WO2022156465A1 - 自主移动机器人、待对接装置、物流对接系统和对接方法 - Google Patents

自主移动机器人、待对接装置、物流对接系统和对接方法 Download PDF

Info

Publication number
WO2022156465A1
WO2022156465A1 PCT/CN2021/140006 CN2021140006W WO2022156465A1 WO 2022156465 A1 WO2022156465 A1 WO 2022156465A1 CN 2021140006 W CN2021140006 W CN 2021140006W WO 2022156465 A1 WO2022156465 A1 WO 2022156465A1
Authority
WO
WIPO (PCT)
Prior art keywords
docking
mobile robot
autonomous mobile
docked
logistics
Prior art date
Application number
PCT/CN2021/140006
Other languages
English (en)
French (fr)
Inventor
齐欧
成鹏
Original Assignee
灵动科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 灵动科技(北京)有限公司 filed Critical 灵动科技(北京)有限公司
Publication of WO2022156465A1 publication Critical patent/WO2022156465A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0492Storage devices mechanical with cars adapted to travel in storage aisles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/08Control devices operated by article or material being fed, conveyed or discharged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G69/00Auxiliary measures taken, or devices used, in connection with loading or unloading
    • B65G69/22Horizontal loading or unloading platforms

Definitions

  • the present invention relates to the technical field of logistics, in particular, to an autonomous mobile robot (AMR, Automatic Mobile Robot), a device to be docked, a logistics docking system and a docking method.
  • AMR autonomous mobile robot
  • AMR Automatic Mobile Robot
  • the positions of the autonomous mobile robot and the device to be docked are usually corrected by sensors. Due to the high requirements for docking accuracy, conventional sensors cannot meet the accuracy requirements, and high-precision sensors are expensive. In addition, when performing precise docking through high-precision sensors, a large amount of data needs to be collected and complex control needs to be performed based on the large amount of data collected. Therefore, it takes a long time to achieve precise docking, and the docking speed is slow.
  • an autonomous mobile robot in a first aspect of the present invention, includes a first docking portion for docking with a second docking portion of a device to be docked to be docked with the autonomous mobile robot.
  • the shape of the first abutting portion is complementary to that of the second abutting portion, and the first abutting portion is provided with at least one first width gradient area.
  • the first abutting portion is a protruding portion to abut with the second abutting portion formed as a concave portion, and the width of the protruding portion gradually decreases along the protruding direction.
  • the size of the protrusion is configured to be smaller than the size of the recess with which the protrusion is to be interfaced.
  • the cross section of the first width gradient region is one of a triangle, a semicircle, and an ellipse.
  • the autonomous mobile robot includes a chassis and an upper loading platform connected above the chassis, and the first docking portion is disposed on the upper loading platform.
  • the first docking portion is detachably connected to the upper loading platform.
  • the autonomous mobile robot is used for lateral docking with the device to be docked, and the autonomous mobile robot includes at least one steering wheel.
  • a device to be docked in a second aspect of the present invention, is provided, and the device to be docked includes a material platform.
  • the device to be docked is used in cooperation with the above-mentioned autonomous mobile robot, and the device to be docked includes the second docking portion for docking with the first docking portion, and the second docking portion is provided with at least one The second width gradient area.
  • the second docking portion is detachably connected to the material platform.
  • a logistics docking system in a third aspect of the present invention, includes: the above-mentioned autonomous mobile robot; and the above-mentioned device to be docked.
  • At least one of the contact surface of the first abutting portion and the contact surface of the second abutting portion is a smooth surface or is provided with a rolling contact portion.
  • the first docking portion and/or the second docking portion is provided with a contact detection device and/or an alignment detection device.
  • a docking method is provided.
  • the docking method is used in the above-mentioned logistics docking system.
  • the docking method includes: rough docking: controlling the autonomous mobile robot to move toward the device to be docked until the first docking part is in contact with the second docking part; docking detection: judging whether the first docking part is in contact with the device.
  • the second docking part is precisely docked; and the physical docking: when the first docking part and the second docking part are not precisely docked, the autonomous mobile robot is controlled to move toward the device to be docked until the first docking part is not precisely docked
  • the docking portion is precisely docked with the second docking portion.
  • the first docking portion and The second abutting parts interact with each other to physically correct the deviation of the first butting parts.
  • the power of the autonomous mobile robot in the physical docking step is greater than the power of the autonomous mobile robot in the rough docking step.
  • the docking detection includes detecting whether the first detection point of the first docking part is in contact and/or alignment with the corresponding second detection point of the second docking part, and when the first detection point is When point contacting and/or aligning with the second detection point, it is determined that the first abutting part and the second abutting part are precisely butted.
  • the solution of the present invention in the docking process of the autonomous mobile robot and the device to be docked, it is unnecessary to use expensive sensors, and the cost is low. Moreover, it does not need to collect a large amount of data and does not need to carry out complex control, which saves time and improves the docking speed.
  • Fig. 1 shows the vertical cross-sectional schematic diagram of the logistics docking system according to a preferred embodiment of the present invention, wherein, the autonomous mobile robot and the device to be docked are in an undocked state;
  • FIG. 2 shows a vertical cross-sectional schematic diagram of a logistics docking system according to a preferred embodiment of the present invention, wherein the autonomous mobile robot and the device to be docked are in a docking state, and the first docking part of the autonomous mobile robot starts docking happens to be in the exact position;
  • FIG. 3 shows a horizontal cross-sectional schematic diagram of a logistics docking system according to a preferred embodiment of the present invention, wherein the autonomous mobile robot and the device to be docked are in a docking state, and the first docking part of the autonomous mobile robot deviates when the docking starts exact location;
  • FIG. 4 shows a vertical cross-sectional schematic diagram of a logistics docking system according to a preferred embodiment of the present invention, wherein the autonomous mobile robot and the device to be docked are in a docked state;
  • Fig. 5 shows a schematic flow chart of a docking method according to a preferred embodiment of the present invention.
  • the present invention provides an autonomous mobile robot 100 , a device to be docked 200 used in cooperation with the autonomous mobile robot 100 , and a logistics docking system 10 including the autonomous mobile robot 100 and the device to be docked 200 .
  • FIG. 1 shows a vertical cross-sectional schematic diagram of a logistics docking system 10 according to a preferred embodiment of the present invention, wherein the autonomous mobile robot 100 and the device to be docked 200 are in an undocked state.
  • 2 shows a vertical cross-sectional schematic diagram of the logistics docking system 10 according to a preferred embodiment of the present invention, wherein the autonomous mobile robot 100 and the device to be docked 200 are in a docking state, and the autonomous mobile robot 100 is in a docking state when the docking is started.
  • the first docking portion 140 is just in the exact position.
  • 3 shows a horizontal cross-sectional schematic diagram of the logistics docking system 10 according to a preferred embodiment of the present invention, wherein the autonomous mobile robot 100 and the device to be docked 200 are in a docking state, and the first position of the autonomous mobile robot 100 when docking is started.
  • a docking portion 140 is deviated from the exact position.
  • 4 shows a vertical cross-sectional schematic diagram of the logistics docking system 10 according to a preferred embodiment of the present invention, wherein the autonomous mobile robot 100 and the device to be docked 200 are in a docked state.
  • the logistics docking system 10 according to a preferred embodiment of the present invention, the autonomous mobile robot 100 included in the logistics docking system 10 , and the device to be docked 200 will be described in detail below with reference to FIGS. 1 to 4 .
  • the logistics docking system 10 includes an autonomous mobile robot 100 and a to-be-docked device 200 to be docked with the autonomous mobile robot 100 .
  • the device to be docked 200 is used in cooperation with the autonomous mobile robot 100 .
  • the autonomous mobile robot 100 can perform jack-up docking, positive docking, lateral docking, and the like with the device to be docked 200 .
  • the device 200 to be docked generally includes a material platform, such as conveyor belts, rollers, trays, material racks, shelves, and the like.
  • the logistics docking system 10 may include multiple devices 200 to be docked, and the multiple devices 200 to be docked may share the same autonomous mobile robot 100 , or may be equipped with separate autonomous mobile robots 100 .
  • the autonomous mobile robot 100 includes a chassis 110 .
  • a moving device 120 is disposed under the chassis 110, and the moving device 120 can be moved or rotated under the driving of a driving unit (not shown).
  • the drive unit may be disposed within the chassis 110 .
  • the mobile device 120 may be wheels, tracks, or the like.
  • the autonomous mobile robot 100 when the autonomous mobile robot 100 is used for lateral docking with the device 200 to be docked, the autonomous mobile robot 100 includes at least one steering wheel. Turning is realized by steering the steering wheel, so that the autonomous mobile robot 100 can be driven laterally to perform lateral docking with the device to be docked 200 .
  • the autonomous mobile robot 100 may further include an upper loading platform 130 disposed above the chassis 110 .
  • the top loading platform 130 may include jacks, rollers, and the like.
  • the top loading platform 130 may be integrated with the chassis 110 .
  • the top loading platform 130 can be detachably connected to the top of the chassis 110 , so that the top loading platform 130 can be replaced according to actual needs, so that different top loading platforms 130 can share the same chassis 110 .
  • the autonomous mobile robot 100 includes a first docking portion 140
  • the device to be docked 200 includes a second docking portion 240 .
  • the first docking part 140 and the second docking part 240 may be disposed at any suitable places of the autonomous mobile robot 100 and the device to be docked 200, respectively.
  • the first docking part 140 may be provided on the upper loading platform 130 of the autonomous mobile robot 100
  • the second docking part 240 may be provided on the material platform of the device 200 to be docked.
  • the first docking part 140 may be detachably connected to the upper loading platform 130 or other components of the autonomous mobile robot 100 .
  • the second docking portion 240 can be detachably connected to a material platform or other components of the device 200 to be docked.
  • the first docking portion 140 is used for docking with the second docking portion 240 along the docking direction D, so as to realize the docking between the autonomous mobile robot 100 and the device to be docked 200 .
  • the “docking direction” refers to the direction in which the first docking portion 140 of the autonomous mobile robot 100 moves toward the second docking portion 240 of the device to be docked 200 during the docking process.
  • the shape of the first abutting portion 140 is complementary to that of the second abutting portion 240 .
  • first abutting portion 140 and the second abutting portion 240 may be a protruding portion, and the other may be a concave portion.
  • the "complementary” mentioned in this article can include “complete complementarity”, that is, the contours and sizes of the two are completely or just matched, and it can also include “substantially complementary”, that is, the contours of the two match, but match The two can then be slightly spaced apart.
  • the first docking portion 140 and the second docking portion 240 are complementary, which can make the docking between the two more reliable.
  • the first butting portion 140 is provided with at least one first width gradient area, that is, an area where the width gradually changes.
  • the cross section of the first width gradient region may be any one of triangle, semicircle and ellipse.
  • the second abutting portion 240 which is complementary to the shape of the first abutting portion 140 , is also correspondingly provided with at least one second width gradation area to match the first width gradation area of the first abutting portion 140 .
  • the cross section of the second width gradient region can also be any one of triangle, semicircle and ellipse.
  • the "width” mentioned herein refers to the dimension in the direction perpendicular to the butting direction D in the plane where the butting direction D is located. Specifically, in the embodiments shown in FIGS. 1 to 4 , the “width” refers to the dimension in the direction perpendicular to the docking direction D in the horizontal plane.
  • the autonomous mobile robot 100 when the autonomous mobile robot 100 needs to be docked with the device to be docked 200, the autonomous mobile robot 100 moves to an area close to the device to be docked 200, so that the first docking part 140 of the autonomous mobile robot 100 and the device to be docked 200 are connected to each other.
  • the second docking portion 240 is substantially aligned. This process can be accomplished with the aid of lidar and/or vision sensors. Lidar and/or vision sensors are less expensive than high-precision sensors.
  • the autonomous mobile robot 100 then moves forward in the docking direction D relative to the device to be docked 200 .
  • the directional terms such as “front”, “rear”, “left” and “right” used in this document are the moving directions when the autonomous mobile robot 100 moves along the docking direction D toward the device to be docked 200 in terms of. Assuming that a person is sitting on the autonomous mobile robot 100 facing the docking direction D, the direction the person is facing (ie the docking direction D) is “front”, and the opposite is “rear”. The left side of the person is “left” and the right side is “right”.
  • the autonomous mobile robot 100 will move along the The docking direction D continues to move forward until the first docking part 140 contacts the second docking part 240 , which can realize the precise docking of the first docking part 140 and the second docking part 240 .
  • the first abutting part 140 and the second abutting part 240 are precisely butted, the first abutting part 140 will not contact the second abutting part 240 .
  • the first docking portion 140 of the autonomous mobile robot 100 is not in an accurate position, such as to the right, when the autonomous mobile robot 100 moves to an area close to the device to be docked 200 and starts to dock with the device 200 to be docked, when When the autonomous mobile robot 100 continues to move forward along the docking direction D, when the first docking part 140 and the second docking part 240 are just in contact, the first docking part 140 is located on the right side of the exact position, and the first docking part of the autonomous mobile robot 100 The right side of 140 first contacts the right side of the second docking portion 240 of the device to be docked 200 .
  • the autonomous mobile robot 100 continues to move forward along the docking direction D toward the device to be docked 200, and the first docking The part 140 will be subjected to a force F perpendicular to the contact surface after the first butt part 140 and the second butt part 240 are in contact.
  • the opposite second force component F2 wherein the first force component F1 can push the first abutting part 140 to the left, so as to achieve a physical deviation correction, so that the first butting part 140 moves forward in the butting direction D and moves to the left at the same time
  • the precise position moves, so as to realize the precise butt joint of the first docking part 140 and the second docking part 240 .
  • this process there is no need to use expensive sensors, and the cost is low. Moreover, it does not need to collect a large amount of data and does not need to carry out complex control, which saves time and improves the docking speed.
  • one of the first abutting portion 140 and the second abutting portion 240 may be a protruding portion, and the other may be a concave portion.
  • the protruding portion is provided on the autonomous mobile robot 100 , the width of the protruding portion gradually decreases along the protruding direction to form a first width gradient area, and the concave portion is provided on the device to be docked 200 . That is, the first abutting portion 140 is a protruding portion, and the second abutting portion 240 is formed as a concave portion.
  • the first docking part 140 of the autonomous mobile robot 100 moves along the docking direction D toward the second docking part 240 of the device to be docked 200 , and the second docking part 240 usually remains stationary. Therefore, setting the first docking portion 140 as a protruding portion facilitates docking and physical deviation correction during the docking process.
  • the size of the protruding portion (ie, the first abutting portion 140 ) may be configured to be smaller than or equal to the size of the recessed portion (ie, the second abutting portion 240 ) to be abutted with the protruding portion.
  • the size of the protrusion is slightly smaller than the size of the recess with which the protrusion is to be abutted. In this way, it is convenient to fine-tune the position of the protrusion after the docking is completed, so as to make the docking more precise.
  • a contact detection device and/or an alignment detection device may be provided on the first docking part 140 and/or the second docking part 240 to detect whether the first docking part 140 and the second docking part 240 are accurately docked.
  • the contact detection device and/or the alignment detection device may be disposed on the corresponding detection points of the first butt portion 140 and/or the second abutment portion 240 to detect the Whether the corresponding detection points are in contact and/or alignment, so as to determine whether the first butt portion 140 and the second abutment portion 240 are precisely butted.
  • the contact detection means can be implemented, for example, by loop detection.
  • At least one of the contact surface of the first butt portion 140 and the contact surface of the second abutment portion 240 is a smooth surface, so as to reduce friction between the first abutment portion 140 and the second abutment portion 240 during the butting process force.
  • at least one of the contact surface of the first abutting part 140 and the contact surface of the second abutting part 240 may be provided with a rolling contact part.
  • the rolling contacts can be, for example, universal balls. Through the rolling contact portion, the sliding friction between the first abutting portion 140 and the second abutting portion 240 can be converted into rolling friction, and the friction force is small, which facilitates the butting of the first abutting portion 140 and the second abutting portion 240 .
  • a docking method for the above-mentioned logistics docking system 10 is provided.
  • Fig. 5 shows a schematic flow chart of a docking method according to a preferred embodiment of the present invention. The docking method according to a preferred embodiment of the present invention will be described in detail below with reference to FIG. 5 .
  • the docking method mainly includes the following steps: S310: rough docking; S320: docking detection; and S330: physical docking.
  • the autonomous mobile robot 100 is controlled to move toward the device to be docked 200 until the first docking portion 140 of the autonomous mobile robot 100 contacts the second docking portion 240 of the device to be docked 200 .
  • the rough docking process eliminates the need for expensive high-precision sensors.
  • the rough docking process can be accomplished with the aid of lidar and/or vision sensors.
  • the docking detection step of S320 it is determined whether the first docking part 140 of the autonomous mobile robot 100 is accurately docked with the second docking part 240 of the device 200 to be docked. This step occurs when the first abutting portion 140 and the second abutting portion 240 are just in contact.
  • the first docking part 140 of the autonomous mobile robot 100 may be in an accurate position (as shown in FIG. 2 ), then the autonomous mobile robot 100 continues to move forward along the docking direction D until the first docking part 140 contacts
  • the second docking part 240 can realize precise docking between the first docking part 140 and the second docking part 240 .
  • the first abutting part 140 Before the first abutting part 140 and the second abutting part 240 are precisely butted, the first abutting part 140 will not contact the second abutting part 240 . That is to say, after the rough docking is completed, the first docking part 140 and the second docking part 240 are precisely docked. However, at the beginning of rough docking, the first docking part 140 of the autonomous mobile robot 100 may not be in an accurate position, for example, to the right (as shown in FIG. 3 ).
  • the first abutting part 140 and the second abutting part 240 are just in contact, the first abutting part 140 also deviates from an accurate position, and the first butting part 140 and the second abutting part 240 are not precisely butted. In this case, the step of S330 physical docking needs to be performed, which will be described in detail below.
  • Determining whether the first docking portion 140 is accurately docked with the second docking portion 240 may include detecting whether a first detection point of the first docking portion 140 is in contact and/or alignment with a corresponding second detection point of the second docking portion 240 , and When the first detection point contacts and/or aligns with the second detection point, it is determined that the first butt portion 140 is precisely butted with the second abutment portion 240 .
  • the first detection point may be the tip of the first abutting part 140 formed as a protrusion
  • the second detection point may be the center of the bottom of the concave part of the second abutting part 240 formed as a concave part.
  • first detection point and the second detection point may also be other corresponding parts of the first butt portion 140 and the second abutment portion 240 , respectively.
  • Whether the first detection point contacts and/or aligns with the second detection point may be realized by the contact detection device and/or the alignment detection device provided on the first docking part 140 and/or the second docking part 240 as described above .
  • the contact detection means can be implemented by loop detection.
  • Whether the first docking part 140 is accurately docked with the second docking part 240 can also be determined by judging whether the autonomous mobile robot 100 can still move in the docking direction relative to the device to be docked 200 after the first docking part 140 is in contact with the second docking part 240 D move forward to achieve. If the autonomous mobile robot 100 can continue to move in the docking direction D after the first docking part 140 and the second docking part 240 are in contact, it is determined that the first docking part 140 is not accurately docked with the second docking part 240 . If the autonomous mobile robot 100 cannot continue to move in the docking direction D after the first docking part 140 and the second docking part 240 are in contact, it is determined that the first docking part 140 has precisely docked with the second docking part 240 .
  • the autonomous mobile robot 100 is controlled to move toward the device to be docked 200 until the first docking part 140 and the second docking part 240 are precisely docked.
  • the first docking portion 140 interacts with the second docking portion 240, so as to Perform physical deviation correction on the first docking portion 140 .
  • the interaction between the first docking portion 140 and the second docking portion 240 is as described in detail above with respect to FIG. 3 , and is not repeated here for brevity.
  • the first docking part 140 interacts with the second docking part 240 to perform physical deviation correction, which may cause the movement of the autonomous mobile robot 100 to be transformed into complex movements such as rotation, so that the first docking part
  • the first docking part 140 of the autonomous mobile robot 100 is not parallel to the second docking part 240 of the device to be docked 200 .
  • the position of the autonomous mobile robot 100 can also be fine-tuned, so that the first docking part 140 and the second docking part 240 are parallel, and either The connection between them is more precise.
  • the moving rate (first rate) of the autonomous mobile robot 100 in the rough docking step S310 and the moving rate (second rate) of the autonomous mobile robot 100 in the physical docking step S330 may be different.
  • the second rate is less than the first rate.
  • the autonomous mobile robot 100 moves toward the device to be docked 200 at a relatively large first rate, which can improve the speed of the entire docking process and save time; and in the physical docking step of S330, the first speed of the autonomous mobile robot 100
  • the docking part 140 moves forward along the docking direction D toward the second docking part 240 and also moves to the left or right toward the exact position to achieve physical deviation correction, so a smaller second speed can further improve the first docking part 140 Accuracy of docking with the second docking portion 240 .
  • the power of the autonomous mobile robot 100 in the physical docking step of S330 is greater than the power of the autonomous mobile robot 100 in the rough docking step of S310, so as to better utilize the interaction force of the contact surface and realize precise docking.
  • the docking method of the present invention there is no need to use expensive sensors, and the cost is low. Moreover, it does not need to collect a large amount of data and does not need to carry out complex control, which saves time and improves the docking speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种自主移动机器人(100)、待对接装置(200)、物流对接系统(10)和对接方法。自主移动机器人包括第一对接部(140),第一对接部用于与待与自主移动机器人对接的待对接装置的第二对接部(240)对接,其中,第一对接部的形状与第二对接部的形状互补,并且第一对接部设置有至少一个第一宽度渐变区。在自主移动机器人与待对接装置的对接过程中,无需使用价格高昂的传感器,成本较低;而且不需要大量采集数据并且不需要进行复杂的控制,节省了时间,提高了对接速度。

Description

自主移动机器人、待对接装置、物流对接系统和对接方法 技术领域
本发明涉及物流技术领域,具体地,涉及自主移动机器人(AMR,Automatic Mobile Robot)、待对接装置、物流对接系统和对接方法。
背景技术
在许多物流应用场景(例如制造工厂原材料仓到生产线以及到产成品运输的全流程作业过程、仓储和生产线的物料自动搬运过程)中,需要将自主移动机器人或者自主移动机器人的上装平台与待对接装置的物料平台(诸如传送带、辊筒、托盘、料架、货架等)进行对接,并且对对接精度有较高的要求。通常要求误差控制在5mm以内。
在已知的物流对接系统中,在自主移动机器人与待对接装置的对接过程中,通常通过传感器来对自主移动机器人和待对接装置的位置进行矫正。由于对接精度要求高,常规的传感器无法满足精度要求,而高精度的传感器价格高昂。此外,通过高精度的传感器进行精确对接时,需要进行大量的数据采集并且需要基于所采集的大量的数据进行复杂的控制,因此,需要较长的时间来实现精确对接,对接速度慢。
因此,需要提供自主移动机器人、待对接装置、物流对接系统和对接方法,以解决或至少减轻上述现有技术中所存在的至少一部分缺点。
发明内容
在本发明的第一方面中,提供一种自主移动机器人。所述自主移动机器人包括第一对接部,所述第一对接部用于与待与所述自主移动机器人对接的 待对接装置的第二对接部对接。其中,所述第一对接部的形状与所述第二对接部的形状互补,并且所述第一对接部设置有至少一个第一宽度渐变区。
可选地,所述第一对接部为突出部,以与形成为凹部的所述第二对接部对接,所述突出部的宽度沿突出方向逐渐减小。
可选地,所述突出部的尺寸被构造为小于待与所述突出部对接的所述凹部的尺寸。
可选地,所述第一宽度渐变区的截面为三角形、半圆形、椭圆形中的一种。
可选地,所述自主移动机器人包括底盘和连接在所述底盘上方的上装平台,所述第一对接部设置在所述上装平台上。
可选地,所述第一对接部可拆卸地连接至所述上装平台。
可选地,所述自主移动机器人用于与所述待对接装置进行侧向对接,并且所述自主移动机器人包括至少一个舵轮。
在本发明的第二方面中,提供一种待对接装置,所述待对接装置包括物料平台。所述待对接装置用于与上述的自主移动机器人配合使用,所述待对接装置包括用于与所述第一对接部对接的所述第二对接部,所述第二对接部设置有至少一个第二宽度渐变区。
可选地所述第二对接部可拆卸地连接至所述物料平台。
在本发明的第三方面中,提供一种物流对接系统。所述物流对接系统包括:如上所述的自主移动机器人;以及如上所述的待对接装置。
可选地,所述第一对接部的接触面和所述第二对接部的接触面中的至少一个为光滑表面或者设置有滚动接触部。
可选地,所述第一对接部和/或所述第二对接部设置有接触检测装置和/或对准检测装置。
在本发明的第四方面中,提供一种对接方法。所述对接方法用于上述的物流对接系统。所述对接方法包括:粗对接:控制所述自主移动机器人朝向所述待对接装置移动直到所述第一对接部与所述第二对接部接触;对接检测:判断所述第一对接部是否与所述第二对接部精确对接;以及物理对接:当所述第一对接部与所述第二对接部未精确对接时,控制所述自主移动机器人朝向所述待对接装置移动直到所述第一对接部与所述第二对接部精确对接。其中,在所述物理对接步骤中,当所述第一对接部的所述第一宽度渐变区与所述第二对接部的所述第二宽度渐变区接触时,所述第一对接部与所述第二对接部发生相互作用,以对所述第一对接部进行物理纠偏。
可选地,在所述物理对接步骤中所述自主移动机器人的动力大于在所述粗对接步骤中所述自主移动机器人的动力。
可选地,所述对接检测包括检测所述第一对接部的第一检测点是否与所述第二对接部的相应的第二检测点接触和/或对准,并且在所述第一检测点接触和/或对准所述第二检测点时判定所述第一对接部与所述第二对接部精确对接。
根据本发明的方案,在自主移动机器人与待对接装置的对接过程中,无需使用价格高昂的传感器,成本较低。而且不需要大量采集数据并且不需要进行复杂的控制,节省了时间,提高了对接速度。
附图说明
下面参照附图将对本发明的特征、优点以及示例性实施方式的技术上和工业上的意义进行描述,在附图中,相同的附图标记指示相同的元件,并且其中:
图1示出了根据本发明的一个优选实施方式的物流对接系统的竖向截面 示意图,其中,自主移动机器人和待对接装置处于未对接的状态;
图2示出了根据本发明的一个优选实施方式的物流对接系统的竖向截面示意图,其中,自主移动机器人和待对接装置处于正在对接的状态,并且开始对接时自主移动机器人的第一对接部恰好处于准确位置;
图3示出了根据本发明的一个优选实施方式的物流对接系统的水平截面示意图,其中,自主移动机器人和待对接装置处于正在对接的状态,并且开始对接时自主移动机器人的第一对接部偏离准确位置;
图4示出了根据本发明的一个优选实施方式的物流对接系统的竖向截面示意图,其中,自主移动机器人和待对接装置处于已对接好的状态;以及
图5示出了根据本发明的一个优选实施方式的对接方法的示意性流程图。
具体实施方式
下面参照附图对本发明示例性实施方式进行详细描述。对示例性实施方式的描述仅仅是出于示范目的,而绝不是对本发明及其应用或用法的限制。而且,图中各部件的尺寸和比例也仅仅是示意性的,并不严格对应于实际产品。
本发明提供一种自主移动机器人100、与该自主移动机器人100配合使用的待对接装置200以及包括该自主移动机器人100和该待对接装置200的物流对接系统10。图1示出了根据本发明的一个优选实施方式的物流对接系统10的竖向截面示意图,其中,自主移动机器人100和待对接装置200处于未对接的状态。图2示出了根据本发明的一个优选实施方式的物流对接系统10的竖向截面示意图,其中,自主移动机器人100和待对接装置200处于正在对接的状态,并且开始对接时自主移动机器人100的第一对接部140恰好处于准确位置。图3示出了根据本发明的一个优选实施方式的物流对接系统 10的水平截面示意图,其中,自主移动机器人100和待对接装置200处于正在对接的状态,并且开始对接时自主移动机器人100的第一对接部140偏离准确位置。图4示出了根据本发明的一个优选实施方式的物流对接系统10的竖向截面示意图,其中,自主移动机器人100和待对接装置200处于已对接好的状态。下面将结合图1至图4详细描述根据本发明的一个优选实施方式的物流对接系统10、该物流对接系统10中所包括的自主移动机器人100以及待对接装置200。
如图1至图4所示,物流对接系统10包括自主移动机器人100和待与自主移动机器人100对接的待对接装置200。待对接装置200与自主移动机器人100配合使用。自主移动机器人100可以与待对接装置200进行顶升对接、正对接、侧向对接等。待对接装置200通常包括物料平台,例如传送带、辊筒、托盘、料架、货架等。自主移动机器人100与待对接装置200对接之后能够实现仓储或生产线的重型物料的自动搬运、货架搬运、自动仓储系统和辊筒传送的自动装卸等。物流对接系统10可以包括多个待对接装置200,该多个待对接装置200可以共用同一个自主移动机器人100,也可以配备单独的自主移动机器人100。
如图1、图2和图4所示,自主移动机器人100包括底盘110。底盘110下方设置有移动装置120,该移动装置120能够在驱动单元(未示出)的驱动下移动或转动。驱动单元可以设置在底盘110内。移动装置120可以是车轮、履带等。其中,当自主移动机器人100用于与待对接装置200进行侧向对接时,自主移动机器人100包括至少一个舵轮。通过舵轮转向实现转弯,从而能够使自主移动机器人100侧向行驶,以与待对接装置200进行侧向对接。自主移动机器人100还可以包括设置在底盘110上方的上装平台130。上装平台130可以包括顶升、辊筒等。上装平台130可以与底盘110为一体。 优选地,上装平台130可以可拆卸地连接在底盘110上方,以便于根据实际需要更换上装平台130,从而使得不同的上装平台130可以共用同一个底盘110。
根据本发明的构思,如图1至图4所示,自主移动机器人100包括第一对接部140,待对接装置200包括第二对接部240。第一对接部140和第二对接部240可以分别设置在自主移动机器人100和待对接装置200的任何合适的地方。例如,第一对接部140可以设置在自主移动机器人100的上装平台130上,第二对接部240可以设置在待对接装置200的物料平台上。优选地,第一对接部140可以可拆卸地连接至自主移动机器人100的上装平台130或者其他部件。同样优选地,第二对接部240可以可拆卸地连接至待对接装置200的物料平台或其他部件。第一对接部140用于沿对接方向D与第二对接部240对接,从而实现自主移动机器人100与待对接装置200的对接。“对接方向”是指对接过程中自主移动机器人100的第一对接部140朝向待对接装置200的第二对接部240移动的方向。第一对接部140的形状与第二对接部240的形状互补。例如,第一对接部140和第二对接部240中的一个可以为突出部,另一个可以为凹部。需要说明的是,本文所说的“互补”可以包括“完全互补”,即二者轮廓和大小完全适配或刚好适配,也可以包括“大致互补”,即二者轮廓适配,但是匹配之后二者之间可以略微间隔开。第一对接部140和第二对接部240互补,可以使得二者之间的对接更可靠。第一对接部140设置有至少一个第一宽度渐变区,即宽度逐渐变化的区域。第一宽度渐变区的截面可以为三角形、半圆形、椭圆形中的任何一种。可以理解,与第一对接部140的形状互补的第二对接部240也相应地设置有至少一个第二宽度渐变区,以与第一对接部140的第一宽度渐变区相适配。第二宽度渐变区的截面同样可以为三角形、半圆形、椭圆形中的任何一种。需要说明的是, 本文所说的“宽度”是指在对接方向D所在的平面内垂直于对接方向D的方向上的尺寸。具体地,在如图1至图4所示的实施方式中,“宽度”是指在水平面内垂直于对接方向D的方向上的尺寸。
如此,当需要将自主移动机器人100与待对接装置200进行对接时,自主移动机器人100移动至靠近待对接装置200的区域中,使得自主移动机器人100的第一对接部140与待对接装置200的第二对接部240大致对准。该过程可以借助于激光雷达和/或视觉传感器实现。激光雷达和/或视觉传感器相较于高精度传感器而言,成本低。随后自主移动机器人100相对于待对接装置200沿对接方向D向前移动。需要说明的是,本文中所使用的“前”、“后”、“左”、“右”等方向性术语是相对于自主移动机器人100朝向待对接装置200沿对接方向D移动时的移动方向而言的。假设人朝向对接方向D坐在自主移动机器人100上,人所朝向的方向(也即对接方向D)为“前”,与之相反的为“后”。人的左侧则为“左”,右侧则为“右”。
如图2所示,如果自主移动机器人100移动至靠近待对接装置200的区域中开始与待对接装置200对接时自主移动机器人100的第一对接部140恰好处于准确位置,则自主移动机器人100沿对接方向D继续向前移动直到第一对接部140接触第二对接部240即可以实现第一对接部140和第二对接部240的精确对接。在第一对接部140和第二对接部240精确对接之前,第一对接部140不会接触第二对接部240。
如图3所示,如果自主移动机器人100移动至靠近待对接装置200的区域中开始与待对接装置200对接时自主移动机器人100的第一对接部140没有处于准确位置,例如偏右,则当自主移动机器人100沿对接方向D继续向前移动时,第一对接部140与第二对接部240刚刚接触时,第一对接部140位于准确位置的右侧,自主移动机器人100的第一对接部140的右侧首先接 触待对接装置200的第二对接部240的右侧。当第一对接部140的第一宽度渐变区接触第二对接部240的右侧的第二宽度渐变区时,自主移动机器人100沿对接方向D朝向待对接装置200继续向前移动,第一对接部140会受到第一对接部140和第二对接部240接触后垂直于接触面的力F,这个力可以分解成垂直于对接方向D并且指向左侧的第一分力F1和与对接方向D相反的第二分力F2,其中,第一分力F1能够将第一对接部140向左推动,从而实现物理纠偏,使得第一对接部140在沿对接方向D向前移动的同时向左朝向准确位置移动,从而实现第一对接部140与第二对接部240的精确对接。在该过程中,无需使用价格高昂的传感器,成本较低。而且不需要大量采集数据并且不需要进行复杂的控制,节省了时间,提高了对接速度。
如上所述地,第一对接部140和第二对接部240中的一个可以为突出部,另一个可以为凹部。优选地,在本实施方式中,突出部设置在自主移动机器人100上,突出部的宽度沿突出方向逐渐减小,以形成第一宽度渐变区,凹部设置在待对接装置200上。即,第一对接部140为突出部,第二对接部240形成为凹部。在对接过程中,通常为自主移动机器人100的第一对接部140沿对接方向D朝向待对接装置200的第二对接部240移动,第二对接部240通常保持静止。因此将第一对接部140设置为突出部便于对接以及在对接过程中进行物理纠偏。
突出部(即第一对接部140)的尺寸可以被构造为小于或等于待与该突出部对接的凹部(即第二对接部240)的尺寸。优选地,突出部的尺寸略小于待与该突出部对接的凹部的尺寸。如此,便于在对接完成后对突出部的位置进行微调,以使对接更精确。
可选地,第一对接部140和/或第二对接部240上可以设置有接触检测装置和/或对准检测装置,以检测第一对接部140与第二对接部240是否精确对 接。接触检测装置和/或对准检测装置可以设置在第一对接部140和/或第二对接部240的相应的检测点上,以检测第一对接部140和/或第二对接部240上的相应的检测点是否接触和/或对准,从而判定第一对接部140与第二对接部240是否精确对接。接触检测装置可以例如通过回路检测实现。
可选地,第一对接部140的接触面和第二对接部240的接触面中的至少一个为光滑表面,以减小对接过程中第一对接部140与第二对接部240之间的摩擦力。可选地,第一对接部140的接触面和第二对接部240的接触面中的至少一个可以设置有滚动接触部。滚动接触部例如可以为万向珠。通过滚动接触部,可以将第一对接部140和第二对接部240之间的滑动摩擦转变成滚动摩擦,摩擦力小,便于第一对接部140与第二对接部240的对接。
在本发明的又一方面中,提供一种用于上述物流对接系统10的对接方法。图5示出了根据本发明的一个优选实施方式的对接方法的示意性流程图。下面将结合图5详细描述根据本发明的一个优选实施方式的对接方法。
如图5所示,根据本发明的一个优选实施方式的对接方法主要包括如下步骤:S310:粗对接;S320:对接检测;以及S330:物理对接。
在S310粗对接的步骤中,控制自主移动机器人100朝向待对接装置200移动直到自主移动机器人100的第一对接部140与待对接装置200的第二对接部240接触。粗对接过程无需价格高昂的高精度传感器。例如,粗对接过程可以借助于激光雷达和/或视觉传感器完成。
在S320对接检测的步骤中,判断自主移动机器人100的第一对接部140是否与待对接装置200的第二对接部240精确对接。该步骤发生在第一对接部140和第二对接部240刚刚接触时。在粗对接刚开始时,自主移动机器人100的第一对接部140可能恰好处于准确位置(如图2所示),则自主移动机器人100沿对接方向D继续向前移动直到第一对接部140接触第二对接部 240即可以实现第一对接部140和第二对接部240的精确对接。在第一对接部140和第二对接部240精确对接之前,第一对接部140不会接触第二对接部240。也就是说,粗对接完成后,第一对接部140和第二对接部240就精确对接了。然而,在粗对接刚开始时,自主移动机器人100的第一对接部140也可能没有处于准确位置,例如偏右(如图3所示)。在这种情况下,当第一对接部140与第二对接部240刚刚接触时第一对接部140也会偏离准确位置,第一对接部140和第二对接部240没有精确对接。在这种情况下,则需要进行S330物理对接的步骤,这将在下文详细描述。
判断第一对接部140是否与第二对接部240精确对接可以包括检测第一对接部140的第一检测点是否与第二对接部240的相应的第二检测点接触和/或对准,并且在第一检测点接触和/或对准第二检测点时判定第一对接部140与第二对接部240精确对接。例如,第一检测点可以是形成为突出部的第一对接部140的尖端,相应地,第二检测点则可以是形成为凹部的第二对接部240的凹部底部中心。当然,第一检测点和第二检测点还可以分别是第一对接部140和第二对接部240的相对应的其他部位。第一检测点是否接触和/或对准第二检测点可以通过如上文所描述的设置在第一对接部140和/或第二对接部240上的接触检测装置和/或对准检测装置实现。例如,接触检测装置可以通过回路检测实现。
判断第一对接部140是否与第二对接部240精确对接也可以通过判断在第一对接部140与第二对接部240接触后,自主移动机器人100是否还能相对于待对接装置200沿对接方向D向前移动来实现。如果第一对接部140和第二对接部240接触后,自主移动机器人100还能够继续沿对接方向D移动,则判定第一对接部140未与第二对接部240精确对接。如果第一对接部140和第二对接部240接触后,自主移动机器人100无法继续沿对接方向D移动, 则判定第一对接部140已与第二对接部240精确对接。
在S330物理对接步骤中,控制自主移动机器人100朝向待对接装置200移动直到第一对接部140与第二对接部240精确对接。在S330物理对接步骤中,当第一对接部140的第一宽度渐变区与第二对接部240的第二宽度渐变区接触时,第一对接部140与第二对接部240发生相互作用,以对第一对接部140进行物理纠偏。在该物理纠偏过程中,第一对接部140与第二对接部240的相互作用如上文针对图3详细描述的,这里为了简洁,不再赘述。
在S330物理对接步骤中,第一对接部140与第二对接部240发生相互作用而进行物理纠偏的过程中可能会使得自主移动机器人100的移动转变成转动等复杂的运动,使得第一对接部140与第二对接部240精确对接之后自主移动机器人100的第一对接部140与待对接装置200的第二对接部240不平行。可选地,在第一对接部140与第二对接部240精确对接之后,还可以对自主移动机器人100的位置进行微调,以使得第一对接部140和第二对接部240平行,二者之间的对接更精确。
可选地,在S310粗对接步骤中自主移动机器人100的移动速率(第一速率)与在S330物理对接步骤中自主移动机器人100的移动速率(第二速率)可以不同。优选地,第二速率小于第一速率。在S310粗对接步骤中,自主移动机器人100以较大的第一速率朝向待对接装置200移动可以提高整个对接过程的速度,节省时间;而在S330物理对接步骤中,自主移动机器人100的第一对接部140在沿对接方向D朝向第二对接部240向前移动的同时还会向左或向右朝向准确位置移动以实现物理纠偏,因此较小的第二速率可以进一步提高第一对接部140与第二对接部240对接的精确度。
优选地,在S330物理对接步骤中自主移动机器人100的动力大于在S310粗对接步骤中自主移动机器人100的动力,以更好的利用接触面的相互作用 力,实现精确对接。
综上所述,根据本发明的对接方法,无需使用价格高昂的传感器,成本较低。而且不需要大量采集数据并且不需要进行复杂的控制,节省了时间,提高了对接速度。
在本说明书中,每当提及“示例性实施方式”、“优选实施方式”、“一个实施方式”等时意味着针对该实施方式描述的具体的特征、结构或特点包括在本发明的至少一个实施方式中。这些用词在本说明书中不同地方的出现不一定都指代同一实施方式。此外,当针对任一实施方式/实施方式描述具体的特征、结构或特点时,应当认为本领域技术人员也能够在所有所述实施方式中的其它实施方式中实现这种特征、结构或特点。
以上详细描述了本发明的实施方式。然而,本发明的方面不限于上述实施方式。在不脱离本发明的范围的情况下,各种改型和替换均可以应用到上述实施方式中。

Claims (15)

  1. 一种自主移动机器人,其特征在于,所述自主移动机器人包括第一对接部,所述第一对接部用于与待与所述自主移动机器人对接的待对接装置的第二对接部对接,其中,所述第一对接部的形状与所述第二对接部的形状互补,并且所述第一对接部设置有至少一个第一宽度渐变区。
  2. 根据权利要求1所述的自主移动机器人,其特征在于,所述第一对接部为突出部,以与形成为凹部的所述第二对接部对接,所述突出部的宽度沿突出方向逐渐减小。
  3. 根据权利要求2所述的自主移动机器人,其特征在于,所述突出部的尺寸被构造为小于待与所述突出部对接的所述凹部的尺寸。
  4. 根据权利要求1至3中任一项所述的自主移动机器人,其特征在于,所述第一宽度渐变区的截面为三角形、半圆形、椭圆形中的一种。
  5. 根据权利要求1至3中任一项所述的自主移动机器人,其特征在于,所述自主移动机器人包括底盘和连接在所述底盘上方的上装平台,所述第一对接部设置在所述上装平台上。
  6. 根据权利要求5所述的自主移动机器人,其特征在于,所述第一对接部可拆卸地连接至所述上装平台。
  7. 根据权利要求1至3中任一项所述的自主移动机器人,其特征在于,所述自主移动机器人用于与所述待对接装置进行侧向对接,并且所述自主移动机器人包括至少一个舵轮。
  8. 一种待对接装置,所述待对接装置包括物料平台,其特征在于,所述待对接装置用于与根据权利要求1至7中任一项所述的自主移动机器人配合使用,所述待对接装置包括用于与所述第一对接部对接的所述第二对接部,所述第二对接部设置有至少一个第二宽度渐变区。
  9. 根据权利要求8所述的待对接装置,其特征在于,所述第二对接部可拆卸地连接至所述物料平台。
  10. 一种物流对接系统,其特征在于,所述物流对接系统包括:
    自主移动机器人,所述自主移动机器人为根据权利要求1至7中任一项所述的自主移动机器人;以及
    根据权利要求8或9所述的待对接装置。
  11. 根据权利要求10所述的物流对接系统,其特征在于,所述第一对接部的接触面和所述第二对接部的接触面中的至少一个为光滑表面或者设置有滚动接触部。
  12. 根据权利要求10或11所述的物流对接系统,其特征在于,所述第一对接部和/或所述第二对接部设置有接触检测装置和/或对准检测装置。
  13. 一种对接方法,其特征在于,所述对接方法用于根据权利要求10至12中任一项所述的物流对接系统,所述对接方法包括:
    粗对接:控制所述自主移动机器人朝向所述待对接装置移动直到所述第一对接部与所述第二对接部接触;
    对接检测:判断所述第一对接部是否与所述第二对接部精确对接;以及
    物理对接:当所述第一对接部与所述第二对接部未精确对接时,控制所述自主移动机器人朝向所述待对接装置移动直到所述第一对接部与所述第二对接部精确对接;
    其中,在所述物理对接步骤中,当所述第一对接部的所述第一宽度渐变区与所述第二对接部的所述第二宽度渐变区接触时,所述第一对接部与所述第二对接部发生相互作用,以对所述第一对接部进行物理纠偏。
  14. 根据权利要求13所述的对接方法,其特征在于,在所述物理对接步骤中所述自主移动机器人的动力大于在所述粗对接步骤中所述自主移动机器 人的动力。
  15. 根据权利要求13所述的对接方法,其特征在于,所述对接检测包括检测所述第一对接部的第一检测点是否与所述第二对接部的相应的第二检测点接触和/或对准,并且在所述第一检测点接触和/或对准所述第二检测点时判定所述第一对接部与所述第二对接部精确对接。
PCT/CN2021/140006 2021-01-21 2021-12-21 自主移动机器人、待对接装置、物流对接系统和对接方法 WO2022156465A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110082888.8A CN112777201A (zh) 2021-01-21 2021-01-21 自主移动机器人、待对接装置、物流对接系统和对接方法
CN202110082888.8 2021-01-21

Publications (1)

Publication Number Publication Date
WO2022156465A1 true WO2022156465A1 (zh) 2022-07-28

Family

ID=75758064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140006 WO2022156465A1 (zh) 2021-01-21 2021-12-21 自主移动机器人、待对接装置、物流对接系统和对接方法

Country Status (2)

Country Link
CN (1) CN112777201A (zh)
WO (1) WO2022156465A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116674906A (zh) * 2023-06-13 2023-09-01 湖南驰众机器人有限公司 一种用于智慧仓储的智能agv输送装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112777201A (zh) * 2021-01-21 2021-05-11 灵动科技(北京)有限公司 自主移动机器人、待对接装置、物流对接系统和对接方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061053A (ja) * 2011-09-15 2013-04-04 Seiko Epson Corp 物体固定部材、ロボット、および物体固定方法
CN205499987U (zh) * 2016-02-24 2016-08-24 沈昱希 一种应用于运动设备接驳时的辅助定位装置及仓储设备
CN110386428A (zh) * 2019-07-12 2019-10-29 坎德拉(深圳)科技创新有限公司 一种智能配送系统和配送方法
CN111497967A (zh) * 2019-01-31 2020-08-07 来临机器人有限公司 具有机械和数据联接机构的移动机器人
CN111618907A (zh) * 2019-02-28 2020-09-04 发那科株式会社 机器人的固定装置、机器人及机器人系统
CN112777201A (zh) * 2021-01-21 2021-05-11 灵动科技(北京)有限公司 自主移动机器人、待对接装置、物流对接系统和对接方法
CN214326151U (zh) * 2021-01-21 2021-10-01 灵动科技(北京)有限公司 自主移动机器人、待对接装置和物流对接系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061053A (ja) * 2011-09-15 2013-04-04 Seiko Epson Corp 物体固定部材、ロボット、および物体固定方法
CN205499987U (zh) * 2016-02-24 2016-08-24 沈昱希 一种应用于运动设备接驳时的辅助定位装置及仓储设备
CN111497967A (zh) * 2019-01-31 2020-08-07 来临机器人有限公司 具有机械和数据联接机构的移动机器人
CN111618907A (zh) * 2019-02-28 2020-09-04 发那科株式会社 机器人的固定装置、机器人及机器人系统
CN110386428A (zh) * 2019-07-12 2019-10-29 坎德拉(深圳)科技创新有限公司 一种智能配送系统和配送方法
CN112777201A (zh) * 2021-01-21 2021-05-11 灵动科技(北京)有限公司 自主移动机器人、待对接装置、物流对接系统和对接方法
CN214326151U (zh) * 2021-01-21 2021-10-01 灵动科技(北京)有限公司 自主移动机器人、待对接装置和物流对接系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116674906A (zh) * 2023-06-13 2023-09-01 湖南驰众机器人有限公司 一种用于智慧仓储的智能agv输送装置
CN116674906B (zh) * 2023-06-13 2024-01-26 湖南驰众机器人有限公司 一种用于智慧仓储的智能agv输送装置

Also Published As

Publication number Publication date
CN112777201A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
WO2022156465A1 (zh) 自主移动机器人、待对接装置、物流对接系统和对接方法
CN108793013B (zh) 叉车系统及其控制方法
AU2005240554B2 (en) Automatic transport loading system and method
US8591165B2 (en) Floating forks for lift vehicles
CN1927673B (zh) 物品收纳设备中的物品输送装置及其控制方法
US8075243B2 (en) Automatic transport loading system and method
JP2010530837A (ja) 搬送体の自動積荷システム及び積荷方法
JP2009298223A (ja) 無人搬送車
JP2011519800A (ja) 積荷を搬送体に自動的に積込むシステム及び方法
CN108529493B (zh) 具有改善的传感器方案的陆地运输车辆以及陆地运输系统
CN108217537B (zh) 物品搬送车
TW200823128A (en) Transfer system
KR20200012298A (ko) 오토 포지셔닝 기술을 이용한 무인이송대차
CN214326151U (zh) 自主移动机器人、待对接装置和物流对接系统
JP2000194418A (ja) 無人搬送車の位置補正システム
JP2010018361A (ja) 搬送台車用ワーク移載装置
JPH02175599A (ja) 無人搬送車の荷役制御方法
KR20010049279A (ko) 무인반송차 및 무인반송차에서의 이송방법
JPH04100676A (ja) 倣いガス切断装置及び方法
JP5204005B2 (ja) ワークの形状認識システムおよびそれを具備する組立ライン、並びにワークの形状認識方法
TW202125613A (zh) 工件孔偵測裝置以及工件孔偵測方法
US20230002176A1 (en) Loading and unloading for automatic guided vehicle
CN117103301A (zh) 一种具有移动轨迹自修正的移动搬运机器人
JP6076292B2 (ja) 無人搬送車およびその制御装置ならびに制御方法
JP5827900B2 (ja) リアサスペンションアセンブリ保持装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920839

Country of ref document: EP

Kind code of ref document: A1