WO2022158276A1 - ガス発生器 - Google Patents

ガス発生器 Download PDF

Info

Publication number
WO2022158276A1
WO2022158276A1 PCT/JP2021/048894 JP2021048894W WO2022158276A1 WO 2022158276 A1 WO2022158276 A1 WO 2022158276A1 JP 2021048894 W JP2021048894 W JP 2021048894W WO 2022158276 A1 WO2022158276 A1 WO 2022158276A1
Authority
WO
WIPO (PCT)
Prior art keywords
cup
shaped member
gas generator
wall portion
gas
Prior art date
Application number
PCT/JP2021/048894
Other languages
English (en)
French (fr)
Inventor
智弘 筥崎
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to CN202180091653.3A priority Critical patent/CN116802088A/zh
Priority to EP21921377.4A priority patent/EP4282520A1/en
Publication of WO2022158276A1 publication Critical patent/WO2022158276A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/264Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic
    • B60R21/2644Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/20Arrangements for storing inflatable members in their non-use or deflated condition; Arrangement or mounting of air bag modules or components
    • B60R21/217Inflation fluid source retainers, e.g. reaction canisters; Connection of bags, covers, diffusers or inflation fluid sources therewith or together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R2021/26029Ignitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/264Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic
    • B60R21/2644Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder
    • B60R2021/2648Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder comprising a plurality of combustion chambers or sub-chambers

Definitions

  • the present invention relates to a gas generator incorporated in an occupant protection device that protects an occupant in the event of a vehicle collision, and more particularly to a gas generator incorporated in an airbag device installed in an automobile.
  • Airbag devices which are occupant protection devices, have been widely used from the viewpoint of protecting the occupants of automobiles.
  • Airbag systems are installed to protect passengers from the impact that occurs in the event of a vehicle collision. By inflating and deploying the airbag instantaneously in the event of a vehicle collision, the airbag acts as a cushion for the passenger. It accepts the body.
  • the gas generator is incorporated in this airbag system, and when a vehicle or other vehicle collides, the igniter is ignited by the energization of the control unit, and the flame generated in the igniter burns the gas generating agent to instantly generate a large amount of gas. , the device that inflates and deploys the airbag.
  • gas generators there are various types of gas generators, but as a gas generator that can be used particularly suitably for a driver side airbag device, a passenger side airbag device, etc., a short abbreviation with a relatively large outer diameter is used. There is a cylindrical disk-shaped gas generator.
  • the disk-type gas generator has a short, substantially cylindrical housing with both ends in the axial direction closed.
  • a transfer charge is accommodated inside the housing so as to allow the transfer charge to flow, a gas generating agent is filled inside the housing so as to surround the transfer charge, and a filter is accommodated inside the housing so as to further surround the gas generating agent. It is what is done.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-217059
  • Patent Document 1 discloses a gas generator in which a cup body filled with transfer charge and an igniter collar that holds an igniter body are crimped and fixed at the bent portion on the lower end side of a crimp case.
  • the cup body is made of metal such as aluminum, and has a fragile portion on at least one of the closed end face and the peripheral wall portion. As a result, the crimp case is prevented from coming off or being damaged.
  • the cup body is made of a thin plate of aluminum, the mechanical strength is low, and there is a problem that the bursting strength of the cup body cannot be increased when the transfer charge is burned.
  • the object is to provide a controllable gas generator.
  • the gas generator of the present invention comprises a cylindrical peripheral wall portion provided with a gas ejection port, a top plate portion closing one axial end of the peripheral wall portion, and the other axial end of the peripheral wall portion.
  • a short cylindrical housing having a combustion chamber containing a gas generating agent therein, and an ignition that is assembled to the bottom plate and contains an ignition charge that ignites during operation. and an igniter containing a transfer charge, and a transfer chamber containing a transfer charge.
  • a cup-shaped member composed of a single cylindrical member with a bottom, wherein a thin fragile portion is disposed at least partially on a top wall portion of the cup-shaped member, and the transfer chamber and the combustion chamber are connected to each other.
  • the cup-shaped member having higher mechanical strength than the fragile portion that divides the and a thick portion extending on the side opposite to the top wall portion, and the fragile portion is arranged to face the ignition portion, and the weak portion is arranged ahead of the side wall portion as the igniter is operated. It has a mechanical strength to rupture, deform, or melt the cup-shaped member, and the thin-walled portion ruptures, deforms, or melts when the rupture, deformation, or melting in the fragile portion progresses to the thin-walled portion. It has the mechanical strength to melt.
  • the fragile portion disposed on the top wall portion of the cup-shaped member is thinner than the side wall portion of the cup-shaped member.
  • the top wall portion of the cup-shaped member initially starts from the weakened portion due to the combustion of the transfer charge accompanying the operation of the igniter. It is preferable to comprise a fragile portion existing region in which rupture, deformation or melting occurs, and a fragile portion non-existing region in which rupture, deformation or melting occurs after a predetermined time has passed since the fragile portion presence region has been deformed.
  • the fragile portion has a slit shape radially provided from the center of the top wall portion.
  • the cup-shaped member is preferably made of metal or alloy.
  • the filter provided in the inner side of the housing in the circumferential direction, the annular plate-shaped base provided in the direction along the inner bottom surface of the bottom plate portion, and the a support member having a contact portion that contacts an inner peripheral surface of an end portion of the filter on the bottom plate portion side, and a cylindrical standing portion that is erected from the base portion toward the top plate portion; and wherein the support member is preferably held by the cup-shaped member by press-fitting the standing portion into the thick portion of the cup-shaped member.
  • the gas generator of (1) above further comprises a filter provided inside the housing in a circumferential direction, and the cup-shaped member is a circular filter provided in a direction along the inner bottom surface of the bottom plate portion.
  • the present invention it is possible to provide a gas generator that is controllable so that the size of the rupture of the cup is stabilized (the rupture area is made uniform) while increasing the mechanical strength of the cup.
  • the size of the rupture of the cup body is stabilized (the rupture region is made uniform)
  • FIG. 1 is a schematic cross-sectional view of a disk-shaped gas generator according to an embodiment of the present invention
  • FIG. FIG. 2 is a perspective view of a cup-shaped member of the disk-shaped gas generator of FIG. 1
  • FIG. 2 is a schematic cross-sectional view for explaining the operation of the disk-shaped gas generator of FIG. 1
  • It is a figure which shows the test conditions and test result of a verification test.
  • (a) is a schematic cross-sectional view of the shape of the cup-shaped member used in the verification test
  • (b) is a diagram showing the test conditions and test results of the verification test.
  • (a) is a schematic cross-sectional view of the shape of the cup-shaped member used in the verification test
  • (b) is a diagram showing the test conditions and test results of the verification test.
  • It is a schematic sectional drawing of the gas generator which concerns on the modification of embodiment of this invention.
  • It is a schematic sectional drawing of the gas generator which concerns on the modification of embodiment of this invention.
  • It is a schematic sectional drawing of the gas generator which concerns on the modification of embodiment of this invention.
  • FIG. 1 is a schematic diagram of a disk-shaped gas generator 100 according to an embodiment of the present invention. First, referring to FIG. 1, the configuration of disk-shaped gas generator 100 in the present embodiment will be described.
  • the disk-shaped gas generator 100 has a short, substantially cylindrical housing with one axial end and the other end closed.
  • the holding portion 30, the igniter 40, the cup-shaped member 50, the transfer charge 59, the gas generating agent 61, the lower support member 70, the upper support member 80, the cushion material 85, the filter 90, etc. are accommodated as internal components. It is. Further, a combustion chamber 60 in which the gas generating agent 61 of the internal components described above is mainly accommodated is located in the accommodation space provided inside the housing.
  • the housing includes a lower shell 10 and an upper shell 20.
  • Each of the lower shell 10 and the upper shell 20 is a press-formed product formed by pressing a rolled metal plate member, for example.
  • the metal plate-shaped members forming the lower shell 10 and the upper shell 20 for example, metal plates made of stainless steel, iron steel, aluminum alloy, stainless alloy, etc. are used. A so-called high-strength steel sheet that does not cause damage such as breakage even when a tensile stress of [MPa] or less is applied is used.
  • the lower shell 10 and the upper shell 20 are each formed in a substantially cylindrical shape with a bottom, and a housing is constructed by combining and joining these open surfaces so that they face each other.
  • the lower shell 10 has a bottom plate portion 11 and a peripheral wall portion 12
  • the upper shell 20 has a top plate portion 21 and a peripheral wall portion 22 .
  • the upper end of the peripheral wall portion 12 of the lower shell 10 is press-fitted by being inserted into the lower end of the peripheral wall portion 22 of the upper shell 20 . Further, the peripheral wall portion 12 of the lower shell 10 and the peripheral wall portion 22 of the upper shell 20 are joined at or near their abutting portions, thereby fixing the lower shell 10 and the upper shell 20. ing. Electron beam welding, laser welding, friction welding, or the like can be suitably used for joining the lower shell 10 and the upper shell 20 .
  • the portion of the peripheral wall portion of the housing near the bottom plate portion 11 is formed by the peripheral wall portion 12 of the lower shell 10
  • the portion of the peripheral wall portion of the housing near the top plate portion 21 is formed on the upper side. It is constituted by the peripheral wall portion 22 of the shell 20 .
  • One end and the other end of the housing in the axial direction are closed by the bottom plate portion 11 of the lower shell 10 and the top plate portion 21 of the upper shell 20, respectively.
  • a projecting cylindrical portion 13 projecting toward the top plate portion 21 is provided at the center of the bottom plate portion 11 of the lower shell 10.
  • a depression 14 is formed at the center of the bottom plate portion 11 of the lower shell 10.
  • the protruding cylindrical portion 13 is a portion to which the igniter 40 is fixed via the holding portion 30
  • the recessed portion 14 is a portion serving as a space for providing the female connector portion 34 in the holding portion 30 .
  • the protruding cylindrical portion 13 is formed in a substantially cylindrical shape with a bottom, and has an asymmetrical shape (for example, a D shape, a barrel An opening 15 having a mold shape, oval shape, etc.) is provided.
  • the opening 15 is a portion through which the pair of terminal pins 42 of the igniter 40 are inserted.
  • the igniter 40 is for generating flame, and includes an ignition portion 41 and the pair of terminal pins 42 described above.
  • the ignition part 41 contains therein an ignition charge that generates flame by being ignited and burned during operation, and a resistor for igniting the ignition charge.
  • a pair of terminal pins 42 are connected to the ignition portion 41 to ignite the ignition charge.
  • the ignition part 41 includes a cup-shaped squib cup, and a plug that closes the open end of the squib cup and holds a pair of terminal pins 42 inserted therethrough.
  • a resistor bridge wire is attached so as to connect the ends of a pair of terminal pins 42 inserted into the squib cup, and points are placed in the squib cup so as to surround or be adjacent to the resistor. It has a configuration loaded with gunpowder.
  • Nichrome wire or the like is generally used as the resistor, and ZPP (zirconium/potassium perchlorate), ZWPP (zirconium/tungsten/potassium perchlorate), lead tricinate, etc. are generally used as the ignition charge.
  • ZPP zirconium/potassium perchlorate
  • ZWPP zirconium/tungsten/potassium perchlorate
  • lead tricinate etc.
  • the squib cups and emboli described above are generally made of metal or plastic.
  • a predetermined amount of current flows through the resistor via the terminal pin 42 .
  • Joule heat is generated in the resistor, and the ignition charge starts burning.
  • the high temperature flame produced by the combustion ruptures the squib cup containing the ignition charge.
  • the time from when the current flows through the resistor until the igniter 40 is activated is generally 2 [ms] or less when the nichrome wire is used as the resistor.
  • the igniter 40 is attached to the bottom plate portion 11 while being inserted from the inside of the lower shell 10 so that the terminal pin 42 is inserted through the opening 15 provided in the projecting cylindrical portion 13 .
  • a holding portion 30 made of a resin molded portion is provided around the protruding cylindrical portion 13 provided on the bottom plate portion 11, and the igniter 40 is held by the holding portion 30. is fixed to the bottom plate portion 11 by
  • the holding portion 30 is formed by injection molding (more specifically, insert molding) using a mold. It is formed by applying an insulating fluid resin material to the bottom plate portion 11 so as to reach from a part of the inner surface to a part of the outer surface of the bottom plate portion 11 and solidifying it. It has a configuration in which an ignition charge is loaded in the squib cup so as to be in contact with it.
  • Nichrome wire or the like is generally used as the resistor, and ZPP (zirconium/potassium perchlorate), ZWPP (zirconium/tungsten/potassium perchlorate), lead tricinate, etc. are generally used as the ignition charge.
  • ZPP zirconium/potassium perchlorate
  • ZWPP zirconium/tungsten/potassium perchlorate
  • lead tricinate etc.
  • the squib cups and emboli described above are generally made of metal or plastic.
  • a predetermined amount of current flows through the resistor via the terminal pin 42 .
  • Joule heat is generated in the resistor, and the ignition charge starts burning.
  • the high temperature flame produced by the combustion ruptures the squib cup containing the ignition charge.
  • the time from when the current flows through the resistor until the igniter 40 is activated is generally 2 [ms] or less when the nichrome wire is used as the resistor.
  • the igniter 40 is attached to the bottom plate portion 11 while being inserted from the inside of the lower shell 10 so that the terminal pin 42 is inserted through the opening 15 provided in the projecting cylindrical portion 13 .
  • a holding portion 30 made of a resin molded portion is provided around the protruding cylindrical portion 13 provided on the bottom plate portion 11, and the igniter 40 is held by the holding portion 30. is fixed to the bottom plate portion 11 by
  • the holding portion 30 is formed by injection molding (more specifically, insert molding) using a mold. It is formed by applying an insulating fluid resin material to the bottom plate portion 11 so as to reach from a part of the inner surface to a part of the outer surface of the bottom plate portion 11 and solidifying it.
  • thermosetting resins represented by epoxy resins, etc.
  • polybutylene terephthalate resin polyethylene terephthalate resin
  • polyamide resin for example, nylon 6, nylon 66, etc.
  • polypropylene sulfide resin polypropylene oxide resin, and the like.
  • thermoplastic resin that When these thermoplastic resins are selected as the raw material, it is preferable that these resin materials contain glass fiber or the like as a filler in order to secure the mechanical strength of the holding portion 30 after molding. However, if sufficient mechanical strength can be ensured only by the thermoplastic resin, it is not necessary to add the filler as described above.
  • the holding portion 30 includes an inner coating portion 31 that partially covers the inner surface of the bottom plate portion 11 of the lower shell 10, an outer coating portion 32 that partially covers the outer surface of the bottom plate portion 11 of the lower shell 10, and a lower A connecting portion 33 is located in the opening 15 provided in the bottom plate portion 11 of the side shell 10 and is continuous with the inner covering portion 31 and the outer covering portion 32, respectively.
  • the holding portion 30 is fixed to the bottom plate portion 11 on the surfaces of the inner covering portion 31, the outer covering portion 32, and the connecting portion 33 on the bottom plate portion 11 side. Further, the holding portion 30 is fixed to the side surface and the lower surface of the portion of the ignition portion 41 of the igniter 40 near the lower end and the surface of the portion of the terminal pin 42 of the igniter 40 near the upper end.
  • the opening 15 is completely embedded by the terminal pin 42 and the holding portion 30, and the airtightness of the space inside the housing is ensured by ensuring the sealing performance in this portion.
  • the opening 15 is formed in an asymmetrical shape in plan view as described above, by embedding the opening 15 with the connecting portion 33 , the opening 15 and the connecting portion 33 are connected to the holding portion 30 . It also functions as a detent mechanism for preventing rotation of the bottom plate portion 11 .
  • a female connector portion 34 is formed in a portion of the holding portion 30 facing the outside of the outer covering portion 32 .
  • the female connector portion 34 is a portion for receiving a male connector (not shown) of a harness for connecting the igniter 40 and a control unit (not shown). is located in a recess 14 provided in the .
  • a portion near the lower end of the terminal pin 42 of the igniter 40 is exposed in the female connector portion 34 .
  • a male connector is inserted into the female connector portion 34 to achieve electrical continuity between the core wires of the harness and the terminal pins 42 .
  • the above-described injection molding may be performed using the lower shell 10 having an adhesive layer provided in advance at a predetermined position on the surface of the bottom plate portion 11 that is to be covered by the holding portion 30 .
  • the adhesive layer can be formed by applying an adhesive to a predetermined position of the bottom plate portion 11 in advance and curing the adhesive.
  • the holding portion 30 made of the resin molded portion can be more firmly fixed to the bottom plate portion 11. be possible. Therefore, if the adhesive layer is annularly provided along the circumferential direction so as to surround the opening 15 provided in the bottom plate portion 11, it is possible to secure a higher sealing performance in that portion.
  • an adhesive containing a resin material having excellent heat resistance, durability, corrosion resistance, etc. after curing as a raw material is preferably used.
  • Materials containing resins or silicone-based resins as raw materials are particularly preferably used.
  • phenolic resins epoxy resins, melamine resins, urea resins, polyester resins, alkyd resins, polyurethane resins, polyimide resins, polyethylene resins, polypropylene resins, Polyvinyl chloride resin, polystyrene resin, polyvinyl acetate resin, polytetrafluoroethylene resin, acrylonitrile butadiene styrene resin, acrylonitrile styrene resin, acrylic resin, polyamide resin, polyacetal resin, polycarbonate resin, Polyphenylene ether resin, polybutylene terephthalate resin, polyethylene terephthalate resin, polyolefin resin, polyphenylene sulfide resin, polysulfone resin, polyether sulfone resin, polyarylate resin, polyether ether ketone resin , polyamideimide-based resin, liquid crystal polymer, styrene-based rubber, olefin-based rubber
  • the igniter 40 can be fixed to the lower shell 10 by injection molding the holding part 30 made of a resin molded part is illustrated, but the igniter 40 to the lower shell 10 It is also possible to use other alternatives for the fixation of the .
  • a cup-shaped member 50 is assembled to the bottom plate portion 11 so as to cover the projecting cylindrical portion 13 , the holding portion 30 and the igniter 40 .
  • the cup-shaped member 50 has a substantially cylindrical shape with an open end on the bottom plate portion 11 side, and includes a space in which a transfer charge 59 is accommodated.
  • the cup-shaped member 50 is positioned so as to protrude into the combustion chamber 60 containing the gas generating agent 61 so that the space provided therein faces the ignition portion 41 of the igniter 40 . are placed in
  • the cup-shaped member 50 includes a top wall portion 51, a cylindrical side wall portion 52 extending from the peripheral edge of the top wall portion 51 toward the bottom plate portion 11 side, and an end of the side wall portion 52 on the bottom plate portion 11 side. and a flange portion 62 extending radially outward from the open end.
  • the side wall portion 52 includes a thin portion 52a provided on the side of the top wall portion 51, and a thick portion 52b extending from the thin portion 52a to the side opposite to the top wall portion 51 along the axial direction. .
  • the thin portion 52a is thicker than the fragile portion 55 and thinner than the thick portion 52b, and ruptures (ruptures), deforms, or melts in accordance with the rupture (rupture), deformation, or melting of the fragile portion 55. It has mechanical strength.
  • the flange portion 62 has a shape bent radially outward in parallel with the annular portion of the projecting cylindrical portion 13 . Therefore, the cup-shaped member 50 is not partially sandwiched between the lower support member 70 and the bottom plate portion 11 of the lower shell 10 .
  • the cup-shaped member 50 has no openings in either the side wall portion 52 or the top wall portion 51, and surrounds the space provided therein.
  • Materials for the cup-shaped member 50 include metal members such as stainless steel, iron steel, aluminum, aluminum alloys, stainless steel and stainless alloys, thermosetting resins such as epoxy resin, polybutylene terephthalate resin, and polyethylene terephthalate.
  • a member made of a resin such as thermoplastic resin such as resin, polyamide resin (for example, nylon 6 or nylon 66), polypropylene sulfide resin, polypropylene oxide resin, or the like is preferably used.
  • an aluminum alloy or a ferrous metal material such as stainless steel or iron steel, which has relatively higher mechanical strength than aluminum, is preferable.
  • the fixing method of the cup-shaped member 50 is not limited to the fixing method using the lower support member 70 described above, and other fixing methods may be used.
  • At least a portion of the top wall portion 51 of the cup-shaped member 50 is provided with a fragile portion 55 that is thinner than the side wall portion 52 .
  • the weakened portion 55 is formed by radially extending slits and is configured to have a mechanical strength lower than that of the side wall portion 52 of the cup-shaped member 50 .
  • the fragile portion 55 is arranged so as to face the ignition portion 41 of the igniter 40 .
  • a portion of the top wall portion 51 other than the radially extending fragile portion 55 is provided with a non-fragile portion 56 that is thicker than the fragile portion 55 and approximately the same thickness as the thick portion 52b.
  • the space inside the cup-shaped member 50 ruptures (ruptures), deforms, or melts the fragile portion 55 due to the thrust generated by the combustion of the transfer charge 59, and then the fragile portion 55 ruptures (ruptures).
  • the thin portion 52a ruptures (ruptures), deforms, or melts along with the deformation or melting, and the mechanical strength of the weak portion 55 and the thin portion 52a is relatively low.
  • the non-weakened portion 56 and the thick portion 52b are formed to be thicker than the weakened portion 55, so that they remain even when the transfer charge 59 burns when the igniter 40 operates. It is
  • the thicknesses of the fragile portion 55 and the thin portion 52a and the thicknesses of the non-weak portion 56 and the thick portion 52b are appropriately adjusted based on the type and filling amount of the transfer charge 59 used. , for example.
  • the thickness of the fragile portion 55 and thin portion 52a is set to 0.6 mm or less, preferably 0.3 mm or less.
  • the thickness of the non-weakened portion 56 and the thick portion 52b must be greater than the thickness of the fragile portion 55 and the thin portion 52a. , 0.3 mm or more and 0.9 mm or less, preferably 0.4 mm or more and 0.6 mm or less.
  • the transfer charge 59 filled in the transfer chamber is ignited by the flame generated by the operation of the igniter 40 and burns to generate thermal particles.
  • the transfer charge 59 must be capable of reliably starting combustion of the gas generating agent 61, and is generally B/KNO 3 , B/NaNO 3 , Sr(NO 3 ) 2 or the like.
  • a composition consisting of metal powder/oxidizing agent represented by , a composition consisting of titanium hydride/potassium perchlorate, a composition consisting of B/5-aminotetrazole/potassium nitrate/molybdenum trioxide, and the like are used.
  • the transfer charge 59 a powder or a binder molded into a predetermined shape is used.
  • the shape of transfer charge 59 formed by the binder includes various shapes such as granular, cylindrical, sheet, spherical, single-hole cylindrical, multi-hole cylindrical, and tablet-like.
  • a combustion chamber 60 containing a gas generating agent 61 is located in a space surrounding the portion where the cup-shaped member 50 described above is arranged in the space inside the housing. Specifically, as described above, the cup-shaped member 50 is arranged to protrude into the combustion chamber 60 formed inside the housing, and the outer surface of the top wall portion 51 of the cup-shaped member 50 is facing.
  • a combustion chamber 60 is formed of the space provided in the portion facing the outer surface of the side wall portion 52 and the space provided in the portion facing the outer surface of the side wall portion 52 . This results in the outer surface of the cup-shaped member 50 having the gas generant 61 disposed adjacent thereto.
  • a filter 90 is arranged along the inner circumference of the housing in a space radially surrounding the combustion chamber 60 containing the gas generating agent 61 .
  • the filter 90 has a cylindrical shape and is arranged such that its central axis substantially coincides with the axial direction of the housing.
  • the gas generating agent 61 is an agent that is ignited by thermal particles generated by the operation of the igniter 40 and generates gas by burning.
  • the gas generating agent 61 it is preferable to use a non-azide gas generating agent, and generally the gas generating agent 61 is formed as a compact containing a fuel, an oxidant and an additive.
  • a triazole derivative, a tetrazole derivative, a guanidine derivative, an azodicarbonamide derivative, a hydrazine derivative, or a combination thereof is used as the fuel.
  • a triazole derivative, a tetrazole derivative, a guanidine derivative, an azodicarbonamide derivative, a hydrazine derivative, or a combination thereof is used as the fuel.
  • nitroguanidine, guanidine nitrate, cyanoguanidine, 5-aminotetrazole and the like are preferably used.
  • oxidizing agents include basic metal hydroxides such as basic copper nitrate and basic copper carbonate, perchlorates such as ammonium perchlorate and potassium perchlorate, alkali metals, alkaline earth metals, and transition metals. , nitrates containing cations selected from ammonia, etc. are utilized. As nitrates, for example, sodium nitrate, potassium nitrate and the like are preferably used.
  • Additives include binders, slag forming agents, and combustion modifiers.
  • binder for example, organic binders such as polyvinyl alcohol, metal salts of carboxymethyl cellulose and stearates, and inorganic binders such as synthetic hydrotalcite and acid clay can be preferably used.
  • binders such as hydroxyethyl cellulose, hydroxypropylmethyl cellulose, cellulose acetate, cellulose propionate, cellulose acetate butyrate, nitrocellulose, microcrystalline cellulose, guar gum, polyvinylpyrrolidone, polyacrylamide, and polysaccharide derivatives such as starch.
  • inorganic binders such as molybdenum disulfide, talc, bentonite, diatomaceous earth, kaolin, and alumina can be suitably used.
  • slag forming agent silicon nitride, silica, acid clay, etc. can be suitably used.
  • Metal oxides, ferrosilicon, activated carbon, graphite and the like can be suitably used as combustion modifiers.
  • the shape of the molded body of the gas generating agent 61 includes various shapes such as grains such as granules, pellets, and cylinders, and discs.
  • a perforated shaped body having through holes inside the shaped body is also used.
  • These shapes are preferably selected appropriately according to the specifications of the airbag device in which the disk-type gas generator 100 is incorporated. It is preferable to select the optimum shape according to the specifications, such as selecting .
  • it is preferable to appropriately select the size and filling amount of the compact in consideration of the linear burning velocity, pressure index, etc. of the gas generating agent 61.
  • a material obtained by winding and sintering a metal wire material such as stainless steel or steel, or a material obtained by pressing a net material in which a metal wire material is woven and compacted can be used.
  • a mesh material specifically, a knitted wire mesh, a plain-woven wire mesh, an aggregate of crimp-woven metal wires, or the like can be used.
  • the perforated metal plate may be, for example, an expanded metal obtained by cutting a metal plate in a zigzag pattern and expanding the cuts to form holes to form a mesh, or a metal plate with holes and A hook metal or the like is used in which burrs formed on the periphery of the hole are flattened by crushing them.
  • the size and shape of the holes to be formed can be changed as needed, and holes of different sizes and shapes may be included on the same metal plate.
  • the metal plate for example, a steel plate (mild steel) or a stainless steel plate can be suitably used, and a non-ferrous metal plate such as aluminum, copper, titanium, nickel or alloys thereof can also be used.
  • the filter 90 When the gas generated in the combustion chamber 60 passes through the filter 90, the filter 90 functions as a cooling means for cooling the gas by removing high-temperature heat from the gas, and removes residue contained in the gas. It also functions as a removing means for removing (slag) and the like. Therefore, in order to sufficiently cool the gas and prevent the residue from being released to the outside, it is necessary to ensure that the gas generated within the combustion chamber 60 passes through the filter 90 .
  • the filter 90 is arranged such that a gap 28 of a predetermined size is formed between the peripheral wall portion 12 of the lower shell 10 and the peripheral wall portion 22 of the upper shell 20, which constitute the peripheral wall portion of the housing. , are spaced apart from the peripheral walls 12 and 22 .
  • a plurality of gas ejection ports 23 are provided in the peripheral wall portion 22 of the upper shell 20 facing the filter 90 .
  • the plurality of gas ejection ports 23 are for leading out the gas that has passed through the filter 90 to the outside of the housing.
  • a metal sealing tape 24 is attached as a sealing member to the inner peripheral surface of the peripheral wall portion 22 of the upper shell 20 so as to close the plurality of gas ejection ports 23 .
  • the sealing tape 24 an aluminum foil or the like coated with an adhesive member on one side can be suitably used, and the sealing tape 24 ensures the airtightness of the combustion chamber 60 .
  • a lower support member 70 is arranged in the vicinity of the end portion of the combustion chamber 60 located on the bottom plate portion 11 side.
  • the lower support member 70 has an annular shape, and is arranged substantially on the filter 90 and the bottom plate portion 11 so as to cover the boundary portion between the filter 90 and the bottom plate portion 11. there is Thereby, the lower support member 70 is positioned between the bottom plate portion 11 and the gas generating agent 61 in the vicinity of the end portion of the combustion chamber 60 .
  • the lower support member 70 includes an annular plate-shaped base portion 71 that is attached to the bottom plate portion 11 along the inner bottom surface of the bottom plate portion 11 and abutment that contacts the inner peripheral surface of the filter 90 near the bottom plate portion 11 . It has a portion 72 and a cylindrical standing portion 73 standing from the base portion 71 toward the top plate portion 21 side.
  • the contact portion 72 extends from the outer edge of the base portion 71
  • the standing portion 73 extends from the inner edge of the base portion 71 .
  • the standing portion 73 covers the outer peripheral surface of the projecting cylindrical portion 13 of the lower shell 10 and the outer peripheral surface of the inner covering portion 31 of the holding portion 30 .
  • the lower support member 70 is a member for fixing the filter 90 to the housing, and during operation, the gas generated in the combustion chamber 60 does not pass through the inside of the filter 90, and the lower end of the filter 90 and the bottom plate portion are connected to each other. It also functions as an outflow preventing means for preventing the liquid from flowing out from the gap between the 11 and 11 . Therefore, the lower support member 70 is formed, for example, by pressing a metal plate-like member, and is preferably made of a steel plate such as ordinary steel or special steel (for example, a cold-rolled steel plate, a stainless steel plate, or the like). ).
  • An upper support member 80 is arranged at an end portion of the combustion chamber 60 located on the top plate portion 21 side.
  • the upper support member 80 has a substantially disk-like shape, and is arranged so as to cover the boundary between the filter 90 and the top plate portion 21 . there is Thereby, the upper support member 80 is positioned between the top plate portion 21 and the gas generating agent 61 in the vicinity of the end portion of the combustion chamber 60 .
  • the upper support member 80 has a base portion 81 that abuts on the top plate portion 21 and a contact portion 82 erected from the peripheral edge of the base portion 81 .
  • the contact portion 82 contacts the inner peripheral surface of the axial end portion of the filter 90 located on the top plate portion 21 side.
  • the upper support member 80 is a member for fixing the filter 90 to the housing, and during operation, the gas generated in the combustion chamber 60 does not pass through the inside of the filter 90 and the upper end of the filter 90 and the top plate portion. It also functions as an outflow preventing means for preventing the liquid from flowing out from the gap between the 21 . Therefore, the upper support member 80 is formed, for example, by pressing a plate-like member made of metal, and is preferably a steel plate such as ordinary steel or special steel (for example, cold-rolled steel plate, stainless steel plate, etc.). It is composed of a member consisting of
  • a disk-shaped cushion material 85 is arranged inside the upper support member 80 so as to come into contact with the gas generating agent 61 contained in the combustion chamber 60 .
  • the cushion material 85 is positioned between the top plate portion 21 and the gas generating agent 61 in the portion of the combustion chamber 60 on the top plate portion 21 side, so that the gas generating agent 61 is directed toward the bottom plate portion 11 side. is pressing.
  • the cushion material 85 is provided for the purpose of preventing the gas generating agent 61, which is a molded body, from being pulverized by vibration or the like. It is composed of a member made of rubber typified by silicone, foamed polypropylene, foamed polyethylene, foamed urethane, etc.), chloroprene, and EPDM.
  • the igniter 40 is fixed by being injection-molded as the holding part 30 made of a resin molded part. Then, the side wall portion 52 of the cup-shaped member 50 containing the transfer charge 59 is press-fitted into the holding portion 30 of the lower shell 10 and fixed.
  • the inside of the filter 90 is filled with the gas generating agent 61 , and the upper support member 80 with the cushion material 85 interposed is inserted into the upper end portion of the filter 90 .
  • the upper shell 20 with the gas ejection port 23 closed by the seal tape 24 is placed over the lower shell 10, and the lower shell 10 and the upper shell 20 are welded. As described above, the assembly of the gas generator 100 having the structure shown in FIG. 1 is completed.
  • the transfer charge 59 is filled in the transfer chamber 57 provided inside the cup-shaped member 50 .
  • the process of doing is very easy. This is because the cup-shaped member 50 itself is made of a fragile member with low mechanical strength so that a portion of the cup-shaped member ruptures, deforms, or melts when the disk-shaped gas generator 100 is operated. It's for. That is, the operation of closing the opening provided in the cup-shaped member for filling the transfer charge 59, which is necessary when using a cup-shaped member having an opening, such as aluminum tape or a closing plate, becomes unnecessary. Therefore, the manufacturing process can be greatly simplified.
  • FIG. 3 is a schematic cross-sectional view for explaining the operation of the disk-shaped gas generator in this embodiment. Next, the operation of disk-type gas generator 100 according to the present embodiment will be described with reference to FIG. 3 and FIG. 1 described above.
  • the collision is detected by collision detection means separately provided in the vehicle.
  • the igniter 40 is activated by energization from the control unit.
  • the transfer charge 59 contained in the transfer charge chamber 57 is ignited by the flame generated by the actuation of the igniter 40 and starts burning.
  • the fragile portion 55 of the cup-shaped member 50 made of a fragile member is ruptured, deformed, or melted.
  • the rupture, deformation, or melting of the fragile portion 55 of the cup-shaped member 50 occurs later than the ignition of the transfer charge 59 by the hot particles generated by the combustion of the ignition charge. Since the side wall portion 52 does not have the fragile portion 55 and the top wall portion 51 has the fragile portion 55, the fragile portion 55 of the top wall portion 51 bursts, deforms, or melts, and the top wall portion The internal pressure will rise until 51 ruptures, deforms or melts.
  • the transfer charge 59 of the cup-shaped member 50 is scattered inside the cup-shaped member 50 by receiving thrust generated by combustion of the ignition charge, and is in a dispersed state.
  • the weak portion 55 is provided as a slit as shown in FIG.
  • the thin portion 52a ruptures (ruptures), deforms, or melts according to the rupture (rupture), deformation, or melting of the fragile portion 55, and splits up to the connection portion with the thick portion 52b.
  • the thick portion 52b does not rupture (break), deform, or melt.
  • the transfer charge 59 located farther from the igniter 40 is also ignited by the hot particles within a shorter time and starts burning, resulting in an increase in pressure in the space inside the cup-shaped member 50 and The temperature rise in the space is greatly accelerated.
  • the fragile portion 55 and the thin portion 52a of the cup-shaped member 50 burst, deform, or melt in sequence within a short period of time, and a large amount of thermal particles generated by the combustion of the transfer charge 59 are burned. It will flow into chamber 60 early.
  • the cup-shaped member 50 is made of iron or stainless steel and has a higher strength than aluminum. do not have.
  • the internal pressure of the cup-shaped member 50 increases until a predetermined period of time at which the brittle portion 55 of the cup-shaped member bursts, deforms, or melts. After the internal pressure reaches a certain level or more, the fragile portion 55 and the thin portion 52a of the cup-shaped member 50 burst, deform, or melt in order. Therefore, by increasing the mechanical strength of the cup-shaped member 50 by using a ferrous metal material having high mechanical strength such as iron or stainless steel, the transfer charge 59 can be sufficiently burned when the cup-shaped member 50 is split.
  • the cup-shaped member 50 can be cleaved in a state in which the combustion of the gas generating agent 61 is promoted.
  • Such improvement in the mechanical strength of the cup-shaped member 50 can be achieved by increasing the thickness even when using a metal with low strength such as aluminum.
  • the thickness is preferably 0.4 mm or more and 1.5 mm or less, more preferably 0.6 mm or more and 1.2 mm or less.
  • the thickness of the top wall portion 51 of the cup-shaped member 50 is radially thinner than that of the other portions.
  • the weakened portion 55 is formed by doing so, and the non-weakened portion 56 is formed by making the remaining portion of the top wall portion 51 of the cup-shaped member 50 thicker than the weakened portion 55 .
  • the thin portion 52a of the side wall portion 52 of the cup-shaped member 50 is thicker than the fragile portion 55 and thinner than the thick portion 52b. is thicker than the fragile portion 55 and the thin portion 52a, and is approximately the same thickness as the non-fragile portion 56. As shown in FIG.
  • the fragile portion 55 is first burst, deformed, or melted.
  • the cup-shaped member 50 bursts, deforms, or melts from the starting point, there is no risk of bursting, deformation, or melting from the side wall portion 52 where the weak portion 55 does not exist, and the transfer charge 59 burns sufficiently.
  • the top wall portion 51 bursts, deforms, or melts. After that, the top wall portion 51 splits along the weakened portion 55 starting from the fractured, deformed, or melted weakened portion 55 .
  • the cleave After the top wall portion 51 is cleaved, the cleave reaches the thin portion 52a of the side wall portion 52 and continues to cleave the thin portion 52a of the side wall portion 52 as it is. Then, the splitting stops at the connecting portion between the thin portion 52a and the thick portion 52b. In this way, since the fragile portion 55 is cleaved along the longitudinal direction, the portion connecting the thin portion 52a and the thick portion 52b is cleaved like a petal. Therefore, the cup-shaped member 50 splits halfway (the connecting portion between the thin portion 52a and the thick portion 52b) and stops, so that the cup-shaped member 50 expands toward the top plate portion 21 side with the passage of time. Since the hole is opened while the size of the fracture is stable, the thermal particles generated by the combustion of the transfer charge 59 flow more toward the top plate portion 21 side with directivity.
  • the fragile portion 55 ruptures, deforms, or melts, and the top wall of the cup-shaped member 50 is cleaved in the first stage in which the non-weakened portion of the top wall portion 51 cleaves from the fragile portion 55 as a starting point. Since the portion 51 is ruptured, deformed, or melted and the side wall portion 52 remains, the thermal particles generated by the combustion of the transfer charge 59 flow toward the top plate portion 21 and flow into the combustion chamber 60. The resulting flame is squeezed between the cup-shaped member 50 and the top plate portion 21 . As a result, all of the gas generating agents 61 adjacent to the cup-shaped member 50 are not ignited at the same time, and the flame spread of the gas generating agents 61 proceeds mainly between the transfer chamber 57 and the top plate portion 21. will do.
  • the splitting of the thin portion 52a progresses as the second stage.
  • the tearing of the side wall portion 52 progresses along the longitudinal direction in which the weakened portions 55 radially provided on the top wall portion 51 are provided, and the thin portion 52 a is the axis of the side wall portion 52 .
  • Cleavage progresses downward in the direction, but after cleaved halfway (the connecting portion between the thin portion 52a and the thick portion 52b), the cleavage stops. Therefore, the thermal particles generated by the combustion of the transfer charge 59 also flow into the combustion chamber 60 through such a split portion.
  • the flame spreads to the gas generating agent 61 between the thin portion 52a and the filter 90, and then spreads to the gas generating agent 61 between the thick portion 52b and the filter 90. It will happen.
  • the cup-shaped member 50 is provided with the weakened portion 55, the non-weakened portion 56, the thin portion 52a, and the thick portion 52b, and the weakened portion 55, the non-weakened portion 56, the thin portion 52a, and the thick portion 52b are provided.
  • part of the side wall portion 52 (thick portion 52b) of the cup-shaped member 50 is configured to be thick and the top wall
  • the top wall portion 51 bursts, deforms, or melts instantaneously when ignited, so that the combustion of the gas generating agent 61 between the top wall portion 51 and the top plate portion 21 immediately proceeds.
  • the gas output is not delayed, the internal pressure inside the gas generator is quickly increased, and variations in the output characteristics can be prevented.
  • the seal tape 24 closing the gas ejection port 23 provided in the upper shell 20 is torn, and the gas ejection port 23 is opened.
  • the gas is ejected to the outside of the housing through the .
  • the ejected gas is introduced into an airbag provided adjacent to the disk-shaped gas generator 100 to inflate and deploy the airbag.
  • the mechanical strength thickness, material, shape, etc.
  • the output of the igniter 40 the distance between the ignition portion 41, the cup-shaped member and the fragile portion 55, the density of the transfer charge 59 filled in the transfer chamber, and the like.
  • the transfer charge 59 In order to sequentially rupture, deform, or melt the fragile portion 55 and the thin portion 52a of the cup-shaped member 50 by utilizing the increase in pressure and temperature in the transfer chamber accompanying the combustion of the transfer charge 59, the above-described The mechanical strength (thickness, material, shape, etc.) of the cup-shaped member 50, the output of the igniter 40, the distance between the ignition portion 41 and the fragile portion 55 of the cup-shaped member 50, and the transfer charge filled in the transfer chamber.
  • the density and the like of 59 may be adjusted in various ways, but as described above, this can be achieved relatively easily by forming the member of the cup-shaped member 50 from an iron-based metal material such as iron or stainless steel. be.
  • the weak portion 55 of the cup-shaped member 50 preferably has lower mechanical strength than the side wall portion 52 of the cup-shaped member 50 .
  • Methods for making the fragile portion 55 of the cup-shaped member 50 more fragile than the side wall portion 52 of the cup-shaped member 50 include adjusting the thickness of these components, using different materials for these components, and devising their shapes. etc. is assumed.
  • the fragile portion 55 can be ruptured, deformed or melted before the thin portion 52a of the cup-shaped member 50 is ruptured, deformed or melted, the fragile portion 55 and the side wall portion 52 of the cup-shaped member 50
  • the thin portion 52a may have the same degree of mechanical strength.
  • a disc type gas generator 100 can be provided.
  • the disk-shaped gas generator 100 is capable of exhibiting a predetermined performance while reducing the amount of transfer charge 59. can do.
  • the combustion of the transfer charge 59 is promoted, the combustion of the gas generating agent 61 can be started earlier. It is possible to shorten the time up to the point at which the gas starts to be ejected compared to the conventional art. Further, by adding the weak portion 55 and the thin portion 52a of the cup-shaped member 50, the rupture area can be made uniform, and the amount of transfer charge 59 to be charged is greatly reduced, although the number of parts processed increases. It is possible to shorten the time from when the igniter is activated to when the gas starts to be ejected to the outside through the gas ejection port 23 at a low cost.
  • the volume of the cup-shaped member 50 can be made smaller than before by reducing the filling amount of the transfer charge 59, weight reduction can be achieved by optimizing the volume of the disk-shaped gas generator 100. It becomes possible.
  • the cooling capacity of the filter 90 may be lowered accordingly. As a result, it is also possible to reduce the weight of the filter 90 .
  • the 60L tank test here means that a disk-type gas generator having a cup-shaped member (specifically, see Examples 1 to 3 below) is placed in an environment of -40°C ⁇ 2°C for 4 hours or more. After adjusting the temperature, it is installed individually in a sealed tank with a volume of 60 L, and this is operated to measure the increase in tank internal pressure over time. Moreover, in this verification test, the gas pressure was measured over time for 100 ms from the time when the igniter was activated.
  • the number of moles of the gas generated by the gas generating agent in each disk-shaped gas generator was 2 mol, and the amount of transfer charge charged into the cup-shaped member was 1.2 g. Further, the material of each cup-shaped member in this verification test was an aluminum alloy.
  • Example 1 A disk-shaped gas generator (hereinafter referred to as a conventional gas generator) equipped with a conventional cup-shaped member (specification name: stepless) having a constant thickness (thickness 1 mm), and a thin portion having a thickness of 0.5 mm.
  • the disk-shaped gas generator 100 has the same configuration as the disk-shaped gas generator 100 provided with a cup-shaped member (specification name: stepped) having an axial length of 5 mm, a thick-walled portion having a thickness of 1 mm, and a thick-walled portion having an axial length of 15 mm.
  • the above verification test was performed twice for each of the disk-shaped gas generator (hereinafter, the gas generator of the present invention).
  • each cup-shaped member is the same as the weakened portion 55 in the above embodiment, and has a slit depth of 0.6 mm (remaining thickness of 0.4 mm) and a width of 3 mm. Moreover, the axial length of the cup-shaped member in each gas generator was the same. Other conditions were the same for the conventional gas generator and the gas generator of the present invention.
  • Fig. 4 shows the verification test results for the conventional gas generator and the gas generator of the present invention. Note that t1 is the time until the gas output is detected, and Pmax is the maximum value of the pressure in the tank.
  • the time until the gas output is detected is delayed compared to the verification tests of (1) to (3) in FIG. It could not go through such a gas output process.
  • the process of gas output may vary from gas generator to gas generator.
  • the gas generator of the present invention can stably exhibit preferable gas output performance compared to conventional gas generators.
  • Example 2 In the gas generator of the present invention similar to that of Example 1, the axial height is 20 mm, the thickness of the thin portion is 0.5 mm, the slit depth of the weak portion is 0.6 mm (remaining thickness is 0.4 mm), the width is 3 mm, and other
  • the axial length P mm of the thin portion was set to (1) 5 mm, (2) 8 mm, and (3) 11 mm without changing the internal volume.
  • a verification test was performed to see what kind of gas output would be obtained when the same 60 L tank test as in Example 1 was performed by changing to . Other conditions for each gas generator were the same.
  • FIG. 5(b) shows the results of this verification test.
  • the axial length Pmm of the thin portion of the cup-shaped member in FIG. 5(a) is (1) 5 mm, (2) 8 mm, (3) It was found that, even when the length was changed to 11 mm, the favorable gas output performance could be exhibited in substantially the same manner as in Example 1.
  • Example 3 In the gas generator of the present invention similar to that of Example 1, the axial height is 20 mm, the axial length of the thin portion is 5 mm, the slit depth of the weak portion is 0.6 mm (residual thickness is 0.4 mm), the width is 3 mm, and others.
  • the internal volume of the cup-shaped member see FIG. 6(a) having a thickness of 1 mm in the portion of (1) 0.4 mm, (2) 0.5 mm, (3) 0 6 mm and (4) 0.7 mm, and a 60 L tank test similar to that of Example 1 was carried out. Other conditions for each gas generator were the same.
  • FIG. 6(b) shows the results of this verification test.
  • the cup-shaped member 50 according to the embodiment of the present invention can be applied to, for example, a disk-shaped gas generator provided with two igniters called a dual inflator in the same manner as the disk-shaped gas generator 100 of this embodiment. and can be applied to other gas generators.
  • the fragile portion 55 of the cup-shaped member 50 is not limited to that shown in FIG.
  • the slits forming the fragile portion 55 are provided radially, any number of slits may be formed.
  • the weakened portion may have a cross-shaped or asterisk-shaped slit in plan view.
  • the uneven shape of the fragile portion 55 is not limited to the above-described shape, and may be of any shape.
  • a part of the non-weakened portion 56 may bulge toward the top wall portion 51 to provide an annular convex portion, or the entire fragile portion 55 may be curved to form a concave portion.
  • the fragile portion 55 may be provided with a plurality of protrusions or recesses in a dotted pattern or a matrix pattern.
  • the top wall portion 51 may be provided with a circular or annular weakened portion 55 .
  • the slit of the fragile portion 55 may extend continuously to the surface (outer wall) of the thin portion 52 a of the side wall portion 52 .
  • the cup-shaped member 150 shown in FIG. 7 may be applied.
  • the cup-shaped member 150 has a slit (weakened portion) along the entire circumference, whereas the cup-shaped member 50 does not have a slit (weakened portion) formed around the entire circumference. And they are mostly different.
  • a specific description will be given below. It should be noted that parts similar to those in the above-described embodiment are denoted by symbols having the same lower two digits, and description thereof may be omitted.
  • the fragile portions 155 are unevenly arranged by being provided between specific angles when viewed from the circumferential direction.
  • the region where the weakened portion is provided at an angle of less than half the circumference (180° in angle) is the weak portion existence region, and when viewed from the upper side in the axial direction, the half circumference (180° in angle) ) in which no weakened portion is provided is referred to as a weakened portion non-existing region.
  • the fragile portion existing region 151a and the fragile portion non-existing region 151b due to the presence of the fragile portion existing region 151a and the fragile portion non-existing region 151b, the rupture, deformation, or melting of the cup-shaped member is prevented by the fragile portion existing region 151a and the fragile portion non-existing region 151b. Since it occurs first, the hot particles generated by the combustion of the transfer charge flow into the combustion chamber with directivity.
  • the fragile portion 155 and the thin portion 152a can be more reliably ruptured, deformed, or melted when the igniter is actuated. As a result, it is possible to obtain the effect of ensuring the acceleration of the combustion of the transfer charge. Further, since the weakened portions 155 unevenly distributed in the thin portion 152a are ruptured, deformed, or melted, it is possible to impart directivity to the direction in which the combustion gas of the transfer charge flows into the combustion chamber.
  • the present invention can also be applied to a disk-type gas generator provided with two igniters called a dual inflator described above.
  • the slits of the fragile portion are radially provided at three points from the center at an angle of 60°, but the present invention is not limited to this.
  • it may be a substantially ⁇ -shaped one in which two slits are provided at an angle of 60° in the weakened portion, or a slit in the weakened portion may be provided radially at four or more locations from the center at an angle of 30°. and so on.
  • the case where the upper shell and the lower shell are formed by press-formed products formed by press-working metal members has been exemplified. It is not limited to this, and an upper shell and a lower shell formed by a combination of press working and other working (forging, drawing, cutting, etc.) may be used. Upper and lower shells formed solely by other processes may also be used.
  • a cup-shaped member having another configuration may also be used.
  • an opening is provided in advance in a member having high mechanical strength such as a stainless alloy, and the opening is closed with a sealing tape, so that the closure of the sealing tape is broken during operation. It is also possible to use one configured as follows.
  • modifications of the above embodiment include the gas generator and the cup-shaped member shown in FIGS. 8 to 11.
  • the gas generator and the cup-shaped member according to each modification will be described, focusing on the differences from the above embodiment.
  • the upper end portion of the standing portion 273 of the lower support member 270 is press-fitted into the thick portion 252b of the cup-shaped member 250, and the base portion 281 faces downward.
  • This embodiment differs from the above-described embodiment in that it uses an upper support member 280 and that it does not use a cushion material. Note that the side wall portion 282 of the upper support member 280 may or may not contact the inner wall of the filter 290 .
  • FIG. 8(b) shows one step of the manufacturing process of the gas generator of FIG. 8(a) (before the upper shell 220 is press-fitted into the lower shell 210).
  • the thin portion The outer diameter of 252a ⁇ the inner diameter of the upper end portion of the standing portion 273 of the lower support member 270 ⁇ the outer diameter of the thick portion 252b. Therefore, in FIG.
  • the upper end of the standing portion 273 of the lower support member 270 is fitted into the thin portion 252a of the cup-shaped member 250, but is stopped by the upper end of the thick portion 252b. , the thick portion 252b does not naturally move downward from the upper end portion. As a result, it is possible to prevent the lower support member 270 from being provided obliquely or from moving in the radial direction during the manufacturing process. can be smoothly filled.
  • the gas generating agent 261 when the gas generating agent 261 is filled into the gas generator 200 and the upper shell 220 is press-fitted into the lower shell 210, the gas pushed by the upper support member 280 is discharged.
  • the upper end portion of the standing portion 273 of the lower support member 270 is press-fitted and fixed to the thick portion 252b of the cup-shaped member 250 via the generating agent 261 .
  • the gas generating agent 261 is fixed in the space surrounded by the lower supporting member 270 , the upper supporting member 280 and the filter 290 .
  • the lower support member 270 since the lower support member 270 is press-fitted and fixed to the thick portion 252b of the cup-shaped member 250, it does not move inside the gas generator 200 even if the gas generator 200 vibrates.
  • the gas generator 300 differs from the above embodiment in that a cup-shaped member 350 is used instead of the cup-shaped member 50 and the lower support member 70 .
  • a perspective view of the cup-shaped member 350 is shown in FIG. 10(a).
  • the cup-shaped member 350 has an upright portion corresponding to the lower support member 70 of the above-described embodiment from the flange portion 362 of the cup-shaped member 350 so as to have the functions of the cup-shaped member 50 and the lower support member 70 of the above-described embodiment.
  • a setting portion 373, a base portion 371, and a contact portion 372 are integrally extended in this order.
  • the cup-shaped member 350 is fixed to the inner covering portion 331 and the gas generating agent 361 filled in the filter 390 .
  • FIG. 9B when the cup-shaped member 350 is in operation, the fragile portion 355 and the thin portion 352a will burst, deform, or melt in order, as in the above-described embodiment. A large amount of thermal particles produced by burning the explosive 359 will flow into the combustion chamber 360 early.
  • the cup-shaped member 350 can be fixed together with the inner covering portion 331 by the gas generating agent 361 before the operation, compared with the above-described embodiment. Later, the cup-shaped member 350 can be further prevented from moving in the axial direction of the housing of the gas generator 300 (vertical direction in FIG. 9) by the contact portion 372 together with the inner covering portion 331 . Further, according to this modification, since the cup-shaped member 350 is such that the cup-shaped member 50 and the lower support member 70 of the above-described embodiment are integrated, the number of parts can be reduced compared to the above-described embodiment. be able to
  • Gas generator 400 includes the cup-shaped member shown in FIG. different from the form.
  • a perspective view of the cup-shaped member 450 is shown in FIG. 10(b).
  • the cup-shaped member 450 has a top wall portion 451 instead of the top wall portion 351 of the cup-shaped member 350 of the modified example.
  • the top wall portion 451 is formed with a substantially circular fragile portion 455 that is thinner than its surroundings.
  • the cup-shaped member 450 is fixed to the inner covering portion 431 and the gas generating agent 361 filled in the filter 490 .
  • the cup-shaped member 450 has a weak portion 455 (which may be thin depending on the type of transfer charge 459, the filling amount and/or the thickness of the thin portion 452a) during operation. Portion 452a) will also rupture, deform or melt, and a large amount of thermal particles produced by the combustion of transfer charge 459 will flow into combustion chamber 460 prematurely.
  • the cup-shaped member 450 can be fixed together with the inner covering portion 431 by the gas generating agent 461 before the operation, compared with the above-described embodiment. Later, the contact portion 372 together with the inner covering portion 331 can further prevent the cup-shaped member 450 from moving in the axial direction of the housing of the gas generator 400 (vertical direction in FIG. 11). Further, since the cup-shaped member 450 is such that the cup-shaped member 50 and the lower support member 70 of the above-described embodiment are integrated, the number of parts is reduced compared to the above-described embodiment. be able to
  • a cup-shaped member 550 (see FIG. 10(c)) in which the portion corresponding to the thin-walled portion 452a is absent from the side wall portion 552 may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Bags (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

【課題】カップ体の機械的強度を高めつつも、カップ体の破裂の大きさが安定するように制御可能なガス発生器を得る。 【解決手段】ガス発生剤が内部に収容された短尺筒状のハウジングと、点火薬が収容された点火部を含む点火器と、伝火薬が収容された伝火室を内部に含み、有底筒状の単一の部材からなるカップ状部材と、を備え、前記カップ状部材の頂壁部には一部に薄肉の脆弱部が配置され、前記脆弱部より機械的強度が高い前記カップ状部材の側壁部を備え、前記カップ状部材の側壁部には、前記頂壁部側に設けられた薄肉部と、前記薄肉部から軸方向に沿って頂壁部と反対側に延設された厚肉部と、を備え、前記脆弱部は、前記点火器の作動に伴って前記側壁部より先に前記カップ状部材を破裂する機械的強度を有したものであり、前記薄肉部は、前記脆弱部における破裂が前記薄肉部まで進展した場合、破裂、変形、又は溶融する機械的強度を有した、ガス発生器である。

Description

ガス発生器
 本発明は、車両等衝突時に乗員を保護する乗員保護装置に組み込まれるガス発生器に関し、特に、自動車等に装備されるエアバッグ装置に組み込まれるガス発生器に関する。
 従来、自動車等の乗員の保護の観点から、乗員保護装置であるエアバッグ装置が普及している。エアバッグ装置は、車両等衝突時に生じる衝撃から乗員を保護する目的で装備されるものであり、車両等衝突時に瞬時にエアバッグを膨張および展開させることにより、エアバッグがクッションとなって乗員の体を受け止めるものである。
 ガス発生器は、このエアバッグ装置に組み込まれ、車両等衝突時にコントロールユニットからの通電によって点火器を発火し、点火器において生じる火炎によりガス発生剤を燃焼させて多量のガスを瞬時に発生させ、これによりエアバッグを膨張および展開させる機器である。
 ガス発生器には、種々の構造のものが存在するが、運転席側エアバッグ装置や助手席側エアバッグ装置等に、特に好適に利用できるガス発生器として、外径が比較的大きい短尺略円柱状のディスク型ガス発生器がある。
 ディスク型ガス発生器は、軸方向の両端が閉塞された短尺略円筒状のハウジングを有し、ハウジングの周壁部に複数のガス噴出口が設けられるとともに、ハウジングに組付けられた点火器に面するようにハウジングの内部に伝火薬が収容され、さらに当該伝火薬を囲うようにハウジングの内部にガス発生剤が充填され、当該ガス発生剤の周囲をさらに囲うようにフィルタがハウジングの内部に収容されてなるものである。
 このディスク型ガス発生器の具体的な構成が開示された文献としては、たとえば特開2004-217059号公報(特許文献1)がある。
 特許文献1では、伝火薬が充填されたカップ体と、点火器本体を保持する点火器カラーをクリンプケースの下端側折曲部でかしめ固定されたガス発生器が開示されている。カップ体はアルミニウム等の金属で構成されており、閉塞端面及び周壁部の少なくとも一方に脆弱部を有しており、カップ体が脆弱部において破裂されやすくなるため、クリンプケースに加えられる圧力が減少する結果、クリンプケースの脱落や破損が防止される。しかしながら、カップ体が薄板のアルミニウムで構成されているため、機械的強度が低く、伝火薬が燃焼した際に、カップ体の破裂強度を高められない問題がある。
特開2004-217059号公報
 伝火薬を十分に燃焼させるためには、カップ体の内圧を高めて伝火薬の燃焼速度を向上させる必要がある。このことにより、短時間のうちにガス発生器内部のガス発生剤を効率よく燃焼させ、エアバッグへガスを噴出させることができるからである。しかしながら、一般的に、カップ体(カップ状部材)の機械的強度を高めた場合、カップ体の破裂(破断)、変形または溶融が制限されたり、カップ体の破裂(破断)の大きさが安定せずに発生するガスの出力特性が低下したりするなどの弊害が発生しやすくなる。すなわち、一般的には、上記カップ体の機械的強度を高めることと、上記カップ体の破裂(破断)の大きさの制御(破断領域の均一化)とは、トレードオフの関係にある。
 そこで、本発明は、上述した問題を解決すべくなされたものであり、カップ体の機械的強度を高めつつも、カップ体の破裂の大きさが安定する(破断領域が均一化する)ように制御可能なガス発生器を提供することを目的とする。
(1) 本発明のガス発生器は、ガス噴出口が設けられた筒状の周壁部と、前記周壁部の軸方向の一端を閉塞する天板部、および前記周壁部の軸方向の他端を閉塞する底板部とによって構成され、ガス発生剤が収容された燃焼室を内部に有する短尺筒状のハウジングと、前記底板部に組付けられ、作動時において着火する点火薬が収容された点火部を含む点火器と、伝火薬が収容された伝火室を内部に含み、前記伝火室の内部の空間が前記点火部に面するように、前記燃焼室に向けて突出して配置された有底筒状の単一の部材からなるカップ状部材と、を備え、前記カップ状部材の頂壁部には少なくとも一部に薄肉の脆弱部が配置され、前記伝火室と前記燃焼室とを区画する前記脆弱部より機械的強度が高い前記カップ状部材の側壁部を備え、前記側壁部には、前記頂壁部側に設けられた薄肉部と、前記薄肉部から軸方向に沿って前記頂壁部と反対側に延設された厚肉部と、を備え、前記脆弱部は、前記点火部に対向して配置され、前記点火器の作動に伴って前記側壁部より先に前記カップ状部材を破裂、変形、又は溶融する機械的強度を有したものであり、前記薄肉部は、前記脆弱部における破裂、変形、又は溶融が前記薄肉部まで進展した場合、破裂、変形、又は溶融する機械的強度を有したものである。
(2) 上記(1)のガス発生器においては、前記カップ状部材の頂壁部に配置された前記脆弱部が、前記カップ状部材の側壁部よりも薄肉で構成されていることが好ましい。
(3) 上記(1)または(2)のガス発生器においては、前記カップ状部材の前記頂壁部が、前記点火器の作動に伴う前記伝火薬の燃焼により前記脆弱部を起点として初期に破裂、変形又は溶融が生じる脆弱部存在領域と、前記脆弱部存在領域が変形してから所定時間経過後に破裂、変形又は溶融が生じる脆弱部非存在領域とで構成されていることが好ましい。
(4) 上記(1)のガス発生器においては、前記脆弱部が、前記頂壁部において中心から放射状に設けられたスリット形状であることが好ましい。
(5) 上記(1)のガス発生器においては、前記カップ状部材が、金属または合金からなることが好ましい。
(6) 上記(1)のガス発生器においては、前記ハウジングの内側に周方向にわたって設けられたフィルタと、前記底板部の内底面に沿う方向に設けられた円環板状の基部と、前記フィルタの前記底板部側の端部の内周面に当接する当接部と、前記基部から前記天板部側に向けて立設された筒状の立設部とを有した支持部材と、をさらに備え、前記立設部が前記カップ状部材の前記厚肉部に圧入されることにより、前記支持部材が前記カップ状部材に保持されていることが好ましい。
(7) 上記(1)のガス発生器においては、前記ハウジングの内側に周方向にわたって設けられたフィルタをさらに備え、前記カップ状部材が、前記底板部の内底面に沿う方向に設けられた円環板状の基部と、前記フィルタの前記底板部側の端部の内周面に当接する当接部と、前記基部から前記天板部側に向けて立設された筒状の立設部とをさらに有しており、前記立設部は、前記カップ状部材の前記側壁部から一体的に延設されたものであることが好ましい。
 本発明によれば、カップ体の機械的強度を高めつつも、カップ体の破裂の大きさが安定する(破断領域が均一化する)ように制御可能なガス発生器とすることができる。また、カップ体の破裂の大きさが安定する(破断領域が均一化する)ので、伝火薬の量を減らしつつ、所定の性能を発揮することが可能なガス発生器とすることができる。
本発明の実施形態に係るディスク型ガス発生器の概略断面図である。 図1のディスク型ガス発生器のカップ状部材の斜視図である。 図1のディスク型ガス発生器の動作を説明するための概略断面図である。 検証試験の試験条件および試験結果を示す図である。 (a)が検証試験に用いたカップ状部材の形状の模式断面図、(b)が検証試験の試験条件および試験結果を示す図である。 (a)が検証試験に用いたカップ状部材の形状の模式断面図、(b)が検証試験の試験条件および試験結果を示す図である。 本発明の実施形態の変形例に係るカップ状部材の斜視図である。 本発明の実施形態の変形例に係るガス発生器の概略断面図である。 本発明の実施形態の変形例に係るガス発生器の概略断面図である。 本発明の実施形態の各変形例に係るカップ状部材の斜視図である。 本発明の実施形態の変形例に係るガス発生器の概略断面図である。
 以下、本発明の実施の形態について、図を参照して詳細に説明する。以下に示す実施の形態は、自動車のステアリングホイール等に搭載されるエアバッグ装置に好適に組み込まれるディスク型ガス発生器に本発明を適用したものである。なお、以下に示す実施の形態においては、同一のまたは共通する部分に図中同一の符号を付し、その説明は繰り返さない。
 図1は、本発明の実施形態におけるディスク型ガス発生器100の概略図である。まず、この図1を参照して、本実施の形態におけるディスク型ガス発生器100の構成について説明する。
 図1に示すように、ディスク型ガス発生器100は、軸方向の一端および他端が閉塞された短尺略円筒状のハウジングを有しており、このハウジングの内部に設けられた収容空間に、内部構成部品としての保持部30、点火器40、カップ状部材50、伝火薬59、ガス発生剤61、下側支持部材70、上側支持部材80、クッション材85およびフィルタ90等が収容されてなるものである。また、ハウジングの内部に設けられた収容空間には、上述した内部構成部品のうちのガス発生剤61が主として収容された燃焼室60が位置している。
 ハウジングは、下部側シェル10および上部側シェル20を含んでいる。下部側シェル10および上部側シェル20の各々は、たとえば圧延された金属製の板状部材をプレス加工することによって形成されたプレス成形品からなる。下部側シェル10および上部側シェル20を構成する金属製の板状部材としては、たとえばステンレス鋼や鉄鋼、アルミニウム合金、ステンレス合金等からなる金属板が利用され、好適には440[MPa]以上780[MPa]以下の引張応力が印加された場合にも破断等の破損が生じないいわゆる高張力鋼板が利用される。
 下部側シェル10および上部側シェル20は、それぞれが有底略円筒状に形成されており、これらの開口面同士が向き合うように組み合わされて接合されることによってハウジングが構成されている。下部側シェル10は、底板部11と周壁部12とを有しており、上部側シェル20は、天板部21と周壁部22とを有している。
 下部側シェル10の周壁部12の上端は、上部側シェル20の周壁部22の下端に挿入されることで圧入されている。さらに、下部側シェル10の周壁部12と上部側シェル20の周壁部22とが、それらの当接部またはその近傍において接合されることにより、下部側シェル10と上部側シェル20とが固定されている。ここで、下部側シェル10と上部側シェル20との接合には、電子ビーム溶接やレーザ溶接、摩擦圧接等が好適に利用できる。
 これにより、ハウジングの周壁部のうちの底板部11寄りの部分は、下部側シェル10の周壁部12によって構成されており、ハウジングの周壁部のうちの天板部21寄りの部分は、上部側シェル20の周壁部22によって構成されている。また、ハウジングの軸方向の一端および他端は、それぞれ下部側シェル10の底板部11および上部側シェル20の天板部21によって閉塞されている。
 下部側シェル10の底板部11の中央部には、天板部21側に向かって突出する突状筒部13が設けられており、これにより下部側シェル10の底板部11の中央部には、窪み部14が形成されている。突状筒部13は、保持部30を介して点火器40が固定される部位であり、窪み部14は、保持部30に雌型コネクタ部34を設けるためのスペースとなる部位である。
 突状筒部13は、有底略円筒状に形成されており、その天板部21側に位置する軸方向端部には、平面視した状態において非点対称形状(たとえばD字状、樽型形状、長円形状等)の開口部15が設けられている。当該開口部15は、点火器40の一対の端子ピン42が挿通される部位である。
 点火器40は、火炎を発生させるためのものであり、点火部41と、上述した一対の端子ピン42とを備えている。点火部41は、その内部に、作動時において着火して燃焼することで火炎を発生する点火薬と、この点火薬を着火させるための抵抗体とを含んでいる。一対の端子ピン42は、点火薬を着火させるために点火部41に接続されている。
 より詳細には、点火部41は、カップ状に形成されたスクイブカップと、当該スクイブカップの開口端を閉塞し、一対の端子ピン42が挿通されてこれを保持する塞栓とを備えており、スクイブカップ内に挿入された一対の端子ピン42の先端を連結するように抵抗体(ブリッジワイヤ)が取付けられ、この抵抗体を取り囲むようにまたはこの抵抗体に近接するようにスクイブカップ内に点火薬が装填された構成を有している。
 ここで、抵抗体としては一般にニクロム線等が利用され、点火薬としては一般にZPP(ジルコニウム・過塩素酸カリウム)、ZWPP(ジルコニウム・タングステン・過塩素酸カリウム)、鉛トリシネート等が利用される。なお、上述したスクイブカップおよび塞栓は、一般に金属製またはプラスチック製である。
 衝突を検知した際には、端子ピン42を介して抵抗体に所定量の電流が流れる。抵抗体に所定量の電流が流れることにより、抵抗体においてジュール熱が発生し、点火薬が燃焼を開始する。燃焼により生じた高温の火炎は、点火薬を収納しているスクイブカップを破裂させる。抵抗体に電流が流れてから点火器40が作動するまでの時間は、抵抗体にニクロム線を利用した場合に一般に2[ms]以下である。
 点火器40は、突状筒部13に設けられた開口部15に端子ピン42が挿通するように下部側シェル10の内側から挿入された状態で底板部11に取付けられている。具体的には、底板部11に設けられた突状筒部13の周囲には、樹脂成形部からなる保持部30が設けられており、点火器40は、当該保持部30によって保持されることにより、底板部11に固定されている。
 保持部30は、型を用いた射出成形(より特定的にはインサート成形)によって形成されるものであり、下部側シェル10の底板部11に設けられた開口部15を経由して底板部11の内表面の一部から外表面の一部にまで達するように絶縁性の流動性樹脂材料を底板部11に付着させてこれを固化させることによって形成されている。
接するようにスクイブカップ内に点火薬が装填された構成を有している。
 ここで、抵抗体としては一般にニクロム線等が利用され、点火薬としては一般にZPP(ジルコニウム・過塩素酸カリウム)、ZWPP(ジルコニウム・タングステン・過塩素酸カリウム)、鉛トリシネート等が利用される。なお、上述したスクイブカップおよび塞栓は、一般に金属製またはプラスチック製である。
 衝突を検知した際には、端子ピン42を介して抵抗体に所定量の電流が流れる。抵抗体に所定量の電流が流れることにより、抵抗体においてジュール熱が発生し、点火薬が燃焼を開始する。燃焼により生じた高温の火炎は、点火薬を収納しているスクイブカップを破裂させる。抵抗体に電流が流れてから点火器40が作動するまでの時間は、抵抗体にニクロム線を利用した場合に一般に2[ms]以下である。
 点火器40は、突状筒部13に設けられた開口部15に端子ピン42が挿通するように下部側シェル10の内側から挿入された状態で底板部11に取付けられている。具体的には、底板部11に設けられた突状筒部13の周囲には、樹脂成形部からなる保持部30が設けられており、点火器40は、当該保持部30によって保持されることにより、底板部11に固定されている。
 保持部30は、型を用いた射出成形(より特定的にはインサート成形)によって形成されるものであり、下部側シェル10の底板部11に設けられた開口部15を経由して底板部11の内表面の一部から外表面の一部にまで達するように絶縁性の流動性樹脂材料を底板部11に付着させてこれを固化させることによって形成されている。
 射出成形によって形成される保持部30の原料としては、硬化後において耐熱性や耐久性、耐腐食性等に優れた樹脂材料が好適に選択されて利用される。その場合、エポキシ樹脂等に代表される熱硬化性樹脂に限られず、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、ポリアミド樹脂(たとえばナイロン6やナイロン66等)、ポリプロピレンスルフィド樹脂、ポリプロピレンオキシド樹脂等に代表される熱可塑性樹脂を利用することも可能である。これら熱可塑性樹脂を原材料として選択する場合には、成形後において保持部30の機械的強度を確保するためにこれら樹脂材料にガラス繊維等をフィラーとして含有させることが好ましい。しかしながら、熱可塑性樹脂のみで十分な機械的強度が確保できる場合には、上述の如くのフィラーを添加する必要はない。
 保持部30は、下部側シェル10の底板部11の内表面の一部を覆う内側被覆部31と、下部側シェル10の底板部11の外表面の一部を覆う外側被覆部32と、下部側シェル10の底板部11に設けられた開口部15内に位置し、上記内側被覆部31および外側被覆部32にそれぞれ連続する連結部33とを有している。
 保持部30は、内側被覆部31、外側被覆部32および連結部33のそれぞれの底板部11側の表面において底板部11に固着している。また、保持部30は、点火器40の点火部41の下方端寄りの部分の側面および下面と、点火器40の端子ピン42の上方端寄りの部分の表面とにそれぞれ固着している。
 これにより、開口部15は、端子ピン42と保持部30とによって完全に埋め込まれた状態となり、当該部分におけるシール性が確保されることでハウジングの内部の空間の気密性が確保されている。なお、開口部15は、上述したように平面視非点対称形状に形成されているため、当該開口部15を連結部33で埋め込むことにより、これら開口部15および連結部33は、保持部30が底板部11に対して回転してしまうことを防止する回り止め機構としても機能する。
 保持部30の外側被覆部32の外部に面する部分には、雌型コネクタ部34が形成されている。この雌型コネクタ部34は、点火器40とコントロールユニット(不図示)とを結線するためのハーネスの雄型コネクタ(図示せず)を受け入れるための部位であり、下部側シェル10の底板部11に設けられた窪み部14内に位置している。
 この雌型コネクタ部34内には、点火器40の端子ピン42の下方端寄りの部分が露出して配置されている。雌型コネクタ部34には、雄型コネクタが挿し込まれ、これによりハーネスの芯線と端子ピン42との電気的導通が実現される。
 また、保持部30によって覆われることとなる部分の底板部11の表面の所定位置に予め接着剤層が設けられてなる下部側シェル10を用いて上述した射出成形を行なうこととしてもよい。当該接着剤層は、上記底板部11の所定位置に予め接着剤を塗布してこれを硬化させること等により、その形成が可能である。
 このようにすれば、底板部11と保持部30との間に硬化した接着剤層が位置することになるため、樹脂成形部からなる保持部30をより強固に底板部11に固着させることが可能になる。したがって、底板部11に設けられた開口部15を囲うように上記接着剤層を周方向に沿って環状に設けることとすれば、当該部分においてより高いシール性を確保することが可能になる。
 ここで、底板部11に予め塗布しておく接着剤としては、硬化後において耐熱性や耐久性、耐腐食性等に優れた樹脂材料を原料として含むものが好適に利用され、たとえばシアノアクリレート系樹脂やシリコーン系樹脂を原料として含むものが特に好適に利用される。なお、上述の樹脂材料以外にも、フェノール系樹脂、エポキシ系樹脂、メラミン系樹脂、尿素系樹脂、ポリエステル系樹脂、アルキド系樹脂、ポリウレタン系樹脂、ポリイミド系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリ塩化ビニル系樹脂、ポリスチレン系樹脂、ポリ酢酸ビニル系樹脂、ポリテトラフルオロエチレン系樹脂、アクリロニトリルブタジエンスチレン系樹脂、アクリロニトリルスチレン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ポリカーボネイト系樹脂、ポリフェニレンエーテル系樹脂、ポリブチレンテレフタラート系樹脂、ポリエチレンテレフタラート系樹脂、ポリオレフィン系樹脂、ポリフェニレンスルファイド系樹脂、ポリスルホン系樹脂、ポリエーテルサルフォン系樹脂、ポリアリレート系樹脂、ポリエーテルエーテルケトン系樹脂、ポリアミドイミド系樹脂、液晶ポリマー、スチレン系ゴム、オレフィン系ゴム等を原料として含むものが、上述した接着剤として利用可能である。
 なお、ここでは、樹脂成形部からなる保持部30を射出成形することで下部側シェル10に対する点火器40の固定を可能にした場合の構成例を例示したが、下部側シェル10に対する点火器40の固定に他の代替手段を用いることも可能である。
 底板部11には、突状筒部13、保持部30および点火器40を覆うようにカップ状部材50が組付けられている。カップ状部材50は、底板部11側の端部が開口した有底略円筒状の形状を有しており、伝火薬59が収容される空間をその内部に含んでいる。カップ状部材50は、その内部に設けられた空間が点火器40の点火部41に面することとなるように、ガス発生剤61が収容された燃焼室60内に向けて突出して位置するように配置されている。
 カップ状部材50は、頂壁部51と、当該頂壁部51の周縁から底板部11側に向けて延設された筒状の側壁部52と、当該側壁部52の底板部11側の端部である開口端から径方向外側に向けて延設されたフランジ部62とを有している。
 側壁部52は、頂壁部51側に設けられた薄肉部52aと、薄肉部52aから軸方向に沿って頂壁部51と反対側に延設された厚肉部52bと、を備えている。薄肉部52aは、脆弱部55よりは厚肉で厚肉部52bよりは薄肉であり、脆弱部55の破裂(破断)、変形、又は溶融に則って、破裂(破断)、変形、又は溶融する機械的強度を有したものである。
 フランジ部62は、突状筒部13の環状部と平行に径方向外側へ曲成された形状を有している。そのため、下側支持部材70と下部側シェル10の底板部11との間でカップ状部材50の一部が挟まれる構造にはなっていない。
 カップ状部材50は、側壁部52および頂壁部51のいずれにも開口を有しておらず、その内部に設けられた空間を取り囲んでいる。このカップ状部材50は、点火器40が作動することによって伝火室内部の伝火薬59が着火された場合に、その内部の空間の圧力上昇や発生した熱の伝導に伴って破裂、変形または溶融するものである。
 カップ状部材50の材質としては、ステンレス鋼や鉄鋼、アルミニウム、アルミニウム合金、ステンレスやステンレス合金等の金属製の部材や、エポキシ樹脂等に代表される熱硬化性樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、ポリアミド樹脂(たとえばナイロン6やナイロン66等)、ポリプロピレンスルフィド樹脂、ポリプロピレンオキシド樹脂等に代表される熱可塑性樹脂等の樹脂製の部材からなるものが好適に利用される。特に、アルミニウムよりも機械的強度が比較的に高い、アルミニウム合金、または、ステンレス鋼、鉄鋼等の鉄系金属材料が好ましい。
 なお、カップ状部材50の固定方法としては、上述した下側支持部材70を用いた固定方法に限られず、他の固定方法を利用してもよい。
 カップ状部材50の頂壁部51の少なくとも一部には、側壁部52より薄肉の脆弱部55が設けられている。脆弱部55は、放射状に延びるスリットによって設けられ、カップ状部材50の側壁部52よりも機械的強度が低く構成されている。ここで、脆弱部55が点火器40の点火部41に対向することとなるように配置されている。また、頂壁部51の放射状に延びる前記脆弱部55以外の部分は、脆弱部55より厚肉で厚肉部52bと同程度の厚みである非脆弱部56が設けられている。
 これにより、カップ状部材50の内部の空間は、伝火薬59が燃焼することによって生じる推力によって、脆弱部55を破裂(破断)、変形または溶融した後、この脆弱部55の破裂(破断)、変形、又は溶融に則って、薄肉部52aが破裂(破断)、変形、又は溶融するものであり、脆弱部55および薄肉部52aの機械的強度が比較的低くなっている。一方、非脆弱部56および厚肉部52bは、その厚みが脆弱部55に比して厚く形成されることにより、点火器40の作動に伴う伝火薬59の燃焼によっても、残存するように構成されている。
 なお、上述した脆弱部55および薄肉部52aの厚みおよび非脆弱部56および厚肉部52bの厚みは、使用される伝火薬59の種類や充填量等に基づいて適宜調整されるものであるが、その一例を示す。例えば、上記脆弱部55および薄肉部52aの厚みは、カップ状部材を鉄製、ステンレス製、またはアルミニウム合金とした場合には、0.6mm以下とされ、好ましくは0.3mm以下とされる。一方、非脆弱部56および厚肉部52bの厚みは、カップ状部材50を鉄製、ステンレス製、またはアルミニウム合金とした場合には、脆弱部55および薄肉部52aの厚みよりも大きいことを条件に、0.3mm以上0.9mm以下、好ましくは0.4mm以上0.6mm以下とされる。
 伝火室に充填された伝火薬59は、点火器40が作動することによって生じた火炎によって点火され、燃焼することによって熱粒子を発生する。伝火薬59としては、ガス発生剤61を確実に燃焼開始させることができるものであることが必要であり、一般的には、B/KNO、B/NaNO、Sr(NO等に代表される金属粉/酸化剤からなる組成物や、水素化チタン/過塩素酸カリウムからなる組成物、B/5-アミノテトラゾール/硝酸カリウム/三酸化モリブデンからなる組成物等が用いられる。
 伝火薬59は、粉状のものや、バインダによって所定の形状に成形されたもの等が利用される。バインダによって成形された伝火薬59の形状としては、たとえば顆粒状、円柱状、シート状、球状、単孔円筒状、多孔円筒状、タブレット状など種々の形状がある。
 ハウジングの内部の空間のうち、上述したカップ状部材50が配置された部分を取り巻く空間には、ガス発生剤61が収容された燃焼室60が位置している。具体的には、上述したように、カップ状部材50は、ハウジングの内部に形成された燃焼室60内に突出して配置されており、このカップ状部材50の頂壁部51の外側表面に面する部分に設けられた空間ならびに側壁部52の外側表面に面する部分に設けられた空間が燃焼室60として構成されている。これにより、カップ状部材50の外側表面には、これに隣接してガス発生剤61が配置されることになる。
 また、ガス発生剤61が収容された燃焼室60をハウジングの径方向に取り巻く空間には、ハウジングの内周に沿ってフィルタ90が配置されている。フィルタ90は、円筒状の形状を有しており、その中心軸がハウジングの軸方向と実質的に合致するように配置されている。
 ガス発生剤61は、点火器40が作動することによって生じた熱粒子によって着火され、燃焼することによってガスを発生させる薬剤である。ガス発生剤61としては、非アジド系ガス発生剤を用いることが好ましく、一般に燃料と酸化剤と添加剤とを含む成形体としてガス発生剤61が形成される。
 燃料としては、たとえばトリアゾール誘導体、テトラゾール誘導体、グアニジン誘導体、アゾジカルボンアミド誘導体、ヒドラジン誘導体等またはこれらの組み合わせが利用される。具体的には、たとえばニトログアニジンや硝酸グアニジン、シアノグアニジン、5-アミノテトラゾール等が好適に利用される。
 酸化剤としては、たとえば塩基性硝酸銅や塩基性炭酸銅等の塩基性金属水酸化物、過塩素酸アンモニウム、過塩素酸カリウム等の過塩素酸塩、アルカリ金属、アルカリ土類金属、遷移金属、アンモニアから選ばれたカチオンを含む硝酸塩等が利用される。硝酸塩としては、たとえば硝酸ナトリウム、硝酸カリウム等が好適に利用される。
 添加剤としては、バインダやスラグ形成剤、燃焼調整剤等が挙げられる。バインダとしては、たとえばポリビニルアルコール、カルボキシメチルセルロースの金属塩、ステアリン酸塩等の有機バインダや、合成ヒドロタルサイト、酸性白土等の無機バインダが好適に利用可能である。また、この他にも、バインダとしては、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、酢酸セルロース、プロピオン酸セルロース、酢酸酪酸セルロース、ニトロセルロース、微結晶性セルロース、グアガム、ポリビニルピロリドン、ポリアクリルアミド、デンプン等の多糖誘導体や、二硫化モリブデン、タルク、ベントナイト、ケイソウ土、カオリン、アルミナ等の無機バインダも好適に利用可能である。スラグ形成剤としては、窒化珪素、シリカ、酸性白土等が好適に利用可能である。燃焼調整剤としては、金属酸化物、フェロシリコン、活性炭、グラファイト等が好適に利用可能である。
 ガス発生剤61の成形体の形状には、顆粒状、ペレット状、円柱状等の粒状のもの、ディスク状のものなど様々な形状のものがある。また、円柱状のものでは、成形体内部に貫通孔を有する有孔状(たとえば単孔筒形状や多孔筒形状等)の成形体も利用される。これらの形状は、ディスク型ガス発生器100が組み込まれるエアバッグ装置の仕様に応じて適宜選択されることが好ましく、たとえばガス発生剤61の燃焼時においてガスの生成速度が時間的に変化する形状を選択するなど、仕様に応じた最適な形状を選択することが好ましい。また、ガス発生剤61の形状の他にもガス発生剤61の線燃焼速度、圧力指数などを考慮に入れて成形体のサイズや充填量を適宜選択することが好ましい。
 フィルタ90は、たとえばステンレス鋼や鉄鋼等の金属線材を巻き回して焼結したものや、金属線材を編み込んだ網材をプレス加工することによって押し固めたもの等が利用できる。網材としては、具体的にはメリヤス編みの金網や平織りの金網、クリンプ織りの金属線材の集合体等が利用できる。
 また、フィルタ90として、孔あき金属板を巻き回したもの等を利用することもできる。この場合、孔あき金属板としては、たとえば、金属板に千鳥状に切れ目を入れるとともにこれを押し広げて孔を形成して網目状に加工したエキスパンドメタルや、金属板に孔を穿つとともにその際に孔の周縁に生じるバリを潰すことでこれを平坦化したフックメタル等が利用される。この場合において、形成される孔の大きさや形状は、必要に応じて適宜変更が可能であり、同一金属板上において異なる大きさや形状の孔が含まれていてもよい。なお、金属板としては、たとえば鋼板(マイルドスチール)やステンレス鋼板が好適に利用でき、またアルミニウム、銅、チタン、ニッケルまたはこれらの合金等の非鉄金属板を利用することもできる。
 フィルタ90は、燃焼室60にて発生したガスがこのフィルタ90中を通過する際に、ガスが有する高温の熱を奪い取ることによってガスを冷却する冷却手段として機能するとともに、ガス中に含まれる残渣(スラグ)等を除去する除去手段としても機能する。したがって、ガスを十分に冷却しかつ残渣が外部に放出されないようにするためには、燃焼室60内にて発生したガスが確実にフィルタ90中を通過するようにすることが必要である。なお、フィルタ90は、ハウジングの周壁部を構成する下部側シェル10の周壁部12および上部側シェル20の周壁部22との間で所定の大きさの間隙部28が形成されることとなるように、当該周壁部12,22から離間して配置されている。
 フィルタ90に対面する部分の上部側シェル20の周壁部22には、複数個のガス噴出口23が設けられている。この複数個のガス噴出口23は、フィルタ90を通過したガスをハウジングの外部に導出するためのものである。
 また、上部側シェル20の周壁部22の内周面には、上記複数個のガス噴出口23を閉鎖するようにシール部材としての金属製のシールテープ24が貼り付けられている。このシールテープ24としては、片面に粘着部材が塗布されたアルミニウム箔等が好適に利用でき、当該シールテープ24によって燃焼室60の気密性が確保されている。
 燃焼室60のうち、底板部11側に位置する端部近傍には、下側支持部材70が配置されている。下側支持部材70は、環状の形状を有しており、フィルタ90と底板部11との境目部分を覆うように、これらフィルタ90と底板部11とに実質的に宛がわれて配置されている。これにより、下側支持部材70は、燃焼室60の上記端部近傍において、底板部11とガス発生剤61との間に位置している。
 下側支持部材70は、底板部11の内底面に沿うように底板部11に宛がわれた円環板状の基部71と、フィルタ90の底板部11寄りの内周面に当接する当接部72と、基部71から天板部21側に向けて立設された筒状の立設部73とを有している。当接部72は、基部71の外縁から延設されており、立設部73は、基部71の内縁から延設されている。立設部73は、下部側シェル10の突状筒部13の外周面と、保持部30の内側被覆部31の外周面とを覆っている。
 下側支持部材70は、フィルタ90をハウジングに固定するための部材であるとともに、作動時において、燃焼室60にて発生したガスがフィルタ90の内部を経由することなくフィルタ90の下端と底板部11との間の隙間から流出してしまうことを防止する流出防止手段としても機能する。そのため、下側支持部材70は、たとえば金属製の板状部材をプレス加工等することによって形成されており、好適には普通鋼や特殊鋼等の鋼板(たとえば、冷間圧延鋼板やステンレス鋼板等)からなる部材にて構成される。
 燃焼室60のうち、天板部21側に位置する端部には、上側支持部材80が配置されている。上側支持部材80は、略円盤状の形状を有しており、フィルタ90と天板部21との境目部分を覆うように、これらフィルタ90と天板部21とに宛がわれて配置されている。これにより、上側支持部材80は、燃焼室60の上記端部近傍において、天板部21とガス発生剤61との間に位置している。
 上側支持部材80は、天板部21に当接する基部81と、当該基部81の周縁から立設された当接部82とを有している。当接部82は、フィルタ90の天板部21側に位置する軸方向端部の内周面に当接している。
 上側支持部材80は、フィルタ90をハウジングに固定するための部材であるとともに、作動時において、燃焼室60にて発生したガスがフィルタ90の内部を経由することなくフィルタ90の上端と天板部21との間の隙間から流出してしまうことを防止する流出防止手段としても機能する。そのため、上側支持部材80は、たとえば金属製の板状部材をプレス加工等することによって形成されており、好適には普通鋼や特殊鋼等の鋼板(たとえば、冷間圧延鋼板やステンレス鋼板等)からなる部材にて構成される。
 この上側支持部材80の内部には、燃焼室60に収容されたガス発生剤61に接触するように円盤状のクッション材85が配置されている。これにより、クッション材85は、燃焼室60の天板部21側の部分において天板部21とガス発生剤61との間に位置することになり、ガス発生剤61を底板部11側に向けて押圧している。
 クッション材85は、成形体からなるガス発生剤61が振動等によって粉砕されてしまうことを防止する目的で設けられるものであり、好適にはセラミックスファイバの成形体やロックウール、発泡樹脂(たとえば発泡シリコーン、発泡ポリプロピレン、発泡ポリエチレン、発泡ウレタン等)、クロロプレンおよびEPDMに代表されるゴム等からなる部材にて構成される。
 次に、図1を参照して、本実施の形態におけるディスク型ガス発生器100の組立作業の要領について説明する。
 まず、下部側シェル10においては、樹脂成形部からなる保持部30として射出成形されることによって、点火器40が固定される。そして、内部に伝火薬59が収容されたカップ状部材50の側壁部52を、下部側シェル10の保持部30に圧入することにより固定する。
 そして、フィルタ90の内側にガス発生剤61を充填し、クッション材85を介装した上側支持部材80をフィルタ90の上端部分に内挿する。この後、ガス噴出口23がシールテープ24によって閉塞された上部側シェル20を下部側シェル10に対してかぶせ、下部側シェル10と上部側シェル20とを溶接する。以上により、図1に示す構造のガス発生器100の組み立てが完了する。
 ここで、本実施の形態におけるディスク型ガス発生器100においては、カップ状部材50に開口が設けられていないため、カップ状部材50の内部に設けられた伝火室57に伝火薬59を充填する工程が非常に容易に行える。これは、ディスク型ガス発生器100の作動時において、カップ状部材の一部が、破裂、変形または溶融するようにカップ状部材50自体が機械的強度の低い脆弱な部材にて構成されているためである。すなわち、開口を有するカップ状部材を用いた場合に必要であった、伝火薬59を充填するためにカップ状部材に設けられた開口を閉塞する作業、例えば、アルミテープや閉塞板が不要になるため、製造工程を大幅に簡素化することができる。
 図3は、本実施の形態におけるディスク型ガス発生器の動作を説明するための概略断面図である。次に、この図3と前述の図1とを参照して、本実施の形態におけるディスク型ガス発生器100の動作について説明する。
 図1を参照して、ディスク型ガス発生器100が搭載された車両が衝突した場合には、車両に別途設けられた衝突検知手段によって衝突が検知され、これに基づいて車両に別途設けられたコントロールユニットからの通電によって点火器40が作動する。伝火室57に収容された伝火薬59は、点火器40が作動することによって生じた火炎によって点火されて燃焼を開始する。
 その際、図3に示すように、点火器40が作動した直後においては、点火部41に装填されていた点火薬が急速に燃焼することによって点火部41のスクイブカップが破裂するとともに、当該点火薬が急速に燃焼することによって生じる推力が、伝火室57に充填された伝火薬59に伝播する。
 図3に示すように、上記推力がカップ状部材50の頂壁部51に達することにより、脆弱な部材からなるカップ状部材50の脆弱部55は破裂、変形、又は溶融が生じる。このカップ状部材50の脆弱部55の破裂、変形又は溶融は、点火薬が燃焼することによって生じる熱粒子による伝火薬59の着火よりも遅く発生する。なお、側壁部52には脆弱部55が存在せず、頂壁部51に脆弱部55が存在していることから、頂壁部51の脆弱部55から破裂、変形又は溶融し、頂壁部51の破裂、変形又は溶融まで内圧が上昇することとなる。ここで、カップ状部材50の伝火薬59は、点火薬が燃焼することによって生じる推力を受けてカップ状部材50の内部において飛散し、分散した状態となる。脆弱部55は図2に示すようにスリットとして設けられ、カップ状部材50の頂壁部51から先に破裂、変形又は溶融し、側壁部52の薄肉部52aにかけて開裂していく。薄肉部52aは、この脆弱部55の破裂(破断)、変形、又は溶融に則って、破裂(破断)、変形、又は溶融し、厚肉部52bとの接続部まで開裂していく。ここで、厚肉部52bは、破裂(破断)、変形、又は溶融しない。
 そのため、より短時間のうちにより点火器40から遠い位置にある伝火薬59についても熱粒子によって着火されてその燃焼を開始することになり、結果としてカップ状部材50の内部の空間の圧力上昇ならびに当該空間の温度上昇が大幅に促進されることとなる。
その結果、より短時間のうちにカップ状部材50の脆弱部55および薄肉部52aが順に破裂、変形又は溶融することになり、伝火薬59が燃焼することによって生じた多量の熱粒子が、燃焼室60へと早期に流れ込むことになる。
 特に、図1ではカップ状部材50が鉄製又はステンレス製であってアルミニウムに比して強度が高いことから、伝火薬59の燃焼の初期段階では、カップ状部材50の破裂、変形又は溶融は生じない。この時、カップ状部材の脆弱部55の破裂、変形又は溶融が生じる所定時間が経過するまで、カップ状部材50の内圧は上昇する。そして、一定以上の内圧となってから、カップ状部材50の脆弱部55および薄肉部52aが順に破裂、変形又は溶融することになる。そのため、カップ状部材50を鉄製又はステンレス製といった機械的強度の高い鉄系金属材料を使用して、機械的強度を上げることで、カップ状部材50の開裂時において十分に伝火薬59の燃焼を促進させ、ガス発生剤61へ燃焼が促進された状態でカップ状部材50を開裂させることができる。このようなカップ状部材50の機械的強度の向上は、アルミニウム等の強度の低い金属を使用した場合でも、厚みを厚くすることで実現可能である。その場合の厚みとしては、0.4mm以上1.5mm以下が好ましく、0.6mm以上1.2mm以下がより好ましい。
 このようにして、多量の熱粒子が燃焼室60に流れ込むことにより、燃焼室60に収容されたガス発生剤61が着火されて燃焼し、多量のガスが発生する。燃焼室60にて発生したガスは、フィルタ90の内部を通過し、その際、フィルタ90によって熱が奪われて冷却されるとともに、ガス中に含まれるスラグがフィルタ90によって除去されて間隙部28に流れ込む。
 以下においては、図1を参照して、本発明の実施形態におけるディスク型ガス発生器100とした場合に、伝火薬59による火炎エネルギーの伝達が好適に制御可能となる仕組みについて説明する。
 図2に示すように、本発明の実施形態のディスク型ガス発生器100においては、カップ状部材50の頂壁部51において、頂壁部51において放射状に厚みが他の部分に比して薄肉とすることによって脆弱部55を構成し、カップ状部材50の頂壁部51の残る部分の厚みを上記脆弱部55の厚みよりも厚肉とすることによって非脆弱部56を構成している。そして、カップ状部材50の側壁部52のうち薄肉部52aは、脆弱部55よりは厚肉で厚肉部52bよりは薄肉として構成し、カップ状部材50の側壁部52のうち厚肉部52bは、脆弱部55および薄肉部52aより厚肉とし、非脆弱部56と同程度の厚みとして構成している。
 このように構成することにより、まず脆弱部55が破裂、変形又は溶融する。ここで、カップ状部材50は起点となる部分から破裂、変形又は溶融するため、脆弱部55が存在しない側壁部52から破裂、変形又は溶融するおそれがなく、伝火薬59が十分に燃焼してから頂壁部51が破裂、変形又は溶融することとなる。その後、破裂、変形又は溶融した脆弱部55を起点として、脆弱部55に沿って頂壁部51が開裂していく。頂壁部51の開裂後、開裂は側壁部52の薄肉部52aへ到達して、そのまま側壁部52の薄肉部52aを開裂させていく。そして、薄肉部52aと厚肉部52bとの接続部分において当該開裂が止まる。こうして、脆弱部55の長手方向に沿った開裂となることから、薄肉部52aと厚肉部52bとの接続部分まで花びら状に開裂することとなる。そのため、カップ状部材50が途中(薄肉部52aと厚肉部52bとの接続部分)まで開裂して止まることで、時間の経過とともに天板部21側の方向へ向かうに従って拡がり、カップ状部材50の破断の大きさが安定した状態で開口されていくことから、伝火薬59の燃焼によって生じた熱粒子はより天板部21側へ指向性をもって流れ込むことになる。
 具体的には、脆弱部55が破裂、変形又は溶融して、脆弱部55を起点として、頂壁部51の非脆弱部が開裂した開裂の第1段階においては、カップ状部材50の頂壁部51が破裂、変形又は溶融して側壁部52は残存していることから、伝火薬59の燃焼によって生じた熱粒子は、天板部21方向へ流れ込むことになり、燃焼室60内に流入する火炎がカップ状部材50と天板部21との間に絞られることとなる。その結果、カップ状部材50に隣接するガス発生剤61のすべてが一度に同時に着火されることがなくなり、ガス発生剤61の燃え広がりが伝火室57と天板部21との間を中心として進行することになる。
 カップ状部材50の頂壁部51の破裂、変形又は溶融が進行していくと、次に第2段階として薄肉部52aの開裂が進行していく。ここで、側壁部52の開裂は、頂壁部51に放射状に設けられた脆弱部55が設けられていた長手方向に沿って進行していくこととなり、薄肉部52aにおいては側壁部52の軸方向に下方に向かって開裂が進行していくが、途中(薄肉部52aと厚肉部52bとの接続部分)まで開裂した後、当該開裂は止まる。そのため、かかる開裂部からも、伝火薬59の燃焼によって生じた熱粒子が燃焼室60内へ流入していくこととなる。その結果、薄肉部52aとフィルタ90との間のガス発生剤61へも燃え広がりが進行し、続いて、厚肉部52bとフィルタ90との間のガス発生剤61へも燃え広がりが進行して行くこととなる。
 したがって、カップ状部材50に脆弱部55、非脆弱部56、薄肉部52a、および厚肉部52bを設け、これら脆弱部55、非脆弱部56、薄肉部52a、および厚肉部52bが設けられる位置および大きさ等を適宜調整することにより、ガス発生剤61が急速に燃焼することを防止してその燃焼の進行を意図的に遅延させることができ、ガス出力を所定時間にわたって持続させるなどのガス出力の調整を仕様に応じて最適化することが非常に容易に行えることになる。
 また、カップ状部材50の側壁部52の全体を薄肉に構成した場合には、伝火薬59の燃焼によってカップ状部材50が破裂、変形又は溶融した際の衝撃がフィルタ90に加わって、フィルタ90が損傷してしまうおそれがあるが、本発明の実施形態におけるディスク型ガス発生器100のごとくカップ状部材50の側壁部52の一部(厚肉部52b)を肉厚に構成して頂壁部51に脆弱部55を設けることにより、カップ状部材50の破裂、変形または溶融の初期では天板部21側へ熱粒子が向かうことから、このようなフィルタ90に加わる衝撃が緩和されてその損傷が未然に防止される効果も得られる。
 また、上記構成を採用することにより、頂壁部51が着火時から瞬時に破裂、変形又は溶融することで、直ぐに頂壁部51と天板部21の間のガス発生剤61の燃焼が進行するため、ガス出力の遅延が生じることもなく、ガス発生器内部の内圧も迅速に高まり、さらに出力特性のばらつきが生じることも未然に防止できる。
 ガス発生剤61が燃焼することで生じるハウジングの内部の空間の圧力上昇に伴い、上部側シェル20に設けられたガス噴出口23を閉鎖していたシールテープ24が開裂し、当該ガス噴出口23を介してガスがハウジングの外部へと噴出される。噴出されたガスは、ディスク型ガス発生器100に隣接して設けられたエアバッグの内部に導入され、当該エアバッグを膨張および展開する。
 ここで、点火器40が作動することで発生する推力の伝播を受けてカップ状部材50の脆弱部55および薄肉部52aが順に破裂、変形又は溶融するかは、カップ状部材の機械的強度(厚みや材質、形状等)や点火器40の出力、点火部41とカップ状部材と脆弱部55との間の距離、伝火室に充填された伝火薬59の密度等によって決まることになる。
 このように、伝火薬59の燃焼に伴う伝火室の圧力上昇や温度上昇を利用してカップ状部材50の脆弱部55および薄肉部52aを順に破裂、変形又は溶融させるためには、上述したカップ状部材50の機械的強度(厚みや材質、形状等)や点火器40の出力、点火部41とカップ状部材50の脆弱部55との間の距離、伝火室に充填された伝火薬59の密度等を種々調整すればよいが、上述の通り特にカップ状部材50の部材を鉄、ステンレス等の鉄系金属材料の部材にて構成することにより、比較的容易にその実現が可能である。
 なお、いずれの場合においても、カップ状部材50の脆弱部55は、カップ状部材50の側壁部52よりも機械的強度が低いことが好ましい。カップ状部材50の脆弱部55をカップ状部材50の側壁部52よりも脆弱にする手法としては、これらの厚みを調整したり、これらの材質を異ならしめたり、これらの形状を工夫したりすること等が想定される。
 このように構成することにより、カップ状部材50の薄肉部52aが破裂、変形または溶融するに先立って脆弱部55を破裂、変形あるいは溶融させることが、比較的容易に実現できることになる。ただし、カップ状部材50の薄肉部52aが破裂、変形または溶融するに先立って脆弱部55を破裂、変形または溶融させることができる場合には、脆弱部55とカップ状部材50の側壁部52の薄肉部52aとが同等程度の機械的強度を有してもよい。
 以上において説明したように、上述した本発明の実施形態によれば、カップ状部材50の機械的強度を高めつつも、カップ状部材50における破裂(破断)の大きさが安定するように制御可能なディスク型ガス発生器100を提供できる。また、カップ状部材50の破裂の大きさが安定する(破断領域が均一化する)ので、伝火薬59の量を減らしつつ、所定の性能を発揮することが可能なディスク型ガス発生器100とすることができる。
 また、伝火薬59の燃焼が促進されることによってガス発生剤61の燃焼をより早期に開始させることが可能になるため、結果として点火器が作動した時点からガス噴出口23を介して外部にガスが噴出され始める時点までの時間を従来に比して短縮化することができる。また、カップ状部材50の脆弱部55および薄肉部52aを追加することにより、破断領域を均一化することができ、部品加工は増加することになるものの、伝火薬59の充填量は大幅に少なくすることができ、点火器が作動した時点からガス噴出口23を介して外部にガスが噴出され始める時点までの時間を低コストに短縮化させることができる。
 また、伝火薬59の充填量が減ることにより、カップ状部材50の容積を従来よりも小さくすることができるので、ディスク型ガス発生器100の容積を最適化することによる軽量化を図ることが可能となる。
 また、伝火薬59の充填量が減ることにより、ガス温度が低下することになるので、フィルタ90の冷却能力をその分低下させてもよくなる。その結果として、フィルタ90を軽量化することも可能となる。
(検証試験)
 次に、ディスク型ガス発生器100と同構成のディスク型ガス発生器を作成し、カップ状部材の形状、寸法などを変化させることによって、60Lタンク試験において、どのような変化があるか検証試験を行った。なお、ここでの60Lタンク試験とは、カップ状部材を有したディスク型ガス発生器(具体的には、下記実施例1~3参照)を-40℃±2℃の環境下において4時間以上調温してから、個別に60L容積の密閉されたタンク内に設置するとともに、これを動作させてタンク内圧の上昇を経時的に計測する試験である。また、本検証試験では、点火器が作動した時点から100msまでのガス圧を経時的に測定した。また、各ディスク型ガス発生器のガス発生剤の発生するガスのモル数は2mol、伝火薬のカップ状部材への充填量は1.2gである。また、本検証試験での各カップ状部材の材質はアルミニウム合金とした。
(実施例1)
 厚みが一定(厚み1mm)の従来のカップ状部材(仕様名:段無し)を備えたディスク型ガス発生器(以下、従来のガス発生器)と、薄肉部の厚みが0.5mm、薄肉部の軸方向長さが5mm、厚肉部の厚みが1mm、厚肉部の軸方向長さが15mmのカップ状部材(仕様名:段有り)を備えたディスク型ガス発生器100と同構成のディスク型ガス発生器(以下、本発明のガス発生器)と、について、上記検証試験を2回ずつ行った。なお、各カップ状部材における脆弱部は、上記実施形態における脆弱部55と同様のものであって、スリット深さ0.6mm(残厚0.4mm)、幅3mmである。また、各ガス発生器におけるカップ状部材の軸方向長さは同じものとした。また、従来のガス発生器と本発明のガス発生器とについて、他の条件は同一とした。
 図4に、従来のガス発生器と本発明のガス発生器とについての検証試験結果を示す。なお、t1はガス出力が検知されるまでの時間、Pmaxはタンク内の圧力の最大値である。
 本発明のガス発生器においては、図4の(1)、(2)に示したように、2回の検証試験のどちらも、点火器が作動した時点から比較的早い段階において高いガス出力が得られているだけでなく、同様の圧力変化を経ることがわかった。すなわち、カップ状部材が本発明のガス発生器においては、好ましいガス出力性能を安定して発揮できることがわかった。
 これに対して、従来のガス発生器においては、図4の(3)に示した場合の検証試験では、本発明のガス発生器と同様のガス出力性能を発揮できたが、図4の(4)に示した場合の検証試験では、ガス出力が検知されるまでの時間が図4の(1)~(3)の検証試験に対して遅れ、図4の(1)~(3)のようなガス出力の過程を経ることができなかった。すなわち、従来のガス発生器の構成では、そのガス発生器ごとにガス出力の過程にばらつきが出てしまう場合があることがわかった。
 したがって、本発明のガス発生器は、従来のガス発生器と比べて、好ましいガス出力性能を安定して発揮できることがわかった。
(実施例2)
 実施例1と同様の本発明のガス発生器において、軸方向高さ20mm、薄肉部の厚み0.5mm、脆弱部のスリット深さ0.6mm(残厚0.4mm)・幅3mm、その他の部分の厚み1mmのカップ状部材(図5(a)参照)について内部容積を変化させずに、薄肉部の軸方向長さPmmを(1)5mm、(2)8mm、(3)11mmのそれぞれに変化させて、実施例1と同様の60Lタンク試験を行った場合、どのようなガス出力となるか検証試験を行った。なお、各ガス発生器のその他の条件は同一とした。図5(b)に本検証試験の結果を示す。
 本実施例のガス発生器においては、図5(b)に示したように、図5(a)のカップ状部材の薄肉部の軸方向長さPmmを(1)5mm、(2)8mm、(3)11mmに変化させても、実施例1とほぼ同様に、それぞれ好ましいガス出力性能を発揮できることがわかった。
(実施例3)
 実施例1と同様の本発明のガス発生器において、軸方向高さ20mm、薄肉部の軸方向長さ5mm、脆弱部のスリット深さ0.6mm(残厚0.4mm)・幅3mm、その他の部分の厚み1mmのカップ状部材(図6(a)参照)について内部容積を変化させずに、薄肉部の厚みQmmを(1)0.4mm、(2)0.5mm、(3)0.6mm、(4)0.7mmのそれぞれに変化させて、実施例1と同様の60Lタンク試験を行った場合、どのようなガス出力となるか検証試験を行った。なお、各ガス発生器のその他の条件は同一とした。図6(b)に本検証試験の結果を示す。
 本実施例のガス発生器においては、図6(b)に示したように、図6(a)のカップ状部材の薄肉部の厚みQmmを(1)0.4mm、(2)0.5mm、(3)0.6mm、(4)0.7mmに変化させても、実施例1、2とほぼ同様に、それぞれ好ましいガス出力性能を発揮できることがわかった。
 (変形例等)
 以下、本発明の実施形態の変形例について説明するが、特に示さない限り、同様の機能を有した部位には同名称を用いている。また、各変形例において、上記実施形態と同様の部位については、特に説明がない限り、下2桁が同じ符号を用いて示し、説明を省略することがある。
 本発明の実施形態におけるカップ状部材50は、たとえば、デュアルインフレータと呼ばれる2つの点火器が設けられているディスク型ガス発生器にも、本実施形態のディスク型ガス発生器100と同様に適用可能であるし、その他のガス発生器にも適用可能である。
 また、カップ状部材50の脆弱部55は、図2に示したものに限られない。たとえば、脆弱部55を構成するスリットが放射状に設けられていれば、いくつのスリットからなるものであってもよい。たとえば、平面視十字状またはアスタリスク状にスリットが設けられた脆弱部としてもよい。
 また、脆弱部55の凹凸形状としては、上述したものに限らず、どのような形状のものであってもよい。たとえば、非脆弱部56の一部を頂壁部51に向けて膨出させることで環状の凸部を設けてもよいし、脆弱部55の全体を凹部が生じるように湾曲させることとしてもよい。また、脆弱部55に点列状または行列状に複数の凸部または凹部を設けることとしてもよい。さらに、頂壁部51に円形または環状の脆弱部55を設けることとしてもよい。
 また、上記脆弱部55のスリットは、側壁部52の薄肉部52aの表面(外壁)上まで連続して延設されていてもよい。
 また、目的に応じて、カップ状部材50の代わりに、図7に示したカップ状部材150を適用してもよい。このカップ状部材150は、カップ状部材50が全周にわたってスリット(脆弱部)が形成されているものであるのに対して、全周にわたってスリット(脆弱部)が形成されているものではない点で、主に異なっている。以下、具体的に説明する。なお、上記実施形態と同様の部位には、下二桁が同様の符号を用いており、説明を省略することがある。
 脆弱部155は周方向からみて、特定角度の間に設けられることにより偏って配置されている。ここで、軸方向上側から見た際に半周(角度において180°)以下の角度で脆弱部が設けられている領域を脆弱部存在領域、軸方向上側から見た際に半周(角度において180°)を超えた角度で脆弱部が設けられていない領域を脆弱部非存在領域という。図7においては、上記脆弱部存在領域151aと上記脆弱部非存在領域151bとが存在することにより、カップ状部材の破裂、変形または溶融は、脆弱部存在領域151aが脆弱部非存在領域151bに先立って生じるため、指向性をもって伝火薬の燃焼により生じた熱粒子が燃焼室へ流入していくこととなる。
 このように構成した場合には、上述した実施の形態において説明した効果が得られるばかりでなく、点火器の作動時においてより確実に脆弱部155および薄肉部152aが破裂、変形又は溶融することになり、伝火薬の燃焼の促進を確実ならしめる効果を得ることができる。さらに、薄肉部152aにおいて半周分で偏在している脆弱部155から破裂、変形または溶融することから伝火薬の燃焼ガスが燃焼室へ流れ込む向きに指向性を与えることができる。なお、上述のデュアルインフレータと呼ばれる2つの点火器が設けられているディスク型ガス発生器においても適用可能である。
 なお、図7においては、脆弱部のスリットを60°の角度で中心から3箇所に向けて放射状に設けたものとしたがこれに限られない。たとえば、脆弱部のスリットを60°の角度で2箇所設けた略∨字型のものとしてもよいし、脆弱部のスリットを30°の角度で中心から4箇所以上に向けて放射状に設けたものなどとしてもよい。
 上述した本発明の実施の形態およびその変形例においては、金属製の部材をプレス加工することによって成形されたプレス成形品にて上部側シェルおよび下部側シェルを構成した場合を例示したが、必ずしもこれに限定されるものではなく、プレス加工と他の加工(鍛造加工や絞り加工、切削加工等)との組み合わせによって形成された上部側シェルおよび下部側シェルを使用することとしてもよいし、上記他の加工のみによって形成された上部側シェルおよび下部側シェルを使用することとしてもよい。
 また、上述した本発明の実施の形態およびその変形例においては、下部側シェルに突状筒部を設けた場合を例示したが、当該突状筒部が設けられない構成のガス発生器に本発明を適用することも当然に可能である。
 さらには、上述した本発明の実施の形態およびその変形例においては、カップ状部材として、点火器が作動することによって伝火薬が着火された場合に、その内部の空間の圧力上昇や発生した熱の伝導に伴って破裂、変形または溶融するものを使用した場合を例示して説明を行なったが、他の構成のカップ状部材を用いることとしてもよい。具体的には、カップ状部材として、ステンレス合金等の機械的強度の高い部材に開口を予め設けておき、当該開口をシールテープによって閉塞することで、作動時において当該シールテープの閉塞が破られるように構成されたものを使用することもできる。
 また、上記実施形態の変形例として、図8~図11に示したガス発生器およびカップ状部材が挙げられる。以下、上記実施形態と異なっている点を中心に、各変形例に係るガス発生器およびカップ状部材について説明する。
 図8(a)のガス発生器は、カップ状部材250の厚肉部252bに、下側支持部材270の立設部273の上端部が圧入されている点、基部281側を下部側に向けた上側支持部材280を用いる点、クッション材を用いていない点で、上記実施形態と異なっている。なお、上側支持部材280の側壁部282は、フィルタ290の内壁に当接していなくてもよいし、当接するものであってもよい。
 ここで、図8(a)のガス発生器の製造工程の一工程(上部側シェル220を下部側シェル210に圧入する前)を図8(b)に示す。なお、上部側シェル220を下部側シェル210に圧入する前(下側支持部材270の立設部273の上端部を、カップ状部材250の厚肉部252bに圧入する前)においては、薄肉部252aの外径≦下側支持部材270の立設部273の上端部の内径<厚肉部252bの外径、の関係となっている。したがって、図8(b)では、下側支持部材270の立設部273の上端部がカップ状部材250の薄肉部252aに嵌設されているが、厚肉部252bの上端部に止められて、この厚肉部252bの上端部から下部側へ自然には移動しないようになっている状態を示している。これにより、製造工程時において、下側支持部材270が、斜めに設けられてしまったり、径方向に動いてしまったりすることを防止することができるので、ガス発生剤261のガス発生器200への充填を円滑に行うことができる。
 また、図8(b)に示したように、ガス発生剤261のガス発生器200への充填を行い、上部側シェル220を下部側シェル210に圧入すると、上側支持部材280に押されたガス発生剤261を介して、下側支持部材270の立設部273の上端部が、カップ状部材250の厚肉部252bに圧入固定される。これにより、ガス発生剤261が、下側支持部材270、上側支持部材280、フィルタ290に囲まれた空間内に固定される。また、下側支持部材270は、カップ状部材250の厚肉部252bに圧入固定されているので、ガス発生器200が振動しても、ガス発生器200内部において移動することがない。
 したがって、本変形例によれば、上記実施形態と同様の効果を奏するだけでなく、上記実施形態と比べて、クッション材を使用しなくてよく、部品点数を削減できる。また、下側支持部材270を予め固定する必要がなく、上部側シェル220を下部側シェル210に圧入する際に前述の圧入固定がなされるので、製造工程の簡略化によるコスト削減が可能となる。
 次に、図9に示したガス発生器について説明する。ガス発生器300は、カップ状部材50および下側支持部材70の代わりに、カップ状部材350を用いている点で上記実施形態と異なっている。ここで、カップ状部材350の斜視図を図10(a)に示す。
 カップ状部材350は、上記実施形態のカップ状部材50および下側支持部材70の機能を併せ持つように、カップ状部材350のフランジ部362から、上記実施形態の下側支持部材70に対応する立設部373、基部371、当接部372を順に一体的に延設したものである。また、カップ状部材350は、内側被覆部331、および、フィルタ390内に充填されたガス発生剤361に固定されている。これにより、カップ状部材350は、図9(b)に示したように、動作時において、上記実施形態と同様、脆弱部355および薄肉部352aが順に破裂、変形又は溶融することになり、伝火薬359が燃焼することによって生じた多量の熱粒子が、燃焼室360へと早期に流れ込むことになる。
 本変形例によれば、上記実施形態と同様の作用効果を奏するだけでなく、上記実施形態と比べて、動作前はカップ状部材350を内側被覆部331とともにガス発生剤361で固定でき、動作後には内側被覆部331とともに当接部372によってカップ状部材350のガス発生器300のハウジング軸方向(図9の紙面上下方向)への移動をより防止することができる。また、本変形例によれば、上記実施形態のカップ状部材50および下側支持部材70が一体化されたようなカップ状部材350であるので、上記実施形態と比較して、部品点数の削減をすることができる。
 次に、図11に示したガス発生器について説明する。ガス発生器400は、図10(b)に示したカップ状部材を含むものであって、カップ状部材50および下側支持部材70の代わりに、カップ状部材450を用いている点で上記実施形態と異なっている。ここで、カップ状部材450の斜視図を図10(b)に示す。
 カップ状部材450は、上記変形例のカップ状部材350の頂壁部351の代わりに、頂壁部451としたものである。この頂壁部451は、周囲よりも厚みが薄肉の略円形状の脆弱部455が形成されているものである。また、カップ状部材450は、内側被覆部431、および、フィルタ490内に充填されたガス発生剤361に固定されている。これにより、カップ状部材450は、図11(b)に示したように、動作時において、脆弱部455が(伝火薬459の種類、充填量または/および薄肉部452aの厚みの程度によっては薄肉部452aも)破裂、変形又は溶融することになり、伝火薬459が燃焼することによって生じた多量の熱粒子が、燃焼室460へと早期に流れ込むことになる。
 本変形例によれば、上記実施形態と同様の作用効果を奏するだけでなく、上記実施形態と比べて、動作前はカップ状部材450を内側被覆部431とともにガス発生剤461で固定でき、動作後には内側被覆部331とともに当接部372によってカップ状部材450のガス発生器400のハウジング軸方向(図11の紙面上下方向)への移動をより防止することができる。また、本変形例によれば、上記実施形態のカップ状部材50および下側支持部材70が一体化されたようなカップ状部材450であるので、上記実施形態と比較して、部品点数の削減をすることができる。
 なお、図11のガス発生器におけるカップ状部材450の代わりに、薄肉部452aに該当する部分が側壁部552にないカップ状部材550(図10(c)参照)を用いてもよい。
 加えて、上述した本発明の実施の形態およびその変形例において示した特徴的な構成は、本発明の趣旨に照らして許容される範囲で当然に相互に組み合わせることが可能である。
 このように、今回開示した上記実施の形態およびその変形例はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は特許請求の範囲によって画定され、また特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。
10、210、310、410  下部側シェル
11、211、311、411  底板部
12、212、312、412  周壁部
13、213、313、413  突状筒部
14、214、314、414  窪み部
15、215、315、415  開口部
20、220、320、420  上部側シェル
21、221、321、421  天板部
22、222、322、422  周壁部
23、223、323、423  ガス噴出口
24、224、324、424  シールテープ
28、228、328、428  間隙部
30、230、330、430  保持部
31、231、331、431  内側被覆部
32、232、332、432  外側被覆部
33、232、332、432  連結部
34、234、334、434  雌型コネクタ部
40、240、340、440  点火器
41、241、341、441  点火部
42、242、342、442  端子ピン
50、150、250、350、450、550  カップ状部材
51、151、251、351、451、551  頂壁部
52、152、252、282、352、452、552  側壁部
52a、152a、252a、352a、452a  薄肉部
52b、152b、252b、352b、452b  厚肉部
55、155、255、355、455、555  脆弱部
56、156、256、356  非脆弱部
57、257、357、457  伝火室
59、259、359、459  伝火薬
60、260、360、460  燃焼室
61、261、361、461  ガス発生剤
62、162、262、362、462、562  フランジ部
70、270  下側支持部材
71、81、271、371、471、281、381、481、571  基部
72、82、272、372、472、382、482、572  当接部
73、273、373、473、573  立設部
80、280、380、480  上側支持部材
85、385、485  クッション材
90、290、390、490  フィルタ
100、200、300、400  ディスク型ガス発生器
151a  脆弱部存在領域
151b  脆弱部非存在領域

 

Claims (7)

  1.  ガス噴出口が設けられた筒状の周壁部と、前記周壁部の軸方向の一端を閉塞する天板部、および前記周壁部の軸方向の他端を閉塞する底板部とによって構成され、ガス発生剤が収容された燃焼室を内部に有する短尺筒状のハウジングと、前記底板部に組付けられ、作動時において着火する点火薬が収容された点火部を含む点火器と、
     伝火薬が収容された伝火室を内部に含み、前記伝火室の内部の空間が前記点火部に面するように、前記燃焼室に向けて突出して配置された有底筒状の単一の部材からなるカップ状部材と、
    を備え、
     前記カップ状部材の頂壁部には少なくとも一部に薄肉の脆弱部が配置され、前記伝火室と前記燃焼室とを区画する前記脆弱部より機械的強度が高い前記カップ状部材の側壁部を備え、
     前記側壁部には、前記頂壁部側に設けられた薄肉部と、前記薄肉部から軸方向に沿って前記頂壁部と反対側に延設された厚肉部と、を備え、
     前記脆弱部は、前記点火部に対向して配置され、前記点火器の作動に伴って前記側壁部より先に前記カップ状部材を破裂、変形、又は溶融する機械的強度を有したものであり、
     前記薄肉部は、前記脆弱部における破裂、変形、又は溶融が前記薄肉部まで進展した場合、破裂、変形、又は溶融する機械的強度を有したものである、
     ガス発生器。
  2.  前記カップ状部材の頂壁部に配置された前記脆弱部が、前記カップ状部材の側壁部よりも薄肉で構成されている、請求項1に記載のガス発生器。
  3.  前記カップ状部材の前記頂壁部が、前記点火器の作動に伴う前記伝火薬の燃焼により前記脆弱部を起点として初期に破裂、変形又は溶融が生じる脆弱部存在領域と、前記脆弱部存在領域が変形してから所定時間経過後に破裂、変形又は溶融が生じる脆弱部非存在領域とで構成されている、請求項1または2に記載のガス発生器。
  4.  前記脆弱部が、前記頂壁部において中心から放射状に設けられたスリット形状である請求項1~3のいずれか1項に記載のガス発生器。
  5.  前記カップ状部材が、金属または合金からなる請求項1~4のいずれか1項に記載のガス発生器。
  6.  前記ハウジングの内側に周方向にわたって設けられたフィルタと、
     前記底板部の内底面に沿う方向に設けられた円環板状の基部と、前記フィルタの前記底板部側の端部の内周面に当接する当接部と、前記基部から前記天板部側に向けて立設された筒状の立設部とを有した支持部材と、
    をさらに備え、
     前記立設部が前記カップ状部材の前記厚肉部に圧入されることにより、前記支持部材が前記カップ状部材に保持されていることを特徴とする請求項1~5のいずれか1項に記載のガス発生器。
  7.  前記ハウジングの内側に周方向にわたって設けられたフィルタをさらに備え、
     前記カップ状部材が、前記底板部の内底面に沿う方向に設けられた円環板状の基部と、前記フィルタの前記底板部側の端部の内周面に当接する当接部と、前記基部から前記天板部側に向けて立設された筒状の立設部とをさらに有しており、
     前記立設部は、前記カップ状部材の前記側壁部から一体的に延設されたものであることを特徴とする請求項1~5のいずれか1項に記載のガス発生器。
PCT/JP2021/048894 2021-01-22 2021-12-28 ガス発生器 WO2022158276A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180091653.3A CN116802088A (zh) 2021-01-22 2021-12-28 气体发生器
EP21921377.4A EP4282520A1 (en) 2021-01-22 2021-12-28 Gas generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-009167 2021-01-22
JP2021009167A JP2022113057A (ja) 2021-01-22 2021-01-22 ガス発生器

Publications (1)

Publication Number Publication Date
WO2022158276A1 true WO2022158276A1 (ja) 2022-07-28

Family

ID=82548784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048894 WO2022158276A1 (ja) 2021-01-22 2021-12-28 ガス発生器

Country Status (4)

Country Link
EP (1) EP4282520A1 (ja)
JP (1) JP2022113057A (ja)
CN (1) CN116802088A (ja)
WO (1) WO2022158276A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003285714A (ja) * 2002-03-29 2003-10-07 Toyota Motor Corp イニシエータ
JP2004217059A (ja) 2003-01-15 2004-08-05 Daicel Chem Ind Ltd ガス発生器
JP2012040943A (ja) * 2010-08-19 2012-03-01 Nippon Kayaku Co Ltd ガス発生器
WO2017138612A1 (ja) * 2016-02-10 2017-08-17 日本化薬株式会社 ガス発生器
JP2020093610A (ja) * 2018-12-11 2020-06-18 日本化薬株式会社 ガス発生器およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003285714A (ja) * 2002-03-29 2003-10-07 Toyota Motor Corp イニシエータ
JP2004217059A (ja) 2003-01-15 2004-08-05 Daicel Chem Ind Ltd ガス発生器
JP2012040943A (ja) * 2010-08-19 2012-03-01 Nippon Kayaku Co Ltd ガス発生器
WO2017138612A1 (ja) * 2016-02-10 2017-08-17 日本化薬株式会社 ガス発生器
JP2020093610A (ja) * 2018-12-11 2020-06-18 日本化薬株式会社 ガス発生器およびその製造方法

Also Published As

Publication number Publication date
EP4282520A1 (en) 2023-11-29
CN116802088A (zh) 2023-09-22
JP2022113057A (ja) 2022-08-03

Similar Documents

Publication Publication Date Title
JP5944270B2 (ja) ガス発生器
JP6798935B2 (ja) ガス発生器
WO2017069233A1 (ja) ガス発生器
JP2020157879A (ja) ガス発生器
JP6910828B2 (ja) ガス発生器
JP2020006919A (ja) ガス発生器
WO2022158276A1 (ja) ガス発生器
JP7175165B2 (ja) ガス発生器
JP7219193B2 (ja) ガス発生器
JP2021079950A (ja) ガス発生器
JP7240943B2 (ja) ガス発生器
WO2022186018A1 (ja) 点火器およびガス発生器
US20240132011A1 (en) Gas generator
JP7219194B2 (ja) ガス発生器
JP7478705B2 (ja) ガス発生器
JP7199296B2 (ja) ガス発生器
JP2023018626A (ja) ガス発生器
JP7280765B2 (ja) ガス発生器
JP6947580B2 (ja) ガス発生器
JP7249237B2 (ja) ガス発生器
JP7434111B2 (ja) ガス発生器
JP7280764B2 (ja) ガス発生器
JP6857765B2 (ja) ガス発生器
JP7175173B2 (ja) ガス発生器
JP2020128154A (ja) ガス発生器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921377

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180091653.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021921377

Country of ref document: EP

Effective date: 20230822