WO2022156337A1 - 一种手术机器人的主动臂及手术机器人 - Google Patents

一种手术机器人的主动臂及手术机器人 Download PDF

Info

Publication number
WO2022156337A1
WO2022156337A1 PCT/CN2021/131486 CN2021131486W WO2022156337A1 WO 2022156337 A1 WO2022156337 A1 WO 2022156337A1 CN 2021131486 W CN2021131486 W CN 2021131486W WO 2022156337 A1 WO2022156337 A1 WO 2022156337A1
Authority
WO
WIPO (PCT)
Prior art keywords
support arm
arm
surgical robot
linkage mechanism
parallelogram linkage
Prior art date
Application number
PCT/CN2021/131486
Other languages
English (en)
French (fr)
Inventor
张家兴
王建国
Original Assignee
哈尔滨思哲睿智能医疗设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨思哲睿智能医疗设备有限公司 filed Critical 哈尔滨思哲睿智能医疗设备有限公司
Priority to EP21920713.1A priority Critical patent/EP4282367A1/en
Publication of WO2022156337A1 publication Critical patent/WO2022156337A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension

Definitions

  • the present invention relates to the technical field of medical devices, in particular, to an active arm of a surgical robot and a surgical robot.
  • the active arm of the current laparoscopic surgical robot mostly adopts the form of "fixed point".
  • the so-called "fixed point” is the position of the patient's abdominal wall opening.
  • the position of the opening of the abdominal wall avoids the presence of force, and the "fixed point" structure in the laparoscopic surgical robot is very important for surgery.
  • the main realization forms of the active arm are as follows.
  • One is to use the motor to directly drive the joint to achieve the "fixed point" requirement in the laparoscopic surgical robot; the second is to use the form of belt or wire transmission;
  • One point that realizes the parallelogram is the dynamic force, and two points are transmitted to the fixed point.
  • the first method cannot maintain the state of "fixed point” because of its structure itself, but is realized through the control of power, so it will face the failure of the active arm caused by the power failure. Uncertain movement will bring great risks to the operation; and the cost is high, and the complex structure brings a high risk of failure.
  • belt or steel wire transmission is used.
  • this transmission method determines that it has high elasticity and low rigidity, and the process is difficult to achieve, resulting in reduced precision and high risk of surgery.
  • the directly connected connecting rod will cause the force of the connecting rod to show a sinusoidal change in the range of motion, and its force change process is relatively unreasonable, resulting in low stiffness of the mechanism, difficult power matching and electrical control difficulties. It will inevitably lead to the reduction of surgical precision and the increase of surgical risk.
  • the problems solved by the present invention are poor rigidity, poor precision and difficulty in electrical control of the active arm in the form of "fixed point" in the laparoscopic surgical robot.
  • the present invention provides an active arm of a surgical robot, which includes a first support arm, a second support arm, a third support arm, a first parallelogram linkage mechanism and a second parallelogram linkage mechanism.
  • One end of the first support arm is rotatably connected to one end of the second support arm, the other end of the second support arm is rotatably connected to one end of the third support arm, and both ends of the first parallelogram link mechanism are respectively connected to the
  • the first support arm is connected with the third support arm, and one end of the second parallelogram linkage mechanism is connected with the second support arm;
  • first parallelogram linkage mechanism and the second parallelogram linkage mechanism are adapted to deform with the swing of the second support arm.
  • the first parallelogram linkage mechanism includes two parallel first connecting joints and two parallel first connecting rods
  • the second parallelogram linkage mechanism includes two parallel second connecting joints and two parallel first connecting joints.
  • the second link of the first link is hinged with the first link
  • the second link is hinged with the second link, adjacent to the first link of the first arm It is fixedly connected with the first support arm, and is rotatably connected with the second support arm
  • the other first connecting joint is fixedly connected with the third support arm, adjacent to the second support arm of the second support arm.
  • Two connecting joints are fixedly connected with the second support arm and rotatably connected with the third support arm
  • the other second connecting joint is fixedly connected with the slide table group.
  • the active arm of the surgical robot further includes a base and a multi-dimensional force sensor, the base is suitable for connecting with the multi-dimensional force sensor, and the base and the first arm are far away from the second arm.
  • One end of the arm is swivel connected.
  • the driving arm of the surgical robot further includes a harmonic reducer, a motor and a pulley set arranged at both ends of the first support arm, and the pulley set includes a driving wheel and a driven wheel that are connected in a drive.
  • the driving wheel is drivingly connected with the motor
  • the driven wheel is drivingly connected with the harmonic reducer
  • the two ends of the first arm are respectively connected with the base and the second through the harmonic reducer. Arm connection.
  • the active arm of the surgical robot further includes a first photoelectric sensor disposed on the first support arm, the base is provided with an inductive coating or a first inductive sheet, and the first photoelectric sensor passes through.
  • the rotation angle of the first support arm relative to the base is limited in cooperation with the inductive coating or the first inductive sheet.
  • the active arm of the surgical robot further includes a second photoelectric sensor and a second induction sheet
  • the second photoelectric sensor is arranged on the second support arm
  • the second induction sheet is arranged on the first On one arm, the rotation angle of the second support arm relative to the first support arm is limited by the cooperation of the second photoelectric sensor and the second induction sheet.
  • the active arm of the surgical robot further includes a braking mechanism, the braking mechanism is provided at the connection between the base and the first support arm, and the first support arm and the second support arm.
  • the braking mechanism includes a brake pad, a brake lever and a first electromagnet, the side of the brake pad is provided with a first protrusion, and the side of the brake lever is provided with a second protrusion
  • the first electromagnet is suitable for energizing and attracting the brake lever so that the first protruding part and the second protruding part are on the same plane, and the first electromagnet is suitable for making the first protruding part
  • the side surface of the second protruding part abuts or is about to abut.
  • an elastic member is provided in the brake rod, and when the first electromagnet is energized to adsorb the brake rod, the elastic member is elastically deformed, so that when the first electromagnet is powered off, the elastic member is elastically deformed. actuate the brake lever back to its original position; or
  • the active arm of the surgical robot further includes a second electromagnet, and when the first electromagnet is powered off, the second electromagnet is adapted to energize and adsorb the brake rod to restore the brake rod to its original position.
  • the active arm of the surgical robot further includes a sliding table group, the other end of the third support arm is rotatably connected with the sliding table group, and the other end of the second parallelogram linkage mechanism is connected with the sliding table group.
  • the sliding table group includes a sliding table, a screw rod, a guide rail and a mounting table.
  • the sliding table is rotatably connected with the third support arm, and is fixedly connected with the second parallelogram linkage mechanism. Both ends of the rod are rotatably connected with the sliding table, the guide rail is fixed on the sliding table, the nut of the screw rod is fixedly connected with the installation table, the installation table is slidably connected with the guide rail, and the The mounting table is adapted to mount the surgical instrument.
  • the present invention also provides a surgical robot, including the above-mentioned active arm of the surgical robot.
  • the beneficial effects of the present invention are: by connecting the two ends of the first parallelogram link mechanism with the first support arm and the third support arm respectively, so that under the restriction of the first parallelogram link mechanism, the first support arm and the third support arm
  • the support arm swings synchronously, and one end of the second parallelogram link mechanism is connected to the second support arm, so that when the third support arm is installed with surgical instruments, under the restriction of the second parallelogram link mechanism, the second support arm is connected to the second support arm.
  • the surgical instrument swings synchronously, and the second arm and the third arm form two adjacent sides of a parallelogram, and the intersection of the other two sides of the parallelogram is the telecentric point, that is, the fixed point.
  • the installed surgical instrument passes through the telecentric point, and since the first parallelogram linkage mechanism and the second parallelogram linkage mechanism are adapted to be deformed with the swing of the second support arm, the second support arm will rotate around the second support arm. When one arm swings, the position of the telecentric point will not change, and the surgical instrument will swing synchronously with the second arm, so as to realize the swing of the surgical instrument around the telecentric point.
  • the arrangement of the first parallelogram linkage mechanism and the second parallelogram linkage In the range of motion, the two groups of parallelogram shape changes are around the best 90° of the force, so that the structure has the best force and the best stiffness.
  • the swing of the surgical instrument around the telecentric point can be precisely realized by controlling the swing of the second arm, thereby realizing precise and flexible surgical operation.
  • FIG. 1 is an exploded view of an active arm of a surgical robot according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of an active arm of a surgical robot according to an embodiment of the present invention
  • FIG. 3 is an exploded view of a sliding table group of a surgical robot according to an embodiment of the present invention.
  • Fig. 4 is the enlarged view of I place in Fig. 2;
  • FIG. 5 is an enlarged view of II in FIG. 2 .
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • an active arm of a surgical robot includes a first support arm 1 , a second support arm 2 , a third support arm 3 , a first parallelogram linkage mechanism 5 and In the second parallelogram linkage mechanism 6, one end of the first support arm 1 is rotatably connected with one end of the second support arm 2, and the other end of the second support arm 2 is rotatably connected with one end of the third support arm 3, Both ends of the first parallelogram link mechanism 5 are respectively connected with the first support arm 1 and the third support arm 3 , and one end of the second parallelogram link mechanism 6 is connected with the second support arm 2 and connection;
  • first parallelogram linkage mechanism 5 and the second parallelogram linkage mechanism 6 are adapted to deform with the swing of the second support arm 2 .
  • the first parallelogram linkage mechanism 5 includes two parallel first connection joints 501 and two parallel first links 502 and the second parallelogram linkage mechanism 6 includes two parallel second connections A joint 601 and two parallel second links 602, the first joint 501 is hinged with the first link 502, the second link 601 is hinged with the second link 602, adjacent to the first link 601
  • the first connection joint 501 of one arm 1 is fixedly connected with the first support arm 1, and is rotatably connected with the second support arm 2, and the other first connection joint 501 is connected with the third support arm 2.
  • the arm 3 is fixedly connected, and the second connecting joint 601 adjacent to the second support arm 2 is fixedly connected to the second support arm 2 and is rotatably connected to the third support arm 3;
  • the second connecting joint 601 is suitable for being fixedly connected with the mounting seat for installing the surgical instrument, in this embodiment, it is suitable for being fixedly connected with the sliding table group 4 .
  • the first connecting joint 501 is hinged with the first link 502, so that the first parallelogram link mechanism 5 can be deformed;
  • the second connecting joint 601 is hinged with the second link 602, so that the first parallelogram link mechanism 5 is deformable;
  • the second parallelogram linkage mechanism 6 is deformable, the first connecting joint 501 is fixedly connected to one end of the first support arm 1 adjacent to the second support arm 2, and the first connecting joint 501 is provided with a bearing, and the first connecting joint 501 passes through
  • the bearing is rotatably connected with the second support arm 2, that is, the first support arm 1 is rotatably connected with the second support arm 2 through the first connecting joint 501; similarly, the second connecting joint 601 and the second support arm 2 are adjacent to the third support arm
  • One end of 3 is fixedly connected, and at the same time, the second connecting joint 601 is provided with a bearing, and the second connecting joint 601 is rotatably connected with the third supporting arm 3 through the bearing, that is, the second supporting arm 2 is connected
  • the first support arm 1 is synchronized with the third support arm 3, and the second support arm 2 is synchronized with the sliding table group 4.
  • the second support arm 2 swings around the first support arm 1, the second support arm 2
  • the included angle with the third arm 3 changes, the first parallelogram linkage 5 and the second parallelogram linkage 6 are deformed, so that the sliding table group 4 and the second supporting arm 2 swing at the same angle, thereby realizing the sliding table Oscillation of the group 4 about the telecentric point 19 .
  • FIG. 1 it also includes a base 7 and a multi-dimensional force sensor 8 , the base 7 is suitable for connecting with the multi-dimensional force sensor 8 , and the base 7 is connected to the first support arm 1 .
  • One end away from the second arm 2 is rotatably connected.
  • the multi-dimensional force sensor 8 is preferably a six-dimensional force sensor, that is, a sensor capable of simultaneously measuring three force components and three torque components.
  • the base 7 is rotatably connected to the end of the first support arm 1 away from the second support arm 2 , so that the first support arm 1 can rotate around the base 7 , and the rotation direction is the circumferential direction of the base 7 .
  • the other end of the first support arm 1 is rotatably connected with the second support arm 2 , that is, the second support arm 2 can rotate relative to the first support arm 1 in the axis direction of the first support arm 1 .
  • the slide table group 4 can be rotated by controlling the rotation of the first support arm 1, thereby realizing the slide table Group 4 rotates about a telecentric point 19 to increase the range of motion of the surgical instrument.
  • the surgical robot can accurately monitor the operation force of the active arm and whether there is sliding or vibration during the operation through the multi-dimensional force sensor 8, so as to facilitate accurate surgical operation.
  • the data from the sensor can be used to control the movement of the active arm based on the direction and magnitude of the force applied when the active arm is dragged by the human hand.
  • the active arm of the surgical robot further includes a harmonic reducer 9 , a motor 10 and a pulley set 11 arranged at both ends of the first support arm 1 , and the pulley set 11 includes
  • the driving wheel and the driven wheel are connected by transmission, the driving wheel is drivingly connected with the motor 10, the driven wheel is drivingly connected with the harmonic reducer 9, and the two ends of the first arm 1 pass through the
  • the harmonic reducer 9 is connected to the base 7 and the second arm 2 .
  • first arm 1 is rotatably connected to the base 7 through the harmonic reducer 9, the other end is rotatably connected to the second arm 2 through the harmonic reducer 9, and the motor 10 is connected to the harmonic deceleration through the pulley group 11.
  • the device 9 is driven and connected, so that the rotation angle of the first support arm 1 can be controlled by the motor 10 adjacent to the base 7, and the rotation angle of the second support arm 2 can be controlled by the motor 10 adjacent to the second support arm 2, wherein the first support arm 2
  • the arm 1 is provided with a motor control board 18, which is used to control the motor 10 adjacent to the base 7, and another motor control board 18 is provided in the second arm 2, and the motor in the second arm 2 controls The plate 18 is used to control the motor 10 adjacent to the second support arm 2.
  • the active arm of the surgical robot further includes a first photoelectric sensor 12 arranged on the first support arm 1 , and the base 7 is provided with an induction sensor 12 .
  • a coating or a first sensing sheet, the first photoelectric sensor 12 limits the rotation angle of the first arm 1 relative to the base 7 by cooperating with the sensing coating or the first sensing sheet.
  • the first photoelectric sensor 12 is provided on the first support arm 1 , and the first photoelectric sensor 12 rotates synchronously with the first support arm 1 .
  • the motor 10 stops driving; or when the first photoelectric sensor 12 does not sense the induction coating or the first induction on the base 7
  • the motor 10 stops driving, so that the rotation angle of the first support arm 1 is limited by the cooperation of the first photoelectric sensor 12 and the inductive coating or the first inductive chip.
  • the active arm of the surgical robot further includes a second photoelectric sensor 13 and a second sensing sheet 14 , and the second photoelectric sensor 13 is arranged on the second photoelectric sensor 13 .
  • the second sensing piece 14 is arranged on the first support arm 1 , and the second support arm 2 is restricted from being opposite to each other by the cooperation of the second photoelectric sensor 13 and the second sensing piece 14 .
  • the rotation angle of the first support arm 1 is a first support arm 1 .
  • the second induction sheet 14 is an arc induction sheet.
  • the second photoelectric sensor 13 swings synchronously, and the second photoelectric sensor 13 swings around the second sensing piece 14 .
  • the motor 10 stops driving; or when the second photoelectric sensor 13 does not sense the second induction piece 14 , the motor 10 stops driving. Therefore, the swing angle of the second support arm 2 is limited by the cooperation of the second photoelectric sensor 13 and the second sensing piece 14 .
  • the active arm of the surgical robot further includes a braking mechanism, and the braking mechanism is provided at the connection between the base 7 and the first support arm 1 . and the connection between the first arm 1 and the second arm 2, the braking mechanism includes a braking pad 15, a braking lever 16 and a first electromagnet 17, the braking pad 15
  • a first protruding portion 1501 is provided on the side surface
  • a second protruding portion 1601 is provided on the side surface of the brake lever 16 .
  • the protruding portion 1501 and the second protruding portion 1601 are on the same plane, and are suitable for abutting the side surfaces of the first protruding portion 1501 and the second protruding portion 1601 .
  • the brake pads 15 are connected with the pulley set 11 , and the brake rods 16 are respectively disposed on the base 7 and the first support arm 1 .
  • the first electromagnet 17 When the first electromagnet 17 is not energized, at this time, the first protruding part 1501 and the second protruding part 1601 are not on the same plane, that is, the brake lever 16 will not interfere with the rotation of the brake pad 15; when When the first electromagnet 17 is energized, the first electromagnet 17 attracts the brake lever 16 so that the first protruding portion 1501 and the second protruding portion 1601 are on the same plane.
  • the side surfaces of the first protruding portion 1501 and the second protruding portion 1601 abut or are about to abut, that is, braking is achieved by the collision of the first protruding portion 1501 and the second protruding portion 1601 . Therefore, arranging a braking mechanism at the connection between the base 7 and the first support arm 1 and the connection between the first support arm 1 and the second support arm 2 can effectively realize the control of the first support arm 1 and the second support arm 2 brakes.
  • the brake lever 16 is provided with an elastic member, and when the first electromagnet 17 is energized to adsorb the brake lever 16, the elastic member is elastically deformed, so that the first electromagnet 17 is elastically deformed. 17 to drive the brake lever 16 back to its original position when the power is turned off; or
  • the active arm of the surgical robot further includes a second electromagnet.
  • the second electromagnet is suitable for energizing and adsorbing the braking rod 16 to return to its original position.
  • the brake lever 16 when the first electromagnet 17 is powered off, the brake lever 16 needs to be restored to its original position to prevent the first protruding portion and the second protruding portion from continuing to abut and cause braking. Therefore, an elastic member such as a spring can be provided in the brake lever 16, and when the first electromagnet 17 is powered off, the brake lever 16 can be restored to its original position under the elastic force of the elastic member.
  • a second electromagnet is provided, and the second electromagnet is energized to adsorb the brake lever 16 to restore it to its original position, wherein when the first electromagnet 17 is energized, the second electromagnet is powered off, and when the first electromagnet 17 When de-energized, the second electromagnet is energized.
  • FIG. 2, FIG. 3 and FIG. 5 it also includes a sliding table group 4, the other end of the third support arm 3 is rotatably connected with the sliding table group 4, and the second parallelogram link
  • the sliding table group 4 includes a sliding table 401 , a screw rod 402 , a guide rail 403 and a mounting table 404
  • the sliding table 401 is rotatably connected with the third support arm 3 , and is fixedly connected with the second parallelogram linkage mechanism 6, the two ends of the screw rod 402 are rotatably connected with the sliding table 401, the guide rail 403 is fixed on the sliding table 401, and the screw rod
  • the nut of 402 is fixedly connected with the installation table 404
  • the installation table 404 is slidably connected with the guide rail 403, and the installation table 404 is suitable for installing the surgical instrument.
  • the sliding table 401 includes a sliding table body 4012, a sliding table upper cover 4011 and a sliding table lower cover 4013, the sliding table upper cover 4011 is detachably connected to the upper end of the sliding table body 4012, and the sliding table lower cover
  • the 4013 is detachably connected to the lower end of the sliding table body 4012
  • the sliding table body 4012 is provided with a cavity for accommodating the screw rod 402 and the guide rail 403 , wherein the two ends of the screw rod 402 are rotatably connected with the sliding table 401 .
  • the sliding table 401 is also provided with a motor 10 and a pulley set 11 , and the motor 10 drives the lead screw 402 to rotate through the pulley set 11 .
  • the lead screw 402 is a mechanical structure that converts rotary motion into linear motion
  • the nut of the lead screw 402 is fixedly connected to the mounting table 404
  • the mounting platform 404 is slidably connected to the sliding table 401
  • the motor 10 drives the lead screw 402
  • the nut on the screw rod 402 will not follow the rotation under the restriction of the mounting table 404, but move linearly relative to the screw shaft, thereby driving the mounting table 404 to move linearly on the guide rail 403, thereby realizing the straight line of the surgical instrument. sports.
  • Another embodiment of the present invention provides a surgical robot, including the above-mentioned active arm of the surgical robot.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Robotics (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

一种手术机器人的主动臂及手术机器人,涉及医疗器械技术领域,手术机器人的主动臂包括第一支臂 (1)、第二支臂(2)、第三支臂(3)、滑台组(4)、第一平行四边形连杆机构(5)和第二平行四边形连杆机构(6),第一支臂(1)一端与第二支臂(2)一端转动连接,第二支臂(2)另一端与第三支臂(3)一端转动连接,第一平行四边形连杆机构(5)两端分别与第一支臂(1)和第三支臂(3)连接,第二平行四边形连杆机构(6)一端与第二支臂(2)连接;其中,第一平行四边形连杆机构(5)和第二平行四边形连杆机构(6)适于随第二支臂(2)的摆动而变形,从而通过控制第二支臂(2)摆动,从而在第三支臂(3)连接有手术器械时,即可实现手术器械围绕远心点的摆动,进而实现精准灵活的手术操作。

Description

一种手术机器人的主动臂及手术机器人 技术领域
本发明涉及医疗器械技术领域,具体而言,涉及一种手术机器人的主动臂及手术机器人。
背景技术
目前的腹腔镜手术机器人的主动臂多采用“不动点”形式,所谓“不动点”即为患者腹壁开孔位置,主要目的是避免无论手术器械通过开孔位置对病灶做何种操作,腹壁的开孔位置避免存在受力的情况,则在腹腔镜手术机器人中“不动点”结构对手术非常重要。
目前主动臂的主要实现形式有以下三种,一是采用电机直接驱动关节以实现腹腔镜手术机器人中的“不动点”要求;二是采用带或钢丝传动的形式;三是连杆直接相连实现平行四边形的一点为动力,两点传递到不动点。但上述三种方式均存在缺陷,第一种方式由于其结构自身不能够保持“不动点”的状态,而是通过动力的控制来实现,这样就会面临动力故障所带来的主动臂的不确定运动,会为手术带来极大的风险;且成本高,复杂结构带来高故障风险。第二种方式中,采用带或钢丝传动,这种传动方式的性质决定其弹性大、刚度低,并且工艺实现难度大,从而导致精度降低,带来手术的高风险。第三种方式中,直接相连的连杆会导致连杆在运动范围内的受力呈现正弦变化,其受力变化过程较为不合理性,从而带来机构刚度低、动力难以匹配和电气控制困难的问题,必然导致手术精度降低和手术风险增大。
发明内容
本发明解决的问题是腹腔镜手术机器人中“不动点”形式主动臂刚度差、精度差和电气控制困难。
为解决上述问题,本发明提供一种手术机器人的主动臂,包括第一支臂、第二支臂、第三支臂、第一平行四边形连杆机构和第二平行四边形连杆机构,所述第一支臂一端与所述第二支臂一端转动连接,所述第二支臂另一端与所述第三支臂一端转动连接,所述第一平行四边形连杆机构两端分别与所述第 一支臂和所述第三支臂连接,所述第二平行四边形连杆机构一端与所述第二支臂连接;
其中,所述第一平行四边形连杆机构和所述第二平行四边形连杆机构适于随所述第二支臂的摆动而变形。
可选地,所述第一平行四边形连杆机构包括两平行的第一连接关节和两平行的第一连杆,所述第二平行四边形连杆机构包括两平行的第二连接关节和两平行的第二连杆,所述第一连接关节与所述第一连杆铰接,所述第二连接关节与所述第二连杆铰接,邻近所述第一支臂的所述第一连接关节与所述第一支臂固定连接,并与所述第二支臂转动连接,另一所述第一连接关节与所述第三支臂固定连接,邻近所述第二支臂的所述第二连接关节与所述第二支臂固定连接,并与所述第三支臂转动连接,另一所述第二连接关节与所述滑台组固定连接。
可选地,该手术机器人的主动臂还包括基座和多维力传感器,所述基座适于与所述多维力传感器连接,所述基座与所述第一支臂远离所述第二支臂的一端旋转连接。
可选地,该手术机器人的主动臂还包括设于所述第一支臂两端的谐波减速器、电机和带轮组,所述带轮组包括传动连接的主动轮和从动轮,所述主动轮与所述电机传动连接,所述从动轮与所述谐波减速器传动连接,所述第一支臂的两端分别通过所述谐波减速器与所述基座和所述第二支臂连接。
可选地,该手术机器人的主动臂还包括设置于所述第一支臂上的第一光电传感器,所述基座上设有感应涂层或第一感应片,所述第一光电传感器通过与所述感应涂层或所述第一感应片配合限制所述第一支臂相对于所述基座的旋转角度。
可选地,该手术机器人的主动臂还包括第二光电传感器和第二感应片,所述第二光电感应器设于所述第二支臂上,所述第二感应片设于所述第一支臂上,通过所述第二光电传感器和所述第二感应片的配合限制所述第二支臂相对所述第一支臂的转动角度。
可选地,该手术机器人的主动臂还包括制动机构,所述制动机构设于所述基座与所述第一支臂的连接处,以及所述第一支臂与所述第二支臂的连接 处,所述制动机构包括制动片、制动杆和第一电磁铁,所述制动片侧面设有第一凸出部,所述制动杆侧面设有第二凸出部,所述第一电磁铁适于通电吸附所述制动杆以使所述第一凸出部和所述第二凸出部处于同一平面上,并适于使所述第一凸出部和所述第二凸出部的侧面抵接或将要抵接。
可选地,所述制动杆内设有弹性件,当所述第一电磁铁通电吸附所述制动杆时,所述弹性件发生弹性形变,以在所述第一电磁铁断电时驱动所述制动杆恢复原位;或
该手术机器人的主动臂还包括第二电磁铁,当所述第一电磁铁断电时,所述第二电磁铁适于通电吸附所述制动杆以使所述制动杆恢复原位。
可选地,该手术机器人的主动臂还包括滑台组,所述第三支臂另一端与所述滑台组转动连接,所述第二平行四边形连杆机构另一端与所述滑台组连接,所述滑台组包括滑台、丝杆、导轨和安装台,所述滑台与所述第三支臂转动连接,并与所述第二平行四边形连杆机构固定连接,所述丝杆的两端与所述滑台转动连接,所述导轨固定于所述滑台上,所述丝杆的螺母与所述安装台固定连接,所述安装台与所述导轨滑动连接,所述安装台适于安装所述手术器械。
本发明还提供一种手术机器人,包括如上所述的手术机器人的主动臂。
本发明的有益效果:通过将第一平行四边形连杆机构两端分别与第一支臂和第三支臂连接,使得在第一平行四边形连杆机构的限制下,第一支臂和第三支臂同步摆动,将第二平行四边形连杆机构一端与第二支臂连接,使得在第三支臂安装有手术器械时,在第二平行四边形连杆机构的限制下,第二支臂与手术器械同步摆动,且第二支臂、第三支臂构成一平行四边形的两相邻边,该平行四边形的另两条边的交点为远心点,即不动点,第三支臂上安装的手术器械穿过该远心点,由于第一平行四边形连杆机构和第二平行四边形连杆机构适于随所述第二支臂的摆动而变形,因此,在第二支臂绕第一支臂摆动时,远心点位置不会变化,手术器械会随第二支臂同步摆动,从而实现手术器械围绕远心点的摆动,而实际手术过程中,远心点与微创手术切口重合,进而可确保在微创手术过程中手术器械与病人的手术切口不发生拉扯,保证了手术安全;第一平行四边连杆机构和第二平行四边形连杆机构的 布置传动形式,使结构在运动范围内两组平行四边形形态变化围绕在受力最佳的90°附近,使得结构受力最佳,刚度最佳。且由于连杆结构紧凑、刚度大、体量轻巧,因此通过控制第二支臂摆动即可精确实现手术器械围绕远心点的摆动,继而实现精准灵活的手术操作。
附图说明
图1为本发明实施例的手术机器人的主动臂的爆炸图;
图2为本发明实施例的手术机器人的主动臂的剖视图;
图3为本发明实施例的手术机器人的滑台组的爆炸图;
图4为图2中Ⅰ处的放大图;
图5为图2中Ⅱ处的放大图。
附图标记说明:
1-第一支臂,2-第二支臂,3-第三支臂,4-滑台组,401-滑台,4011-滑台上盖,4012-滑台体,4013-滑台下盖,402-丝杆,403-导轨,404-安装台,5-第一平行四边形连杆机构,501-第一连接关节,502-第一连杆,6-第二平行四边形连杆机构,601-第二连接关节,602-第二连杆,7-基座,8-多维力传感器,9-谐波减速器,10-电机,11-带轮组,12-第一光电传感器,13-第二光电传感器,14-第二感应片,15-制动片,1501-第一凸出部,16-制动杆,1601-第二凸出部,17-第一电磁铁,18-电机控制板,19-远心点。
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、 “第二”的特征可以明示或者隐含地包括至少一个该特征。
如图1和图2所示,本发明实施例的一种手术机器人的主动臂,包括第一支臂1、第二支臂2、第三支臂3、第一平行四边形连杆机构5和第二平行四边形连杆机构6,所述第一支臂1一端与所述第二支臂2一端转动连接,所述第二支臂2另一端与所述第三支臂3一端转动连接,所述第一平行四边形连杆机构5两端分别与所述第一支臂1和所述第三支臂3连接,所述第二平行四边形连杆机构6一端与所述第二支臂2和连接;
其中,所述第一平行四边形连杆机构5和所述第二平行四边形连杆机构6适于随所述第二支臂2的摆动而变形。
通过将第一平行四边形连杆机构5两端分别与第一支臂1和第三支臂3连接,使得在第一平行四边形连杆机构5的限制下,第一支臂1和第三支臂3同步摆动,将第二平行四边形连杆机构6一端与第二支臂2连接,使得在第三支臂3安装有手术器械时,在第二平行四边形连杆机构6的限制下,第二支臂2与手术器械同步摆动,且第二支臂2、第三支臂3构成一平行四边形的两相邻边,该平行四边形的另两条边的交点为远心点19,即不动点,第三支臂3上安装的手术器械穿过该远心点19,由于第一平行四边形连杆机构5和第二平行四边形连杆机构6适于随所述第二支臂2的摆动而变形,因此,在第二支臂2绕第一支臂1摆动时,远心点19位置不会变化,手术器械会随第二支臂2同步摆动,从而实现手术器械围绕远心点19的摆动,而实际手术过程中,远心点19与微创手术切口重合,进而可确保在微创手术过程中手术器械与病人的手术切口不发生拉扯,保证了手术安全;第一平行四边连杆机构5和第二平行四边形连杆机构6的布置传动形式,使结构在运动范围内两组平行四边形形态变化围绕在受力最佳的90°附近,使得结构受力最佳,刚度最佳。且由于连杆结构紧凑、刚度大、体量轻巧,因此通过控制第二支臂2摆动即可精确实现手术器械围绕远心点19的摆动,继而实现精准灵活的手术操作。
可选地,所述第一平行四边形连杆机构5包括两平行的第一连接关节501和两平行的第一连杆502,所述第二平行四边形连杆机构6包括两平行的第二连接关节601和两平行的第二连杆602,所述第一连接关节501与所 述第一连杆502铰接,所述第二连接关节601与所述第二连杆602铰接,邻近所述第一支臂1的所述第一连接关节501与所述第一支臂1固定连接,并与所述第二支臂2转动连接,另一所述第一连接关节501与所述第三支臂3固定连接,邻近所述第二支臂2的所述第二连接关节601与所述第二支臂2固定连接,并与所述第三支臂3转动连接;其中,另一所述第二连接关节601适于与用于安装手术器械的安装座固定连接,在本实施例中,即适于与滑台组4固定连接。
具体地,如图1所示,第一连接关节501与第一连杆502铰接,从而使得第一平行四边形连杆机构5可变形;第二连接关节601与第二连杆602铰接,从而使得第二平行四边形连杆机构6可变形,第一连接关节501与第一支臂1邻近第二支臂2的一端固定连接,同时第一连接关节501上设有轴承,第一连接关节501通过轴承与第二支臂2转动连接,即第一支臂1通过第一连接关节501与第二支臂2转动连接;类似地,第二连接关节601与第二支臂2邻近第三支臂3的一端固定连接,同时第二连接关节601上设有轴承,第二连接关节601通过轴承与第三支臂3转动连接,即第二支臂2通过第一连接关节501与第三支臂3转动连接。通过上述设置,使得第一支臂1与第三支臂3同步,第二支臂2与滑台组4同步,当第二支臂2绕第一支臂1摆动时,第二支臂2与第三支臂3的夹角发生变化,第一平行四边形连杆机构5和第二平行四边形连杆机构6变形,使得滑台组4与第二支臂2摆动相同角度,从而实现滑台组4围绕远心点19的摆动。
可选地,如图1所示,还包括基座7和多维力传感器8,所述基座7适于与所述多维力传感器8连接,所述基座7与所述第一支臂1远离所述第二支臂2的一端旋转连接。
其中,多维力传感器8优选为六维力传感器,即能够同时测量三个力分量和三个力矩分量的传感器。如图1所示,基座7与第一支臂1远离第二支臂2的一端旋转连接,使得第一支臂1可绕基座7旋转,旋转方向为基座7的周向。第一支臂1另一端与第二支臂2转动连接,即第二支臂2可相对第一支臂1在第一支臂1的轴线方向上转动。
具体地,通过将基座7与所述第一支臂1远离所述第二支臂2的一端旋 转连接,从而可通过控制第一支臂1旋转使滑台组4旋转,进而实现滑台组4绕远心点19旋转,以提高手术器械的活动范围。另外,由于基座7与多维力传感器8连接,因此,手术机器人通过多维力传感器8能准确监测主动臂的操作力度,以及在操作过程中是否有滑动、振动,从而便于实现精准的手术操作。同时,通过传感器的数据可以为主动臂在人手拖动主动臂摆位时,以施力方向和大小作为依据,主动臂的动力输出方向和大小控制主动臂的运动,以辅助人拖动运动。
可选地,如图1所示,该手术机器人的主动臂还包括设于所述第一支臂1两端的谐波减速器9、电机10和带轮组11,所述带轮组11包括传动连接的主动轮和从动轮,所述主动轮与所述电机10传动连接,所述从动轮与所述谐波减速器9传动连接,所述第一支臂1的两端分别通过所述谐波减速器9与所述基座7和所述第二支臂2连接。
具体地,第一支臂1一端通过谐波减速器9与基座7旋转连接,另一端通过谐波减速器9与第二支臂2转动连接,电机10通过带轮组11与谐波减速器9传动连接,进而可通过邻近基座7的电机10控制第一支臂1的旋转角度,通过邻近第二支臂2的电机10控制第二支臂2的转动角度,其中,第一支臂1内设有电机控制板18,该电机控制板18用于控制邻近基座7的电机10,第二支臂2内设有另一电机控制板18,第二支臂2内的电机控制板18用于控制邻近第二支臂2的电机10,通过上述结构设置,实现对第一支臂1的旋转角度和第二支臂2摆动角度的控制,进而实现对滑台组4旋转角度和摆动角度的控制。
可选地,如图1、图2和图4所示,该手术机器人的主动臂还包括设置于所述第一支臂1上的第一光电传感器12,所述基座7上设有感应涂层或第一感应片,所述第一光电传感器12通过与所述感应涂层或所述第一感应片配合限制所述第一支臂1相对于所述基座7的旋转角度。
具体地,第一支臂1上设有第一光电传感器12,则第一光电传感器12会随着第一支臂1同步旋转。当第一光电传感器12感应到基座7上的感应涂层或第一感应片时,电机10停止驱动;或当第一光电传感器12未感应到基座7上的感应涂层或第一感应片时,电机10停止驱动,从而通过第一光 电传感器12和感应涂层或第一感应片的配合限制第一支臂1的旋转角度。
可选地,如图1、图2和图4所示,该手术机器人的主动臂还包括第二光电传感器13和第二感应片14,所述第二光电感应器13设于所述第二支臂2上,所述第二感应片14设于所述第一支臂1上,通过所述第二光电传感器13和所述第二感应片14的配合限制所述第二支臂2相对所述第一支臂1的转动角度。
具体地,第二感应片14为弧形感应片。当第二支臂2摆动时,第二光电传感器13随之同步摆动,则第二光电传感器13会绕第二感应片14摆动。类似地,当第二光电传感器13感应到基座7上的第二感应片14时,电机10停止驱动;或第二光电传感器13未感应到第二感应片14时,电机10停止驱动。从而通过第二光电传感器13和第二感应片14的配合限制第二支臂2的摆动角度。
通过限制第一支臂1的旋转角度和第二支臂2的摆动角度,使得第三支臂3下方始终存在一用于避让病人的避让空间,从而便于手术操作。
可选地,如图1、图2和图4所示,该手术机器人的主动臂还包括制动机构,所述制动机构设于所述基座7与所述第一支臂1的连接处,以及所述第一支臂1与所述第二支臂2的连接处,所述制动机构包括制动片15、制动杆16和第一电磁铁17,所述制动片15侧面设有第一凸出部1501,所述制动杆16侧面设有第二凸出部1601,所述第一电磁铁17适于通电吸附所述制动杆16以使所述第一凸出部1501和所述第二凸出部1601处于同一平面上,并适于使所述第一凸出部1501和所述第二凸出部1601的侧面抵接。
具体地,制动片15与带轮组11连接,制动杆16分别设置于基座7和第一支臂1上。当第一电磁铁17未通电时,此时,第一凸出部1501和所述第二凸出部1601不处于同一平面上,即制动杆16不会干扰制动片15的旋转;当第一电磁铁17通电时,第一电磁铁17吸附制动杆16,使得第一凸出部1501和第二凸出部1601处于同一平面上。此时,第一凸出部1501和第二凸出部1601的侧面抵接或将要抵接,即通过第一凸出部1501和第二凸出部1601发生碰撞实现制动。因此,在所述基座7与第一支臂1的连接处以及第一支臂1与第二支臂2的连接处设置制动机构可有效实现对第一支臂 1和第二支臂2的制动。
可选地,所述制动杆16内设有弹性件,当所述第一电磁铁17通电吸附所述制动杆16时,所述弹性件发生弹性形变,以在所述第一电磁铁17断电时驱动所述制动杆16恢复原位;或
该手术机器人的主动臂还包括第二电磁铁,当所述第一电磁铁17断电时,所述第二电磁铁适于通电吸附所述制动杆16恢复原位。
具体地,当第一电磁铁17断电时,制动杆16需要恢复原位,以避免第一凸出部和第二凸出部继续抵接导致制动。因此,可在制动杆16内设置例如弹簧的弹性件,当第一电磁铁17断电时,在弹性件的弹力作用下使制动杆16恢复原位。或者,设置第二电磁铁,通过将第二电磁铁通电吸附制动杆16使其恢复原位,其中,当第一电磁铁17通电时,第二电磁铁断电,当第一电磁铁17断电时,第二电磁铁通电。
可选地,如图2、图3和图5所示,还包括滑台组4,所述第三支臂3另一端与所述滑台组4转动连接,所述第二平行四边形连杆机构6另一端与所述滑台组4连接,所述滑台组4包括滑台401、丝杆402、导轨403和安装台404,所述滑台401与所述第三支臂3转动连接,并与所述第二平行四边形连杆机构6固定连接,所述丝杆402的两端与所述滑台401转动连接,所述导轨403固定于所述滑台401上,所述丝杆402的螺母与所述安装台404固定连接,所述安装台404与所述导轨403滑动连接,所述安装台404适于安装所述手术器械。
通过将第三支臂3另一端与滑台组4转动连接,第二平行四边形连杆机构6另一端与所述滑台组4连接,使得在第二平行四边形连杆机构6的限制下,第二支臂2与滑台组4同步摆动,进而实现手术器械与第二支臂2的同步摆动。具体地,如图5所示,滑台401包括滑台体4012、滑台上盖4011和滑台下盖4013,滑台上盖4011可拆卸连接于滑台体4012的上端,滑台下盖4013可拆卸连接于滑台体4012的下端,滑台体4012内设有空腔,该空腔用于容纳丝杆402和导轨403,其中,丝杆402的两端与滑台401转动连接。滑台401内还设有电机10和带轮组11,电机10通过带轮组11带动丝杆402旋转。由于丝杆402是一种将回转运动转化为直线运动的机械结构, 且丝杆402的螺母与安装台404固定连接,安装台404与滑台401滑动连接,因此,当电机10驱动丝杆402轴旋转时,丝杆402上的螺母在安装台404的限制下,不会跟随旋转,而是相对丝杠轴直线运动,从而驱动安装台404在导轨403上直线运动,进而实现手术器械的直线运动。
本发明另一实施例提供一种手术机器人,包括如上所述的手术机器人的主动臂。
本实施例所述的手术机器人相对现有技术的有益效果与所述的手术机器人的主动臂相对于现有技术的有益效果相同,在此不再赘述。
虽然本公开披露如上,但本公开的保护范围并非仅限于此。本领域技术人员在不脱离本公开的精神和范围的前提下,可进行各种变更与修改,这些变更与修改均将落入本发明的保护范围。

Claims (10)

  1. 一种手术机器人的主动臂,其中,包括第一支臂(1)、第二支臂(2)、第三支臂(3)、第一平行四边形连杆机构(5)和第二平行四边形连杆机构(6),所述第一支臂(1)一端与所述第二支臂(2)一端转动连接,所述第二支臂(2)另一端与所述第三支臂(3)一端转动连接,所述第一平行四边形连杆机构(5)两端分别与所述第一支臂(1)和所述第三支臂(3)连接,所述第二平行四边形连杆机构(6)一端与所述第二支臂(2)连接;
    其中,所述第一平行四边形连杆机构(5)和所述第二平行四边形连杆机构(6)适于随所述第二支臂(2)的摆动而变形。
  2. 根据权利要求1所述的手术机器人的主动臂,其中,所述第一平行四边形连杆机构(5)包括两平行的第一连接关节(501)和两平行的第一连杆(502),所述第二平行四边形连杆机构(6)包括两平行的第二连接关节(601)和两平行的第二连杆(602),所述第一连接关节(501)与所述第一连杆(502)铰接,所述第二连接关节(601)与所述第二连杆(602)铰接,邻近所述第一支臂(1)的所述第一连接关节(501)与所述第一支臂(1)固定连接,另一所述第一连接关节(501)与所述第三支臂(3)固定连接,邻近所述第二支臂(2)的所述第二连接关节(601)与所述第二支臂(2)固定连接,并与所述第三支臂(3)转动连接。
  3. 根据权利要求1或2所述的手术机器人的主动臂,其中,还包括基座(7)和多维力传感器(8),所述基座(7)适于与所述多维力传感器(8)连接,所述基座(7)与所述第一支臂(1)远离所述第二支臂(2)的一端旋转连接。
  4. 根据权利要求3所述的手术机器人的主动臂,其中,还包括设于所述第一支臂(1)两端的谐波减速器(9)、电机(10)和带轮组(11),所述带轮组(11)包括传动连接的主动轮和从动轮,所述主动轮与所述电机(10)传动连接,所述从动轮与所述谐波减速器(9)传动连接,所述第一支臂(1)的两端分别通过所述谐波减速器(9)与所述基座(7)和所述第二支臂(2)连接。
  5. 根据权利要求3所述的手术机器人的主动臂,其中,还包括设置于 所述第一支臂(1)上的第一光电传感器(12),所述基座(7)上设有感应涂层或第一感应片,所述第一光电传感器(12)通过与所述感应涂层或所述第一感应片配合限制所述第一支臂(1)相对于所述基座(7)的旋转角度。
  6. 根据权利要求1或2所述的手术机器人的主动臂,其中,还包括第二光电传感器(13)和第二感应片(14),所述第二光电感应器设于所述第二支臂(2)上,所述第二感应片(14)设于所述第一支臂(1)上,通过所述第二光电传感器(13)和所述第二感应片(14)的配合限制所述第二支臂(2)相对所述第一支臂(1)的转动角度。
  7. 根据权利要求3所述的手术机器人的主动臂,其中,还包括制动机构,所述制动机构设于所述基座(7)与所述第一支臂(1)的连接处,以及所述第一支臂(1)与所述第二支臂(2)的连接处,所述制动机构包括制动片(15)、制动杆(16)和第一电磁铁(17),所述制动片(15)侧面设有第一凸出部(1501),所述制动杆(16)侧面设有第二凸出部(1601),所述第一电磁铁(17)适于通电吸附所述制动杆(16)以使所述第一凸出部(1501)和所述第二凸出部(1601)处于同一平面上,并适于使所述第一凸出部(1501)和所述第二凸出部(1601)的侧面抵接。
  8. 根据权利要求7所述的手术机器人的主动臂,其中,所述制动杆(16)内设有弹性件,当所述第一电磁铁(17)通电吸附所述制动杆(16)时,所述弹性件发生弹性形变,以在所述第一电磁铁(17)断电时驱动所述制动杆(16)恢复原位;或
    还包括第二电磁铁,当所述第一电磁铁(17)断电时,所述第二电磁铁适于通电吸附所述制动杆(16)以使所述制动杆(16)恢复原位。
  9. 根据权利要求1或2所述的手术机器人的主动臂,其中,还包括滑台组(4),所述第三支臂(3)另一端与所述滑台组(4)转动连接,所述第二平行四边形连杆机构(6)另一端与所述滑台组(4)连接,所述滑台组(4)包括滑台(401)、丝杆(402)、导轨(403)和安装台(404),所述滑台(401)与所述第三支臂(3)转动连接,并与所述第二平行四边形连杆机构(6)固定连接,所述丝杆(402)的两端与所述滑台(401)转动连接,所述导轨(403)固定于所述滑台(401)上,所述丝杆(402)的螺母 与所述安装台(404)固定连接,所述安装台(404)与所述导轨(403)滑动连接,所述安装台(404)适于安装所述手术器械。
  10. 一种手术机器人,其中,包括如权利要求1至9任一项所述的手术机器人的主动臂。
PCT/CN2021/131486 2021-01-19 2021-11-18 一种手术机器人的主动臂及手术机器人 WO2022156337A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21920713.1A EP4282367A1 (en) 2021-01-19 2021-11-18 Master arm of surgical robot and surgical robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110069575.9 2021-01-19
CN202110069575.9A CN112754669A (zh) 2021-01-19 2021-01-19 一种手术机器人的主动臂及手术机器人

Publications (1)

Publication Number Publication Date
WO2022156337A1 true WO2022156337A1 (zh) 2022-07-28

Family

ID=75703160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131486 WO2022156337A1 (zh) 2021-01-19 2021-11-18 一种手术机器人的主动臂及手术机器人

Country Status (3)

Country Link
EP (1) EP4282367A1 (zh)
CN (1) CN112754669A (zh)
WO (1) WO2022156337A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115972209A (zh) * 2023-01-09 2023-04-18 重庆金山医疗机器人有限公司 一种主手机械臂和主手机械臂的关节扭矩控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112754669A (zh) * 2021-01-19 2021-05-07 哈尔滨思哲睿智能医疗设备有限公司 一种手术机器人的主动臂及手术机器人
CN113400317B (zh) * 2021-07-13 2022-09-06 上海交通大学 磁场极强点与磁力线方向解耦型控制机构
CN113729951B (zh) * 2021-10-12 2023-08-29 中南大学 手术机器人的双平行四边形初调机构
CN114191088B (zh) * 2021-11-09 2023-08-04 深圳市爱博医疗机器人有限公司 一种限位型介入手术机器人从端支撑装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080314181A1 (en) * 2007-06-19 2008-12-25 Bruce Schena Robotic Manipulator with Remote Center of Motion and Compact Drive
CN103009377A (zh) * 2012-08-23 2013-04-03 杭州永创智能设备股份有限公司 一种机械手
CN104334109A (zh) * 2012-06-01 2015-02-04 直观外科手术操作公司 用于使用零空间的外科手术操纵器的命令的重新配置的系统和方法
CN104546147A (zh) * 2015-02-14 2015-04-29 中国科学院重庆绿色智能技术研究院 一种腹腔镜微创手术机器人机械臂rcm机构
CN204445966U (zh) * 2015-01-05 2015-07-08 苏州康多机器人有限公司 一种用于微创手术操作的近似远心不动点机构
CN106618736A (zh) * 2016-12-16 2017-05-10 微创(上海)医疗机器人有限公司 具有双自由度的机械臂和手术机器人
CN107468293A (zh) * 2017-08-31 2017-12-15 中国科学院深圳先进技术研究院 微创手术机器人及应用其的外科手术设备
CN109009443A (zh) * 2018-08-15 2018-12-18 苏州大学张家港工业技术研究院 腹腔微创外科手术机器人
CN109223182A (zh) * 2018-11-21 2019-01-18 天津工业大学 一种用于微创手术机器人远程中心运动的钢带传动机构
CN109602498A (zh) * 2018-12-06 2019-04-12 哈尔滨工业大学 一种眼科显微手术辅助机器人标定方法
CN112754669A (zh) * 2021-01-19 2021-05-07 哈尔滨思哲睿智能医疗设备有限公司 一种手术机器人的主动臂及手术机器人

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080314181A1 (en) * 2007-06-19 2008-12-25 Bruce Schena Robotic Manipulator with Remote Center of Motion and Compact Drive
CN104334109A (zh) * 2012-06-01 2015-02-04 直观外科手术操作公司 用于使用零空间的外科手术操纵器的命令的重新配置的系统和方法
CN103009377A (zh) * 2012-08-23 2013-04-03 杭州永创智能设备股份有限公司 一种机械手
CN204445966U (zh) * 2015-01-05 2015-07-08 苏州康多机器人有限公司 一种用于微创手术操作的近似远心不动点机构
CN104546147A (zh) * 2015-02-14 2015-04-29 中国科学院重庆绿色智能技术研究院 一种腹腔镜微创手术机器人机械臂rcm机构
CN106618736A (zh) * 2016-12-16 2017-05-10 微创(上海)医疗机器人有限公司 具有双自由度的机械臂和手术机器人
CN107468293A (zh) * 2017-08-31 2017-12-15 中国科学院深圳先进技术研究院 微创手术机器人及应用其的外科手术设备
CN109009443A (zh) * 2018-08-15 2018-12-18 苏州大学张家港工业技术研究院 腹腔微创外科手术机器人
CN109223182A (zh) * 2018-11-21 2019-01-18 天津工业大学 一种用于微创手术机器人远程中心运动的钢带传动机构
CN109602498A (zh) * 2018-12-06 2019-04-12 哈尔滨工业大学 一种眼科显微手术辅助机器人标定方法
CN112754669A (zh) * 2021-01-19 2021-05-07 哈尔滨思哲睿智能医疗设备有限公司 一种手术机器人的主动臂及手术机器人

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115972209A (zh) * 2023-01-09 2023-04-18 重庆金山医疗机器人有限公司 一种主手机械臂和主手机械臂的关节扭矩控制方法
CN115972209B (zh) * 2023-01-09 2024-02-13 重庆金山医疗机器人有限公司 一种主手机械臂和主手机械臂的关节扭矩控制方法

Also Published As

Publication number Publication date
EP4282367A1 (en) 2023-11-29
CN112754669A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
WO2022156337A1 (zh) 一种手术机器人的主动臂及手术机器人
US11160626B2 (en) Offset remote center manipulator for robotic surgery
US10299869B2 (en) Input device assemblies for robotic surgical systems
US6000297A (en) Master-slave micromanipulator method
US6723106B1 (en) Surgical manipulator
US8806974B2 (en) Device for transmitting movements and components thereof
JP2010247324A (ja) デルタ運動ロボット
KR20220051272A (ko) 하드웨어 제한형 원격 중심 로봇 매니퓰레이터용 여유 축 및 자유도
WO2007120350A2 (en) Multi-ply strap drive trains for robotic arms
CN106078724B (zh) 机械臂及其手术机器人
CN113262050A (zh) 一种二自由度末端执行装置
CN110916801A (zh) 一种可实现高精度定位和姿态调整的手术机器人机械臂
US20100206121A1 (en) Device for Transmitting Movements and Components Thereof
EP4070756A1 (en) Treatment assistance equipment
JP2677532B2 (ja) 可動プレート支持装置
CN215228384U (zh) 一种手术机器人的主动臂及手术机器人
WO2023077605A1 (zh) 一种主操作手及手术机器人操控设备
CN211433289U (zh) 具有自连接功能的驱动装置
CN113653757B (zh) 摩擦阻尼装置及具有其的被动关节、手术机器人
CN215386615U (zh) 一种血液透析护理辅助体位保持装置
JP3638665B2 (ja) 歯科用トレーテーブル用回転アームの回転制御機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021920713

Country of ref document: EP

Effective date: 20230821