is 10/ s to 500/s.
  • the shear rate may be more specifically, in the range of 30/s to 100/s.
  • the kneading step may be performed under high temperature and pressure conditions higher than atmospheric pressure, and more specifically, may be performed under pressure conditions higher than atmospheric pressure. More specifically, the kneading may be performed in the range of 70°C to 200°C, specifically, 90°C to 180°C, and under a pressure of 1atm to 3atm, more specifically, a pressure of 1.1atm to 3atm. can be carried out under
  • a step of forming dry insulating powder by pulverizing the mixture mass formed through this again may be performed.
  • the mass of the mixture prepared through the kneading process may be calendered directly, but in this case, it may be necessary to prepare a thin film by pressing the mass of the mixture at strong pressure and high temperature, and accordingly, the density of the film Since it may become too high or a problem that a uniform film cannot be obtained may occur, in the method of one embodiment, the prepared mixture mass is pulverized to form dry insulating powder.
  • the pulverization is not limited, but may be performed with a device such as a blender or grinder, and the pulverization is specifically, at a speed of 5000 rpm to 20000 rpm for 30 seconds to 10 minutes, specifically, at a speed of 10000 rpm to 18000 rpm for 30 seconds to 5 minutes.
  • the dry insulating powder After forming the dry insulating powder by the method described above, the dry insulating powder is put between a plurality of rolls and calendered to form an insulating film for dry electrodes.
  • an insulating film for example, acts as a uniform insulating layer included in the edge portion of the electrode, such as a positive electrode, can act to suppress a short circuit between both electrodes of the secondary battery.
  • such an insulating film for dry electrodes may be laminated on a metal current collector together with a mixture film for dry electrodes in a lamination step to be described later.
  • the mixture film for dry electrodes may be formed separately from the insulating film through a separate calendering process, or the like, or may be formed together in a calendering process for forming the insulating film.
  • the dry insulating powder and the separately formed dry electrode powder are put between a plurality of rolls to form the dry electrode insulating film and the dry electrode mixture film together.
  • the dry insulating powder may be put between the plurality of rolls on one side or both sides of the dry electrode powder, and these dry insulating powder and the dry electrode
  • an electrode film including the mixture film for dry electrodes and the insulating film for dry electrodes formed on at least one (or both) edge portions thereof may be formed.
  • the insulating film can be uniformly formed on the edge portion of the mixture film, the safety of the secondary battery can be ensured by suppressing the short circuit between the electrodes, and the edge portion of the mixture film in the conventional dry electrode can be non-uniform.
  • problems such as adding an electrode slitting process.
  • the powder for a dry electrode for forming the mixture film for a dry electrode may be in the form of a powder including electrode active material particles, a conductive material, and a fibrous organic binder, and may be formed by a previously known method of manufacturing a dry electrode.
  • the dry electrode powder may be prepared by kneading the electrode active material particles, the conductive material, and the fibrous organic binder under a mixing and shearing force application, and pulverizing the mixture mass formed by the kneading process, in a method similar to the dry insulation powder described above. have.
  • the dry electrode powder may be calendered together with or separately from the dry insulating powder and put between a plurality of rolls to form a dry electrode mixture film.
  • the dry electrode prepared in the method of one embodiment may be a positive electrode or a negative electrode of a secondary battery, depending on the type of such electrode, the electrode active material particles incorporated in the mixture film may be positive electrode active material particles or negative electrode active material particles. have.
  • the cathode active material particles may include a cathode active material such as lithium transition metal oxide, lithium metal iron phosphate, or metal oxide.
  • the negative active material particles may include carbon such as non-graphitizable carbon and graphite-based carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me' y O z (Me: Mn, Fe, Pb, Ge; Me' : metal composite oxides such as Al, B, P, Si, elements of Groups 1, 2, and 3 of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3;1 ⁇ z ⁇ 8); lithium metal; lithium alloy; silicon-based alloys; tin-based alloys; silicon-based oxides such as SiO, SiO/C, and SiO 2 ; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxide
  • the dry electrode formed in the method of the embodiment may mainly be the anode, and the electrode
  • the active material particles may mainly be the positive active material particles described above.
  • the conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive whiskeys such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • a conductive material such as a polyphenylene derivative may be used, but specifically, for uniform mixing of the conductive material and improvement of conductivity, one selected from the group consisting of activated carbon, graphite, carbon black, and carbon nanotubes It may include more than one species, and more specifically, it may include activated carbon.
  • the calendering process for forming the above-described insulating film for dry electrodes and the mixture film for dry electrodes separately or together is a process of processing the dry insulating powder and dry electrode powder into a film form.
  • the electrode film including the insulating film and the mixture film may be rolled and manufactured to have a thickness of 5 ⁇ m to 300 ⁇ m, or 7 to 30 ⁇ m.
  • the calendering process may be performed, for example, by a roll existing face to face, at this time, the roll temperature may be 50 ° C. to 200 ° C., and the rotation speed of the roll is 10 rpm to 50 rpm.
  • an electrode film including a mixture film serving as an electrode mixture and an insulating film to be formed on at least one edge portion thereof may be manufactured.
  • the electrode film does not contain a solvent, it has almost no fluidity, so it is easy to handle and can be processed into a desired shape and used to manufacture various types of electrodes.
  • the use of a solvent and the use of a drying process/device for removal thereof can be completely omitted, so that the manufacturing processability of the electrode can be greatly improved.
  • an electrode film including an insulating film and a mixture film formed together or separately through this may be laminated on at least one surface of the metal current collector.
  • the electrode film may be applied as a dry electrode of an energy storage device such as a secondary battery by itself without a separate metal current collector, but for the expression of additional mechanical and electrical properties, a dry electrode laminated on a metal current collector can be applied as
  • the lamination process may be a step of rolling and attaching the electrode film to a predetermined thickness on a metal current collector.
  • the insulating film may be laminated on the metal current collector in a state in which at least one side (or both sides) of the mixture film is disposed on the edge portion.
  • the metal current collector is not particularly limited as long as it has high conductivity without causing a chemical change in the battery, and for example, stainless steel, aluminum, nickel, titanium, fired carbon, copper, or aluminum or stainless steel.
  • the surface treated with carbon, nickel, titanium, silver, etc. may be used.
  • the metal current collector may have various forms such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body, and the like.
  • the lamination process for the metal current collector may be performed by a rolling roll, and in this case, the rolling roll may be maintained at a temperature of 80°C to 200°C.
  • a dry electrode film or dry electrode for an energy storage device manufactured by the method of the above-described embodiment may be provided.
  • the dry electrode film and the dry electrode may include a mixture film (film-like active material layer) formed by the above-described method and an insulating film (film-like insulating layer) formed on at least one edge portion thereof. More specifically, the dry electrode film may include: a film-like active material layer including electrode active material particles, a conductive material, and a fiberized organic binder; and a film-like insulating layer formed on at least one edge of the active material layer and including insulating inorganic particles and a fibrous organic binder.
  • the dry electrode film itself may be used as a dry electrode for an energy storage device such as a secondary battery, or may be laminated on a metal current collector or the like to be used as an intermediate for manufacturing a dry electrode.
  • FIG 3 is a cross-sectional view schematically illustrating an example of a dry electrode according to another embodiment of the present invention.
  • the dry electrode of another embodiment includes the above-described mixture film for dry electrodes (film-form active material layer); and an insulating film (film-like insulating layer) for dry electrodes formed on at least one (or both) edge portions thereof.
  • the insulating film as the insulating film is formed by the method of the embodiment, it may exhibit different physical properties from the insulating layer formed on the edge portion of the electrode (anode) formed through the conventional wet process.
  • the insulating film for dry electrodes does not have a residual solvent and may include the above-described insulating inorganic particles and the fibrous organic binder.
  • the insulating film for example, exhibiting a resistance of 500 M ⁇ or more, or 500 M ⁇ to 3000 M ⁇ , may have excellent insulating properties.
  • the insulation resistance may be measured using a commercially available measuring instrument, for example, a FLUKE MULTIMETER and a HIOKI HiTESTER.
  • the insulating film since the insulating film is manufactured by a dry process, it may exhibit a lower porosity than an insulating layer formed by a conventional wet process. This is predicted because the drying process does not substantially proceed in the dry process of one embodiment, unlike the formation of a large number of pores in the drying process for removing the solvent in the wet process. More specifically, the insulating film may have a porosity of 10% or less, or 0 to 10%, or 0.5 to 8%.
  • the porosity is measured by measuring the apparent density of the insulating film only by subtracting the volume and weight of the current collector from the volume and weight of the electrode, and using the actual density calculated based on the actual density and composition of each component, can be obtained by the same relation.
  • the bending resistance and flexibility of the electrode film including the insulating film and the mixture film prepared as described above can be evaluated using a plurality of cylindrical mandrels of varying diameters according to the standard method of JIS K5600-5-1. . More specifically, in a state in which the electrode film is in contact with a cylindrical mandrel having various diameters, it can be measured while lifting both ends of the film to give a bend, and as a result, a cylindrical mandrel that starts to crack in the film By measuring the minimum diameter of the electrode film can be evaluated for bending resistance and flexibility. At this time, it can be evaluated that the electrode film has excellent bending resistance and flexibility as the minimum diameter of the mandrel at which cracks start to occur is smaller.
  • the minimum diameter of the cylindrical mandrel where cracks begin to occur is 10 mm ⁇ or less, or 1 mm ⁇ or more and 10 mm ⁇ or less, or 3 It can exhibit excellent bending resistance and flexibility with mm ⁇ or more and 8 mm ⁇ or less. This is expected because the electrode film includes an insulating film having excellent flexibility.
  • the electrode film including the insulating film and the mixture film may have a thickness of 5 ⁇ m to 300 ⁇ m, or 7 to 30 ⁇ m.
  • the mixture film for the dry electrode may include electrode active material particles, a conductive material, and a fibrous organic binder.
  • the film mixture may be manufactured by a conventional dry electrode manufacturing method, etc., and since each component thereof has already been described above, an additional description thereof will be omitted.
  • the above-described dry electrode may further include a metal current collector supporting the dry electrode mixture film and the dry electrode insulating film, and the types of the metal current collector are as described above.
  • an energy storage device including the dry electrode or dry electrode film for example, a secondary battery
  • a secondary battery is a secondary battery in which an electrode assembly including a positive electrode, a negative electrode, and a separator is embedded in a battery case together with a lithium-containing non-aqueous electrolyte, and the positive electrode or negative electrode may be in a form including the dry electrode of the other embodiment. have.
  • the dry electrode including the insulating film in the electrode edge portion serves as a positive electrode to suppress short circuit between the electrodes
  • the dry electrode may be included as a positive electrode.
  • alumina Al 2 O 3
  • PTFE polytetrafluoroethylene
  • the mixture mass was put into a blender and pulverized at 15000 rpm for 1 minute to obtain dry insulating powder.
  • the mixture mass was put into a blender and pulverized at 10000 rpm for 40 seconds to obtain a powder for a dry electrode.
  • the dry insulating powder and the dry electrode powder were put into a lab calender (roll diameter: 88mm, roll temperature: 85°C, 20rpm) in the form shown in FIG. 2, respectively, to form an insulating film for dry electrodes and a mixture film, respectively did.
  • an electrode film having an insulating film disposed on both edges of the mixture film is placed on both sides of the aluminum foil, and the electrode film is pressed and laminated on the metal current collector in a rolling roll maintained at 120° C.
  • a dry electrode was prepared.
  • Example 2 Dry electrode of Example 2 in the same manner as in Example 1, except that 30 g of alumina (Al 2 O 3 ) and 20 g of polytetrafluoroethylene (PTFE; 601X, Chemours) were used in the preparation of the dry insulating powder . was prepared.
  • alumina Al 2 O 3
  • PTFE polytetrafluoroethylene
  • Example 3 Dry electrode of Example 3 in the same manner as in Example 1, except that 20 g of alumina (Al 2 O 3 ) and 30 g of polytetrafluoroethylene (PTFE; 601X, Chemours) were used in the preparation of the dry insulating powder was prepared.
  • alumina Al 2 O 3
  • PTFE polytetrafluoroethylene
  • the dry insulating powder and the dry electrode powder were put into the lab calender (roll diameter: 88mm, roll temperature: 85°C, 20rpm) to form an insulating film for dry electrode and a mixture film, respectively.
  • the insulating film was physically damaged
  • a case in which the film was separated from the calender roll was evaluated as “O”, and the dry insulating powder was maintained in a powder state and thus was not processed into a film, or the produced film was attached to the calender roll and could not be separated without physical damage. When it became impossible, it was rated as “X”.
  • the thickness of the insulating film was measured using TESA mu-HITE equipment (measurement conditions: 0.63N, tip size: 4.5mm) manufactured by TESA Technologies. 3. Edge Non-uniformity of Insulation Film:
  • the insulation resistance of the insulating film was measured using a FLUKE MULTIMETER (measurement range: max. 500 M ⁇ ; O.F: Over flow) and HIOKI HiTESTER (measurement range: max. 42 M ⁇ ; O.L: Over limit).
  • each electrode film is brought into contact with cylindrical mandrels of various diameters, and the film is bent by lifting both ends of the film, and the cylindrical mandrel begins to crack in the film.
  • the bending resistance of the electrode film was evaluated by measuring the minimum diameter of the reel.
  • the electrode film including the mixture film and the insulating film of Examples and Comparative Examples was used as a working electrode, and lithium metal was used as a counter electrode and a reference electrode.
  • the electrolyte of the following composition using the electrolyte of the following composition, a three-electrode test cell was manufactured.
  • a three-electrode test CV-test was performed from 0V to 8.0V at a rate of 10mV/s. Through the three-electrode test, it was confirmed whether the insulating film had a negative reaction in the electrolyte (LSV test), and an electrochemical test was performed.
  • Example 1 O 10 ⁇ >500 No side reactions 6
  • Example 2 O 12 O >500 No side reactions 8
  • Example 3 O 14 ⁇ >500 No side reactions 8 Comparative Example 1 X No film formation X (No film formation, crumbling) No film formation No film formation No film formation No film formation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 건식 전극의 에지부에 균일한 절연 필름을 형성하여, 우수한 물성의 건식 전극을 형성할 수 있게 하는 에너지 저장 장치용 건식 전극의 제조 방법과, 이러한 방법으로 형성된 건식 전극 및 이를 포함하는 이차전지에 관한 것이다.

Description

에너지 저장 장치용 건식 전극의 제조 방법, 건식 전극 및 이를 포함하는 이차전지
관련 출원(들)과의 상호 인용
본 출원은 2021년 1월 19일자 한국 특허 출원 제 10-2021-0007628 호 및 2022년 1월 4일자 한국 특허 출원 제 10-2022-0000797 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 건식 전극의 에지부에 균일한 절연 필름을 형성하여, 우수한 물성의 건식 전극을 형성할 수 있게 하는 에너지 저장 장치용 건식 전극의 제조 방법과, 이러한 방법으로 형성된 건식 전극 및 이를 포함하는 이차전지에 관한 것이다.
화석 연료 사용의 급격한 증가로 인하여 대체 에너지, 청정 에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학을 이용한 발전, 축전 분야이다. 현재 이러한 전기 화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다.
이러한 이차전지 중 대표적인 리튬 이차전지는 모바일 기기의 에너지원뿐 아니라, 최근에는, 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석 연료를 사용하는 차량을 대체할 수 있는 전기 자동차, 하이브리드 전기 자동차의 동력원으로서의 사용이 실현화되고 있으며, 그리드(Grid)화를 통한 전력 보조전원 등의 용도로도 사용영역이 확대되고 있다.
이러한 리튬 이차전지의 제조 공정은 크게 전극 공정, 조립 공정, 화성 공정의 3단계로 구분된다. 상기 전극 공정은 다시 활물질 혼합 공정, 전극코팅 공정, 건조 공정, 압연 공정, 슬리팅 공정, 권취 공정 등으로 구분된다.
기존의 전극 공정에서, 상기 활물질 혼합 공정 중에는 전극 활물질이나 도전재 등 다양한 성분의 용매 및/또는 분산을 위한 다량의 용매가 사용되며, 전극 코팅에서 슬러리 형태의 전극 합제 조성물이 집전체 상에 도포된 후, 건조를 통해 상기 용매를 제거하는 습식 공정으로 전극이 형성되었다.
그러나, 이러한 습식 공정에 의해 전극을 형성할 경우, 용매가 증발하여 제거되는 과정에서, 전극 활물질층 중에 핀홀이나 크랙과 같은 결함이 유발될 수 있다. 또한, 상기 건조 과정에서 다량의 용매를 제거하기 위한 상당한 에너지가 소요될 뿐 아니라, 대형 및 고가의 건조 장치가 필요하게 되어, 전체적인 이차전지의 공정성이 크게 저하되는 단점이 있다.
이러한 습식 공정의 단점을 해결하기 위해, 최근에는 용매를 사용하지 않는 건식 공정을 통해 이차전지의 건식 전극을 제조하는 방법에 대한 연구가 활발히 진행되고 있다.
이전에 제안된 건식 전극의 제조 방법에서는, 전극 활물질 입자, 도전재 및 섬유화 가능한 유기 바인더 등을 고체 상태에서 혼합 및 전단력 인기하여 혼련하여 건식 전극용 분체를 얻은 후에, 이러한 건식 전극용 분체를 캘린더링 가공하여 건식 전극용 합제 필름의 형태로 제조하는 방법을 주로 적용하였다.
한편, 상기 이차전지가 가혹 환경 또는 과전류 등의 이상 상황에서 작동될 경우, 서로 대면하는 양극 및 음극 간의 쇼트가 발생할 수 있다. 이 때문에, 이전부터 양극의 활물질층이 형성되지 않는 에지부(무지부)에는 상기 쇼트의 발생을 억제할 수 있는 절연층이 일반적으로 형성되고 있다.
그런데, 상술한 기존의 건식 전극의 제조 방법에서는, 상기 전극용 합제 필름이 형성되지 않는 양극의 에지부에 균일한 절연층을 형성하는 방법이 제대로 제안된 바 없다. 특히, 상기 기존의 건식 방법으로 형성된 전극용 합제 필름의 경우, 에지부의 불균일에 의한 슬릿팅 공정이 추가되는 경우가 많았고, 이는 전체적인 공정의 비효율성 및 비용 증가의 원인이 되었다.
이를 해결하기 위해, 기존의 방법으로 건식 전극을 형성한 후, 이전의 습식 코팅 공정을 통해 에지부에 절연층을 별도 형성하는 방법이 고려된 바 있으나, 이 경우 절연층 형성을 위한 별도의 건조 장치/공정 등이 필요하게 되어 건식 공정의 적용에 의한 장점이 상당부분 희석될 수 있다.
이에 건식 전극의 에지부에 균일한 절연층 등을 형성할 수 있게 하는 건식 전극의 제조 공정에 대한 기술 개발이 계속적으로 요구되고 있다.
이에 본 발명은 건식 전극의 에지부에 균일한 절연 필름을 형성하여, 우수한 물성의 건식 전극을 형성할 수 있게 하는 에너지 저장 장치용 건식 전극의 제조 방법을 제공하는 것이다.
본 발명은 또한, 상기 방법으로 제조되어 에지부 균일한 절연 필름을 포함하고 우수한 제반 물성을 갖는 에너지 저장 장치용 건식 전극 필름 또는 건식 전극을 제공하는 것이다.
또한, 본 발명은 상기 건식 전극을 포함하는 이차전지를 제공하는 것이다.
본 발명은 전단력의 인가 하에, 절연성 무기 입자의 30 내지 85 중량%와, 섬유화 가능한 유기 바인더의 15 내지 70 중량%를 건식 혼합하여 건식 절연 분체를 형성하는 단계; 상기 건식 절연 분체를 복수의 롤 사이에 투입해 캘린더링 가공하여, 건식 전극용 절연 필름을 형성하는 단계; 및 상기 건식 전극용 절연 필름을 금속 집전체 상에 적층하는 단계를 포함하는 에너지 저장 장치용 건식 전극의 제조 방법을 제공한다.
상기 제조 방법의 일 예에서, 상기 건식 절연 분체의 형성 단계는
(a) 상기 절연성 무기 입자 및 상기 유기 바인더를 포함하는 혼합물을 형성하는 단계; (b) 상기 혼합물을 70℃ 내지 200℃의 온도 및 상압 이상의 압력 하에, 혼련하여, 절연성 무기 입자 및 섬유화된 유기 바인더를 포함하는 혼합물 덩어리를 형성하는 단계; 및 (c) 상기 혼합물 덩어리를 분쇄하여 건식 절연 분체를 형성하는 단계를 포함할 수 있다.
본 발명은 또한, 전극 활물질 입자, 도전재 및 섬유화된 유기 바인더를 포함한 필름상 활물질층; 및 상기 활물질층의 적어도 일 측 에지부에 형성되어 있고, 절연성 무기 입자 및 섬유화된 유기 바인더를 포함한 필름상 절연층을 포함하는 에너지 저장 장치용 건식 전극 필름을 제공한다. 이러한 건식 전극 필름은 그 자체로 이차전지 등 에너지 저장 장치용 건식 전극으로 사용되거나, 이러한 건식 전극을 제조하기 위한 중간체 등으로 사용될 수 있다.
또, 본 발명은 건식 전극용 합제 필름; 및 이의 적어도 일 측 에지부에 형성된 건식 전극용 절연 필름을 포함하며,
상기 건식 전극용 절연 필름은 절연성 무기 입자 및 섬유화된 유기 바인더를 포함하고, 500 MΩ 이상의 저항을 갖는 에너지 저장 장치용 건식 전극을 제공한다.
또한, 본 발명은 양극, 음극, 및 분리막을 포함하는 전극조립체가 리튬 함유 비수계 전해질과 함께 전지케이스에 내장된 이차전지로서, 상기 양극 또는 음극은 상기 건식 전극 필름 또는 상기 건식 전극을 포함하는 이차전지를 제공한다. .
본 발명에 따르면, 별도의 습식 공정에 의하지 않고도, 건식 공정에 의해 건식 전극의 에지부에 균일한 절연 필름을 형성할 수 있다.
따라서, 본 발명은 전극 간의 에지부에서 쇼트가 일어나는 등의 문제를 최소화하여 상기 건식 전극이 포함된 이차전지의 안전성을 보다 향상시킬 수 있다. 또한, 기존의 방법으로 형성된 건식 전극에서 에지부의 불균일로 인해 슬릿팅 공정이 추가되는 단점 또한 해결할 수 있다.
부가하여, 본 발명에 따르면, 습식 공정의 적용 없이 상기 절연 필름을 전극용 합제 필름과 함께 형성하여 단순화된 공정으로 건식 전극을 제조할 수 있으므로, 다량의 용매 사용이나 건조 공정/장치의 사용이 생략되는 건식 공정의 장점을 살리면서도, 우수한 제반 물성을 갖는 건식 전극을 매우 간단하고 용이하게 제조할 수 있게 된다.
그러므로, 본 발명은 이차전지의 전체적인 특성 향상, 공정 비용 감소 및 공정의 효율성 향상에 크게 기여할 수 있다.
도 1은 발명의 일 구현예에 따른 건식 전극의 제조 방법의 일 예에 대한 공정 순서도이다.
도 2는 발명의 일 구현예에 따른 건식 전극의 제조 방법에서, 캘린더링 가공을 진행하는 공정의 일 예를 간략하게 나타낸 모식도이다.
도 3은 발명의 다른 구현예에 따른 건식 전극의 일 예를 간략하게 나타낸 단면도이다.
도 4는 실시예 1 내지 3의 전극 필름에 대한 전기화학 테스트(절연 필름의 부반응 여부 평가)의 평가 결과를 나타내는 그래프이다.
이하, 첨부한 도면을 참고하여, 발명의 구현예들에 따른 에너지 저장 장치용 건식 전극 및 이의 제조 방법과, 이차전지에 대해 구체적으로 설명하기로 한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
발명의 일 구현예에 따르면, 전단력의 인가 하에, 절연성 무기 입자의 30 내지 85 중량%와, 섬유화 가능한 유기 바인더의 15 내지 70 중량%를 건식 혼합하여 건식 절연 분체를 형성하는 단계; 상기 건식 절연 분체를 복수의 롤 사이에 투입해 캘린더링 가공하여, 건식 전극용 절연 필름을 형성하는 단계; 및 상기 건식 전극용 절연 필름을 금속 집전체 상에 적층하는 단계를 포함하는 에너지 저장 장치용 건식 전극의 제조 방법이 제공된다.
이러한 일 구현예의 방법에서는, 소정의 함량으로 절연성 무기 입자 및 유기 바인더를 혼합 및 전단력 인가 하에 혼련한 후, 이로부터 형성된 건식 절연 분체를 캘린더링 가공하여 건식 전극용 절연 필름을 형성할 수 있다.
이하의 실시예 등에서도 확인되는 바와 같이, 이러한 건식 공정을 통해, 건식 전극에 포함되는 균일한 절연 필름을 형성할 수 있다. 이하에 더욱 상세히 설명하겠지만, 이러한 절연 필름은 건식 전극용 합제 필름과 동일 공정에서 함께 형성될 수 있고, 그 결과 별도의 습식 공정에 의하지 않고도, 건식 전극의 에지부에 균일한 절연 필름을 형성하는 것이 가능해진다.
따라서, 일 구현예의 방법에 따르면, 건식 전극이 포함된 이차전지에서, 양 전극 간의 에지부에서 쇼트가 일어나는 등의 문제를 최소화하여 상기 이차전지의 안전성을 보다 향상시킬 수 있다. 또한, 기존의 방법으로 형성된 건식 전극에서 에지부의 불균일로 인해 슬릿팅 공정이 추가되는 단점 또한 해결할 수 있으며, 상기 절연 필름의 형성 등을 위한 습식 공정의 진행이 필요치 않게 되어, 건식 공정의 장점을 극대화할 수 있다.
다만, 이러한 일 구현예의 제조 방법에서는, 상기 절연성 무기 입자의 30 내지 85 중량%와, 상기 유기 바인더의 15 내지 70 중량%가 혼합된 상태에서 후속 공정이 진행되어 절연 필름 및 건식 전극이 제조된다.
만일, 상기 범위를 벗어나, 유기 바인더의 함량이 너무 많은 경우에는 이후 혼련 공정에서 유기 바인더가 과도하게 섬유화되면서, 절연 필름의 형성을 위한 공정 진행에 악영향을 줄 수 있다. 또, 상기 유기 바인더의 함량이 너무 적은 경우에는, 후술하는 비교예 등에서도 확인되는대로, 충분한 섬유화가 이루어지지 못해, 혼합물 덩어리를 형성할 정도로 응집되지 못하거나 건식 전극용 절연 필름이 제대로 형성되지 못하거나, 그 물성이 저하될 수 있다.
이와 달리, 상기 절연성 무기 입자 및 유기 바인더의 혼합 함량을 최적화하고, 후속 공정 과정을 적절히 진행함에 따라, 전극 간 에지부에서 쇼트가 일어나는 등의 문제를 최소화하고, 이차전지의 안정성을 향상시키는 우수한 물성의 절연 필름 및 건식 전극이 제조될 수 있다.
이하, 첨부한 도면을 참고로, 일 구현예의 방법을 각 단계별로 보다 구체적으로 설명한다. 도 1은 발명의 일 구현예에 따른 건식 전극의 제조 방법의 일 예에 대한 공정 순서도이고, 도 2는 발명의 일 구현예에 따른 건식 전극의 제조 방법에서, 캘린더링 가공을 진행하는 공정의 일 예를 간략하게 나타낸 모식도이다.
도 1을 참고하면, 일 구현예의 방법에서는 먼저 소정 함량의 절연성 무기 입자 및 유기 바인더를 포함하는 혼합물을 제조한다.
이때, 상기 혼합 과정은 상기 절연성 무기 입자 및 유기 바인더가 균일하게 분포할 후 있도록 수행되는 것이며, 파우더 형태로 혼합되므로, 이들의 단순한 혼합을 가능하게 하는 것이라면 한정되지 아니하고, 다양한 방법에 의해 혼합될 수 있다. 다만, 일 구현예의 방법에서 용매가 사용되지 않으므로, 상기 혼합은 건식 혼합으로 수행될 수 있고, 블렌더와 같은 기기에 상기 물질들을 투입하여 수행될 수 있다.
또한, 상기 혼합은, 균일성을 확보하기 위해 혼합기에서 5000rpm 내지 20000rpm으로 30초 내지 2분, 상세하게는 10000rpm 내지 15000rpm으로 30초 내지 1분동안 혼합하여 제조될 수 있다.
한편, 상기 혼합되는 절연성 무기 입자의 종류는 특히 한정되지 않으며, 예를 들어, 이전부터 이차전지에서 절연층을 형성하는데 사용 가능한 것으로 알려진 임의의 무기 산화물 입자를 사용할 있다. 보다 구체적으로, 상기 절연성 부기 입자로는, Al2O3, SiO2, TiO2, MgO, CaO, PaO, ZnO, Fe2O3, 카올린 및 뵈마이트로 이루어진 군에서 선택된 1종 이상의 무기 산화물 입자를 사용할 수 있다.
또한, 상기 섬유화 가능한 유기 바인더로는, 전단력의 인가하에 미세 섬유 형태로 형성될 수 있는 임의의 고분자 바인더를 사용할 수 있다. 이러한 유기 바인더의 구체적인 예로는, 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE)계 고분자, 폴리비닐리덴 플루오라이드계(Polyvinylidene fluoride; PVDF) 고분자, 폴리올레핀계 고분자, 또는 이들의 혼합물을 들 수 있고, 보다 적절하게는 폴리테트라플루오로에틸렌 또는 폴리비닐리덴 플루오라이드를 포함하는 고분자 바인더를 사용할 수 있다. 이때, 상기 폴리테트라플루오로에틸렌 또는 폴리비닐리덴 플루오라이드는 전체 유기 바인더 중량을 기준으로 60중량% 이상, 혹은 70 내지 100 중량%의 함량으로 포함될 수 있다.
또한, 상기 유기 바인더에는 PEO(polyethylene oxide) 등의 섬유화 가능한 다른 고분자 바인더가 더 포함될 수도 있다.
한편, 상기 혼합 단계에서, 상기 절연성 무기 입자의 30 내지 85 중량%, 혹은 40 내지 80 중량%와, 상기 유기 바인더의 15 내지 70 중량%, 혹은 20 내지 60 중량%가 건식 혼합될 수 있다.
이미 상술한 바와 같이, 위 범위를 벗어나, 유기 바인더의 함량이 너무 많은 경우에는 절연 필름의 형성을 위한 공정 진행에 악영향을 줄 수 있다. 또, 상기 유기 바인더의 함량이 너무 적은 경우에는 건식 전극용 절연 필름이 제대로 형성되지 못하거나, 그 물성이 저하될 수 있다.
상술한 혼합 공정을 진행한 후에는, 상기 혼합물에서 유기 바인더를 섬유화하기 위한 전단력 인가 하의 혼련 공정을 진행할 수 있다.
이때, 상기 혼련 공정은, 예를 들어, 니더와 같은 반죽기를 사용해 진행할 수 있으며, 상기 혼련 공정을 통해, 상기 유기 바인더가 섬유화되면서 상기 절연성 무기 입자들을 결합 또는 연결함으로써, 고형분 100 중량%의 혼합물 덩어리가 형성될 수 있다.
구체적으로, 상기 혼련 공정은 10rpm 내지 100rpm의 속도로 1분 내지 30분동안 수행될 수 있고 상세하게는 40rpm 내지 70rpm의 속도로 3분 내지 7분동안 수행될 수 있고, 이때, 전단율이 10/s 내지 500/s의 범위에서 수행될 수 있다. 전단율은 더욱 상세하게는, 30/s 내지 100/s의 범위에서 수행될 수 있다. 이러한 조건 하에 혼련 공정이 진행됨에 따라, 적절한 전단력이 인가되어 상기 유기 바인더가 바람직한 수준으로 섬유화될 수 있고, 이후의 단계에서 건식 전극용 절연 필름이 바람직하게 얻어질 수 있다.
또한, 상기 혼련 단계는, 고온 및 상압 이상의 압력 조건에서 수행될 수 있고, 더욱 상세하게는, 상압보다 높은 압력 조건에서 수행될 수 있다. 더욱 구체적으로, 상기 혼련은 상기 혼합물을 70℃ 내지 200℃의 범위, 상세하게는, 90℃ 내지 180℃에서 수행될 수 있고, 1atm 내지 3atm의 압력 하, 더욱 상세하게는 1.1atm 내지 3atm의 압력 하에서 수행될 수 있다.
상기 혼련 공정의 온도나 압력이 지나치게 낮아지면, 유기 바인더의 섬유화 및 혼련에 의한 덩어리화가 잘 이루어지지 않아, 이후의 캘린더링 가공시 필름화가 용이하게 이루어지지 않을 수 있다. 또한, 상기 혼련 공정의 온도나 압력이 지나치게 높아지면, 지나친 전단력 또는 압력이 인가되어, 유기 바인더의 섬유화가 급격히 일어나고 과도한 전단력 또는 압력에 의해 이미 형성된 유기 바인더의 섬유가 절단되거나, 혼합물 덩어리의 밀도가 너무 높아져 이후의 캘린더링 가공 등이 제대로 이루어지지 못할 수 있다.
한편, 도 1을 참고하면, 상술한 혼련 공정을 진행한 후에는, 이를 통해 형성된 혼합물 덩어리를 다시 분쇄하여 건식 절연 분체를 형성하는 단계가 진행될 수 있다.
구체적으로, 상기 혼련 공정을 통해 제조된 혼합물 덩어리를 바로 캘린더링 가공할 수도 있으나, 이 경우, 강한 압력과 고온에서 혼합물 덩어리를 눌러 얇은 필름 형태로 제조해야 할 수 있고, 이에 따라, 필름의 밀도가 너무 높아지거나 균일한 필름을 얻을 수 없는 문제가 발생할 수 있는 바, 일 구현예의 방법에서는, 상기 제조된 혼합물 덩어리를 분쇄하여 건식 절연 분체를 형성하게 된다.
이때, 상기 분쇄는 한정되지 아니하나 블렌더 또는 그라인더 등과 같은 기기로 수행될 수 있고, 상기 분쇄는 구체적으로, 5000rpm 내지 20000rpm의 속도로 30초 내지 10분, 상세하게는 10000rpm 내지 18000rpm의 속도로 30초 내지 5분동안 수행될 수 있다.
상기 범위를 벗어나, 너무 낮은 rpm으로 수행되거나 짧게 수행되는 경우에는 충분한 분쇄가 이루어지지 않아 필름화하기에 부적절한 크기의 분체가 생길 수 있는 문제가 있고, 너무 높은 rpm으로 수행되거나 길게 수행하면, 혼합물 덩어리에서 미분이 많이 발생할 수 있는 바, 바람직하지 않다.
상술한 방법으로, 건식 절연 분체를 형성한 후에는, 이러한 건식 절연 분체를 복수의 롤 사이에 투입해 캘린더링 가공하여, 건식 전극용 절연 필름을 형성할 수 있다. 이러한 절연 필름은, 예를 들어, 양극 등 전극의 에지부에 포함되는 균일한 절연층으로 작용하여, 이차전지의 양 전극 간의 쇼트를 억제하는 작용을 할 수 있다.
따라서, 이러한 건식 전극용 절연 필름은 후술하는 적층 단계에서, 건식 전극용 합제 필름과 함께 금속 집전체 상에 적층될 수 있다. 이때, 상기 건식 전극용 합제 필름은 상기 절연 필름과 별도의 캘린더링 공정 등을 통해 분리된 상태로 형성될 수도 있지만, 상기 절연 필름의 형성을 위한 캘린더링 공정에서 함께 형성될 수도 있다.
이를 위해, 상기 캘린더링 가공 공정에서는 상기 건식 절연 분체와, 별도 형성된 건식 전극용 분체를 복수의 롤 사이에 투입하여, 상기 건식 전극용 절연 필름 및 건식 전극용 합제 필름을 함께 형성할 수 있다.
보다 구체적인 일 예에서, 도 2에 도시된 바와 같이, 상기 건식 절연 분체는 상기 건식 전극용 분체의 일 측 또는 양 측에서 상기 복수의 롤 사이에 투입될 수 있고, 이들 건식 절연 분체와, 건식 전극용 분체의 투입 하에 캘린더링 공정을 진행하면, 상기 건식 전극용 합제 필름과, 이의 적어도 일 측(또는 양 측) 에지부에 형성된 상기 건식 전극용 절연 필름을 포함하는 전극 필름이 형성될 수 있다. 이러한 공정에서, 상기 절연 필름은 상기 합제 필름의 에지부에 균일하게 형성될 수 있으므로, 전극 간의 쇼트를 억제하여 이차전지의 안전성을 담보할 수 있고, 기존의 건식 전극에서 합제 필름의 에지부가 불균일하게 되어 전극 슬릿팅 공정이 추가되는 등의 문제를 해결할 수 있다.
한편, 상기 건식 전극용 합제 필름의 형성을 위한 건식 전극용 분체는 전극 활물질 입자, 도전재 및 섬유화된 유기 바인더를 포함하는 분체 형태로 될 수 있고, 이전부터 알려진 건식 전극의 제조 방법으로 형성될 수 있다. 혹은 상기 건식 전극용 분체는 상술한 건식 절연 분체와 유사한 방법으로, 상기 전극 활물질 입자, 도전재 및 섬유화된 유기 바인더를 혼합 및 전단력 인가 하에 혼련하고, 혼련 공정으로 형성된 혼합물 덩어리를 분쇄하여 제조될 수 있다. 상술한 바와 같이, 이러한 건식 전극용 분체는 상기 건식 절연 분체와 함께, 또는 이와 별도로 복수의 롤 사이에 투입되어 캘린더링 가공됨으로서, 건식 전극용 합제 필름으로 형성될 수 있다.
다만, 상기 건식 전극용 분체의 제조를 위해 적용 가능한 기존의 건식 전극 제조 방법은 당업자에게 잘 알려져 있고, 이의 제조를 위해 유사하게 적용 가능한 건식 절연 분체의 제조 방법에 대해서도 이미 충분히 설명한 바와 같다. 또한, 이러한 건식 전극용 분체에 대해서는, 상술한 절연 필름 형성을 위한 캘린더링 공정과 유사한 공정이 적용되어 합제 필름으로 제조될 수 있으므로, 상기 건식 전극용 분체 및 합제 필름의 제조에 관한 추가적인 설명은 생략하기로 한다.
한편, 일 구현예의 방법에서 제조되는 건식 전극은 이차전지의 양극 또는 음극으로 될 수 있으므로, 이러한 전극의 종류에 따라, 상기 합제 필름에 포합되는 전극 활물질 입자는 양극 활물질 입자 또는 음극 활물질 입자로 될 수 있다.
이때, 양극 활물질 입자는 리튬 전이금속 산화물 또는 리튬 금속 철인산화물, 금속 산화물 등의 양극 활물질을 포함할 수 있다. 예를 들어, 이러한 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 구리 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 리튬 금속 인산화물 LiMPO4 (여기서, M은 M = Fe, CO, Ni, 또는 Mn임), 디설파이드 화합물; Fe2(MoO4)3 등으로 될 수 있고, 이외에도 다양한 양극 활물질의 사용이 가능하다.
또한, 상기 음극 활물질 입자는 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SiO, SiO/C, SiO2등의 실리콘계 산화물; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, 및 Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등의 다양한 음극 활물질을 포함할 수 있다.
다만, 일 구현예의 방법에서 형성되는 건식 절연 필름은 주로 양극의 에지부에 형성되어 전극 간의 쇼트를 억제하는 역할을 하므로, 일 구현예의 방법에서 형성되는 건식 전극은 주로 양극으로 될 수 있고, 상기 전극 활물질 입자는 주로 상술한 양극 활물질 입자로 될 수 있다.
한편, 상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분체 등의 금속 분체; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있으나, 상세하게는, 도전재의 균일한 혼합과, 전도성의 향상을 위해, 활성카본, 흑연, 카본블랙, 및 카본나노튜브로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있고, 더욱 상세하게는, 활성카본을 포함할 수 있다.
상술한 건식 전극용 절연 필름과, 건식 전극용 합제 필름을 별도 또는 함께 형성하기 위한 캘린더링 가공 공정은 상기 건식 절연 분체 및 건식 전극용 분체를 필름 형태로 가공하는 공정으로서, 이러한 캘린더링 가공 공정을 통해, 상기 절연 필름 및 합제 필름을 포함한 전극 필름이 5 ㎛ 내지 300 ㎛, 혹은 7 내지 30㎛의 두께를 가지도록 압연 및 제조될 수 있다.
이때, 상기 캘린더링 가공 공정은, 예를 들어, 대면하여 존재하는 롤에 의해 수행될 수 있고, 이때, 롤 온도는 50℃ 내지 200℃일 수 있고, 롤의 회전 속도는 10rpm 내지 50rpm으로 수행될 수 있다.
이와 같은 캘린더링 가공 공정을 진행하면, 예를 들어, 전극 합제의 역할을 수행하는 합제 필름 및 이의 적어도 일 측 에지부에 형성될 절연 필름을 포함하는 전극 필름이 제조될 수 있다.
이러한 전극 필름은 용매를 포함하지 않는 바, 유동성이 거의 없어 취급이 용이하고 소망하는 형태로 가공하여 다양한 형태의 전극 제조에 이용될 수 있다. 뿐만 아니라, 일 구현예의 방법에서는, 합제 필름 및 절연 필름을 포함한 전체적인 전극 공정에서, 용매 사용 및 이의 제거를 위한 건조 공정/장치 사용이 완전히 생략될 수 있으므로, 전극의 제조 공정성을 크게 개선할 수 있을 뿐 아니라, 기존의 건식 전극 제조 공정에서 나타나는 문제점을 해결할 수 있다.
한편, 상술한 캘린더링 가공 공정을 진행한 후에는, 이를 통해 함께 또는 별도 형성된 절연 필름 및 합제 필름을 포함하는 전극 필름을 금속 집전체의 적어도 일면에 적층할 수 있다. 참고로, 상기 전극 필름은 별도의 금속 집전체 없이 그 자체로 이차전지 등 에너지 저장 장치의 건식 전극으로 적용될 수도 있지만, 추가적인 기계적, 전기적 물성의 발현을 위해, 금속 집전체에 적층된 상태로 건식 전극으로 적용될 수 있다.
상기 적층 공정은 상기 전극 필름을 금속 집전체 상에 소정의 두께로 압연, 부착시키는 단계일 수 있다. 이때, 상기 절연 필름은 상기 합제 필름의 적어도 일측(또는 양측) 에지부에 배치된 상태에서, 상기 금속 집전체 상에 적층될 수 있음은 이미 상술한 바와 같다.
이때, 상기 금속 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 또, 상기 금속 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 금속 집전체에 대한 적층 공정은 압연 롤에 의해 수행될 수 있고, 이때, 압연 롤은 80℃ 내지 200℃의 온도로 유지될 수 있다.
발명의 다른 구현예에 따르면, 상술한 일 구현예의 방법으로 제조된 에너지 저장 장치용 건식 전극 필름 또는 건식 전극이 제공될 수 있다.
상기 건식 전극 필름 및 건식 전극은 상술한 방법으로 형성된 합제 필름 (필름상 활물질층) 및 이의 적어도 일 측 에지부에 형성된 절연 필름(필름상 절연층)을 포함할 수 있다. 보다 구체적으로, 상기 건식 전극 필름 등은 전극 활물질 입자, 도전재 및 섬유화된 유기 바인더를 포함한 필름상 활물질층; 및 상기 활물질층의 적어도 일 측 에지부에 형성되어 있고, 절연성 무기 입자 및 섬유화된 유기 바인더를 포함한 필름상 절연층을 포함할 수 있다.
이러한 건식 전극 필름은 그 자체로 이차전지 등 에너지 저장 장치용 건식 전극으로 사용되거나, 금속 집전체 등에 적층되어 건식 전극을 제조하기 위한 중간체 등으로 사용될 수 있다.
도 3은 발명의 상기 발명의 다른 구현예에 따른 건식 전극의 일 예를 간략하게 나타낸 단면도이다.
도 3에도 도시된 바와 같이, 상기 다른 구현예의 건식 전극은 상술한 건식 전극용 합제 필름(필름상 활물질층); 및 이의 적어도 일 측(또는 양 측) 에지부에 형성된 건식 전극용 절연 필름(필름상 절연층)을 포함하는 형태로 될 수 있다. 특히, 다른 구현예의 건식 전극에서, 상기 절연 필름이 일 구현예의 방법으로 형성됨에 따라, 기존에 습식 공정을 통해 형성된 전극(양극) 에지부에 형성된 절연층과는 상이한 물성을 나타낼 수 있다.
예를 들어, 상기 건식 전극용 절연 필름은 잔류 용매가 존재하지 않으며, 이미 상술한 절연성 무기 입자 및 섬유화된 유기 바인더를 포함할 수 있다. 또한, 상기 절연 필름은, 예를 들어, 500 MΩ 이상, 혹은 500 MΩ 내지 3000 MΩ의 저항을 나타내어, 우수한 절연 특성을 가질 수 있다.
이때, 상기 절연 저항은, 상용화된 측정기, 예를 들어, FLUKE MULTIMETER 와 HIOKI HiTESTER 등을 사용하여 측정할 수 있다.
또한, 상기 절연 필름은 건식 공정으로 제조됨에 따라, 기존의 습식 공정으로 형성된 절연층에 비해 낮은 공극률을 나타낼 수 있다. 이는 습식 공정에서 용매 제거를 위한 건조 과정에서 다수의 기공이 형성되는 것과 달리, 일 구현예의 건식 공정에서는 이러한 건조 과정이 실질적으로 진행되지 않기 때문으로 예측된다. 보다 구체적으로, 상기 절연 필름은 10% 이하, 혹은 0 내지 10%, 혹은 0.5 내지 8%의 공극률을 가질 수 있다.
이때, 상기 공극률은 전극의 부피와 무게에서 집전체의 부피와 무게를 제하여 상기 절연 필름만의 겉보기 밀도를 측정하고, 각 구성성분의 실제 밀도와 조성을 기준으로 계산한 실제 밀도를 이용하여 하기와 같은 관계식에 의해 구할 수 있다.
공극률(%) = {1 - (겉보기 밀도/실제 밀도)} x 100
또한, 상기와 같이 제조된 절연 필름 및 합제 필름을 포함한 전극 필름의 내굴곡성 및 유연성은 JIS K5600-5-1의 표준 방법에 따라, 직경이 변화하는 복수의 원통형 만드렐을 사용하여 평가될 수 있다. 보다 구체적으로, 상기 전극 필름을 다양한 직경을 갖는 원통형 만드렐에 접촉시킨 상태에서 필름의 양쪽 끝을 들어 올려 굴곡을 부여하면서 측정할 수 있고, 그 결과, 필름에 크랙이 발생하기 시작하는 원통형 만드렐의 최소 직경을 측정하여 상기 전극 필름의 내굴곡성 및 유연성을 평가할 수 있다. 이때, 크랙이 발생하기 시작하는 만드렐의 최소 직경이 작을수록 상기 전극 필름이 우수한 내굴곡성 및 유연성을 갖는 것으로 평가할 수 있다.
상기 다른 구현예의 건식 전극에 포함된 전극 필름은 일 구현예의 방법으로 제조됨에 따라, 예를 들어, 크랙이 발생하기 시작하는 원통형 만드렐의 최소 직경이 10mmΦ 이하, 혹은 1 mmΦ 이상 10mmΦ 이하, 혹은 3 mmΦ 이상 8mmΦ 이하로 되는 우수한 우수한 내굴곡성 및 유연성을 나타낼 수 있다. 이는 상기 전극 필름이 우수한 유연성을 갖는 절연 필름을 포함하기 때문으로 예측된다. 또, 상기 절연 필름 및 합제 필름을 포함한 전극 필름은 5 ㎛ 내지 300 ㎛, 혹은 7 내지 30㎛의 두께를 가질 수 있다.
또한, 상기 다른 구현예의 건식 전극에서, 상기 건식 전극용 합제 필름은 전극 활물질 입자, 도전재 및 섬유화된 유기 바인더를 포함할 수 있다. 이러한 합제 필름은 이미 상술한 바와 같이, 기존의 건식 전극 제조 방법 등에 의해 제조될 수 있고, 이의 각 구성 성분에 대해서는 이미 상술한 바 있으므로, 이에 관한 추가적인 설명은 생략하기로 한다.
부가하여, 상술한 건식 전극은 상기 건식 전극용 합제 필름 및 상기 건식 전극용 절연 필름을 지지하는 금속 집전체를 더 포함할 수 있고, 이러한 금속 집전체의 종류에 대해서는 이미 상술한 바와 같다.
한편, 발명의 또 다른 구현예에 따르면, 상기 건식 전극 또는 건식 전극 필름을 포함하는 에너지 저장 장치, 예를 들어, 이차전지가 제공된다. 이러한 이차 전지는 양극, 음극, 및 분리막을 포함하는 전극조립체가 리튬 함유 비수계 전해질과 함께 전지케이스에 내장된 이차전지로서, 상기 양극 또는 음극은 상기 다른 구현예의 건식 전극을 포함하는 형태로 될 수 있다.
다만, 이미 상술한 바와 같이, 절연 필름을 전극 에지부에 포함하는 건식 전극은 양극으로 되어 전극 간의 쇼트를 억제할 수 있으므로, 상기 또 다른 구현예의 이차전지에서, 상기 건식 전극은 양극으로서 포함될 수 있다.
이러한 이차전지 및 에너지 저장장치의 구체적인 구조 등은 상기 다른 구현예의 건식 전극을 포함함을 제외하고, 이전에 잘 알려진 바와 같으므로, 이에 대한 추가적인 설명은 생략한다.
이하, 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 이해하기 위해 발명에 따른 실시예, 비교예, 및 실험예를 바탕으로 상세히 설명한다.
<실시예 1>: 건식 전극의 제조
건식 절연 분체의 제조
알루미나(Al2O3) 40g, 및 유기 바인더로 폴리테트라플루오로에틸렌(PTFE; 601X, 케무어스사) 10g을 블렌더에 투입하고 15000rpm에서 1분동안 믹싱하여 혼합물을 제조하였다. 니더의 온도를 150℃로 안정화시키고, 상기 혼합물을 니더에 넣은 다음 압력 1.1atm 하에서 50rpm의 속도로 5분동안 작동하여 혼합물 덩어리를 수득하였다.
상기 혼합물 덩어리를 블렌더에 투입하고 15000rpm에서 1분동안 분쇄하여 건식 절연 분체를 수득하였다.
건식 전극용 분체의 제조
양극 활물질로서 리튬망간산화물(LMO, L25, 포스코사)의 94g, 도전재로서 활성탄의 3g 및 카본블랙의 10g, 그리고 유기 바인더로서 폴리테트라플루오로에틸렌(601X, 케무어스사) 40g을 블렌더에 투입하고 10000rpm에서 1분 동안 믹싱하여 혼합물을 제조하였다. 니더의 온도를 150℃로 안정화시키고, 상기 혼합물을 니더에 넣은 다음 압력 1.1atm 하에서 50rpm의 속도로 5분동안 작동하여 혼합물 덩어리(합제 벌크)를 수득하였다.
상기 혼합물 덩어리를 블렌더에 투입하고 10000rpm에서 40초 동안 분쇄하여 건식 전극용 분체를 수득하였다.
절연 필름 및 합제 필름을 포함한 전극 필름 및 건식 전극의 제조
이후, 상기 건식 절연 분체 및 상기 건식 전극용 분체를 각각 도 2와 같은 형태로 랩 캘린더(롤직경: 88mm, 롤 온도: 85℃, 20rpm)에 투입하여 건식 전극용 절연 필름 및 합제 필름을 각각 형성하였다.
이어서, 금속 집전체로서 알루미늄 호일의 양면에 상기 합제 필름의 양측 에지부에 절연 필름이 배치된 전극 필름을 위치시키고, 120℃로 유지되는 압연 롤에서 상기 전극 필름을 금속 집전체 상에 가압, 적층하여 건식 전극을 제조하였다.
<실시예 2>: 건식 전극의 제조
건식 절연 분체의 제조시, 알루미나(Al2O3) 30g 및 폴리테트라플루오로에틸렌(PTFE; 601X, 케무어스사) 20g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 실시예 2의 건식 전극을 제조하였다.
<실시예 3>: 건식 전극의 제조
건식 절연 분체의 제조시, 알루미나(Al2O3) 20g 및 폴리테트라플루오로에틸렌(PTFE; 601X, 케무어스사) 30g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 실시예 3의 건식 전극을 제조하였다.
<비교예 1>: 건식 전극의 제조
건식 절연 분체의 제조시, 알루미나(Al2O3) 45g 및 폴리테트라플루오로에틸렌(PTFE; 601X, 케무어스사) 5g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 비교예 1의 건식 전극을 제조하였다.
<실험예>: 절연 필름 또는 전극 필름의 물성 평가
1. 캘린더링시 필름화 여부:
상기 건식 절연 분체 및 상기 건식 전극용 분체를 상기 랩 캘린더(롤직경: 88mm, 롤 온도: 85℃, 20rpm)에 투입하여 건식 전극용 절연 필름 및 합제 필름을 각각 형성한 결과, 절연 필름이 물리적 손상 없이 캘린더의 롤에서 분리된 필름으로 제조된 경우를 “O”으로 평가하였고, 상기 건식 절연 분체가 분말 상태를 유지하여 필름으로 가공되지 않거나, 제조된 필름이 캘린더의 롤에 붙어 물리적 손상 없이 분리가 불가능하게 된 경우, “X”로 평가하였다.
2. 건식 전극에 포함된 절연 필름의 두께:
상기 절연 필름의 두께는 TESA 테크놀로지사의 TESA mu-HITE 장비(측정 조건: 0.63N, Tip 사이즈: 4.5mm)를 사용해 측정하였다. 3. 절연 필름의 에지 불균일도:
상기 합제 필름과, 상기 절연 필름의 경계에서, 합제 필름의 에지 두께가 1mm 이하인 경우 “◎”, 합제 필름의 에지 두께가 1mm 초과 2mm 이하인 경우 “O”, 합제 필름의 에지 두께가 2mm 초과인 경우 “△”, 그리고, 전극 필름의 제조 자체가 되지 않은 경우 “X”로 각각 평가하였다. 4. 절연 필름의 절연 저항:
FLUKE MULTIMETER (측정 범위: max. 500 MΩ; O.F: Over flow) 및 HIOKI HiTESTER(측정 범위: max. 42 MΩ; O.L: Over limit)를 사용하여, 상기 절연 필름의 절연 저항을 측정하였다.
5. 전극 필름의 내굴곡성:
측정 표준 JIS K5600-5-1 방법에 따라, 각 전극 필름을 다양한 직경의 원통형 만드렐에 접촉시킨 뒤 필름의 양쪽 끝을 들어올림으로써 굴곡을 부여하고, 상기 필름에 크랙이 발생하기 시작하는 원통형 만드렐의 최소 직경을 측정하여 상기 전극 필름의 내굴곡성을 평가하였다.
6. 전기화학 테스트 (절연 필름의 부반응 여부 확인)
먼저, 실시예 및 비교예의 합제 필름 및 절연 필름을 포함한 전극 필름을 작용 전극으로 사용하고, 리튬 금속을 상대 전극과, 기준 전극으로 사용하였다. 이와 함께, 하기 조성의 전해질을 사용하여, 3전극 테스트 전지를 제조하였다.
* 전해질 조성:
EC/EMC=30/70, 0.7M LiPF6, 0.3M LiFSI
VS2 0.1wt%, ESa 1wt%, PS 0.5wt%, DFP 1wt%, LiBF4 0.2wt%
이러한 테스트 전지에 대해, 3전극 테스트 CV-test를 10mV/s의 속도로 0V 내지 8.0V까지 수행하였다. 이러한 3전극 테스트를 통해, 전해질 내에서의 절연 필름의 부 반응 여부 확인(LSV test)하여, 전기화학 테스트를 수행하였다.
실시예 1 내지 3의 테스트 결과는 도 4 및 표 1에 함께 도시하였다. 다만, 비교예에서는 전극 필름 자체가 제조되지 못하여, 전기화학 테스트를 수행하지 못하였다.
상술한 방법으로 측정/평가된 절연 필름 또는 전극 필름의 제반 물성을 하기 표 1에 정리하여 나타내었다.
캘린더링 필름화 여부 절연필름
두께(㎛)
엣지
불균일도
절연저항
(MΩ)
전기화학
테스트
(부반응 여부)
내굴곡성
(mmΦ)
실시예 1 O 10 >500 부반응 없음 6
실시예 2 O 12 O >500 부반응 없음 8
실시예 3 O 14 >500 부반응 없음 8
비교예 1 X 필름 형성 않됨 X (필름 형성 않되고, 부스러짐) 필름 형성 않됨 필름 형성 않됨 필름 형성 않됨
상기 표 1을 참고하면, 실시예 1 내지 3에서는 우수한 유연성, 절연성 및 엣지 균일도를 갖는 절연 필름 및 전극 필름이 형성되는데 비해, 비교예 1에서는 절연 필름의 형성 자체가 불가능한 것으로 확인되었다.

Claims (20)

  1. 전단력의 인가 하에, 절연성 무기 입자의 30 내지 85 중량%와, 섬유화 가능한 유기 바인더의 15 내지 70 중량%를 건식 혼합하여 건식 절연 분체를 형성하는 단계;
    상기 건식 절연 분체를 복수의 롤 사이에 투입해 캘린더링 가공하여, 건식 전극용 절연 필름을 형성하는 단계; 및
    상기 건식 전극용 절연 필름을 금속 집전체 상에 적층하는 단계를 포함하는 에너지 저장 장치용 건식 전극의 제조 방법.
  2. 제 1 항에 있어서, 상기 건식 절연 분체의 형성 단계는
    (a) 상기 절연성 무기 입자 및 상기 유기 바인더를 포함하는 혼합물을 형성하는 단계;
    (b) 상기 혼합물을 70℃ 내지 200℃의 온도 및 상압 이상의 압력 하에, 혼련하여, 절연성 무기 입자 및 섬유화된 유기 바인더를 포함하는 혼합물 덩어리를 형성하는 단계; 및
    (c) 상기 혼합물 덩어리를 분쇄하여 건식 절연 분체를 형성하는 단계를 포함하는 에너지 저장 장치용 건식 전극의 제조 방법.
  3. 제 1 항 또는 제 2 항에 있어서, 상기 절연성 무기 입자는, Al2O3, SiO2, TiO2, MgO, CaO, PaO, ZnO, Fe2O3, 카올린 및 뵈마이트로 이루어진 군에서 선택된 1종 이상의 무기 산화물 입자를 포함하는 에너지 저장 장치용 건식 전극의 제조 방법.
  4. 제 1 항 또는 제 2 항에 있어서, 상기 섬유화 가능한 유기 바인더는 폴리테트라플루오로에틸렌계 고분자, 폴리비닐리덴 플루오라이드계 고분자 또는 폴리올레핀계 고분자를 포함하는 에너지 저장 장치용 건식 전극의 제조 방법.
  5. 제 2 항에 있어서, 상기 (b) 혼련 단계는 10rpm 내지 100rpm의 속도로 1분 내지 30분 동안 진행되는 에너지 저장 장치용 건식 전극의 제조 방법.
  6. 제 2 항에 있어서, 상기 (b) 혼련 단계는 10/s 내지 500/s의 전단율 하에 진행되는 에너지 저장 장치용 건식 전극의 제조 방법.
  7. 제 2 항에 있어서, 상기 (b) 혼련 단계는 70℃ 내지 200℃의 온도 및 1atm 내지 3atm의 압력 하에 진행되는 에너지 저장 장치용 건식 전극의 제조 방법.
  8. 제 2 항에 있어서, 상기 (c) 분쇄 단계는 5000rpm 내지 20000rpm의 속도로 30초 내지 10분간 진행되는 에너지 저장 장치용 건식 전극의 제조 방법.
  9. 제 1 항에 있어서, 상기 적층 단계에서는, 상기 건식 전극용 절연 필름과, 별도 형성된 건식 전극용 합제 필름을 함께 금속 집전체 상에 적층하는 에너지 저장 장치용 건식 전극의 제조 방법.
  10. 제 1 항에 있어서, 상기 캘린더링 가공 단계에서는 상기 건식 절연 분체와, 별도 형성된 건식 전극용 분체를 복수의 롤 사이에 투입하여, 상기 건식 전극용 절연 필름 및 건식 전극용 합제 필름을 함께 형성하고,
    상기 적층 단계에서는 상기 함께 형성된 건식 전극용 절연 필름 및 건식 전극용 합제 필름을 금속 집전체 상에 적층하는 에너지 저장 장치용 건식 전극의 제조 방법.
  11. 제 9 항 또는 제 10 항에 있어서, 상기 건식 전극용 합제 필름은 전극 활물질 입자, 도전재 및 섬유화된 유기 바인더를 포함하는 건식 전극용 분체를 복수의 롤 사이에 투입해 캘린더링 가공하여 형성되는 에너지 저장 장치용 건식 전극의 제조 방법.
  12. 제 9 항 또는 제 10 항에 있어서, 상기 적층 단계에서는, 상기 건식 전극용 합제 필름과, 이의 적어도 일측 에지부에 형성된 상기 건식 전극용 절연 필름을 포함하는 전극 필름이 상기 금속 집전체 상에 적층되는 에너지 저장 장치용 건식 전극의 제조 방법.
  13. 제 10 항에 있어서, 상기 캘린더링 가공 단계에서, 상기 건식 절연 분체는 상기 건식 전극용 분체의 일 측 또는 양 측에서 상기 복수의 롤 사이에 투입되며,
    상기 건식 전극용 합제 필름과, 이의 적어도 일 측 에지부에 형성된 상기 건식 전극용 절연 필름을 포함하는 전극 필름이 형성되는 에너지 저장 장치용 건식 전극의 제조 방법.
  14. 전극 활물질 입자, 도전재 및 섬유화된 유기 바인더를 포함한 필름상 활물질층; 및
    상기 활물질층의 적어도 일 측 에지부에 형성되어 있고, 절연성 무기 입자 및 섬유화된 유기 바인더를 포함한 필름상 절연층을 포함하는 에너지 저장 장치용 건식 전극 필름.
  15. 건식 전극용 합제 필름; 및
    이의 적어도 일 측 에지부에 형성된 건식 전극용 절연 필름을 포함하며,
    상기 건식 전극용 절연 필름은 절연성 무기 입자 및 섬유화된 유기 바인더를 포함하고, 500 MΩ 이상의 저항을 갖는 에너지 저장 장치용 건식 전극.
  16. 제 15 항에 있어서, 상기 건식 전극용 합제 필름은 전극 활물질 입자, 도전재 및 섬유화된 유기 바인더를 포함하는 에너지 저장 장치용 건식 전극.
  17. 제 15 항에 있어서, 상기 건식 전극용 절연 필름은 5 내지 300㎛의 두께를 갖는 에너지 저장 장치용 건식 전극.
  18. 제 15 항에 있어서, 상기 건식 전극용 절연 필름 및 상기 합제 필름을 포함하는 전극 필름은 JIS K5600-5-1의 표준 방법에 따라, 직경이 변화하는 복수의 원통형 만드렐을 사용하여 크랙 발생 여부를 평가하였을 때,
    크랙이 발생하기 시작하는 원통형 만드렐의 최소 직경이 1 mmΦ 이상 10mmΦ 이하로 되는 에너지 저장 장치용 건식 전극.
  19. 제 15 항에 있어서, 상기 건식 전극용 합제 필름 및 상기 건식 전극용 절연 필름을 지지하는 금속 집전체를 더 포함하는 에너지 저장 장치용 건식 전극.
  20. 양극, 음극, 및 분리막을 포함하는 전극조립체가 리튬 함유 비수계 전해질과 함께 전지케이스에 내장된 이차전지로서,
    상기 양극 또는 음극은 제 14 항의 건식 전극 필름 또는 제 15 항의 건식 전극을 포함하는 이차전지.
PCT/KR2022/000117 2021-01-19 2022-01-05 에너지 저장 장치용 건식 전극의 제조 방법, 건식 전극 및 이를 포함하는 이차전지 WO2022158759A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22742735.8A EP4207338A1 (en) 2021-01-19 2022-01-05 Method for manufacturing dry electrode for energy storage device, dry electrode, and secondary battery comprising same
CN202280006861.3A CN116325211A (zh) 2021-01-19 2022-01-05 制造用于储能装置的干电极的方法、干电极及包含其的二次电池
US18/029,832 US20230369557A1 (en) 2021-01-19 2022-01-05 Method for Manufacturing Dry Electrode for Energy Storage Device, Dry Electrode and Secondary Battery Comprising the Same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210007628 2021-01-19
KR10-2021-0007628 2021-01-19
KR10-2022-0000797 2022-01-04
KR1020220000797A KR20220105120A (ko) 2021-01-19 2022-01-04 에너지 저장 장치용 건식 전극의 제조 방법, 건식 전극 및 이를 포함하는 이차전지

Publications (1)

Publication Number Publication Date
WO2022158759A1 true WO2022158759A1 (ko) 2022-07-28

Family

ID=82549807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/000117 WO2022158759A1 (ko) 2021-01-19 2022-01-05 에너지 저장 장치용 건식 전극의 제조 방법, 건식 전극 및 이를 포함하는 이차전지

Country Status (4)

Country Link
US (1) US20230369557A1 (ko)
EP (1) EP4207338A1 (ko)
CN (1) CN116325211A (ko)
WO (1) WO2022158759A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129536A (ja) * 2005-05-26 2012-07-05 Nippon Zeon Co Ltd 電気化学素子電極材料および複合粒子
JP2016115567A (ja) * 2014-12-16 2016-06-23 日本ゼオン株式会社 リチウムイオン電池用電極の製造方法
WO2018164076A1 (en) * 2017-03-06 2018-09-13 Ricoh Company, Ltd. Film electrode, resin layer forming ink, inorganic layer forming ink, and electrode printing apparatus
JP2019079633A (ja) * 2017-10-23 2019-05-23 株式会社Gsユアサ 電極、電極の製造方法および蓄電素子
KR20210005566A (ko) * 2018-05-02 2021-01-14 맥스웰 테크놀러지스 인코포레이티드 규소 함유 건식 애노드 필름용 조성물 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129536A (ja) * 2005-05-26 2012-07-05 Nippon Zeon Co Ltd 電気化学素子電極材料および複合粒子
JP2016115567A (ja) * 2014-12-16 2016-06-23 日本ゼオン株式会社 リチウムイオン電池用電極の製造方法
WO2018164076A1 (en) * 2017-03-06 2018-09-13 Ricoh Company, Ltd. Film electrode, resin layer forming ink, inorganic layer forming ink, and electrode printing apparatus
JP2019079633A (ja) * 2017-10-23 2019-05-23 株式会社Gsユアサ 電極、電極の製造方法および蓄電素子
KR20210005566A (ko) * 2018-05-02 2021-01-14 맥스웰 테크놀러지스 인코포레이티드 규소 함유 건식 애노드 필름용 조성물 및 방법

Also Published As

Publication number Publication date
US20230369557A1 (en) 2023-11-16
CN116325211A (zh) 2023-06-23
EP4207338A1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
WO2017204466A1 (ko) 음극활물질 및 이를 포함하는 리튬 이차전지
WO2010137889A2 (ko) 양극 활물질, 및 이를 포함하는 양극, 리튬 이차 전지
WO2015065102A1 (ko) 리튬 이차전지
WO2019059724A2 (ko) 이차전지용 전극을 제조하는 방법 및 이에 의해 제조된 전극
KR20220105120A (ko) 에너지 저장 장치용 건식 전극의 제조 방법, 건식 전극 및 이를 포함하는 이차전지
WO2021006704A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2019066497A2 (ko) 전극 합제의 제조 방법 및 전극 합제
WO2019103311A1 (ko) 전고상 리튬-폴리머 이차전지용 양극 및 그의 제조방법, 이를 포함한 이차전지
WO2022014736A1 (ko) 저온 소결공정을 위한 산화물계 고체전해질을 포함하는 전고체전지 및 이의 제조방법
WO2019083332A2 (ko) 실리콘-탄소 복합체 및 이를 포함하는 리튬 이차전지
WO2020226322A1 (ko) 전고체전지의 양극 제조방법 및 이를 이용하여 제조된 전고체전지의 양극
WO2014027869A2 (ko) 양극 활물질, 이의 제조 방법 및 이를 포함하는 이차 전지
WO2022060138A1 (ko) 음극 및 이를 포함하는 이차전지
WO2018182195A1 (ko) 고로딩 전극의 제조 방법
WO2022158759A1 (ko) 에너지 저장 장치용 건식 전극의 제조 방법, 건식 전극 및 이를 포함하는 이차전지
WO2022086103A1 (ko) 이차 전지용 전극, 이를 포함하는 이차 전지 및 전극 제조 방법
WO2019177402A1 (ko) 양극의 제조 방법
WO2022025506A1 (ko) 이차 전지용 전극 및 이를 포함하는 이차 전지
WO2021049832A1 (ko) 전고체전지의 양극합제 제조방법 및 이를 이용하여 제조된 전고체전지의 양극합제
WO2022092710A1 (ko) 리튬 이차전지용 음극 활물질, 음극 및 리튬 이차전지
WO2021125535A1 (ko) 고온 수명 특성 향상에 최적화된 양극 및 이를 포함하는 이차전지
WO2022114860A1 (ko) 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 프리스탠딩 필름, 건식 양극 및 건식양극을 포함하는 이차전지
WO2019050203A2 (ko) 리튬 이차전지용 음극, 및 이를 포함하는 리튬 이차전지
WO2024106765A1 (ko) 고체 전해질막 및 이를 포함하는 전고체 전지
WO2024117675A1 (ko) 전고체 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742735

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022742735

Country of ref document: EP

Effective date: 20230329

NENP Non-entry into the national phase

Ref country code: DE